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Probability of large deviations of sums of random
processes from Orlicz space
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Abstract. This paper is devoted to the accuracy and reliability estimation (in uniform
metrics) of calculation of improper integrals depending on a parameter ¢, using the Monte
Carlo method. For this, estimates for the probability of deviation in the uniform metric
of sums of independent identically distributed fields, which belong to Orlicz spaces, were
found.
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1 Introduction

The exponential bounds for the probability deviations of normalized sums from the
mean in space C(T) for independent equally distributed random fields were stud-
ied in the paper [6]. Random fields, for which Bernstein’s condition takes place,
were studied in this paper. In this paper the problem, proposed in [6] is examined
in a more general setting, namely, we deal with the casual fields from Orlicz spaces
of random variables. It should be noted that in case which is considered in [6], the
estimates are more accurate than those obtained in our study.

The results of our research may be used for the determination of accuracy in
C(T) and reliability of improper integrals calculation using Monte Carlo method.
That is, for calculation of the integral [ --- [ pa f(X)dX using the Monte Carlo
method.

The paper consists of three sections. The main definitions and notions for ran-
dom processes from Orlicz spaces of random variables are presented in the first
section. The second section is devoted to integral calculation with given accuracy
and reliability, and calculation of integrals depending on a parameter is presented
in the third section.
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2 Random processes from Orlicz space of random variables

Definition 2.1 ([3]). A continuous even convex function U = {U(x),x € R} is
called a €-function if U(x) is monotonically increasing function for x > 0 and
U = 0.
Example 2.2. Simple examples of €-function are as follows:
1. Ulx) =alx
2. U(x) = clexplalx]*}—1),x e R,c > 0,a >0, > 1.

“xeR,a>0,a>1;

Let {2, 3, P} be a standard probability space.

Definition 2.3 ([3]). Let U be an arbitrary €-function. The Orlicz space of random
variables Ly (€2) is defined as a family of random variables, where for each § €
Ly (2) there exists a constant r¢ > 0 such that

EU (E) < 0.
g

The space L (£2) is a Banach space with respect to the norm ||&|y =inf{r > 0;
EU(%) < 1} [3] (Luxemburg norm).

Example 2.4. Suppose that U(x) = |x|P,x € R,p > 1. Then Ly () is the
space L,(£2) and the Luxemburg norm ||£||yy coincides with the norm |§, =
(EJE|7)1/P.

Definition 2.5 ([3]). Suppose that ¢ = (¢p(x),x € R) is an arbitrary €-function.
The Orlicz space generated by the €-function U(x) = exp{e(x)} —1,x € R, is
called an Orlicz space of exponential type.

We denote this space by Exp,, (€2) and the norm in the space Exp,,(€2) by ||| £¢-

Lemma 2.6 ([3]). Suppose that £ € Ly () and ||é||y > 0. Then we have

P{|&] = 2.1)

x} < ;
T UM/lElv)
forall x > 0.

Definition 2.7 ([3]). We say that a €-function U satisfies g-condition if there exist
constants zg > 0, K > 0 and A > 0 such that the inequality

Ux)U(y) < AU(Kxy)

holds for all x > zg, y > zp.
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Example 2.8. The function U(x) = a|x|% x € R, a > 0, a > 1, satisfies
g-condition with K =1, A = a and zo = 0.

The €-function U(x) = exp{e(x)} — 1, x € R, where ¢ = (¢(x),x € R)
is an arbitrary €-function, satisfies g-condition with K = 1, A = 1, z9 = 2
(f ¢(x) = |x|*, & > 1, then zy = 2/9).

Lemma 2.9. Let m be a constant. Then m € Ly (2) for any Orlicz space Ly (R2)

and |mllv = 54

Lemma 2.9 is evident.

Lemma 2.10. Let £ € Ly (2). Then there exists such constant dy that E|§| <
dull§llu-

This lemma is a consequence of the Theorem 2.3.2 from [3].

Example 2.11.For U(x) = |x|?,p > 2, we have dy = 1. For U(x) =
exp{e(x)}—1, where ¢(x) is an  -function (that is such €-function that @ -0

x)

as x — 0, £ — oo as x — 00), we have dy = where [p*](x) is

2
[p*1=D(1)°
the inverse function of (p*(x),x € R), p*(x) = sup,cr(xy — ¢(x)) is the

Young—Fenchel transform of the function ¢(x) (see Lemma 2.3.3 from [3]).

For example, if ¢(x) = ,a > 1, then p*(x) = lT’ where % + é =1,
e*CD(x) = (xB)V/ and (p*( D) = (B)YP. Ifa = 2, then B = 2 and
dU = V2. Ifa = 4, then B = and dy = ;ii

Definition 2.12. An Orlicz space Ly (€2) has the property H if for any centered

independent random variables &1, &>, .. ., &, from Ly (2) the following inequality
holds

gl
k=1

where Cy is some absolute constant.

n
<Cu Y l&lE
k=1

The examples of spaces, which satisfy the condition H, are shown below:
* spaces L,(S2), p > 2, where Cy = Cp, = V2(T(p + 1)/2ym)V P [7);

* spaces Ly (2), where U(x) such €-functions that there exist p > ¢ > 2, for
which U( ¢/x) is convex and U( {/x) is concave, and Cy = 2B, [2]. Value
Bp can be found in [8], p. 341;
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* Orlicz spaces generated by €-function U(x) = exp{|x|%}, where x > x¢ >0,
O<a <111

* Orlicz spaces generated by €-function U(x) = exp{|x|*} — 1, where 1 <
a < 2 (see [1] and book [3]). It is shown in the paper [5] that for o« > 2 these
spaces do not possess H condition.

Definition 2.13. Let X = {X(¢),t € T} be a random process, T be a nonempty
parametric set. The process X belongs to an Orlicz space Ly (R2), if forall t € T
the random variable X (¢) € Ly (2).

Let p(t,5) = || X(t) — X(s) ||y be a pseudometric generated in T by the process
X ={X(t),t € T} € Ly(R2). Consider a pseudometric space (T, p). Let N,(v)
be the metric massiveness of the (T, p), that is the smallest number of elements in
an v-covering of the set T. That is, the covering of T by balls of radius at most v.

Theorem 2.14. Let X = {X(¢),t € T} be a random process from a space Ly (R2),
where €-function U satisfies g-condition. The process X is separable on (T, p),

sup;er | X(0)|lu < 00, €0 = sup; ser p(t, ).
If the following condition holds

£0
/ USD(N,(e))de < oo, (2.2)
0
then
L sup |X(1)| € Ly ();
teT
2.

1 Oeo
X(t < B = inf | X (¢ inf ————— Ny(e))d
Isupl Xl = B = jnf Xy + inf ot [ v (e
(2.3)

where

( ) . n, lfl’l = U(ZO);
PR3+ Uzo)DUCD (), ifn > Uzo),

D =max {1, A}, A, K and zy are the constants from g-condition.

3. Foranye >0

1
P{sup |[X(1)] = e} =
teT U (%

3
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Proof. Theorem 2.14 is a modification of the Corollary 3.3.1 from the book [3].
o

Theorem 2.15. Let (T, w) be a compact metric space, X = {X(t),t € T} be
a random process from Orlicz space Ly (2). The condition g holds for U. Let
X be separable on (T, w) and there exist a function 0 = {o(h), 0 < h <
sup; s et P(2,5)} such that o (h) is monotonically increasing, continuous and

sup | X(#) — X(9)|lv < o(h).
p(t,s)<h

Let Ny, (1) be the metric massiveness of the space (T, w). Suppose that
8o
/ UCD(Ny (6P w)))du < oo,
0

where 8o = o (sup; s W(Z,5)), oV () is the inverse function of o (-).
Then

1. sup [X(1)| € Ly (),
teT

2. [sup [X(@*)||lv < B
t€T

= inf | X inf ! Ve D)
= nf 1Yy + inf o [ @D

<f<1

Proof. This theorem follows from the Theorem 2.14, since separability of the pro-
cess X on (T, w) follows from separability of X(¢) on (T, p) and the following
inequality holds:

Np(u) < Ny(o™ () o
Consider the space R? with the metric m (¥, j) = maxj<j<4 |Xi — yil.

Corollary 2.16. Let T be the cube {0 < x; < T,i = 1,d},T > 0. Then in the
Theorem 2.15

d
Ny ) < (% + 1)

and we have such inequalities:

SN 1 28 T d
B < B = inf || X(¢ inf —— — +1 du.
=B = nfIXOly + i 9(1—9)/0 v((ZU(_l)(u)+ ) ) !
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3 The error of computing of integrals by the Monte Carlo method

Theorem 3.1. Let £1, &5, .. ., &, be independent identically distributed and belong
to an Orlicz space Ly (2). The Orlicz space Ly (2) has the property H. Let

Yn = %; Yoizi (& — ), where I = EE;.
Then for any ¢ > 0 the following inequality holds

P{lyn|l > &} <

1
_ (3.1)
U (%)

where R = ||&1 —I||y /' Cu, Cu is the constant from Definition 2.12.

Proof. 1t follows from Definition 2.12 that ||y,,||2 = ||% G- I)||2 =

LI E-DI3 < ey YI 1IE 1|13 = Cyll& —1)1%,. Now (3.1) follows
from Lemma 2.6. O

Corollary 3.2. Let assumptions of the Theorem 3.1 hold. Then for any ¢ > 0 the
following inequality holds:
1
(3.2)

{' Y- = U

i=1

Proof. 157 & —T=15" (& -1) = ﬁyn. Therefore

ige

i=1

1

>g}_P{T|yn|>8}—P{|J’n|>«/_8}<

5

O

Uk

Let {8, +, it} be a measurable space, u be a o-finite measure and p(s) > 0,s €
8 be a such measurable function that [¢ p(s)du(s) = 1. Let m(A4), A € A be
the measure m(A) = [, p(s)dju(s). m(A) is a probability measure and the space
{8, A, m} is a probability space.

Let f(s) be a measurable function on {§, A, u}. Consider [ f(s) p(s)dju(s) =
4. Suppose, that this integral exist.

Remark 3.3. We can consider the integral of the form [g ¢(s)du(s). Then if
p(s) > 0 is a probability density function in the space {§, 4, i}, then

Y 7))
[5 o(s)du(s) = [ e p)du(s) = [ F($)p(s)dus).

where f(s) = “’8

AUTHOR’S COPY | AUTORENEXEMPLAR



AUTHOR’S COPY | AUTORENEXEMPLAR

Improper integrals calculation using Monte Carlo method 161

We can consider f(s) = f as random variables on {&, A, m} and
| 1©p6dne = [ re)ams) = €f
8 8

Let &,i = 1,...,n be independent copies of f, Z, = %Z?:l & . Then
Z, — E& = 4 with probability one. We can consider Z;, as an estimate of .

Definition 3.4. Z,, approaches 4 with reliability 1 —§ (0 < § < 1) and accuracy
& > 0 if the following inequality holds:

P{Z,—d|> el <6. (3.3)

Theorem 3.5. Let random variable f belong to Ly (2), where the Orlicz space
Ly () has the property H with the constant Cy. Then Z, approaches J with
reliability 1 — § and accuracy ¢ if the following inequality holds:

=1 (1)\2
n> (RU—(S)) , (3.4)

€
where R = || f — d||y v/ Cu.

Proof. 1t follows from Corollary 3.2 that P{|Z, — d| > &} < (U(%))_l. The
assertion of this theorem holds if (U (%))_1 < §, that is if (3.4) holds. |

Remark 3.6. Prove that

Since || f — 4|y < |Iflly + lId]ly then it follows from Lemma 2.9 that ||d ||y <
U(—I+l(1) and from Lemma 2.10 that |d| < dy || f ||y Therefore (3.5) holds true.

Example 3.7. Usually Monte Carlo method is used for multiple integrals calcu-
lation, but for better understanding let us consider an integral of one variable

function. If f_t;o f(x)exp{;T"z2 —bxydx = I, a > 0, |f(x)] < 1, then

I = /2na J217a fjozo f(x) exp{;sz2 — bx}dx. Let denote J = Eexp{—£b},

where £ is N(0,a?), n; = f(&)exp{—£:b}, & — independent copies of random
variable §. Let J, = 37 i = 13| f(x;) exp{—£;b}. The estimation for
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I willbe I, = ~/2mal,. Let put U(x) = |x|?,p > 2, then according to the
remark 3.6 to Theorem 3.5 and value Cy for Ly (£2) spaces we receive:

R = [, 2/ V2(T(p + 1)/24/m)1 /7.
where [[n]1Z = E| £(x)|? (exp{—£b})? < Eexp{—bp) = exp{ 254},

According to the equation (3.4) integral / will be computed with accuracy &
and reliability &, when the following inequality holds:

a*2n R?
— g282/p
As the last inequality is true for p > 2, in order to find minimal 7 it is neces-

sary to minimize the right part on p, i.e. to find approximate value of minimum.
According to the Stirling formula T'(p) = exp{—p}p?~"/2(2n)'/2,

R? _ 4V2exp{pb%a®}p(p/2)'/2P
52/p — §2/p ’

2(—Ins)
14+/14+4a2b2(=Ind)’

at p =~

The rate of convergence Z, to J

Theorem 3.8. Let assumptions of the Theorem 3.5 hold. Then with probability one

for sufficiently large n
R 1
Zn—d| < —UY[ =

where 8, > 0 a such sequence that Y po 1 8n < 00.

Proof. This theorem follows from Borel-Cantelli lemma. Indeed it follows from
the Corollary 3.2 that

s e ()< (G500 () o

O

Example 3.9.If U(x) = [x|?, p = 2 and 6, = 15 L, k > 0 then for sufficiently
large n: |Z,—d| < nl/H% (% 5). IfU(x) =exp{|x|“}—-1,1 <a <2
and 8, = ﬁ k > 0 then for sufficiently large n: |Z, — d| < ﬁ#(lnn)l/"‘,

where R is some constant.
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4 The error of the Monte Carlo calculation of an integral depending
on a parameter

Theorem4.1. Let Y = {Y(t).t € T} be a random process. Y belongs to an Orlicz
space Ly (2) such that the condition g holds for U and Ly (2) has the property
H with the constant Cy;.

Let (T, w) be a compact metric space and Y be separable process on (T, w),
Ny (u) be the metric massiveness. There exist a continuous and increasing func-
tionog ={a(h), 0 <h <sup; serp(t,s)}, that

sup  [|[Y(¢) = Y(s)||ly < o(h) 4.1
p(t,s)<h
and
8o
/ UCD (N (6P ) du < oo. 4.2)
0

Let X(t) = Y(t)—m(t), where m(t) = EX(t) and Xy (t) be independent copies
of X(1), Sp(t) = ﬁ Y %1 Xi(t). Then for all ¢ > O the following inequality
holds

P{sup S, (1)] > &} < U(—z 4.3)

teT (m)

where t is any point from T, 0 < 6 < 1,
1 of (D)
Blto.6) = | X(t0) |l + ———— / v(Nw@ T )du,  (@4.4)
61—-0) J

where a1(h) = (1 + U(f’—%(l))o(h), dy is the constant from Lemma 2.10, §¢ =
o1(sup; set p(t,5)), v(n) defined in Theorem 2.14.

Proof. Tt follows from the Definition 2.12 that

n 2
Sn(t) — Sn % = HL Xi()—X
1S (6) = Su ()1 ﬁkgl( €0 = X)) |
1 n
< Cu— ) IXe@) = X = CullX@) = X@)g. 45

k=1
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It follows from Lemma 2.9 and Lemma 2.10 that

[1X(0) = Xy = Ily@) = y(s) = (m(@) _m(s))”U

=IO —yOlo + Genm 1>(1) () = m(s)|
1
= O = Oy + s ENO -6
< 190 = Oy + =2 31— ¥
—y(s K
@) — )y (1+ =21 (4.6)
= —y(s — ], .
y Y U U(_l)(l)
where dy is the constant from Lemma 2.10.
Therefore it follows from (4.5) that
sup [ X(2) — X(s)|lu < o1(h).
p(t,s)<h
Now the assertion of the Theorem 4.1 follows from the Theorem 2.15. O
Remark 4.2. It is easy to prove (as in 4.6) that
X(¢ 4.7
Xl = (1+ 55 ) Iyl @)

Consider integrals |’ s f(t,5)p(s)du(s) = J(t). We suppose that all assump-
tions of Section 3 are true, but a function f(¢,s) depends on ¢ € T, where (T, w)
is a compact metric space. Suppose that f(¢, s) is continuous function of ¢.

Suppose that this integral exist. We can consider f(¢,s) as random processes
on {8, A m}and (t) = [g f(t,5)p(s)du(s) = [g f(t,5)dm(s) = Ef ().

Let &(¢), i = 1,2,...,n be independent copies of f(z,s). Let Z,(t) =
% M1 &i(t), Zn(t) — Ef(t) = J(¢) with probability one for any 7 € T.

Definition 4.3. Z,,(¢) approach d(¢) in the space C(T) with reliability 1 —§ > 0
and accuracy ¢ > 0 if the following inequality holds:

P{sup|Z,(t) —J(t)| > e} <. (4.8)

teT

Theorem 4.4. Let random process f(t) belong to a space Ly (2), where Ly (2)
has the property H with the constant Cy and the condition g hold for U. There
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exist a continuous increasing function 0 = {o(h),0 < h < SUP; seT w(t,s)},
that

sup | f() = f()|, < oh) 4.9)
o(t,s)<h
and s
/ UCD(Ny (6P ) du < oo. (4.10)
0

Then Z,/(t) approaches J(t) with reliability 1 — § and accuracy ¢ in the space

C(T) if the following inequality holds (U( Ba(‘/;))) 1 <, s0
B2(oyUD (L

> ()—2(5) 4.11)

e

5 806 —

where B(#) = (I + g2 fOllv + 5g Jo" v(Nwlof P @)du,

1) = (1 + i) o(h), 8o = o1(supseqw(t.s)), 0 < 6 < 1, v(n)
defined in Theorem 2.14.

Proof. The function f (¢, s) is continuous. Therefore the process f(¢) is separable.
Thus, it follows from (4.3) that

1
P Zy(t) — < —
{§:¥ﬁ| (t) —m()] > &} < U(éfa))

Therefore

P{sup|Zy(t) —m(1)| > &}

teT
1
= P{sup /1 |Z,(t) —m(t)| > /ne} < — ]
reT U(B}g))

Exampled4.5. Let [(t) = /27 ma- = f+°° f(x) exp{ —tx}dx,wherea > 0,

|f(x)] <land0 <t <T. We keep the same notatlons as in Example 3.7. The
estimation for 1(r) will be I,,(t) = ~/2maJy. Let put U(x) = |x|?, p > 2, then
according to the Theorem 4.4 we have that

. 1 800 3
BO) =200l + g5 [ v¥uo{

2.2 2.2
where [|[7(t)], = exp{ 252} < exp{ 2547},
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Now estimate

800 _1 800 T 1/p
/ V(Ny (0} )(u))du§/ (T+l) du
0 0 20, ' (u)
806 1/p 1 1/p
G Geng)
o \2 oD ()
3 \VP p8b/2 1 1/p
—2(2r / B RH
2 0 o= (v)

Find o (v), where 0 < v < T, from the inequality (4.9).

lexpi—&1} —exp{—&s}) = E|exp{—£1} —exp{—£€s}|?
= EI{§ > O} lexp{—&1} — exp{—&s}|”
+ EI{E < 0} |exp{—£1} — exp{—&s}|”
= Ay + A

Leté—k%: 1,8 > 1ands > t. Then
A_ = EI{g < 0} lexp{—£1} — exp{—&s}|?
= EI{£ < 0} lexp{—£1}(1 — exp{—£(s — 1)})|”
< EI{& <0} lexp{—£1} [E] (s —1)]”
< (EI{E < Oyexp{—£ptp)) /P (EI{E < 0} |E]7) V(s — 1)P.

Then A_ < |t —s|? exp{azpjtz’3 }(E|£|P%)Y/®_ Find similar A 4. Now o (v) =

|t —5|Cp, where Cp = 2l/p exp{%}(ﬂﬂp")l/w. Let’s estimate

1 +o0 2
E|£|7% = / |x|P“exp{i}dx

B V2ra J-oo 2a?
aP® +o00o —12

= 27[ |t|paexp{7}dt.
v —00

Since x* < (3) exp{x}, then
aPv 2

E 517 < W (p?a)pa /:o exp {[¢[} exp {%}dr

pa
< 2exp{1/2}aP® (ﬂ) .
e
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e receive that C,, = (2exp at> exp @pBT2\ | ot substitute the
We receive that Cp = (2exp{1/2})1/P%a 2221/ P exp{“LBTZ) Let substitute th
obtained values, that (o1 (h) = 20 (h))

. aZ T2 1 806/2 C 1/p
B(@)zZexp{ l; }+9(1—9)/0 (Tp) dv

aszz C;/pp 5,0 1-1/p
2 } 9(1_9)(,,_1)(7) '

Since o = o1(sup; ser w(t,s)) and sup, ;e w(t,s) = T then §o = o1(T) =

v 1/p—1
20(T) = 2T Cp and B(0) = 26xp{a2’£T2} + z(l_pe)(i”_lf (TO)~'/P. According
to equation (4.11) integral will be computed with accuracy ¢ and reliability §, when

the following inequality holds:

22 é2

= 2€xp{

T p>2,0<6<1 §282/p
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