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Probability of Error, Equivocation, and the 
Chernoff Bound 

MARTIN E. HELLMAN, MEMBER, IEEE, AND JOSEF RAVIV, MEMBER, IEEE 

Absfract-Relationships between the probability of error, the 
equivocation, and the Chemoff bound are examined for the two- 
hypothesis decision problem. The effect of rejections on these 
bounds is derived. Finally, the results are extended to the case of 
any finite number of hypotheses. 

I. INTRODUCTION 

-I4 

ET US consider the usual decision-theory problem 
of classifying an observation X ss coming from 
one of m  possible classes (hypotheses) C,, CZ, * - - , 

C,. Let nl, .a * , 7~,,, denote the a priori probabilities on 
the hypotheses, and let p,(x), * * * , p,(x) denote the con- 
ditional probability density functions given the true 
hypothesis. Let us assume that these are known. Then 
it is well knoti that the decision rule that minimizes the 
probability of error P(e) is the Bayes decision rule; i.e., 
choose the hypothesis with the largest a posteriori prob- 
ability. Although P(e) can theoretically be calculated, 
this computation is often impractical [l]. In such cases 
bounds on P(e) that are easy to calculate are desirable, 
and several bounds have been presented in the literature 
[3], [$] for the two-class decision problem (m = 2). 

In this paper the Bhattacharyya bound [l] and the 
more general Chernoff bound [2], 141 are examined. Sec- 
tion II gives- simple derivations of these bounds for the 
two-class problem. Section III explores the connection 
between P(e) and the equivocation I. In particular, it is 
shown that P(e) I (+)I for the two-class problem. 
Furthermore, using Chernoff-type ‘bounds on 1, we ob- 
tain an alternative proof of the Chernoff bound on P(e). 
In Section IV this method of proof yields tighter bounds 
on P(e) when rejections (erasures) are allowed. Finally 
in Section V these results are extended to any finite num- 
ber of hypotheses. In the Appendix %e explore a fine 
point that relates to the Chernoff bound on I. It is shown 
that the bound need not hold, unless the pi (z) have the 
same support. 

IIT I@JNDS FOR THE TWO-CLASS PROBLEM 

If only two classes are involved (m = 2), the Bhat- 
tacharyya bound states that 

fYe> 5 G P  (1) 
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where’ 

P = x l4xGEGdx. s (2) 

The following theorem, which gives the Chernoff bound 
on P(e), is seen to include (1) as a special case. The proof 
is similar to that contained in [ll]. 

Theorem 1 

For any rr E [0, l] 

P(e) _< n$r2-’ 1 bl(z)l”~2(z)l’-” kc. (3) 

Proof: If x is observed, the posterior probability of 
class i is / 

To minimize P(e) choose the class with the larger pos- 
terior probability. Therefore, 

and 

where E, denotes expectation with respect to x. Since 
for 0 5 cr 5 1, a 2 0, b 1 0, 

min (a, bj < uw-, (7) 

it follows that 

Define 

@ I 

Q.E.D. 

and 
a* 1--a* K, = ~1 ~a (10) 

where a* is the limiting value of (Y that minimizes (9). 
Then 

P(e) I GP*. (11) 

1 If x is a discrete random variable this and future integrals 
shouid be interpreted ss snms. 
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Note that (11) does not follow directly from (3) since p* 
is an infimum not a minimum. The Appendix has a 
rigorous proof of (11). 

Let X = (X,, *.* , X,) where the Xi are conditionally 
independent and identically- distributed (i.i.d.) a.s pi(z). 
It is easily shown that P,(e), the probability of error of the 
Bayes decision based on X, is bounded by 

P,(e) I K,(P*)“. (12) 

This form is analogous to 

Pa(e) 15 G P” (13) 

for the usual Bhattacharyya bound. Since p* 5 p, (12) 
is exponentially tight,er, except when a* = 3, in which 
case the two bounds are identical. 

m in (P, 1  - PI I (W(p), (23) 

III. EQUIVOCATION 

If zr is observed, then 

H(Cjz)= --PriCi/2)logPr{C;/~~ (14) 

is the conditional entropy [9], where the logarithm is to 
the base 2. The equivocation I is defined by 

I = E,[H(C 1 z)]. (15) 

Renyi [5] has shown’ that the missing information 
after n i.i.d. observations 1(n) obeys a bound similar to (9), 

I(n) I &(P*>“. (16) 

He also showed that. 

p,(e) 5 I(n) (17) 

so that by combining (16) and (17) one can obtain the 
Chernoff bound (12) within a multiplicative constant. 

Let us note that the inequality (17) can be tightened 
by a factor of 2, i.e., 

P(e) 5 I/2. (1% 

Proof: Since only two classes are involved 

p(X) = Pr (Cl I Xl (19) 

completely determines the posterior distribution. Also 
H(C j X) can be expressed as 

H(P) = -P log P - (1 - P> 1% (1 - PI> (20) 

where p = p(X). 
Since X is a random variable, so is p = p(X). There- 

fore, (15) can be rewritten as an expectation over p: 

I = -%W(P)l. (21) 

Similarly, it is seen that 

JYe) = &I~n (P, 1 - PII cm 

and, since 

2 The proof and result given by RBnyi are not correct in certain 
cases. The Appendix elaborates on this point. 

as can be seen from Fig. 1, (18) follows immediately 
from (21)-(23). 

IV. BOUNDS WITH REJECTIOS OPTION 

Thus far only two actions, decide C, or decide C,, have 
been allowed. Forcing decisions on certain observations 
could result in a large P(e). Therefore, it is desirable to 
have the option of making no decision at all, that is, 
rejecting the observation. Let 

w(x) = m&x (P(X), 1 - p(x>l, (24) 

where p(x) is defined by (19). As shown by Chow [S], the 
optimal rejection criterion is to choose a threshold t 2  + 
and reject whenever w(z) < t; i.e., reject if P(e / x) > 1 -t. 
(In communication theory rejections are oft,en called 
erasures [12].) The optimal value of t is determined by the 
relative costs of error and rejection [8]. 

Let R(t) denote the rejection rate (probability of re- 
jection), and let f(w) denote the density of the random 
variable w (2). Then 

R(t) = j-1, f(w) dw (25) 

and 

P(e / t) = 1’ (1 - w)f(w) dw. (2% 
t 

Note that R(t) is increasing in t and P(e 1 t) is decreasing 
in t. Equation (26) may be rewritten as 

where 

(27) 

dP I t> = 
mh b, 1 - PI 

i: 

p  5 1 - t or p 2 t (28) 

0 1-t<p<t. 

It is easily seen that 

dP I 0  I CtH(P), (29) 

where 

c, = (1 - t)/[H(l - t)]. 
Fig. 2 shows this pictorially. 

(30) 

Then 

fYe I 0  5 CJ, (31) 

which follows from (21), (27), and (29). 
The importance of (31) is that C, I + for all t and if 

t -+ 1, then C, + 0, as can be seen from the fact that 
H(p) has infinite slope at the origin. Thus, for values of t 
near 1 (31) yields a tighter bound on P(e 1 t). 

Using this development, it is also possible to show that 
the rejection rate after n observations R,(t) decays ex- 
ponentially as (p*)“. This can be seen by observing that 

R,(t) I z ) (32) 
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1-p) 

Fig. 1. Entropy and  error of posterior distribution. 

where P,(e) is the probability of error without rejections; 
i.e., t = a. 

To derive (32) note that (dropping the subscript n) 

Jw) = W~u-t,t,(P)l7 (33) 

where gcl-l,l,(p) is the indicator function for the open 
int,erval (1 - t, t). Now 

P(e) = &[min (in, 1  - p]] (22) 

implies 

or 

P(e) 2 (1 - t)R(t). (35) 

But (35) is just a restatement of (32). 

V. EXTENSION TO MORE THAN Two CLASSES 

The ,exponential bound (16) on I(n) has been extended 
by RBnyi [7] to the case where m  > 2. He shows that if 

p ii s s x d % ii%?dx  (36) 

and 

then 

q = max pii, 
ifi 

(37) 

I(n) 5 &I”. (3% 

He also proves that P,(e) is bounded above by a constant 
times q”. 

Following are some extensions of Renyi’s results. First, 
except for pathological cases like that discussed in the 
Appendix, (38) can be tightened to 

I(4 I K*(P**Y, 

where p** is defined by 

(39) 

P ** = max pTi. Wb) 
ifi 

I H(p) 
I 
?  
I-1 liGL  ctn (PI 

g (PI t1 
P  

0 I-1 I t I 
2 

Fig 2. Entropy and  error with rejection option. 

The proof of (39) is much the same as the proof of (33) 
contained in [7], merely substituting p” for pi’“. Further- 
more, in [7] it is not shown that P(e) is bounded above 
by a constant times I (for m  > 2). Such a proof exists in 
the literature [lo], [13], but an alternative proof is given 
here. 

That is, we will show that 

P(e) 5 3 I (41) 

for all integers m  > 2, thereby proving that I(n) decreases 
exponentially as (p**)“. 

The proof will depend on the fact that if X results in pos- 
terior distribution Pr {Ci ] z) = p(i ] x) for i = 1, . . . , 
m, then 

P(e\x) = 1 -m,ax{p(i]x)1. (42) 

Since 

P(e) = &ll - max (p(i 1  z)] (43) 

and 

1 = ~%[Hb(l I XL . . - , dm ‘I x1)1, (44) 

it is sufficient to prove that if cyzl ai = 1 and ai 2  0, 
then 

1 - max (ai ) _< ($)H(aI, . * . , a,) 
I 

in order to prove (41). 

(45) 

The proof of (45) will proceed by induction. For m  = 2 
(45) is equivalent to (23), which has already been es- 
tablished. Therefore, under the assumption that (45) is 
true for m, we must show it to be true for m + 1 to 
complete the proof. 

Let (al, ch, - * * , a,, a,,,) be a probability distribution 
on m  + 1 classes. Assume, without loss of generality, 
that the ai have been reordered in such a way that am+1 
is the largest. Now consider the m  vector (a,, uz, - + . , 
a, + a,,,). From the assumption that (45) is true for m  

1 - (Gn + %a+,) 

5 mbl, %  - * - , Gn-1, %I + %n+d. 

Using the grouping axiom [9] 

H(h) a,, * * * , a,-.,, a,, a,,,) 

= m-h, &2, * * * , %?Pl, Gn + %?+I) 

(46) 

+ cam + am+JH(,, Tmum+, 
Gn+, 

) . 
’ %n  + a,,, 

(47). 
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Further, since (45) is true for m = 2 (or by (23)) 

a -- _< (4)H 
( 

um a,+1 
%I + %n+1 ait + G+1 ’ an -I- Gn+1 >* (43) 

Combining (46)-(48) yields 

l- %a+1 5 G)H(% aa * *. , &r a*+,), (49 

completing the proof of (41). 
It should be noted that an alternative proof of the p** 

bound on P(e) is possible using the union bound [14] and 
the bound (11) on P(e) for m  = 2. From the alternative 
proof it also follows that, for any e > 0 there exists an 
N(e) such that, for n > N(E) 

P,(e) 5 (2 + ~CP**)” (50) 

as long as p** is achieved by only one pair i, j. Note that 
this proof is valid even for the pathological cases excluded 
from (39), and discussed in the Appendix. 

APPENDIX 

EXTREME-POINT INFIMA 

Consider the two-class problem in which 7r1 = g2 = 3 
and 

Pl(4 = 
i 

l 
O<x<l* 

7 
0 otherwise 

(51) 

P2(4 = 
i 

s o<x_<2 

0 otherwise 

Then for 0 < (Y < 1 

and 

P(4 = s 
pP(x)p;-“(x) dx = ($)1-a (52) x 

P * = inf p(a) = 3. 
O<a<l 

Thus (12) and (16) would predict the existence of finite 
constants K, and K, such that 

P,(e) 5 KIW” (53) 

and 

I(4 5 K&Y. (54) 

Evaluation of P,,(e) results in 

P,(e) = (4)“” (55) 

so that (53) is a valid bound with K, = 4. However; 
evaluation of p(x) as defined by (19) yields only two 
possible values for p(x). If any of x1, x2, * * . , x, are 
greater than 1, then the x must, with probability 1, be 
drawn according to p&r). In this case p(x) = 0 and 
evaluation shows that 

Pr (p(x) = O] = az[l -- ($)“I = (+)[l - ($)“I. (56) 

If, on the other hand, all of the observations are less 

than 1, p(x) = ~~/[a~ + 
7% = 2”/(1. + 2”) and Pr 
($)[l + (;)“I. From (21) 

I(n) = ($[l - 

~,(a)“] = 7%. In this problem 
(p(x) = Ynl = n-1 + ~2(3>” = 

W lH@) 

+ (b>[l + W IW~J 
= (f>P + GYl~h) 
2 (4>(1 - YJ 1% [l/(1 - m> l (57) 

= (3)[1/(1 + 271 log (1 + 23 
>_ (+)“+2 log 2” 

= n($)“‘2 

or in summary 

I(n) 2 (n/4)($)“. (53) 

But (58) shows explicit,ly that (54) is not true. 
The reason for t.his is that, although I(n) 5 K,[p(a)] 

for any 0 < a~ < 1, in this problem there is no Q: for 
which p(a) = a. The value p* = 3 is only approached in 
the limit as a! + 0. However, if ac = 0, then obviously 
p(a) = 1. The problem with Renyi’s reasoning that led 
him to (54) is that p(a) need not be continuous at o( = 0 
and cy = 1, and so p* need not be achieved by any 
a*(0 I a* I 1). 

At this point one might ask why P,(e) does obey (53), 
since all that has been shown so far is that P,,(e) 5 
Ka[p(a)ln, the same as had been done for I(n). The differ- 
ence is that for a 2 0, b 2 0 

min {a, b] < lim ~8~6~~~ 
a-0 

even if a  = 0 or b = 0. Thus 

s s lim rr~p~(~)?r~-“p:-~(z) dx. (59) x a-0 

Then, since for all 0  < CY < 1 

*$3~(x)7&-“p:-“(x) _< max ~~1~1(~~, ~2p2(4 I 

I a1p1(4 + K2P2(4 (60) 

and pi(x) and p2(x) are integrable, the Lebesgue con- 
vergence theorem [15] allows the integral and limit to be 
interchanged in (59)) yielding 

P(e) < 7r2 lim .I P%$P:-“(4 dx 
a-” x 

or 

P(e) I rr2 lim p(a). 
a-0 (61) 

A similar proof exists for (Y + 1. 
It should be noted that the equivocation does obey 

(54) provided that pi(x) = 0 if and only if p2(x) = 0 (a.e.). 
That this is so can be deduced from the following. 
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Theorem d 

For 0 < cy < 1, p(a) is continuous. 
Proof: For 0 < CY < 1 and all 5 

!z pf+A(x)pP-A(2) = p~(2gp’z--“(z). (62) 

Then since for 0 < a! + A < 1 

pf+A(~))p:-“-A (4 2 Pl(4 + P&l (63) 

and pi(z) + pz(z) is integrable, application of the Lebesgue 
convergence theorem yields 

lim p(a! -j- A) = p(a). (64) 
A+0 

Q.E.D. 

lim p(a) = S,, p&z) = 1. 
Or-0 

A similar proof holds ior cr -+ 1. Q.E.D. 

Taken together, Theorems 24, tell us: 

1) for 0 I a! 5 1, pi(~) 5 1; 
2) if pi(z) # pz(z) a.e., then for 0 < a! < 1, p(h) < 1: 
3) if pi(z) and p&z) have the same support, theri 

inf p(a) = min p(cr>. (71) 
OSO<l O<rr<l 

That is, there exists 0 < Q(* < 1 such that for all 0 5 Q! ‘I 1 

Pb*> 5 Pb). (72) 
Theorem 3 

The function p(cr) is convex U. 
Remark: Since I need not be continuous at cr = 0 

and CY = 1, we cannot proceed merely by proving 
a”p(~l)/&~~ 2 0. Therefore, let us use an equivalent con- 
dition for convexity, Given 0 < (Y, < CY~ < CY~ 5 1 SO that 

Thus,. (16) is valid in this case. However, the example 
given shows that (16) need not be valid otherwise. 
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