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Probability of Error, Equivocation, and the
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Abstract—Relationships between the probability of error, the
equivocation, and the Chernoff bound are examined for the two-
hypothesis decision problem. The effect of rejections on these
bounds is derived. Finally, the results are extended to the case of
any finite number of hypotheses.

I. InTRODUCTION

ET US consider the usual decision-theory problem
L of classifying an observation X as coming from
one of m possible classes (hypotheses) C;, Cs, + -+,
Cn. Let my, -+, 7, denote the a priori probabilities on
the hypotheses, and let p,(x), - - - , pa(x) denote the con-
ditional probability density functions given the true
hypothesis. Let us assume that these are known. Then
it is well known that the decision rule that minimizes the
probability of error P(e) is the Bayes decision rule; i.e.,
choose the hypothesis with the largest a posteriori prob-
ability. Although P{e) can theoretically be -calculated,
this computation is often impractical [1]. In such cases
bounds on P(e) that are easy to calculate are desirable,
and several bounds have been presented in the literature
[3], [4] for the two-class decision problem (m = 2).
In' this paper.the Bhattacharyya bound [1] and the
more general Chernoff bound {2], [4] are examined. Sec-
-tion II gives simple derivations of these bounds for the
two-class problem. Section III explores the connection
between P(e) and the equivocation I. In particular, it is

shown that P(e) < (3)I for the two-class problem. ) ) o
Furthermore, using Chernoff-type. bounds on I, we ob- . where E, denotes expectation with respect to z. Since

for0 L a<1a20,b2>0,

tain an alternative proof of the Chernoff bound on P(e).
In Section IV this method of proof yields tighter bounds
on P(e) when rejections (erasures) are allowed. Finally
in Section V these results are extended to any finite num-
ber of hypotheses. In the Appendix we explore a fine
point that relates to the Chernoff bound on I. It is shown
that the bound need not hold, unless the p,(z) have the
same support. ' - ,

* I1. Bounps ror THE Two-CrAss ProBLEM
If only two classes are involved (m = 2), the Bhat-
tacharyya bound states that

Pe) £ Vmmep | : n
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where'

o= fx V@@ de. @

The following theorem, which gives the Chernoff bound
on P(e), is seen to include (1) as a special case. The proof
is similar to that contained in [11].

Theorem 1
For any « € [0, 1]

PO < =™ [ @) da.

Proof: 1f z is observed, the posterior probability of

®3)

class 7 is

wpi(a)
() + mapa(z)

To minimize P(e) choose the class with the larger pos-
terior probability. Therefore,

t=1,2,

Pr (C; |’$) = 4)

Vs Ly 6] w2P2()
P(e l %) = min {r,p,(:c) + wpa(x) ' mipi(x) + 2172(33)} (5)

and

P = E.[P@ | 2)] = fx min {#p:(0), T0:@) dv,  (6)

min {a, b} < "0, Q)
it follows that
PO < [ mp@lp@l e ®
QED.
- Define ’
ot = int [ @I o ©
0l
and
K, = z'm > (10)

where o* is the limiting value of « that minimizes (9).

“Then

P(e) < Kip*. 1

1Jf 2 is a discrete random variable this and future integrals
should be interpreted as sums.
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Note that (11) does not follow directly from (3) since p*
is an infimum not a minimum. The Appendix has a
rigorous proof of (11).

Let X = (X, ---, X,) where the X, are conditionally
independent and identically” distributed (ii.d.) as p.(z).
It is easily shown that P,(e), the probability of error of the
Bayes decision based on X, is bounded by

P,(e) < Ki(p™)" (12)
This form is analogous to
P.) < Vmm o (13)

for the usual Bhattacharyya bound. Since p* < p, (12)
is exponentially tighter, except when o&* = 3%, in which

case the two bounds are identical.

I1I. EQUIVOCATION

If z is observed, then

HC|2) = —> Pr{C, |z} logPr{C:|a}  (14)

i=1

is the econditional entropy [9], where the logarithm is to
the base 2. The equivocation [ is defined by

I = EJH(C | 2)]. (15)

Rényi [5] has shown’ that the missing information
after n i.1.d. observations I (n) obeys a bound similar to (9),

I(n) < Kx(p*)". (16)
He also showed that

P.(e) < I(n) (17

so that by combining (16) and (17) one can -obtain the
Chernoff bound (12) within a multiplicative constant.

Let us note that the inequality (17) can be tightened
by a factor of 2, i.e.,

Pe) < I/2. (18)
Proof: Since only two classes are involved
p(X) = Pr {C, ] X} (19)

completely determines the posterior distribution. Also
H(C | X) can be expressed as

H(p) = —=plogp — (1 — p) log 1 — p), (20)

where p = p(X).
Since X is a random variable, so is p = p(X). There-
fore, (15) can be rewritten as an expectation over p:
I = E,[H(p)]. (21)
Similarly, it is seen that
P(e) = E,[min {p, 1 — p}] (22)

and, since

2 The proof and result given by Rényi are not correct in certain
cases. The Appendix elaborates on this point.
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min {p, 1 — p} < HH®), (23)

as can be seen from Fig. 1, (18) follows immediately
from (21)—(23).

IV. Bounps Wita REsEcrioNn OPTION

Thus far only two actions, decide C, or decide C;, have
been allowed. Forcing decisions on certain observations
could result in a large P(e). Therefore, it is desirable to
have the option of making no decision at all, that is,
rejecting the observation. Let

max {p(z), 1 — p(@)}, 24

where p(z) is defined by (19). As shown by Chow [8], the
optimal rejection criterion is to choose a threshold ¢t > %
and reject whenever w(z) < f;i.e., reject if P(e|z) > 1—t.
(In communication theory rejections are often called
erasures [12].) The optimal value of ¢ is determined by the
relative costs of error and rejection [8].

Let R(f) denote the rejection rate (probability of re-
jection), and let f(w) denote the density of the random
variable w(z). Then

w(z) =

RO = [ f) do (25)

and
Pl | t) = f "1 = ) dw. 26)

Note that R(f) is increasing in ¢ and P(e | ) is decreasing
in {. Equation (26) may be rewritten as

Pl |9 = Blolp | 0}, @7
where |
g(plt)z{min{p,l—~p} pgl—torpZt(%)

0 1—-i<p <t
It is easily seen that
glp | O < C.H(), (29)
where

Co=(Q10-9/HQ -l (30)

Fig. 2 shows this pictorially.
Then
Plelt) <ClI, (31)

which follows from (21), (27), and (29).

The importance of (31) is that €, < % for all ¢ and if
t — 1, then C, — 0, as can be seen from the fact that
H(p) has infinite slope at the origin. Thus, for values of ¢
near 1 (31) yields a tighter bound on P(e | £).

Using this development, it is also possible to show that
the rejection rate after n observations R,(f) decays ex-
ponentially as (p*)". This ean be seen by observing that

P.)

R.() < 7%

- (3
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Fig. 1. Entropy and error of posterior distribution.

where P,(e) is the probability of error without rejections;
le., ¢ =%

To derive (32) note that (dropping the subscript n)

2 1

/N ol P /N 790\
bBil) = Lp9a-, 0\ (99)

where 4., ,,(p) is the indicator function for the open
interval (1 — ¢, ). Now

P(e) = E,[min {p, 1 — p}]

(22) .
implies
Ple) > E,[9-4,,(p) min {p, 1 — p}]
> (1 = )60 ®)] (34)
or
P(e) 2 (1 — R(). (35)

But (35) is just a restatement of (32).

V. ExtensioN 1o MoORE TuaN Two CLAssEs

The -exponential bound (16) on I(n) has been extended
by Rényi [7] to the case where m > 2. He shows that if

pu = [ Volap@ da 30)

and
¢ = max py;, 37

then
I(n) < Ks". (38)

He also proves that P,(e) is bounded above by a constant
times ¢".

Following are some extensions of Rényi’s results. First,
except for pathological cases like that discussed in the
Appendix, (38) can be tightened to

I(n) £ K.(o**)", (39)
where p** is defined by
oY = inf | [p.0)]"lp:@)] " de (40a)
0<a<] X
p** = max p}. (40b)

i
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Fig 2. Entropy and error with rejection option.
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contained in [7], merely substituting p% for p/*. Further-
more, in [7] it is not shown that P(e) is bounded above
by a constant times I (for m > 2). Such a proof exists in
the literature [10}, [13], but an alternative proof is given
here. )

That is, we will show that

Ple) < 31 (41)

for all integers m > 2, thereby proving that I(n) decreases
exponentially as (p**)".

The proof will depend on the fact that if X results in pos-
terior distribution Pr {C; | z} = p(¢ | 2) fori =1, -+,
m, then

Ple|a) =1~ max {p(i | 2)}. (42)
Since |
P(e) = E.[1 — max {p@@ | x}] (43)
and
I = EH@Q ), -, pm]a)] (44)

it is sufficient to prove that if »>.™, a; = 1 and a; > 0,
then

1 — max {a.} < (DH(ar, -, an) (45)
in order to prove (41).

The proof of (45) will proceed by induction. For m = 2
(45) is equivalent to (23), which has already been es-
tablished. Therefore, under the assumption that (45) is
true for m, we must show it to be true for m 4 1 to
complete the proof. ‘

Let (ay, @3, *** , Qm, Gny1) be a probability distribution
on m -+ 1 classes. Assume, without loss of generality,
that the ¢, have been reordered in such a way that a,.,
is the largest. Now consider the m vector (a,, @2, --- ,
Gm + Qny1). From the assumption that (45) is true for m

1 - (am + am+1>

y Gumyy Qm + a’m+1)‘

S %H(all Qgy * (46)
Using the grouping axiom {9]
H(ah a2y Tty am-—ly arm a’m+l)
= H(ala aZ‘ Tty am.—-ls am + am—H)
G, Ot 1
(ot apH(z—te— St ).
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Further, since (45) is true for m = 2 (or by (23))

a a Q,
. Em <: 1 ( m m+1 )_
am 4_ am+l - (2)£{ am 4‘ am+l’ am 4— am+l (48)
Combining (46)-(48) yields
1 —a. £ (%)H(ah Ay * ) Oy am+1)i (49)

completing the proof of (41).

It should be noted that an alternative proof of the p**
bound on P(e) is possible using the union bound [14] and
the bound (11) on P(e) for m = 2. From the alternative
proof it also follows that, for any ¢ > 0 there exists an
N (e) such that, for n > N(e)

P.(e) £ 2+ 9™ (50)

as long as p** is achieved by only one pair 7, §. Note that
this proof is valid even for the pathological cases excluded
from (39), and discussed in the Appendix.

APPENDIX

ExTREME-POINT INFIMA

Consider the two-class problem in which =, = =, = %

and
<z <
pl(x)={1 O_x__l;

0 otherwise

(51)
L <z <
pz(x)={2 0se=2
0  otherwise
Then for0 < a < 1
@) = [ P @de = B (Y
X

and

p* =

voji=

inf plw) =

0<a<kl

Thus (12) and (16) would predict the existence of finite
constants K, and K, such that

P.(e) < Ki(})" (53)
and

I(n) < K.(3)" (54)
Evaluation of P,(e) results in

Pe) = @) (55)

so that (53) is a valid bound with K; = }. However,
evaluation of p(x) as defined by (19) yields only two
possible values for p(x). If any of ), x5, --- , 2, are
greater than 1, then the x must, with probability 1, be
drawn according to p.(z). In this case p(x) = 0 and
evaluation shows that

Pr{p(x) = 0} = mfl — @)= G - @]

If, on the other hand, all of the observations are less

(56)

In this problem

=7 + @) =

than 1, p(x) = m/[m + m(3)"] =
Y. = 2°/(1 4+ 2") and Pr {p(x) = 7.
@0 + @7 From (21)

) = HL — 3)H(O)
+ @+ @"H)
= O+ @O"MHE)

Y
}

= HA = v log [1/(A — v.)] (57)
= H[1/A + 27)] log (1 + 27
> (5" log 2"
= n()"™?
or in summary
I(n) 2 (n/H@)" (58)

But (58) shows explicitly that (54) is not true.

The reason for this is that, although I(n) < K,[p(e)]®
for any 0 < a < 1, in this problem there is no « for
which p(e) = 3. The value p* = % is only approached in
the limit as « — 0. However, if @ = 0, then obviously
pla) = 1. The problem with Rényi’s reasoning that led
him to (54) is that p(e) need not be continuous at @ = 0
and @ = 1, and so p* need not be achieved by any
a*0 < a* < 1.

At this point one might ask why P,(e) does obey (53),
since all that has been shown so far is that P,(e) <
K.[p()]", the same as had been done for I(r). The differ-
ence is that fora > 0,5 > 0

min {a, b} < lim a*b'"*

a0

evenifa = Oor b = 0. Thus

P(e) = _Lmin {rpi(x), mapo(z)}) dz

< | lim #x5pi@)m “py “(z) dx. (59)
X a—0
Then, since for all0 < a < 1
mip @7 “py (@) < max {mp;(2), mpa()}
< 7rxp1(90) -+ szz(x) (60)

and p,(z) and p.(zr) are integrable, the Lebesgue con-
vergence theorem [15] allows the integral and limit to be
interchanged in (59), yielding

PO < m lim [ piop @) do
a0 X

or

Ple) < m, lim p(e). (61)
a—0
A similar proof exists for a — 1.
It should be noted that the equivocation does obey
(54) provided that p,(x) = 01if and only if p.(z) = 0 (a.e.).
That this is so can be deduced from the following.
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Theorem 2

C For0 < a < 1, p(a) is continuous.
Proof: For0 < a < landallz

lim pi*4(e)ps™""(e) = Pi@Ps (). (62)
Then since for0 < o + A < 1
pi A @pe " (@) < pi) + o) (63)

and p,(z) + p.(z) is integrable, application of the Lebesgue
convergence theorem yields

lim ple + 4) = pa). (64)

Q.E.D.
Theorem 3

The function p(e) is convex \J.

Remark: Since p(a) need not be continuous at « = 0
and o« = 1, we cannot proceed merely by proving
9p(a)/da® > 0. Therefore, let us use an equivalent con-
dition for convexity. Given 0 < a; < &, < a3 < 180 that

oz = kay + (1 — k)as, (65)
where 0 < E <1, then we show
- plas) < kplan) + (1 — k)p(as). (66)
Proof: For all
pri@p: (@)
< kpP@p: @) + (1 — Bpi*@py **@).  (67)
Integrating (67) yields (66). Q.E.D.

Theorem 4 o

If p,(x) = 0 when and only when py(z) = 0, then p(a)
is continuous at « = 0and e = 1. .

Proof: Obviously p(0) = p(1) = 1. Further, since
pi(z) and p.(x) have the same support. if we define
X'C X as ‘

X'= {& € X :pi(x) > 0and ps(z) > 0} (68)

then
o0 = [ PG de. (69)
- X‘
Now forallz € X*
10‘1_1:)1 pi@py " (@) = p:(@). (70)

So using the Lebesgue convergence theorem yields

LT IEEH TRANSACTIONS 6N INFORMATION THEORY, JULY 1970

lim pe) = | ma@ = 1.

A similar proof holds for & — 1. Q.ED.

Taken together, Theorems 2-4, tell us:

1) for0 < a < 1, ple) < I

2) if pi(x) 5 pa() ae., then for0 < a < 1, p(a) <13
- 3) if pu(z) and ps(x) have the same support, t’h’e@ _
' Cinf ple) = min p(). 71
0<a<i1 o<a<l

That is, there exists 0 < o* < 1 such that forall0 < o<1
p(e*) < p(a). (72)

Thus;. (16) is valid in this case. However, the example
given shows that (16) need not be valid otherwise. -
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