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Anatoly A. Peresetsky*, Alexandr A. Karminsky**, and Sergei V. Golovan*** 

 
 
 

Probability of default models of Russian banks 
 
 

 
Abstract 
 
 
This paper presents results from an econometric analysis of Russian bank defaults during 

the period 1997–2003, focusing on the extent to which publicly available information from 

quarterly bank balance sheets is useful in predicting future defaults. Binary choice models 

are estimated to construct the probability of default model. We find that preliminary expert 

clustering or automatic clustering improves the predictive power of the models and incor-

poration of macrovariables into the models is useful. Heuristic criteria are suggested to 

help compare model performance from the perspectives of investors or banks supervision 

authorities. Russian banking system trends after the crisis 1998 are analyzed with rolling 

regressions. 
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Anatoly A. Peresetsky, Alexandr A. Karminsky and Sergei V. Golovan 

 
 
 

Probability of default models of Russian banks 
 
 
 

 
Tiivistelmä 
 
Tutkimus käsittelee ekonometrisin menetelmin venäläisten pankkien konkursseja vuosina 

1997-2003. Haluamme selvittää, onko pankkien neljännesvuosittain julkaisemista tasetie-

doista apua konkurssien ennustamisessa. Käytämme logit-menetelmää konkurssimallin ra-

kentamiseen. Havaintoaineiston ryhmittely joko asiantuntijoiden arvioiden tai automaatti-

sen algoritmin avulla parantaa mallin ennustuskykyä. Myös makrotaloudellisten muuttuji-

en lisääminen malliin auttaa ennustamaan konkursseja. Arvioimme mallien ennustuskykyä 

sijoittajille ja pankkivalvojille tärkeiden kriteerien avulla. Venäjän pankkijärjestelmän ke-

hitystä vuoden 1998 kriisin jälkeen analysoidaan liukuvan regression avulla. 

 

Asiasanat: Venäjä, konkurssimallit, kaukovaroitusmallit 
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1 Introduction and brief literature survey 
 
This paper investigates the usefulness of econometric probability of default models based 

on publicly available information drawn from banks’ balance sheets in predicting the fu-

ture solvency of Russian banks. 

Many experts on financial structures, however, including those at the Economic 

Education and Research Consortium (EERC),1 hold out little hope for constructing such 

models for the Russian case. They note that factors besides the financial condition of banks 

and the macroeconomic environment are also important in determining long-term sol-

vency. These include many less-formalized factors such as politics, bank affiliations with 

industrial or financial groups, bank activities profile, practices and quality of management. 

Moreover, Russian bank balance sheet data, which are still based on Russian ac-

counting practices, are of questionable quality and lack the transparency of books prepared 

in accordance with internationally accepted standards. 

The importance of the quality of the accounting data for statistical models of bank 

risk is demonstrated on US banks data in Gunther and Moore (2003). In their study of fail-

ures of high-yield bond prediction, Marchesini et al. (2004) observe “balance sheets … can 

be and have been severely manipulated.” 

The rapid development of Russia’s banking system (since Russia began the transi-

tion to a market economy) has brought with it a rich body of numerical material for 

econometric analysis. Russia still has many commercial banks, although the number has 

dropped from about 2500 in 1995–1996 to around 1300 at present. This situation offers a 

wealth of material for econometric study. In contrast, the 1989 sample of 1030 of largest 

US banks used by Kolari et al. (2002) only included 18 defaults. The sample of 5598 ob-

servations of US banks between 1970 and 1976 used by Martin (1977) includes just 23 

failures. 

Our sample of Russian banks is not especially skewed. Skewed samples in a logis-

tic regression (two substantially unequal-sized response groups) are known to produce bi-

ased test statistics and potentially faulty conclusions (e.g. Aldrich and Nelson, 1985; Stone 

and Rasp, 1991). 

The New Basel Capital Accord (Basel 2004) proposes that banks could use the In-

ternal Ratings Based Approach (IRB) in evaluating potential bank partners and bank su-

                                                 
1 EERC, July 2003, M. Shaffer et al. 
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pervision authorities could use Early Warning Systems (EWS) in monitoring of the bank-

ing system. These measures are expected to enhance the stability of banking and financial 

systems. Statistical models of bank credibility based on publicly available information 

could logically be included as part of an IRB or EWS. 

Investors, banks and firms need to be able to evaluate the credibility of potential 

banking partners, while expediency dictates that banking supervision authorities need to be 

able to screen banks off-site to identify troubled banks and concentrate their efforts on on-

site examinations of such banks. 

International credit rating agencies such as Standard and Poor’s, Moody’s and Fitch 

rate the creditworthiness and quality of many banks. These ratings could be used in the 

IRB or EWS. However, such ratings are fundamentally lacking in Russia’s case. First, the 

top international rating agencies only rate a couple dozen Russian banks. The ratings they 

do provide are consistently low; S&P rated 22 Russian banks in September 2004 with only 

three rating categories: CCC, B or BB (state-owned Vneshtorgbank was the sole BB rat-

ing). Second, these ratings tend to be conservative and rarely get changed (Löffler, 2004, 

and Altman and Rijken, 2004, detail the reasons for rating stability and related loss of in-

formation). Russia itself has only a few credit rating agencies, and they hardly compare 

with the international agencies in the eyes of Russian financial experts or the world (Soest 

et al., 2003). 

Actually, there are only a limited number of approaches to statistical modeling of 

bank credibility based on publicly available information. 

First, one could use existing bank ratings issued by a rating agency and construct a 

statistical model for such ratings. The model would reflect that part of the rating informa-

tion derived from public information. The natural choice of econometric model here is 

likely the ordered response model (ordered logit/probit). Once the model is designed, the 

rating criteria could be extended to an entire set of banks. That model would reflect the 

opinion of the rating agency experts. This approach has been suggested for Russian banks 

in Soest et al. (2003) and for non-financial US firms in Altman and Rijken (2004). 

A second approach is based on surveying experts. The experts are asked to rate a 

number of real banks and “virtual” banks, consisting solely of numerical information of 

parameters from balance sheets. Thereafter, it is possible to fit an ordered probit model that 

reflects the opinion of the set of experts. A possible advantage of this method is that the 

model incorporates the opinion of experts representing various financial structures. Of 
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course, when banks pay the rating agency for their rating, this may potentially lead to a 

situation where the rating agency is reluctant to give a downgrade. On the other hand, rat-

ing agency experts are likely to have extensive information on the rated bank. That ap-

proach was realized in Soest et al. (2003). 

The third is to derive a statistical model of bank risk, stability and credibility (which 

we generally refer to here as “reliability”) based on historical data of bank defaults. The 

natural choice for an econometric model here would be the binary choice model 

(logit/probit). This approach is applied to Russian banks in Golovan et al. (2003, 2004). 

Efforts at designing a model for predicting the probability of bank defaults has a 

long history. To the best of our knowledge, Altman (1968) was the first to apply a statisti-

cal model to predicting bankruptcy of non-financial firms. He uses discriminant analysis to 

construct a model to predict firm bankruptcy. The model uses input values from five finan-

cial ratios for the firms, one or two years before the firm enters (or avoids) bankruptcy. 

Martin (1977) pioneered application of a binary choice model (logit) to prediction of bank 

failure. He employs a two-year horizon between the statement year for the financial ratio 

data and the observation year of the bank’s situation (failed/operating). 

Numerous papers discuss the use of the logit/probit approach in modeling probabil-

ity of default. Wiginton (1980) finds the logit model results superior to discriminant analy-

sis for consumer credit scoring. Ohlson (1980) applies a logit model to data from 1970–

1976 to discern statistically significant factors for predicting the probability that a firm will 

fail in the coming year. Lawrence et al. (1992) use logit analysis of default risk in mobile 

home credits in the US in 1974–1980. Westgaard and Wijst (2001) employ a logit model 

for analysis of default factors affecting Norwegian limited liability companies during 

1995–1999, finding that a two-year period between the firm status and firm accounting 

data is optimal. They use the log of firm’s total assets as a measure of firm size and find 

that removing observations with extreme values from the dataset and truncating the pa-

rameters improves the statistical quality of the model. Kolari et al. (2002) takes a logit ap-

proach to modeling probability of default for US banks in 1989–1990. Lenox (1999) uses a 

sample of 949 UK firms (6416 observations) to study logit, probit and discriminant analy-

sis models performance for the prediction of the firm failure. He finds logit/probit models 

with specification of heteroscedasticity are superior to logit/probit models without hetero-

scedasticity or discriminant analysis. The paper is unclear, however, as whether the im-
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provement in model performance is due to correct heteroscedasticity specification or sim-

ply to a model with more parameters. 

Some papers use non-statistical methods to set up a model for default prediction. 

For example, Kolari et al. (2002) use a trait recognition model, or TRA (a kind of the im-

age recognition algorithm), while H. and P. Espahbodi (2003) use recursive partitioning. 

Other non-statistical methods include neural networks, Markov models, CAMELS and fi-

nancial ratios. There is no evidence that these methods perform better than the statistical 

approach. On the contrary, Altman et al (1994) conclude that discriminant analysis and 

logit model outperform neural networks in prediction of corporate distress. Jagtiani, Kolary 

et al. (2003) conclude that a “simple linear (logit) model performs better than more com-

plex EWS models such as TRA.” 

The paper is innovative for at least four reasons. First, we focus on constructing 

probability of default models for Russian banks. Second, we discuss the need for prelimi-

nary clustering of banks and the possible need for separate logit models for each cluster. Of 

course, it would be better to have a cluster procedure oriented to the best fit of logit model 

in clusters. For this purpose, we introduce a model that combines a clustering procedure 

with logit model fitting. Third, we examine the extent to which macroeconomic variables 

are helpful in predicting bank defaults. Fourth, we introduce a new approach to model 

comparison, because comparison of model performance is a bit problematic. One can com-

pare statistical significance of the models or rates of correct prediction, but such informa-

tion is not particularly important to an investor. Thus, we apply heuristic criteria that re-

flect the expected extra profit for an investor using the model. 

The paper is organized as follows: In section 2, we examine how helpful clustering 

of the banks is for determining model performance. We use expert and automatic cluster-

ing procedures. The probability of a bank to survive during the financial and banking crisis 

of the August 1998 is modeled. In section 3, we construct probability of defaults models 

for Russian banks during 1996–2003. During this period, Russia’s macroeconomic envi-

ronment changed considerably, so it makes sense to use macrovariables to improve model 

performance. The heuristic criteria for model comparison are introduced. In section 4, the 

study of the models estimated on one- and two-years rolling windows are used to analyze 

changes in the Russian banking system after the 1998 financial crisis. Section 5 concludes. 
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2 Does clustering help? 
 
Historical bank accounts data are rarely used in constructing probit/logit models for deter-

mining probability of bank default. We find US bank data are used in the papers of Martin 

(1977), Bovenzi et al. (1983), Cole and Gunther (1995, 1998), Estrella (2000), Kolari et al. 

(2002), and Russian bank data are employed in Golovan et al. (2003, 2004). Godlewski 

(2004) takes data for banks in emerging market economies (excluding Russia). To the best 

of our knowledge, the US Federal Reserve is the only supervisory authority to use such a 

model (SEER) as a part of its EWS (Sahajawala, Berg, 2000). 

In this section, we examine factors that predict bank survival after Russia’s finan-

cial and banking crisis of August 1998. Prior to 1998, banks had little involvement in fi-

nancial intermediation in the real sector. Instead, they preferred to speculate in financial 

markets, a problem all too familiar to the government and the Central Bank of Russia 

(CBR) at the time. This is why we place special emphasis on the role of the ratio of credits 

to real economy to bank’s total assets in this study. 

Russian banks vary considerably in terms of size, activities, involvement in the 

government bond market (GKOs), volumes of credits extended to the real sector of econ-

omy, volumes of private deposits, etc. Many small banks and more than half of the twelve 

largest banks did not survive the 1998 crisis. This suggests that a single logit model may be 

insufficient for modeling the probability of default for such a diverse set of banks, and 

models for several bank clusters are preferable. 

To the best of our knowledge, only Korobow and Stuhr (1983) use clustering of 

banks for an early warning system. They suggest clustering (peer groups) by bank size or 

by the existence of at least one foreign office. 

But how helpful is clustering of Russian banks for model performance? To find out, 

we first cluster banks using a financial ratio. Thereafter, we design and test an automatic 

procedure. 

The CBR uses de facto clustering in bank regulation. For example, it has separate 

capital adequacy requirements for small and large banks (see Table 1). 

Table 1 
 Equity over €5 million  Equity less than €5 million 

01.02.1999 – 01.01.2000 8% 9% 

01.01.2000 – present 10% 11% 



Anatoly Peresetsky, Alexandr Karminsky and Sergei Golovan l     Probability of default models of Russian banks 

 

 
12 

2.1 Data 
 

Our sample comprises 1569 Russian and their accounting data for April 1, 1998.2 We ex-

amine our sample to determine which banks were failed as of April 1, 2000. The two-year 

period was chosen for two reasons: it covers the average time between license withdrawal 

and bank liquidation, and the two-year period appears to have the highest predictive power. 

For our purposes, a bank is marked “failed” and the binary variable LIVE set to 0 if 

the bank meets one of three conditions: 

• The license was withdrawn before April 1, 2000, 

• The bank is under the administration of ARCO (Agency for Restructuring Credit 

Organizations), or 

• The bank is merged with another bank and was in poor financial shape at the time 

of the merger (each case is separately analyzed). 

For all other banks, the variable is set equal 1. We have 263 defaults and 1306 operating 

banks in our sample. Notably, we remove the three state-owned banks – Sberbank, Vne-

sheconombank and Vneshtorgbank from the sample. We also removed from the sample 

several banks with incomplete or erroneous accounting information. Otherwise, our sample 

includes all the Russian banks operating as of April 1, 1998. 

 We test about 30 bank parameters for significance in the default models. Table 2 in-

cludes descriptions of those included in at least one of the model in sections 2, 3 or 4. 

Our models do not use bank parameters themselves, but rather select ratios to total assets 

(i.e. RES/TA, LNI/TA, GB/TA, Eq/TA, LA/TA, DPC/TA, CANW/TA, NGS/TA) that 

characterize the proportion of certain bank activities to total assets. The best results for 

measuring bank size seem to be achieved with the log of total assets (LNTA). The same 

ratios are used in the models of Golovan et al. (2003, 2004). Similar financial ratios are 

also found in Martin (1977), Kolari (2002) and Estrella (2000). Altman (2004) and several 

others use the log of assets to characterize firm size. 

 

                                                 
2 Data are kindly provided by the Mobile Information Agency. 



BOFIT- Institute for Economies in Transition 
Bank of Finland 

BOFIT Discussion Papers 21/ 2004 

 

 
13 

Table 2 

Parameter Description 

TA  TA Total assets* (valuta balansa) 
RES RES Bank reserves for possible losses. 
LNI LNI Loans to non-financial institutions 
GB GB Government bonds 
Eq Eq Equity 
LA LA Liquid assets** 
DPC DPC Private customers’ deposits and accounts 
CANW CANW Capital assets and other non-working assets 
NGS NGS Non-government securities 
As As Assets (excluding loans and debts to own branches) 
PBT PBT Profit before tax 
CFB CFB Amounts owed to credit institutions (credits from other banks) 
NWA NL Non-working assets 
OVL OVL Overdue loans (over 5 days) 

* Under Russian accounting, credits and debts to own branches are included. 
** Calculated per methodology of the Russian journal “Banks and Finance” (Banki i 
finansi). 

 
Descriptive statistics of the parameters for the complete set of banks as of April 1, 1998 are 

presented in Table 3. 

 

Table 3 

 LNTA Eq/TA LNI/TA GB/TA LA/TA NGS/TA CANW/TA DPC/TA RES/TA 

Mean 10.72 0.28 0.29 0.07 0.14 0.12 0.20 0.06 0.03 
Maximum 17.88 0.99 0.97 0.89 1.00 0.98 1.00 0.48 0.41 
Minimum 3.22 -0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Std.dev. 1.90 0.23 0.19 0.12 0.16 0.16 0.16 0.08 0.04 

 

Preliminary analysis reveals differences between banks that survived or failed during the 

crisis. Table 4 separates the descriptive statistics of banks that failed (LIVE=0) and those 

that are still operating (LIVE=1) as of April 2000. 

 

Table 4 

 Num. LNTA Eq/TA LNI/TA GB/TA LA/TA NGS/TA CANW/TA DPC/TA RES/TA 
ALL 1569 10.719 0.281 0.290 0.073 0.136 0.117 0.202 0.063 0.034 

LIVE=0 263 10.533 0.174 0.267 0.024 0.073 0.139 0.285 0.049 0.056 
LIVE=1 1306 10.757 0.303 0.295 0.083 0.149 0.113 0.185 0.065 0.029 

 

To visualize Table 4, each parameter is normalized to its average value with respect to all 

banks. These relative mean values of the parameters are presented in Figure 1. 



Anatoly Peresetsky, Alexandr Karminsky and Sergei Golovan l     Probability of default models of Russian banks 

 

 
14 

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

L
N

T
A

E
q/

T
A

L
N

I/
T

A

G
B

/T
A

L
A

/T
A

N
G

S/
T

A

C
A

N
W

/T
A

D
PC

/T
A

R
E

S/
T

A

failed

surviving

 

Figure. 1. Relative mean values for failed/surviving bank parameters 

 

The largest differences between mean values of the two pools of banks are found for the 

parameters Eq/TA, GB/TA, and LA/TA, which are significantly higher for the surviving 

banks, and CANW/TA and RES/TA, which are significantly higher for the failed banks. 

Most of these findings are unsurprising. The Eq/TA ratio is similar to the CBR’s 

capital adequacy parameter H1. High share of liquid assets LA/TA and a low share of non-

working assets CANW/TA characterize a bank’s ability to mobilize resources quickly. A 

high share of reserves RES/TA may suggest the bank pursues an aggressive lending policy. 

During the crisis, the Russian government defaulted on GKOs. Unexpectedly, the 

share of government bonds GB/TA is considerably higher for the surviving banks. We of-

fer two explanations for this. First, in a stable developed economy, it is prudent for banks 

to hold government bonds. Thus, non-zero investment into government bonds in 1998 may 

suggest good bank financial management skills. Second, after the crisis, the government 

provided support to certain banks highly invested in the GKO market, thus assuring their 

survival. 

Note that the diagram does not account for differences in bank size (LNTA mean 

values for failed and surviving banks). 

The correlations for bank financial ratios are presented in Appendix A. The size of 

a bank is negatively correlated with the parameters RES/TA, Eq/TA, LA/TA. Large bank 

have better partners and no need to create big reserves for loans. Such a bank (potentially, 

at least) is more stable and could allow lower values of the capital adequacy and liquid as-
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sets. Having many partners, the large bank has good access to the interbank credit market 

and other resources. 

The total banking system equity in the first quarter of 1998 was small compared to 

GDP and there were too many small banks. At the time, bank strategies mostly involved 

strong affiliations with industry or speculation in the highly profitable GKO market. 

 

 

2.2 Models and clusters 
 
We use the binary choice model (1) for modeling probability of bank default 

  )'()1( βii xFLIVEP == ,              (1) 

where x is the vector of the bank i parameters. We found that the logit specification 

1)1()( −−+= zezF  is marginally better than the probit specification. The equation (1) could 

be estimated using the complete set of banks. If we suppose, however, that for different 

clusters of the banks impact of some of parameters may have different signs, we can con-

clude such parameters insignificant. This argues for a clusterization algorithm. 

Standard cluster analysis procedures, such as the most commonly used k-means 

clustering procedure, that might give interesting results (Bobyshev, 2001) are not suited for 

our purposes as they tend to put points with similar parameter values into one cluster. This 

minimizes the sum of distances between points and cluster centers. However, we want 

clusters that best fit the logit model. 

Wescott (1984) uses the k-means clustering procedure for prediction of US munici-

pal bond ratings in 1977. He concludes that modeling the ratings in each cluster do not im-

prove the model’s ability to explain the rating (and thus bolstering our argument above). 

An alternative approach is to classify banks by their profile of the activity (e.g. 

pocket banks, banks affiliated with some industrial group, banks oriented to serving ex-

port-import operations). Unfortunately, we lack this information for most banks in the sam-

ple. 

Below we use “expert approach” that asks bank experts to classify banks into three 

clusters by giving values to a bank parameter. The expert defines two thresholds, so we 

have three clusters with “small”, “medium” and “large” values of the chosen parameter 

(say, bank size). The logit model is fitted separately for each of cluster. The advantage here 

is ease of cluster interpretation. The disadvantage lies in the subjective choice of thresholds. 
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The automatic cluster procedure we use searches for the optimal choice of clusters, 

taking into account the quality of model fit in each cluster. Algorithms that combine 

model-fitting with clustering are well demonstrated (for a very different problem) in Boro-

dovsky and Peresetsky (1994) and Mathe et al. (1999). 

 

 

2.3 Expert approach 
 

Four bank parameters are used for our expert classification. The two thresholds are chosen 

for each of the parameters, respectively, and the banks are classified into three clusters 

with small, medium and large parameter values. 

• Total assets, TA. Cluster of small banks, TA=1% contains the smallest banks with to-

tal assets equal to 1% of banking system assets. The large bank cluster, TA=90%, contains 

all banks with total assets equal to 90% of banking system assets. 

• Government bonds ratio (GB/TA). The cluster of banks not participating in the GKO 

market, GB/TA<0.01%, and the cluster of banks heavily invested in GKOs, GB/TA>10%. 

• Credits-to-non-financial-firms ratio (LNI/TA). The cluster of “passive” banks, 

LNI/TA<15%, and the cluster of the “active” banks, LNI/TA>40%. 

• Equity ratio, Eq/TA. The cluster of banks with low equity ratios, Eq/TA<11%, and 

the cluster of the banks with high equity ratios, Eq/TA>30%. 

The distribution of the banks over the clusters and the intersections of the clusters is 

presented in Table 5. 

 

Table 5 

 TA 
=1% 

TA 
=90% 

GB/TA 
<0.01% 

GB/TA 
>10% 

LNI/TA 
<15% 

LNI/TA 
>40% 

Eq/TA 
<11% 

Eq/TA 
>30% 

TA=1% 624 0 403 100 197 179 94 359 
TA=90% 0 261 22 93 50 54 78 34 
GB/TA<0.01% 403 22 624 0 187 203 126 301 
GB/TA >10% 100 93 0 378 110 51 40 149 
LNI/TA <15% 197 50 187 110 392 0 89 187 
LNI/TA >40% 179 54 203 51 0 425 50 194 
Eq/TA<11% 94 78 126 40 89 50 268 0 
Eq/TA>30% 359 34 301 149 187 194 0 615 

 

The means of bank ratios over the clusters are presented in Appendix C. The proportion of 

defaults is higher for low values of equity, government bonds, and credits-to-non-financial 
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institutions ratios. The proportion of defaults is lower for mid-sized banks than small or 

large banks. 

For more detailed study, we divided the entire range of variation of the log of total as-

sets LNTA into intervals and plotted the proportion of failed and surviving banks at each 

interval (Figure 2). The plot shows the number of failed banks at each interval. The U-

shaped plot indicates that medium-size banks were more likely to weather the crisis. 
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 Figure 2. Distribution of bank defaults over LNTA 

 

A similar, but rather monotonous, plot for the default distribution over reserves ratio is pre-

sented in Figure 3. 
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The U-shaped distribution of defaults over the private deposits ratio DPC/TA is similar to 

Figure 2. Likewise, the default distribution over ratios for capital assets and other non-

liquid assets and non-government securities has a distribution similar to Figure 3. These 

plots support the preliminary hypothesis that high values of reserves, non-government se-

curities and non-liquid assets ratios increase the probability of default in a crisis. Banks 

with average values for their private customer-deposits-and-accounts ratio have higher 

probabilities of survival. This may appear strange at first glance, but remember that during 

the 1998 crisis many banks simply froze the accounts of their private customers and used 

the money to fulfill other obligations. This is at least part of the reason increases in this ra-

tio increase probability of bank survival. 

For each of the clusters the logit model is selected. Model selection is based on the 

values of LR and McFadden R2 statistics and the z-statistics of the coefficients. A few re-

sults are presented below.3 

 

Small and large bank clusters, TA=1% and TA=90%.  The small bank cluster, TA=1%, 

has a high mean equity ratio (34%, compared to 28% for all banks and 18% for large 

banks) and a 17% liquid assets ratio (14% for all). All other ratio means do not differ sig-

nificantly from those of all banks. In the small bank cluster, 21% of banks failed (com-

pared to 17% of all banks and 18% of large banks). 

The best models for the two clusters are presented in Table 6. Value xxs β  measures 

the economic significance of the variable, characterizing the degree of influence of the 

variable on the probability ( xβ is the estimated coefficient, and xs  is the standard deviation 

of the variable in the cluster). 

The coefficients have the expected signs. High equity and liquid assets ratios 

(Eq/TA, LA/TA) increase the probability of survival, while high ratios of reserves, non-

liquid assets and non-government securities increase the probability of default. Bank size 

(LNTA) has a different effect depending on the cluster. Large total assets increase the 

probability of survival for a small bank, but not a large bank. In fact, the four largest com-

mercial banks (SBS-Agro, Incombank, Menatep and Rossiisky Credit) all failed during the 

crisis. Eleven of Russia’s 28 largest banks failed. 

 

                                                 
3 Models for other clusters are found in Golovan (2003), and are also available by email request. 
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Table 6† 

Cluster TA=1%  Cluster TA=90% 

Variable Coefficient xxs β   Variable Coefficient xxs β  

C -2.05*   C 7.24 ***  
Eq/TA 1.65*** 0.43  Eq/TA 5.71 *** 0.81 
LNTA 0.26** 0.27  LNTA -0.39 *** -0.46 
NGS/TA -1.67** -0.31  NGS/TA -5.94 *** -0.59 
CANW/TA -1.82** -0.32  CANW/TA -2.66 ** -0.41 
LNI/TA 4.50*** 0.95      
(LNI/TA)2 -5.64*** -0.87      
GB/TA 8.41*** 1.02      
LA/TA 3.35*** 0.65      
RES/TA -5.09** -0.27      
DPC/TA 3.93** 0.29      
McFadden R-squared 0.22  McFadden R-squared 0.17 
Obs with Dep=0 132  Obs with Dep=0 47 
Obs with Dep=1 492  Obs with Dep=1 214 
Total observations 624  Total observations 261 

 

The model for the small banks cluster includes a larger number of significant parameters 

that can be readily interpreted. The signs of the coefficients at LNI/TA and (LNI/TA)2 

suggest the optimal value of the credits-to-non-financial-institutions ratio is about 40%, 

which is close to the current level of real-economy investments of the banking sector. The 

average value for this cluster is 28%, which may suggest non-optimal behavior by the 

banks. 

The private deposits ratio increases the probability of survival. Only 50 failed banks 

and more than 320 surviving banks had non-zero volumes of private deposits. 

The most influential ratios for the small banks are GB/TA and LNI/TA. This is par-

tially explained by the significant amount of pocket banks in that cluster. For large banks 

the equity ratio (i.e. the parameter similar to the H1 capital adequacy coefficient used by 

the CBR) is most important. 

 

Clusters of banks with low and high investments in government bonds, 

GB/TA<0.01% and GB/TA>10%.  Mean size (LNTA) of a bank from the cluster with 

low investments in government bonds is 9.62, while the average size of the bank from the 

second cluster is 11.36 (see Appendix C), which is significantly different from the overall 

average of 10.72. The mean values of other ratios are close to the overall averages. 

                                                 
† In all tables *, ** and *** indicates significance at the 10%, 5% and 1% levels. 
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The proportions of failed banks are significantly different in the two clusters: 26% and 

4%, respectively, and differ from the overall proportion of 17%. 

As mentioned earlier, this may suggest that participation at the GKO market is a sign 

of sophistication in bank financial management or that the bank, with its high exposure in 

the GKO market, was a recipient of state support after the crisis. 

The models for the two clusters are presented in Table 7. Credits to the real economy 

are significant for banks that have low investments in government bonds. As before, we 

find the optimal value of the LNI/TA ratio is 58%, which much higher that the cluster av-

erage of 30%. This could mean that banks should have invested more in the real economy. 

The liquid assets and credit-to-non-financial-institutions ratios are most important for the 

banks from that cluster. 

We do not find LNI/TA ratio to be significant for banks in the second cluster. The 

non-liquid assets and non-government securities ratios are significant, however, and hurt 

the credibility of banks that are heavily invested in government bonds. The most important 

factor here is the equity ratio Eq/TA. Bank size has a negative impact, which is explained 

by the fact that most large banks belong to this cluster. 

 

  Table 7 

Cluster GB/TA<0.01%  Cluster GB/TA>10% 

Variable Coefficient xxs β   Variable Coefficient xxs β  

C -2.81 ***   C 8.69 ***  

Eq/TA 1.38 *** 0.38  Eq/TA 6.45 *** 1.18 
RES/TA -3.37 * -0.19  RES/TA -15.48 ** -0.45 

LNTA 0.24 *** 0.37  LNTA -0.39 ** -0.70 

LA/TA 4.69 *** 0.95  CANW/TA -7.93 *** -0.72 

LNI/TA 4.28 *** 0.92  NGS/TA -5.74 **  
(LNI/TA)2 -3.70 * -0.59      
McFadden R-squared 0.135  McFadden R-squared 0.22 
Obs with Dep=0 161  Obs with Dep=0 16 
Obs with Dep=1 463  Obs with Dep=1 362 
Total observations 624  Total observations 378 

 

Models for other clusters are found in Golovan et al. (2003). The Table in Appendix C 

shows the estimation results of a model specification that includes all ratios found signifi-

cant in at least one cluster. The ratios Eq/TA, LA/TA and GB/TA are significant in most 

models. 
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The overdue-loans-to-total-assets ratio, which was found to be important for bank failure 

prediction in Bovenzi et al. (1983), is not significant in any of our models. A possible ex-

planation may be that Russian banks masked the actual number of overdue loans at the 

time of observation. Standards of Russian accounting allow banks to reregister and prolong 

credits easily, thus decreasing the reported value of the indicator OVL/TA. 

McFadden R2 shows that the model fit is better for some clusters than for the entire sam-

ple. Is this improvement in the statistical measure of the model fit important for the predic-

tive power of the model? 

 

In-sample forecast 

Given the estimated model, one can calculate the estimates of probability of survival ip̂  

for the each bank i in the sample. To make a forecast, it is necessary to choose a threshold 

for the decision. The bank is expected to fail if cpi <ˆ , and survive if cpi ≥ˆ . A Type I er-

ror occurs when we predict a bank will survive, and, in fact, it fails. Conversely, a Type II 

error occurs when a bank that was expected to fail survives. The Type I error is obviously 

more costly. The choice of threshold would depend on balancing the cost (aversion) to the 

investor of Type I and Type II errors (see discussion of the Type I-II errors trade-off in 

Bovenzi et al., 1983). For each choice of the threshold, given the sample, we have the pair 

))(),(( 21 cpcp ii  of the probabilities of Type I and Type II errors. For all c, we plot the 

probabilities of Type I–II errors. One model is considered uniformly superior to another if 

the corresponding plot lies below the plot for the other model. 

In Figure 4, the plots of probabilities of Type I–II errors are presented for the mod-

els without clustering and with clustering with respect to GB/TA, TA and Eq/TA. In the 

most interesting area of small probabilities of Type I error, we note improvement with 

GB/TA. Of course, we should also remember that the model with GB/TA clustering con-

tains three times more coefficients. The charts for separate clusters look more impressive 

(e.g. see Figure 5 for the cluster GKO>10% and more examples in Golovan et al., 2003). 

For the probability of Type I error less than 20%, the probability of a Type II error de-

creases by 15–35%. 
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 Figure 4. Probabilities of Type I–II errors 
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Figure 5. Probabilities of Type I–II errors for banks from the cluster GB/TA>10%. 
     The GB/TA model is only estimated for banks from the cluster GB/TA>10% 

 

Out-of-sample forecast 

An out-of-sample forecast is obviously the preferred method of model comparison. We use 

a random number generator here to divide the sample into the two parts: a main group 

(1465 banks) and a control group (100 banks). Models are estimated using the main group, 

and then error probabilities are estimated for the control part of the sample. The averaged 
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results of 1000 trials are presented in Figure 6. The plots are quite similar to the in-sample 

forecast plots in Figure 4. 
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Figure 6   Figure 7 

 

To reveal the model’s ability to forecast reliable and unreliable banks, we calculate the 

proportions n1 and n2 of banks that actually failed of the “worst” and “best’ ten banks in 

each control part of the sample. In an ideal forecast, n1=100% and n2=0%. Our results for 

1000 trials are averaged and 17 attempts are presented in Figure 7. 

In forecasting reliable banks, the best results are obtained with clustering by the 

government bonds ratio GB/TA, which gives less than 1% error for the 10% of the best 

banks in the control sample of 100. For the revealing of the problem banks better works the 

model without clusters and the model with clustering by the equity ratio Eq/TA. They give 

about 57–55% of correctly forecasted defaults for the worst 10% banks in the control sam-

ple. 

 

 

2.4 Automatic classification 
 
The model that allows two different probability of default logit models in each of the two 

clusters may be described as follows: 

Consider a logit model that separates banks into two clusters. The probability that a 

bank with the vector of parameters z  belongs to the first cluster is )( γzF ′ , where γ  is the 
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vector of the coefficients and F is the cumulative distribution function of the logit distribu-

tion. The probability that the bank belongs to the second cluster is then )(1 γzF ′− . 

For each of the two clusters, we have a logit model of bank survival. Let )( 1βxF ′  

and )( 2βxF ′  be the probabilities of the bank with the vector of parameters x to survive, 

conditionally it belongs to the first or second cluster. Different sets of bank parameters 

may be used for bank classification and probability of survival. 

The contribution of bank j to the likelihood function is  

  ( ) ( )jjjj yyyy
j xFxFzFxFxFzFL −− ′−′′−+′−′′= 1

22
1

11 ))(1()())(1())(1()()( ββγββγ ,     (2) 

 

where 1=jy  if the bank survives and 0 if it fails. The estimates of the parameters of the 

model, 21 , ββ  and γ  are obtained by maximizing the log-likelihood function  

 

21 ,,
21 maxln),,(ln

ββγ
ββγ →=∑

j
jLL .     (3) 

  

Since there is no guarantee the function (3) has a global maximum, there is an apparent 

problem in parameter estimation. For example, if the set ),,( 21 ββγ  is the solution of the 

problem, then the set ),,( 12 ββγ−  is the solution as well. 

We find the best solution to the problem (2)–(3) contains parameters z = {Eq/As, 

LNTA} for cluster discrimination and x = {Eq/TA, RES/TA, LNI/TA, GGO/TA, LA/TA} 

for the probability of survival/default in each cluster. The results of the model clustering 

estimates are presented in Table 8. Note that the clustering suggested by the model is simi-

lar to the CBR’s division (Table 1), i.e. the CBR allows a lower capital adequacy for large 

banks. Indeed, the results of automatic clustering could be used as is by the CBR to give 

greater flexibility to capital adequacy requirements. 

 

Table 8 

Variable Coefficient γ  
C –3.14 
Eq/As 13.29*** 
LnTA –0.0129*** 
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We choose the threshold 0.5 for clustering, i.e. we assign a bank to the first cluster when 

5.0)( <′γzF ; otherwise, it gets assigned to the second cluster. In both clusters, the logit 

model can be estimated separately. The plot of the probabilities of Type I–II errors for the 

logit model with the set of the parameters x without clustering and for the forecast based on 

the clustering (2)–(3) and separate logit models4 in each cluster is presented in Figure 8. 

The plots show the improvement of the model’s predictive power with automatic cluster-

ing. 
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  Figure. 8. Automatic classification 
 

Models (2)–(3) may be slightly modified to get an automatic classification algorithm for 

several clusters. 

The comparison of in-sample forecast performance of the various models with clus-

tering is presented in Tables 9 and 10. As seen, out-of-sample and in-sample forecasts are 

roughly similar in terms of performance. 

Table 9 compares the models from an investor’s point of view. For each model 

(100, 200, etc.) the “best” banks are chosen and the number of actually failed bank among 

those chosen is calculated. 

For example, column 3 (with the heading 200) contains information on the 200 

“best” banks. Row “average” shows the expected number (34) of the failed banks, if the 

sample of 200 is chosen randomly; row “basic” presents results for the model m0 from the 

table in Appendix D, where only 5 banks failed. The rows marked GB/TA, TA, Eq/TA and 

                                                 
4 Coefficients of the separate logit models are presented at the Appendix E. 
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LNI/TA present the results for the model with the same set of parameters, but estimated 

separately in the clusters (“expert” cluster procedure). The last row presents the results of 

automatic classification described in this section. It is clear that using the model signifi-

cantly reduces the likelihood of choosing a bank that will default. Clustering in respect to 

the government bonds ratio decreases the number of failed banks to 0. In comparing the 

results of the automatic procedure with the expert approach, one should consider that the 

automatic clustering model has 15 parameters, less than the expert cluster models (36 pa-

rameters). The “basic” model has 12 parameters. 

  

Table 9. Number of failed banks in the *** best rankings 
*** 100 200 300 400 500 600 700 800 

Average 17 34 50 67 84 101 117 134 
Basic 0 5 9 12 18 26 37 53 
GB/TA 0 0 1 4 8 16 24 33 
TA 1 2 6 8 13 22 29 39 
Eq/TA 1 3 8 13 16 16 21 28 
LNI/TA 0 6 9 15 18 25 33 43 
Automatic clust. 1 3 6 11 18 23 28 34 

 

Table 10 compares the models from the point of view of the bank supervisory authority. 

For each model (100, 200, etc.), the “worst” banks are chosen and calculated against the 

number of actually failed bank among them. For example, selecting from the 250 “worst” 

banks (16% of all banks), we detect as many as 136 banks that will eventually fail (52% of 

all failed banks). This ability to narrow the field of potentially troubled banks can likely 

save supervisory authorities considerable time and money in in-site inspections. 

 

Table 10. Number of failed banks in the *** worst ranking (total 263) 
*** 50 100 150 200 250 300 350 
Average 8 17 25 34 42 50 59 
Basic 39 67 91 115 128 138 152 
GB/TA 41 71 92 116 129 142 152 
LNI/TA 42 73 94 114 129 144 158 
Eq/TA 41 74 96 116 136 153 166 
TA 42 68 92 114 128 144 155 
Automatic clust. 39 75 101 119 130 146 156 
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3 Macroeconomic variables 
 

Papers that model bank defaults (e.g. Martin, 1977; Estrella et al., 2000; Kolari et al., 

2002) do not use macrovariables in their models. All these papers consider the US banking 

system, which traditionally has enjoyed relatively stable economic conditions. The eco-

nomic situation in Russia during 1996–2003 was far from stable, and it seems to be plausi-

ble that including macroeconomic indicators into our models might improve model per-

formance. 

Several papers use macrovariables in studies of probability of default for firms, 

loans and bonds. Engelmann and Porath (2003) show that the growth of real GDP and 

growth of money (M3) improve results of the logit models of German company defaults in 

1989–2000. Lawrence and Smith (1992) use the unemployment rate in a study of US home 

credit defaults. Golovan et al. (2004) use macroindicators in their probability of default 

models for Russian banks. 

A number of Basel committee publications stress the role of the macroenvironment 

in estimating the risk of default, e.g. Amato and Furfine (2003), Borio (2003), Segoviano 

and Lowe (2002). 

Godlewski (2004) in his paper on banks in emerging market economies (does not 

include Russia) pointed out that the use of macrovariables may improve bank scoring mod-

els. 

Among papers studying the macroeconomic indicators that drive banking and fi-

nancial crises, Demirguс-Kunt and Detragiache (1998) apply a pooled logit model in their 

study of banking crises in developed and developing countries in 1980–1994. They find 

that GDP growth, the real interest rate, inflation and terms of trade are highly significant in 

all model specifications. They do not detect an independent effect from the exchange rate, 

noting that inflation and terms of trade already capture that effect. 

Komulainen and Lukkarila (2003) use a panel probit model in their study of the fi-

nancial crises in 31 emerging market countries in 1980–2001. They found many macroin-

dicators are important for financial crises prediction, including the unemployment rate, in-

dustrial production and others not identified by Demirguс-Kunt and Detragiache (1998). 

Since financial and banking crises are often related, these macroindicators preliminarily 

can also be important for identifying bank defaults. 
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3.1 Data 
 

Bank data. The quarterly balance sheet data of the Russian banks for the period 1996–

2002 are used in this section.5 The variable LIVE was constructed according to the defini-

tion of bank default described in section 2.1. 

To avoid estimation problems with the correlated observations and to increase the 

ratio of failed banks in the sample, we reduce the sample. Remember, we want to retain all 

information on defaults and do not have for the bank observations for our banks closer than 

two years in time. 

For each failed bank, we take the time of failure t (measured in quarters) and let 

LIVE=0. We connect to this observation the appropriate bank parameter values (Table 1) 

and macroindicators (Table 11) at the time 8−t .6 We then take the same bank at time 

8−t  and let LIVE=1. We connect to this observation bank parameter values and macroin-

dicators at time 16−t . We continue at that manner while we still have the data for that 

bank in the complete sample. 

For a surviving bank, the procedure is a bit different. We randomly choose a quarter 

t from the eight quarters in the period 2001–2002, let LIVE=1 and connect to this observa-

tion bank parameter values and macroindicators at time 8−t . We continue to track this 

bank back in time in the same way as described for a failed bank. 

The sample reducing procedure described above leads to biased estimators (Scott 

and Wild, 1986). However, the estimates of slope coefficients are unbiased, hence our eco-

nomic interpretations of regression results would not be affected. Nor does the bias in the 

intercept affect our results as we consider all possible thresholds c for model comparison. 

                                                 
5 Again, data kindly provided by the Mobile Information Agency. 
6 Again as in section 2.1, using a two-year lag between bank data and observed status provides the best re-
sults. 
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Figure 9. Distribution of bank defaults in our sample, section 3 

 

After the described above selection procedure we have got the sample with 3158 observa-

tions, with 255 defaults among them (8.07%). The distribution of the bank defaults in that 

sample is presented in Figure 9. The distribution does not coincide with the overall distri-

bution of the defaults, because in our sample only those defaults are included for which we 

have balance sheet data from two years before the default. The overall distribution of Rus-

sian banks defaults is presented in Appendix B. 

 

Macroeconomic indicators. The list of macroindicators considered for the models is pre-

sented in Table 11. Our choice of a set of possible macrovariables was driven by expert 

opinion and macrovariables identified elsewhere as significant.7 For some indicators, their 

rate of change is also considered. 
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Table 11. List of macroindicators 
Macroindicators   
Real GDP index (seasonally adjusted)* VVP % 
Consumer price index CPI % 
Deflator ** Defl  
Unemployment  UNEMPLN million 
Unemployment rate UNEMPLP % 
Index of investments in capital (seasonally adjusted)*** INV % 
Exchange rate RUR/USD ERATE ruble/dollar 
Export/Import ratio EXP/IMP  
Increase of industry production PRPROD % 
Change in real income REALINC % 
Increase in exchange rate (year) DERATE ruble/dollar 
Increase in exchange rate (quarter) DERATE1 ruble/dollar 
Change in GDP rate (year) DVVP % 
Change in GDP rate (quarter) DVVP1 % 
* 1994.01 = 100;    ** based on CPI;    *** 1993.I=100  

 

Table 12 presents the descriptive statistics of some bank financial ratios in our sample. 

All bank parameters in the dataset are measured in thousands of rubles. The mean value of 

the total assets in the sample, measured in US dollars by historical exchange rate, is about 

$100 million. This is a tiny value compared to the total assets of major international banks 

and even Russia’s largest banks. This in itself is reason enough to take the log of this pa-

rameter to reduce its variability. Data are distributed over time here, so it seems reasonable 

to take the deflated value of the total assets as a measure for bank size, i.e. log(TA/defl). 

 

Table 12 

 LNI/TA NGS/TA NWA/TA CFB/TA Log(TA/defl) Log(TA/defl)2 Eq/TA PBT/TA 
Mean 0.300 0.087 0.105 0.030 10.37 111.3 0.301 0.016 
Max 0.988 0.978 0.943 0.933 16.98 288.2 0.997 0.783 
Mean 0.000 0.000 0.000 0.000 3.98 15.9 –0.729 –0.716 
Std.dev. 0.205 0.143 0.121 0.084 1.95 41.7 0.221 0.057 

 

To decide whether to include macrovariables in our models, we first consider the correla-

tions of these macrovariables (Table 13). Most macrovariables are highly correlated, which 

means that including two or more of them into the model may cause a multicollinearity 

problem. Selected below in Table 13 are the pairs of macrovariables that are least corre-

lated and potentially could be included into the model. 

 

                                                                                                                                                    
7 For bank and financial crises, we take from Demirguс-Kunt and Detragiache (1998) and Komulainen and 
Lukkarila (2003). For the firm defaults, we use Engelmann and Porath (2003). For the Russian banks, we 
follow Golovan et al. (2004). 
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Table 13 

 CPI ERATE EXP/IMP REALINC PRPROD UNEMPLN UNEMPLP VVP 
CPI 1 -0.040 -0.010 -0.521 -0.586 0.287 0.301 -0.441 
ERATE -0.040 1 0.933 0.043 0.609 0.037 0.081 0.680 
EXP/IMP -0.010 0.933 1 0.156 0.534 -0.069 -0.028 0.669 
REALINC -0.521 0.043 0.156 1 0.401 -0.816 -0.822 0.711 
PRPROD -0.586 0.609 0.534 0.401 1 -0.178 -0.153 0.723 
UNEMPLN 0.287 0.037 -0.070 -0.816 -0.178 1 0.996 -0.618 
UNEMPLP 0.301 0.081 -0.028 -0.822 -0.153 0.996 1 -0.584 
VVP -0.441 0.680 0.669 0.711 0.723 -0.618 -0.584 1 

 

 

3.2 Models with macroindicators 
 

In the following section, we consider whether including macrovariables improves the per-

formance of our probability of default model. We now select the model without macrovari-

ables (base model). As in section 2, our model selection is based on statistical criteria: z-

statistics of coefficients, McFadden R2, Akaike criterion and economic interpretation. The 

base model is presented in the first column of Table 14. Intuitively, it appears the signs of 

the coefficients fit our preliminary expectations. 

We use a pooled probit model because it shows marginally better results than the pooled 

logit model. The panel data model (quite appropriate here) and the probit panel model with 

random effects give exactly the same results. The ρ  parameter is insignificant in all model 

specifications. 

The profit-before-tax ratio (PBT/TA), which can be used as a measure of management 

quality, has a positive impact. The credits-to-non-financial-institutions ratio (LNI/TA) pro-

duces a negative effect. This differs from the conclusion in section 2, but note that, in con-

trast to section 2, which examines the crisis, this model uses data for a five-year period and 

the level of credits significantly vary with macroenvironment. The non-government securi-

ties and non-working assets ratios (NGS/TA and NWA/TA) show a negative effect, indi-

cating poor asset management. This model allows for optimal value of bank size, i.e. 

ln(TA/defl) = 10.44, which is slightly higher than the mean value of that parameter in the 

sample. Surprisingly, the equity ratio Eq/TA is insignificant when included in the model. 

This may be explained by multicollinearity with the set of already included ratios (obvi-

ously, all possible ratios add up to 1). 
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Now we add our macroindicators (Table 11) to the base model. The best two models in 

terms of statistics values appear in columns 2 and 3 of Table 14. Macromodel 1 includes 

the export-import ratio, while macromodel 2 includes the ruble/dollar exchange rate. All 

statistical criteria of the two macromodels (log likelihood, Akaike, McFadden R2) are bet-

ter than those for the base model. Some improvement could be achieved by including two 

macrovariables. It remains unclear whether these improvements are economically signifi-

cant. The next two sections, 3.3 and 3.4, consider this issue. 

Table 14 shows that the signs of the coefficients agree with the economic intuition. The 

profit-before-tax ratio (PBT/TA), which measures management quality, enhances bank re-

liability. The non-government securities and non-working assets ratios (NGS/TA and 

NWA/TA) have a negative effect and indicate poor asset management. The credit-to-non-

financial-institutions ratio (LNI/TA) also has a negative impact. 

Including macrovariables increases the value of the PBT/TA coefficient and decreases the 

values of the NGS/TA and NWA/TA coefficients. The marginal effect of the PBT/TA de-

clines after the crisis. The marginal effects of LNI/TA, NGS/TA and NWA/TA are also 

less negative after the crisis. The marginal effect of bank size, ln(TA/DEFL), does not 

change after the crisis. 

 Table 14 

 Coefficient 

Variable Base model Macromodel 1 Macromodel 2 

C       0.150    –0.847   –0.331 
PBT/TA       1.226**      1.541**     1.663*** 
LNI/TA     –1.188***    –0.976***   –0.930*** 
NGS/TA     –1.008***    –1.247***   –1.394*** 
NWA/TA     –1.346***    –1.223***   –1.204*** 
CFB/TA     –0.546    –0.277   –0.113 
Ln(TA/DEFL)       0.376***      0.367***     0.368*** 
Ln(TA/DEFL)2     –0.0181***    –0.0181***   –0.0184*** 
EXP/IMP       0.621***  
ERATE        0.0346*** 
Log likelihood  –845.11  –807.73  –799.74 
LR statistics (8, 9 df)     81.99    156.76    172.72 
Akaike criterion      0.5403       0.517       0.512 
McFadden R2      0.0463       0.088       0.097 

 

A positive EXP/IVP coefficient may imply that a higher export-import ratio characterizes a 

healthier economy, and hence macroeconomic stability. In such circumstances, the stability 

of the banking system should also be expected to increase. 
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Less obvious is the interpretation of the positive sign of the ERATE coefficient. In Russia, 

a rising exchange rate (ruble depreciation) is always associated with economic destabiliza-

tion. On the other hand, a high exchange rate boosts the export-import ratio. In fact, the 

two variables are highly correlated (Table 13). 

 

3.3 Model comparison: Type I – II errors 
 

In-sample forecast. The probabilities of Type I and II errors in the sample are calculated 

for each threshold c. The plots, corresponding to the three models (Table 14) are presented 

in Figure 10. Improvements from including macrovariables are observed, but none of the 

two macromodels is uniformly better than another; the corresponding plots often intersect. 

To test the in-sample predictive power of the models, we choose samples of 100 and 

500 of the most reliable and most distressed banks according to the rankings generated by 

each of the three models. The proportions of actually failed banks captured by the samples 

are presented in Table 15. 
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Figure 10. Probabilities of Type I–II errors 

 

We recall here that a random assigning of banks into sets of 100 would capture 100/3158, 

or 3.2% of all 255 defaults, while a random sample of 500 would capture 15.8% of all de-

faults. From the supervisory point of view, an examination of 500 banks identified as most 

distressed by the base model (15.8% of the total) would identify as much as 34.5% of all 

banks that will enter into default within two years. Adding macrovariables, the model in-
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creases this proportion to 46.3%. For the investor, selection of the 100 most reliable banks 

using our model decreases the expected number of failed banks in the sample from 

255*3.2% = 8 to 3 (base model) and to 1 (macromodel 2). The results are compatible with 

those from section 2. 

 
Table 15 

Model 
Banks Sample size 

Base model 
Macromodel 1 

(EXP/IMP) 
Macromodel 2 

(ERATE) 
100 8.2% 12.2% 14.1% “distressed” 
500 34.5% 45.5% 46.3% 
100 1.2% 1.2% 0.4% “reliable” 
500 7.5% 6.3% 6.3% 

 

Out-of-sample forecast. Our procedure involves selecting 300 observations randomly and 

excluding them from the whole sample. For the rest of the sample, all three models are 

evaluated and the selected 300 observations are ranked according to each of the three mod-

els. The proportion of the total number of all defaults in the sets of 10 and 50 most reliable 

and most problematic banks of these 300 from the point of view of the each of the three 

models are calculated. The results are presented in Table 16. Again, as in section 2, we do 

not find a significant difference in our in-sample and out-of-sample model performance 

evaluations. 

 
Table 16 

Model 
Banks Sample size 

Base model 
Macromodel 1 

(EXP/IMP) 
Macromodel 2 

(ERATE) 
10 7.3% 11.9% 12.5% “distressed” 
50 34.5% 46.6% 47.0% 
10 1.3% 1.5% 0.6% “reliable” 
50 8.1% 6.9% 6.3% 

 

 

3.4 Model comparison: Heuristic criteria 
 
As noted, the cost of a Type I error (classifying a failed bank as a reliable) to an investor 

would be distinctly higher than the cost of a Type II error. If the ratio between the two 

costs for the investor were available, then it would be possible to identify an optimal value 

of threshold c that minimizes a linear loss function over the curve in a plot of Type I–II 
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error probabilities. Below two heuristic criteria are suggested, based on two rough models 

of investor behavior. 

Let the investor use a model and threshold c for bank classification. −
cX  is the set 

of the banks classified as “distressed” ( cp <ˆ ), while +
cX  is the set of banks classified as 

“reliable” ( cp ≥ˆ ). Notations for the number of banks for all four possible outcomes ap-

pear in Table 17. 

 
Table 17 

Banks Bankruptcies Still solvent 

Classified as “distressed”, −
cX  I.     cm  II.    cc mn −  

Classified as “reliable” +
cX  III.   cmM −  IV.   )( cc mnMN −−−  

 

Consider a naive investor, without a model, who invest S amount of money in banks. This 

investor can use a “uniform” investment strategy, i.e. equal parts of S/N are invested in all 

banks, or a “proportional” strategy in which the size of each investment is proportional to 

the size of the bank, i.e. an investment in bank k would equal )/( allkk VBSS Σ⋅= , where 

∑ =
=Σ

N

j jall VB
1

. The first strategy models the behavior of an investor eager to diversify 

investments, while the second strategy closely models the behavior of the entire set of in-

vestors. 

Let r is the bank deposit interest rate, constant over time (we will take later r = 15% 

or 20%, i.e. average figures in Russia for the considered time period). We now assume that 

the investments in the failed banks are completely lost. Under this assumption, the net in-

come of under the “uniform” strategy and the “proportional” strategy will equal (4) and 

(5), respectively. 

N

MMNr
SM

N

S
rMN

N

S −−
=−−

)(
)( ,  (4) 

( ))()( IIIIIVII ccr
S

all
++ Σ−Σ

Σ
.   (5) 

 

(Summations are evaluated over the groups of banks. See notation in Table 17, e.g. 

∑ ++ =Σ
IIIIIIII )( jVBc .) 

Now consider the behavior of a savvy model-wielding investor. After choosing a 

threshold c, this investor classifies banks as “distressed” or “reliable.” On the basis of this 
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classification, the savvy investor only invests in “reliable” banks and holds any money that 

would otherwise have been invested in a “distressed” bank under the strategies of the naive 

investor.8 We then consider this excessive net income of the savvy investor as a utility 

function to be optimized. The utility functions have the form (6) for the uniform invest-

ment strategy and (7) for the proportional strategy. 

N

mn
r

N

m
cPR ccc

U

−
−=)( ,   (6) 

allall
P

c
r

c
cPR

Σ
Σ

−
Σ
Σ

=
)()(

)( III .   (7) 

 

Of course, the savvy investor can determine the optimal threshold c. Finally, the two utility 

measures, heuristic criteria for the model comparison are 

 

)(max
10

cPRPR U
c

U <<
= ,  )(max

10
cPRPR P

c
P <<
= .  (8) 

 

Table 18 presents the statistical and heuristic criteria for the model comparison for the base 

model (number 0, first row) and for the 24 models that differ from the base model in terms 

of added regressors. One additional macrovariable is included in models 1–14; models 15–

22 contain two additional macrovariables. For comparison purposes, we include model 23, 

which contains time dummies for all quarters and thus shows the limit of the model im-

provements after including additional macrovariables. Model 24 contains a dummy for 

Russia’s August 1998 financial crisis.  

 

 

 

 

 

 

 

 
 

                                                 
8 In the case where the investor has incentive to invest all his/her money in “reliable” banks, the optimal be-
havior is simply to invest all money S into one, the most “reliable” bank. 
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Table 18 shows that the inclusion of the macrovariables improves the statistical criteria of 

the models and almost all models improve the heuristic criteria. The best performance of 

models 1–14 is found in models 1 and 2, which include exchange rate, ERATE and the ex-

port-import ratio EXP/IMP. For these models, the heuristic criterion PRU increases (in 

comparison with the base model) from 1% to 2%, while the heuristic criterion PRP in-

creases (compared to the base model) from 10% to 13%. 

In some cases, e.g. if the rate of the GDP grows, DVVP1, is added to the model 9, 

the values of the heuristic criteria fall. It should not be misleading. The model are esti-

mated by the maximum likelihood, maximizing the likelihood function, which automati-

cally mean maximizing McFadden R-square, but the heuristic criteria. 

Including two macrovariables (models 15–18) or the cross-terms (models 19–22) 

insignificantly improve the statistical and heuristic criteria. 

The statistical and heuristic criteria of the model 23 are so close to the criteria val-

ues for the models 1 or 2, which it is possible to conclude, that including one of the two 

macrovariables already captures almost all effect of the varying macroenvironment. 

The model 24 includes the dummy variable CRISIS, which is equal 1 after the cri-

sis of August 1998. Figure 11 presents the time plots of the variables ERATE and CRISIS, 

which look very similar. It is no surprise then that the models’ criteria are similar as well. 

Thus, there still is the open question if it is the influence of the macrovariable to the bank 

default which is found or the structural break in the Russian banking system after the crisis. 

That question is partially addressed in the section 4, which studies the Russian banking 

system after the crisis. 
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In Table 19, the optimal threshold c* for the three models in Table 14 are calculated for the 

heuristic criteria for interest rate r = 15%. 

 

Table 19 

Criterion Base model Macromodel 1 Macromodel 2 
PRU (r=0.15) 0.884 0.853 0.848 
PRP  (r=0.15) 0.869 0.848 0.834 
 

The table shows that the optimal threshold varies in the interval 0.834 – 0.884, and its 

variation for the models with a macrovariable is even smaller (0.834 – 0.853). These fig-

ures are lower than the generally recommended threshold for binary models equal to the 

ratio of 1 in the sample (0.92 in our case). 

We now detail model 21 (see Table 18). The relevant coefficient estimates are pre-

sented in Table 20. 

 
Table 20 

Variable Coefficient 
C -0.507  
PBT/TA 1.474 ** 
LNI/TA -2.295 *** 
NGS/TA -1.218 *** 
NWA/TA -1.232 *** 
CFB/TA -0.277  
LOG(TA/DEFL) 0.381 *** 
LOG(TA/DEFL)2 -0.0187 *** 
EXP/IMP 0.363 *** 
EXP/IMP*(LNI/TA) 0.865 ** 

 

The sign of the LNI/TA coefficient is the sign of the expression  

EXP/IMP0.8652.295 ⋅+ , 

which says that the impact of credit to the real economy may be positive when 

2.655EXP/IMP > . However, during the period under the consideration (January 1996 –

April 2001) this variable was less than 2.5. 
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4 After the crisis 
 

We now attempt to identify changes in the Russian banking system over time. We use a 

rolling window with the window sizes of four, six and eight quarters, estimating the probit 

probability of default model in the window. Since our sample (rolling window) is now 

much smaller than the one we use in section 3, we consider two alternative ways for con-

structing the data set. First, using all available observations, we again establish that the 

pooled probit model gives the same result as the random-effect panel probit model. Sec-

ond, we apply a sample selection procedure similar to that described in section 3.1. The 

sole difference is that we use a one-year interval between observations of same bank rather 

than a two-year interval as in section 3.1. 

All possible combinations for window size and data type give similar results in 

terms of economic interpretation. For our purposes, we only need to discuss one result. In 

Table 21, we present the pooled probit estimation with an eight-quarter rolling window. 

The row “Time” corresponds to the beginning of the rolling window. 

From the table, we observe the structural change in the banking system after the 

1998 crisis (third quarter, 1998.3). Variables PBT/TA, LNI/TA and OVL/TA, which were 

insignificant before the crisis, became significant after the crisis. That could mean that 

banks became more involved in financing the real economy after the crisis, and that the 

quality of balance sheet data, particularly overdue loans (OVL) and profit (PBT), improved 

from 2000 onwards. In the late 1990s, banks were using several accounting tricks such as 

“tax optimization” and not declaring overdue loans on their balance sheets (Soest van et 

al., 2003). 

For the periods following 1999.2, both variables LNI/TA and (LNI/TA)2 are sig-

nificant. This permits estimating the implied “optimal” value of an investment in the real 

sector of the economy. The plot of this estimated optimal value is presented at Figure 12. 

We see that the value steadily increases from 0.35 to 0.41 during the last three years. This 

evidence suggests gradual improvements in the Russian banking system (i.e. financing of 

the real sector of economy should be the main function of a banking system). Note that the 

ratio of Russian banks’ total investments in the real economy to their total assets also grew 

during the period, i.e. 1999 (28.6%), 2000 (29.5%) and 2001 (35.1%). 
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The exchange rate variable became insignificant after the crisis, suggesting that after the 

crisis this parameter has much less impact on bank reliability than earlier. Financial market 

volatility also decreases and operations become more transparent. The volume of high-risk 

financial operations decreases. 
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 Fig. 12. Implied “optimal” values of LNI/TA 

 

Figure 13 shows the evolution of the measure of the model fit, McFadden R2, over time. 

The lowest point in the plot corresponds to the crisis. The measure rises steadily after the 

crisis, indicating both stabilization of the Russian banking system after the crisis and in-

creasing adequacy of bank balance sheets. 
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Figure 13. Plot of McFadden R2 statistic over time 
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5 Conclusions 
 

Our results found the following: 

• Despite the poor quality of the Russian balance sheet data, the bank probability of 

default models can be used for an EWS. 

• Model modifications that took into account the structural non-homogeneity of the 

set of banks proved helpful. 

• Including macroindicators improves the model performance. 

• Russian banking supervision authorities could use the results of automatic cluster-

ing in designing more flexible capital adequacy requirements. 

• The models are not stable and need regular reestimation in a varying macroeco-

nomic environment if they are to be used in an EWS. 

Heuristic criteria that reflect the point of view of an investor were suggested for model 

comparison. 

The rolling window estimation of the models indicated several features of devel-

opment of the Russian banking system after the 1998 crisis. Increasing goodness-of-fit 

measure revealed stabilization of the banking system. This may be explained by develop-

ment and stabilization of the Russian banking system and a more predictable macroeco-

nomic environment. Emerging significance in the models of bank parameters such as 

profit-before-tax and overdue loans ratios hinted at improving quality of bank accounting 

reports. Reasonable increases in the implied “optimum” value of the credits-to-non-

financial-institutions ratio was seen as evidence of increasing opportunities for bank in-

vestment in the real sector of the economy. The data on overall bank investments in the 

real economy showed that tendency is realized with a lag of 1-1.5 years. 

Models similar to those proposed in this paper could be used by Russian bank su-

pervision authorities as an element of an EWS and for establishing more flexible capital 

adequacy requirements. The models also could be used by commercial banks in an IRB 

framework for estimating risk in line with the Basel II Accord. 
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Appendix 
 
A. Correlation of bank ratios, April 1998 
 
 LNTA RES/TA LNI/TA GB/TA Eq/TA LA/TA DPC/TA CANW/TA NGS/TA 

LNTA 1 -0.12 0.02 0.18 -0.29 -0.25 0.13 -0.04 0.00 
RES/TA -0.12 1 0.12 -0.16 -0.25 -0.22 -0.03 0.23 -0.07 
LNI/TA 0.02 0.12 1 -0.22 0.03 -0.25 0.29 -0.15 -0.34 
GB/TA 0.18 -0.16 -0.22 1 0.06 -0.09 -0.04 -0.25 -0.09 
Eq/TA -0.29 -0.25 0.03 0.06 1 0.11 -0.09 -0.23 0.24 
LA/TA -0.25 -0.22 -0.25 -0.09 0.11 1 -0.14 -0.28 -0.16 
DPC/TA 0.13 -0.03 0.29 -0.04 -0.09 -0.14 1 0.05 -0.12 
CANW/TA -0.04 0.23 -0.15 -0.25 -0.23 -0.28 0.05 1 -0.24 
NGS/TA 0.00 -0.07 -0.34 -0.09 0.24 -0.16 -0.12 -0.24 1 

 
 

 
B. Distribution of Russian bank defaults, 1991–2002 
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(The August 1998 crisis is indicated with a black bar.) 
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C. Mean values of ratios over clusters, 1998 
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D. Model fitted for various clusters, 1998 
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E. Separate models in clusters 
 

The table below presents results of the separate logit models in each of the clusters ob-

tained through automatic classification and model (2)–(3) estimates for 21, ββ . 

 

 Cluster 1 (646 banks) Cluster 2 (923 banks) 
Variable Logit Model          Logit Model 

C −0.24***  −0.45*** 1.56*** 2.08*** 
Eq/TA 2.08*** 0.97***  −1.38*** −2.51*** 

RES/TA −10.05*** −10.59*** −1.35*** 1.84*** 
LNI/TA 2.21*** 2.45*** 1.35*** 1.02*** 
GB/TA 5.94*** 5.80*** 12.12*** 286.89*** 
LA/TA 6.06*** 5.69*** 3.10*** 3.01*** 

McFadden R2 0.24  0.10  
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