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Abstract: The review of new formulation of conventional quantum mechanics where the quantum
states are identified with probability distributions is presented. The invertible map of density
operators and wave functions onto the probability distributions describing the quantum states in
quantum mechanics is constructed both for systems with continuous variables and systems with
discrete variables by using the Born’s rule and recently suggested method of dequantizer–quantizer
operators. Examples of discussed probability representations of qubits (spin-1/2, two-level atoms),
harmonic oscillator and free particle are studied in detail. Schrödinger and von Neumann equations,
as well as equations for the evolution of open systems, are written in the form of linear classical–like
equations for the probability distributions determining the quantum system states. Relations to
phase–space representation of quantum states (Wigner functions) with quantum tomography and
classical mechanics are elucidated.

Keywords: probability distribution; tomography; quantizer; dequantizer; star–product; qubit

1. Introduction

The main goal of the paper is to give a review of conventional quantum mechanics in
which the states of quantum systems are identified with probability distributions both for
physical systems with continuous variables, like free particles and oscillators, as well as
for systems with discrete variables, like spins. In quantum mechanics, the system states
(e.g., oscillator, spin-1/2 particle, hydrogen atom, photon states) are described by wave
functions [1], density matrices, and density operators [2,3] acting in the Hilbert spaces of
the state vectors [4]. The quantum observables are associated with Hermitian operators
acting in these spaces. The notion of quantum states associated with Hilbert space vectors
and density operators is very different from the notion of states in classical mechanics and
classical statistical mechanics.

The discussion of the attempts to give the probability formulation of quantum states
has long history. We mention the work of Wooters [5] where the attempt to find the
formulation of quantum state where instead of probability amplitude (wave function) “the
probability table” was discussed for spin-1/2 system.

Attempts to find the state representation for systems with continuous variables like
position more similar to the system state notions used in classical mechanics and in classical
statistical mechanics were suggested in References [6–9]. For discrete spin variables,
there were also suggestions by Stratonovich to introduce analogous representations [10]
using method of quantizer operators. In connection with experimental results, to use
the quantum optical tomography to measure the Wigner functions of photon states [11],
the introducing of the notion of symplectic tomographic probability distribution was
applied to associate the quantum states with this probability distributions [12]. For discrete
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variables of spin-1/2 systems, the probability description of system states was suggested
in References [13,14]. We consider the general construction [12,15] for arbitrary quantum
systems, where the density operators are invertibly mapped onto probability distributions
including the equations for energy levels and evolution equations for quantum states. We
present the construction for three paradigmatic examples—harmonic oscillator, free particle,
and spin-1/2 (qubit system). We will show that free particle states and their evolutions
can be presented in the form of tomographic probability distributions of coherent states
introduced for oscillator in References [8,9,16].

The probability distributions are standard normal distributions invertibly mapped
onto density matrices of the free particle states. The normalized Fock state tomograms
of free particle are also explicitly constructed using method of time dependent integrals
of motion [17]. The symplectic tomographic probability distribution was introduces for
description of quantum states since its partial case (optical tomography technique [18,19])
was used to obtain the photon quantum states identified with the Wigner function [6]
in quantum optics experiments [11]. For spin system with discrete variables, the Wigner
function introduced in Reference [10] and the possibility to map this Wigner function onto
the spin probability distribution was suggested in Reference [14,20]. The nonredundant
tomographic description of spin-1/2 states corresponding to “probability table” [5] was
presented in References [15,21].

The main aim of the paper is to review the methods of obtaining the probability
representation of quantum states and to formulate the rules of constructing the probabil-
ity distribution representations of quantum system states on examples of the quantum
oscillator, free particle and qubit. The idea of this construction is to find the invertible
map of density operators onto probability distributions applying the Born’s rule [22,23]
and the method of quantizer–dequantizer operators [24–26] (also see References [27,28]).
The development and review of this method of quantizer–dequantizer, which is important
for studying the systems with continuous variables is presented in Reference [29]. The
problem of the probabilities used in quantum mechanics was discussed, for example, in
Reference [30]. The consideration of nonnegative probabilities in quantum mechanics
was discussed in References [31,32]. In Reference [32], it was shown that key concepts
of classical mechanics can be reformulated in the language of Hermitian operators using
the inverse Wigner-Weyl transform of the classical probability distributions. In Refer-
ence [33], the attempts to study the problems of complex biosystems composed of many
subsystems using the language of quantum mechanics and thermodynamics were done. In
Reference [34], a quantum mechanical analysis of Bell’s approach to quantum foundations
based on his hidden-variable model was presented. In Reference [35], a review of classical
probability representations of quantum states and observables is done. In Reference [36],
the application of quantum information and field theories to modeling of social process
is done. In Reference [37], the probability domain was extended to the complex space,
and the relation of the complex probabilities to the quantum probabilities was obtained.
The relation between the quantum state description and the classical state description
is elucidated in References [26,38–40]. In Reference [41], a tomographic representation
of quantum cosmology was considered. The extension of the tomographic maps to the
quantum case and a Weyl-Wigner quantization in the classical case were considered in
Reference [42]. The methods of star-product, tomography, and probability representation
of quantum mechanics were applied to different problems of quantum phenomena in
References [43–48]

In this paper, we use only conventional nonnegative probabilities. We will use such
probabilities to describe evolution equations of quantum mechanics—Schrodinger equa-
tion [1], von Neumann equation [3], the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL)
equation [49–51]. Quantum evolution equation for open system (GKSL) was considered in
References [52,53]. Different kinds of equations including the quantum evolution equation
were considered in References [54,55]. Applications of tomographic probability representa-
tion in quantum information processing were discussed in Reference [56]. Applications of
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quantum tomographic approach to different kinds of experiments, as well as theoretical
research studies, were discussed in References [57–61]. The tomograms and eigenvalues
of energy computed in terms of tomographic symbols are shown in Reference [62]. The
dynamics of quantum particles was described by Kolmogorov equations for nonnegative
propagators in tomography representation in Reference [63].

The paper is organized as follows. In Section 2, the symplectic tomographic probability
representation for the quantum and classical oscillator is discussed. In Section 3, the
general scheme of constructing the probability representation of quantum states by means
of quantizer–dequantizer is presented. In Section 4, an associative product of the operator
symbols is considered. In Section 5, the free particle tomography of the coherent and the
Fock states are discussed. The equation of quantum mechanics is given in Section 6. In
Section 7, qubit states are considered in probability representation of quantum mechanics.
In Section 8, the probability representation of qudit state is introduced using quantizer–
dequantizer method. It is necessary to add that there may exist other easier methods to
achieve analogous result. In Section 9, quantum evolution of open system in probability
representation of density operator is discussed. The conclusions are presented in Section 10.

2. Probability Representation of Quantum Oscillator States

The conventional formulation of harmonic oscillator state theory is based on the notion
of wave function ψ(x, t) of the oscillator which obeys the quantum evolution Schrödinger
equation (Planck constant and oscillator mass we take equal to unity):

i
∂ψ(x, t)

∂t
= −1

2
∂2ψ(x, t)

∂x2 +
ω2x2

2
ψ(x, t). (1)

For frequency of the oscillator ω = 0, we have the Schrödinger equation for the quantum
free particle. The complex wave function ψ(x, t) = |ψ(x, t)| exp(iφ(x, t)) for stationary
states of the harmonic oscillator satisfies the eigenvalue equation for the Hamiltonian

Ĥ = p̂2

2 + ω2 q̂2

2 . The state vectors |ψn〉, n = 0, 1, 2, . . ., of the stationary states of the
harmonic oscillator obey to the Schrödinger equation:

Ĥ|ψn〉 = En|ψn〉, n = 0, 1, 2, . . . ., (2)

which has the solutions for the Fock state wave functions ψn(x) = 〈x|ψn〉 of the form

ψn(x) =
e−

x2
2

π1/4
1√
2nn!

Hn(x), En = (n + 1/2), (3)

where Hn(x) is Hermite polynomial (see books on quantum mechanics [64,65]). The density
operator ρ̂n of the Fock state of the harmonic oscillator satisfies the equation

Ĥρ̂n = Enρ̂n. (4)

We address the following problem. Is it possible to find an invertible map of the density
operators of the Fock states ρ̂n and density operators ρ̂ of any other states of the harmonic
oscillator onto probability distributions? Such maps are described by the existing pairs
of quantizer–dequantizer operators denoted for dequantizer as Û(~x) and for quantizer
as D̂(~x), (~x = X, µ, ν) [24]. Here, we introduce three real continuous parameters −∞ <
X, µ, ν < ∞. If we take

Û(X, µ, ν) = δ(X1̂− µq̂− ν p̂), D̂(X, µ, ν) =
1

2π
exp

[
i
(
X1̂− µq̂− ν p̂

)]
, (5)
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the invertible map of the density operator ρ̂ onto the function ω(X|µ, ν) reads [12]

ω(X|µ, ν) = Tr
[
ρ̂δ
(
X1̂− µq̂− ν p̂

)]
,

ρ̂ =
1

2π

∫
ω(X|µ, ν) exp

[
i
(
X1̂− µq̂− ν p̂

)]
dXdµdν. (6)

The function ω(X|µ, ν) called symplectic tomogram is nonnegative probability distribution
function of the random position X satisfying the normalization condition∫

ω(X|µ, ν)dX = 1. (7)

The tomogram of Fock states (ω = 1) can be found, and it has the form

ωn(X | µ, ν) =
e
− X2

(µ2+ν2)√
π(µ2 + ν2)

1
2nn!

H2
n

(
X√

µ2 + ν2

)
. (8)

Using (6) for pure state ρ̂ = |ψ〉〈ψ|, one can express the tomographic probability distribu-
tion w(X|µ, ν) in terms of wave function ψ(y) of system [66]

w(X|µ, ν) =
1

2π|ν|

∣∣∣∣∫ ψ(y)e
iµ
2ν y2− ixy

ν dy
∣∣∣∣2. (9)

Thus, we map the wave function ψ(y) onto probability distribution w(X|µ, ν) of random
position X. The physical meaning of the parameters µ and ν can be clarified if we consider
symplectic tomogram for the classical oscillator state with the probability density f (q, p) of
the state of the system. Namely, the position of the oscillator can be measured in different
reference frames of classical particle in the phase space. The position X is the position in
transformed reference frame. If q and p are position and momentum in initial reference
frame, and we introduce the variables q′′ = sq, p′′ = s−1 p and q′ = cosθq′′ + sin θp′′,
p′ = cosθp′′ − sin θq′′, where s is scaling parameter, then X is position measured in the new
reference frame with parameters q′ and p′. Thus, the position X = µq + νp is the position
measured in scaled (parameter s) and rotated (parameter θ) reference frame. Obviously,
one has the marginal probability distribution

w(X|µ, ν) =
∫

f (q, p)δ(X− µq− νp)dqdp, (10)

given by Radon transform [67] and the inverse transform reads

f (q, p) =
1

4π2

∫
w(X|µ, ν)ei(X−µq−νp)dX dµ dν. (11)

In classical mechanics, the probability density f (q, p) = δ(q − q0)δ(p − p0) of the state
without fluctuations of the position and momentum describes the classical particle state
with given position q0 and momentum p0. The tomogram of such state w0(X|µ, ν) =
δ(X − µq0 − νp0) describes such classical particle state. It does not exist as tomogram
of a real quantum particle in view of uncertainty relation [68]. For classical pendulum
(harmonic oscillator with m = ω = 1), at the temperature T, the probability density
f (q, p) = 1

2πT exp
[
−(q2 + p2)/2T

]
. For temperature T → 0, the fT(q, p) → δ(q)δ(p).

It means that the tomogram, which is Gaussian probability distribution for very small
temperature, violates the Heisenberg uncertainty relation for position and momentum.

3. General Scheme of Using Quantizer–Dequantizer Formalism

Let us discuss the problem of constructing invertible maps of different kinds of any
operator Â acting in a Hilbert space H of Dirac vectors |ψ〉 onto function fA(~x) called
symbol of operator Â, where (~x) = (x1, x2, . . . , xN) have components either discrete or
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continuous xj, j = 1, 2, . . . , N. It means that we can find the pairs of operators U(~x), D̂(~x)
such that

f Â(~x) = TrÂÛ(~x), Â =
∫

f Â(~x)D̂(~x)d~x, (12)

in the case of continuous parameters xj. The integral is replaced by corresponding sum in
case of discrete parameters xj. Equation (12) is a generalization of concrete formulas (5),
where the concrete case of symplectic tomographic probability representation of the oscil-
lator states was discussed. The idea of using the map Â↔ f Â(~x) is related to possibility
to replace the formalism of using operators by the formalism of using the functions. In
quantum mechanics, it is realized by phase–space representation of quantum states [69],
e.g., by description of the quantum oscillator state by the Wigner function W(q, p) [6]. In
the case of the map of the oscillator state density operator ρ̂ onto the Wigner function, the
dequantizer Û(~x), where ~x = (x1, x2) = (q, p), has the form

Û(q, p) =
∫
|q− u/2〉〈q + u/2|e−ipudu, h̄ = m = ω = 1 (13)

and quantizer operator D̂(q, p) = (2π)−1Û(q, p). Here, the vector |q + u/2〉 is eigenvector
of the position operator q̂, i.e., q̂|q + u/2〉 = (q + u/2)|q + u/2〉. For density operator of
pure state ρ̂ψ = |ψ〉〈ψ|, the Wigner function of the oscillator is expressed in terms of the
wave function as follows:

W(q, p) =
∫

ψ(q + u/2)ψ∗(q− u/2)e−ipudu, (14)

and

ψ(x)ψ∗(x′) =
1

2π

∫
W
(

x + x′

2
, p
)

eip(x−x′)dp. (15)

The Wigner function is expressed in terms of dequantizer operator (13) and density operator
ρ̂, and it is the Wigner–Weyl symbol of the state density operator. Thus, we have the
possibility to introduce the description of the oscillator state with density operator ρ̂ either
by symplectic tomogram w(X|µ, ν) or by the Wigner function W(q, p). The expression of
the tomogram in terms of the Wigner function reads

w(X|µ, ν) =
∫

W(q, p)δ(X− µq− νp)
dq dp

2π
. (16)

The Wigner function is expressed in terms of the tomogram as

W(q, p) =
1

2π

∫
w(X|µ, ν)ei(X−µq−νp)dX dµ dν. (17)

For some states, the real Wigner function takes negative values. For example, odd first
excited states |1〉 = â†|0〉 of the oscillator and higher excited odd states |2k + 1〉 = ((2k +
1)!)−1/2(â†)2k+1|0〉, k = 0, 1, 2, . . . , ∞ are odd continuous wave functions. The Wigner
functions of these states satisfy the condition

W2k+1(0, 0) =
∫

ψ2k+1(u/2)ψ∗2k+1(−u/2)δ(u) du = 0, (18)

since these states have the property ψ(2k+1)(0) = 0. The symplectic tomogram w(X|µ, ν) ≥ 0.
This tomogram for µ = cos θ, ν = sin θ equals to optical tomogram [18,19], which deter-
mines the Wigner function

w(X| cos θ, sin θ) = wopt(X|θ) =
∫

W(q, p)δ(X− q cos θ − p sin θ)
dq dp

2π
. (19)
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In view of the property δ(λx) = 1
|λ| δ(x), one has the relation

w(X|µ, ν) =
1√

µ2 + ν2
wopt

(
X|θ = arctan

ν

µ

)
. (20)

The optical tomogram of photon state is measured in experiments with homodyne detec-
tor [11]. It means that the Wigner function can be reconstructed using Equations (17) and (20).
Since the tomogram which is experimentally measured contained complete information on
the photon quantum states it was suggested [12] to identify the state with tomographic
probability distribution function interpreting it as primary notion of quantum state and
calling this method as probability representation of quantum states.

4. Associative Product of the Operator Symbols

The operators Â, B̂ describing the quantum observables can be multiplied. This
multiplication has the property of associativity, i.e., (ÂB̂)Ĉ = Â(B̂Ĉ). Symbols of the
operators, i.e., the functions f Â(~x), fB̂(~x), fĈ(~x) have to satisfy the property of the as-
sociativity. It means that the associative product of the functions called star–product
( f Â ? fB̂)(~x) = f ÂB̂(~x) is nonlocal product, and it must satisfy the condition

(( f Â ? fB̂) ? fĈ)(~x) = ( f Â ? ( fB̂ ? fĈ))(~x). (21)

The nonlocal star–product is determined by the integral kernel K(~x1,~x2,~x3), i.e.,

( f Â ? fB̂)(~x3) =
∫

K(~x1,~x2,~x3) f Â(~x1) fB̂(~x2)d~x1 d~x2. (22)

One can see that this kernel is determined by dequantizer Û(~x) and quantizer D̂(~x)
operators

K(~x1,~x2,~x3) = Tr
(

D̂(~x1)D̂(~x2)Û(~x3)
)
. (23)

For a system with continuous variables, like harmonic oscillator (m = ω = h̄ = 1), the
kernel is equal to the function

K(X1, X2, X3, µ1, µ2, µ3, ν1, ν2, ν3) =
1

4π
δ[µ3(ν1 + ν2)− ν3(µ1 + µ2)]

× exp
[

i
2

(
ν1µ2 − ν2µ1 + 2X1 + 2X2 − 2

ν1 + ν2

ν3
X3

)]
. (24)

For the oscillator, the associative product of Wigner–Weyl symbols, e.g., star–product of
Wigner functions, is determined by the Grönewold kernel [70]

K(q1, p1, q2, p2, q3, p3) =
1

4π2 exp[2i(q1 p2 − q2 p1) + (q2 p3 − q3 p2) + (q3 p1 − q1 p3)], (25)

which is given by (23), where dequantizer operators Û(q, p) is given by (13) and quantizer
D̂(q, p) = 1

2π Û(q, p). From the relation Â =
∫

f Â(~x)D̂(~x)d~x =
∫

f Â(~y)D̂′(~y)d~y, where
D̂(~x), Û(~x) and D̂′(~y), Û′(~y) are two different pairs of quantizer–dequantizer operators,
we obtain the relation which connects two different symbols of the same operator Â

f Â(~y) =
∫

f Â(~x)Tr
(
Û′(~y)D̂(~x)

)
d~x. (26)

In the case of relation of the tomographic quantizer–dequantizer operators with the Wigner–
Weyl symbols, the Formula (26) yields the connection of the state Wigner function W(q, p)
with the symplectic tomogram (16), (17). For the Wigner function and the symplectic
tomogram, the associative product was studied in Reference [71]. The review of the
associative product is given in Reference [72]. These relations are the Radon transform
relations analogous to (10), (11) used to connect the tomogram of classical oscillator states
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associated with probability density f (q, p) with classical symplectic tomography. The
difference of classical and quantum symplectic tomograms is connected with the property
of the probability distribution f (q, p) of the classical oscillator which is permitted by the
Heisenberg uncertainty inequality. The Wigner function W(q, p) can take negative values,
but the probability density f (q, p) must be nonnegative. But nonnegative densities f (q, p)
with very small both dispersions of position and momentum after Radon transform provide
the tomograms corresponding to related density operators ρ̂ with negative eigenvalues.

5. Free Particle Coherent States in the Probability Representation of
Quantum Mechanics

In this section, we consider the motion of free particle with the Hamiltonian Ĥ = p̂2/2
as the motion of the harmonic oscillator in the limit of zero frequency ω = 0. One can
check that the quantum free particle has two integrals of motion

q̂0(t) = q̂− p̂t, p̂0(t) = p̂. (27)

The integrals of motion of the free particle satisfy the equation

dq̂0(t)
dt

=
∂q̂0(t)

∂t
+ i
[
Ĥ, q̂0(t)

]
= 0,

dp̂0(t)
dt

=
∂ p̂0(t)

∂t
+ i
[
Ĥ, p̂0(t)

]
= 0, (28)

and q̂0(t = 0) = q̂, p̂0(t = 0) = p̂. From these relations, it follows that there are two other
integrals of motion for free particle

â(t) =
1√
2
(q̂− p̂t + i p̂), â†(t) =

1√
2
(q̂− p̂t− i p̂) (29)

with bosonic commutation relations[
â(t), â†(t)

]
= 1̂. (30)

For t = 0, the integrals of motion (29) coincide with the standard creation â† and annihila-
tion â operators of the harmonic oscillator

â =
1√
2
(q̂ + i p̂), â† =

1√
2
(q̂− i p̂). (31)

In view of these properties, one can construct the Fock states |n, t〉 and coherent states of
free particle. Using the formalism of coherent and Fock states of harmonic oscillator [8,9],
we construct coherent states of free particle. First, we obtain the state |0, t〉 such that it
satisfies the condition â(t)|0, t〉 = 0 and the Schrödinger equation Ĥ|0, t〉 = i ∂|0,t〉

∂t with
Ĥ = p̂2/2. The wave function of the state in the position representation reads

ψ0(x, t) =
1

π1/4
1√

1 + it
exp

(
− x2

2(1 + it)

)
. (32)

In the momentum representation, the wave function of the state |0, t〉 reads

ψ0(p, t) =
1

π1/4 exp
(
− p2(1 + it)

2

)
. (33)

The coherent state |α, t〉 such that â(t)|α, t〉 = α|α, t〉 is given by the formula [8,9]

|α, t〉 = e−|α|
2/2eαâ†(t)|0, t〉. (34)
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The normalized Fock state |n, t〉 is given by the formula

|n, t〉 =
(
â†(t)

)n

√
n!
|0, t〉. (35)

In momentum representation, the Fock state wave function reads

ψn(p, t) = ψ0(p, t)
1√
2nn!

Hn(p), (36)

where ψ0(p, t) is given by Equation (33), and Hn(p) is Hermite polynomial. The coherent
state wave function in momentum representation ψα(p, t) reads

ψα(p, t) = ψ0(p, t)e−|α|
2/2 exp

(
−iα
√

2p +
α2

2

)
, (37)

where ψ0(p, t) is given by Equation (33).

6. Evolution of the Symplectic Tomogram

For the unitary evolution of density operator ρ̂(t) of the system with Hamiltonian Ĥ,
which is given by the evolution operator û(t) = exp(−itĤ), we have

ρ̂(t) = û(t)ρ̂(0)û†(t). (38)

The tomogram w(X|µ, ν, t) which corresponds to the density operator reads

w(X|µ, ν, t) = Tr
(
ρ̂(t)δ(X1̂− µq̂− ν p̂)

)
. (39)

Using the properties of trace of product of operators, we have

w(X|µ, ν, t) = Tr
(
ρ̂(0)δ

(
X1̂− µq̂H(t)− ν p̂H(t)

))
. (40)

Here, q̂H(t), p̂H(t) are position and momentum operators in the Heisenberg representation

q̂H(t) = û†(t)q̂û(t), p̂H(t) = û† p̂û(t). (41)

We will consider, following this general approach, the example of free particle motion. In
the case of the free particle motion, the Heisenberg operators of position and momentum
(m = h̄ = 1) are

q̂H(t) = q̂ + p̂t, p̂H(t) = p. (42)

We obtain the result that the expression for initial tomogram w0(X|µ, ν) of free particle
gives the evolving tomogram expression for time t by the change of the variables in the
initial tomogram, i.e.,

w(X|µ, ν, t) = w0(X|µ, ν + µt). (43)

If the free motion of the particle is considered as evolution of the oscillator state with
the frequency of oscillator becoming equal to zero (the spring of the oscillator instantly
disappeared), the initial tomogram of the ground state

w0(X|µ, ν) =
1√

π(µ2 + ν2)
exp

(
− X2

µ2 + ν2

)
(44)

provides the solution of the kinetic equation for the tomogram in the form of the Gaus-
sian distribution

w0(X|µ, ν, t) =
1√

π(µ2 + (ν + µt)2)
exp

(
− X2

µ2 + (ν + µt)2

)
. (45)
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Analogously, the tomogram of the coherent state |α, t〉 of the free particle with initial value

wα(X|µ, ν) =
1√

π(µ2 + ν2)
exp

(
− (X− X̄α)2

µ2 + ν2

)
, (46)

where X̄α =
√

2(µReα + νImα), is given

wα(X|µ, ν, t) =
1√

π(µ2 + (ν + µt)2)
exp

(
− (X− X̄α(t))2

µ2 + (ν + µt)2

)
. (47)

Here, the mean value X̄α(t) reads

X̄α(t) =
√

2(µReα + (ν + µt)Imα). (48)

For initial Fock state tomogram,

wn
0 (X|µ, ν) =

1√
π(µ2 + ν2)

1
2nn!

exp
(
− X2

µ2 + ν2

)(
Hn

(
X√

µ2 + ν2

))2

, (49)

we have free motion evolution of the tomogram of the Fock state

wn(X|µ, ν, t) = 1√
π(µ2+(ν+µt)2)

1
2nn! exp

(
− X2

µ2+(ν+µt)2

)
×
(

Hn

(
X√

µ2+(ν+µt)2

))2
.

(50)

The optical tomogram wopt(X|θ, t) of discussed states of the free particle motion is given
by above expressions (44)–(50), where µ = cos θ, ν = sin θ. For example, the state |0, t〉 has
the optical tomogram

w0
opt(X|θ, t) =

1√
π(1 + t2 cos2 θ + t sin 2θ)

exp
(
− X2

1 + t2 cos2 θ + t sin 2θ

)
. (51)

The optical tomogram of the Fock state reads

wn
opt(X|θ, t) = w0

opt(X|θ, t)
1

2nn!

(
Hn

(
X√

1 + t2 cos2 θ + t sin 2θ

))2
. (52)

7. Qubit States in Probability Representation of Quantum Mechanics

In previous sections, we considered the states of quantum oscillator and free particle
motion in probability representation associated with probability distributions of continuous
random variable, namely of the position. In this section, we give the construction of
simplest quantum system with discrete variables, namely of the spin-1/2 or two–level
atom. For this, we recall that there are three pure spin-1/2 states with the state vectors

|ψ〉3 =

(
1
0

)
, |ψ〉1 =

1√
2

(
1
1

)
, and |ψ〉2 =

1√
2

(
1
i

)
.

These states are eigenstates of the spin–projection operators with spin–projection m = +1/2
onto three axis z, x and y. So, three density matrices of these states which are eigenstates of
Pauli matrices read

ρ3 =

(
1 0
0 0

)
, ρ1 =

(
1/2 1/2
1/2 1/2

)
, ρ2 =

(
1/2 −i/2
i/2 1/2

)
. (53)

According to Born’s rule [22,23], the arbitrary spin-1/2 state with the density matrix ρ
the numbers pn = Tr(ρρn), n = 1, 2, 3 are probabilities to have in the spin-1/2 states
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spin–projections m = +1/2. It means that the matrix elements ρjk, j, k = 1, 2 of the state
density matrix ρ are expressed in terms of the probabilities pn as follows [15]:

ρ11 = p3, ρ12 = ρ∗21 = (p1 − 1/2)− i(p2 − 1/2). (54)

Thus, three dichotomic probability distributions (p1, 1 − p1), (p2, 1 − p2), (p3, 1 − p3)
determine the density matrix of spin-1/2 state. Since the density matrix has only non-
negative eigenvalues the probabilities must satisfy the inequality (following from the
Silvester criterion) (

p1 −
1
2

)2
+

(
p2 −

1
2

)2
+

(
p3 −

1
2

)2
≤ 1

4
. (55)

For pure spin state with state vector

|ψ〉 =
(

ψ1
ψ2

)
, |ψ1|2 + |ψ2|2 = 1,

the inequality (55) becomes the equality. This means that the pure states and the mixed
states are expressed in terms of three probability distributions of the dichotomic random
variables. For a given matrix of Hamiltonian

H =

(
H11 H12
H21 H22

)
,

the energy levels of the spin-1/2 states are solutions of the eigenvalue equation H|ψ〉 =
E|ψ〉 or H|ψ〉〈ψ| = E|ψ〉〈ψ|. Since the density matrix of pure state is expressed in terms of
probabilities, the Schrödinger equation has the form of eigenvalue equation for 4–vector
with probability components


H11 − E 0 H12 0

0 H11 − E 0 H12
H21 0 H22 − E 0

0 H21 0 H22 − E




p3

p1 − 1
2 − i

(
p2 − 1

2

)
p1 − 1

2 + i
(

p2 − 1
2

)
1− p3

 = 0. (56)

This is probability representation of the Shcrödinger equation for spin-1/2 system, where
state is identified with three probability distributions of dichotomic random variables.

The Schrödinger equation for the state evolution has the probability representation
which follows from von Neumann equation for density matrix ρ = ∑k pk|ψk〉〈ψk|, i.e.,
ρ̇ + i[H, ρ] = 0 written for probabilities as kinetic equation


ṗ3

ṗ1 − i ṗ2
ṗ1 + i ṗ2
− ṗ3

 = −i


H11 H12 H13 H14
H21 H22 H23 H24
H31 H32 H33 H34
H41 H42 H43 H44




p3

p1 − 1
2 − i

(
p2 − 1

2

)
p1 − 1

2 + i
(

p2 − 1
2

)
1− p3

, (57)

where the matrix elementsHjk, j, k = 1, 2, 3, 4 are expressed in terms of matrix elements of
the Hamiltonian matrix Hmn (m, n = 1, 2) as follows:

H =


0 −H21 H12 0
−H12 H11 − H22 0 H12
H21 0 H22 − H11 −H21

0 H21 −H12 0

. (58)
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So, one has 
ṗ3

ṗ1 − i ṗ2
ṗ1 + i ṗ2
− ṗ3

 = −i


0 −H21 H12 0
−H12 H11 − H22 0 H12
H21 0 H22 − H11 −H21

0 H21 −H12 0



×


p3

p1 − 1
2 − i

(
p2 − 1

2

)
p1 − 1

2 + i
(

p2 − 1
2

)
1− p3

.

(59)

Thus, we obtain the energy levels and evolution equation for qubit states in the probability
representation of quantum mechanics where the evolution equation is presented as the lin-
ear kinetic equation for the set of three dichotomic probability distributions. The obtained
results can be extended to arbitrary qudit states (spin–j states, N–level atom states). For
this, one needs to get expression of the qudit density matrix in terms of probabilities of
random variables. It can be done [27] using the following dequantizer—N × N—matrices
which have the properties of density matrices presented in the following section.

Let us consider the arbitrary mixed qubit states using the formalism of quantizer–
dequantizer operators applying the scheme introduced in Reference [27]. We can check
that the four dequantizers which are 2× 2 matrices U(ji), j, i = 1, 2 have the form

U(11) = 1
2

(
1 0
0 1

)
, U(22) =

(
1 0
0 0

)
,

U(12) = 1
2

(
1 1
1 1

)
, U(12)

c = 1
2

(
1 −i
i 1

)
.

(60)

The traces of operators U(ji), U(12)
c are equal to unity, their eigenvalues are nonnegative.

The four quantizers are of the form

D(11) =

(
0 −1 + i

−1− i 2

)
, D(22) =

(
1 0
0 −1

)
,

D(12) =

(
0 1
1 0

)
, D(12)

c =

(
0 −i
i 0

)
.

(61)

The quantizers and dequantizers satisfy the relations

Tr
(

U(ii)D(jj)
)
= δij, Tr

(
U(12)

c D(12)
c

)
= 1, Tr

(
U(12)

c D(ij)
)
= 0, Tr

(
U(ij)D(12)

c

)
= 0.

The density matrix can be presented in the form

ρ = D(11)p(11)
3 + D(22)p(22)

3 + D(12)p(12)
1 + D(12)

c p(12)
2 ,

where the probabilities p(11)
3 , p(22)

3 , p(12)
1 , p(12)

2 are determined by the dequantizers and
density matrix ρ as follows:

p(11)
3 = Tr

(
U(11)ρ

)
=

1
2

, p(22)
3 = Tr

(
U(22)ρ

)
,

p(12)
1 = Tr

(
U(12)ρ

)
, p(12)

2 = Tr
(

U(12)
c ρ

)
.

The density matrix is linear combination of quantizers. The standard parameterization of
qudit density matrices by Bloch sphere parameters [65] and relation of it with discussed
probability representation of qubit states was studied in Reference [28].
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8. Qudit State Probability Representation

The formalism of quantizer–dequantizer operators provides the possibility to construct
probability representation for arbitrary qudit states. We illustrate this construction on
example of qutrit (spin–1 state), three level atom state. We consider the example based on
results of qutrit consideration [73]. It is easy to check that nine dequantizers 3× 3–matrices
U(j), j = 1, 2, . . . , 9 can be chosen as follows:

U(1) = 1
3

 1 0 1
0 1 0
1 0 1

, U(2) = 1
3

 1 0 −i
0 1 0
i 0 1

, U(3) = 1
2

 1 0 0
0 1 0
0 0 0

,

U(4) = 1
3

 1 1 0
1 1 0
0 0 1

, U(5) = 1
3

 1 −i 0
i 1 0
0 0 1

, U(6) = 1
2

 1 0 0
0 0 0
0 0 1

,

U(7) = 1
3

 1 0 0
0 1 1
0 1 1

, U(8) = 1
3

 1 0 0
0 1 −i
0 i 1

, U(9) = 1
3

 1 0 0
0 1 0
0 0 1

.

(62)

All these matrices have unit trace; they satisfy the condition of the density matrices,

i.e.,
(

U(k)
)†

=
(

U(k)
)

, and eigenvalues of these matrices are nonnegative. The spin–1

states for which these matrices U(k) are density matrices are not pure states, they are
mixed states.

The quantizers D(j), j = 1, 2 . . . , 9 have the form of the following matrices

D(1) = 3
2

 0 0 1
0 0 0
1 0 0

, D(2) = 3
2

 0 0 −i
0 0 0
i 0 0

, D(3) = 2

 1 0 0
0 0 0
0 0 −1

,

D(4) = 3
2

 0 1 0
1 0 0
0 0 0

, D(5) = 3
2

 0 −i 0
i 0 0
0 0 0

, D(6) = 2

 1 0 0
0 −1 0
0 0 0

,

D(7) = 3
2

 0 0 0
0 0 1
0 1 0

, D(8) = 3
2

 0 0 0
0 0 −i
0 i 0

,

D(9) = 3
2

 −2 −1 + i −1 + i
−1− i 2 −1 + i
−1− i −1− i 2

.

(63)

One can check that, for the Hermitian matrices U(j), D(j′), we have the relations

Tr
(

U(j)D(j′)
)
= δjj′ , Tr

(
U(j)

)
= 1. (64)

In view of Born’s rule, the numbers pj = Tr
(

ρU(j)
)

are nonnegative dichotomic probabili-
ties, o ≤ pj ≤ 1, and the density matrix ρ of any qutrit state can be presented in the form of
linear combination of the quantizers

ρ =
9

∑
j=1

pjD(j), (65)

which is parameterized by the dichotomic probabilities pj. There exist other dichotomic
probability representations of the qudit states, e.g., the qutrit states, where the quantiz-
ers are matrices of projectors [74] which can be expressed as linear combinations of the
matrices (62). To get the results for arbitrary qudit states with density N × N–matrix ρjk,
we introduce other notation for dequantizers and quantizers using the map of the integer
numbers 1, 2, . . . , N2 onto pairs of integer numbers (jk), where j, k = 1, 2, . . . N. For this,
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we consider the matrices Ejk, where all the matrix elements are equal to zero, and only
one element in j-th row and k-th column equals to one. These matrices, together with
transposed matrices, form the orthogonal basis in the linear space of N × N–matrices. Let
us consider the dequantizers which are N × N–matrices:

U(11) = 1
N 1, U(jj) = 1

N−1
(
1− Ejj

)
, j = 2, 3, . . . , N,

U(jk) = 1
N

(
Ejk + Ekj + 1

)
,

U(jk)
c = 1

N

(
1 + i

(
−Ejk + Ekj

))
, j < k, j, k = 1, 2, . . . , N.

(66)

These matrices are hermitian ones and traces of these matrices are equal to unity. They
have only nonnegative eigenvalues. These matrices correspond to some density matrices
of mixed states of qudits. The quantizer matrices we used are [27]

D(11) = N
(

1− (1− N)E11 +
1
2

(
(−1 + i)∑N

m<n Emn + (−i− 1)∑N
m<n Enm

))
,

D(jj) = (N − 1)
(
E11 − Ejj

)
, j = 2, . . . , N,

D(jk) = 1
2 N
(

Ejk + Ekj

)
, j < k, j, k = 1, 2, N,

D(jk)
c = iN

2

(
−Ejk + Ekj

)
, j < k, j, k = 1, 2, . . . , N.

(67)

For qutrit states, these expressions provide the quantizers (63). One has the orthogonal-
ity relations

Tr
(

U(jk)D(j′k′)
)
= δjj′δkk′ , Tr

(
U(jk)

c D(j′k′)
c

)
= δjj′δkk′ ,

Tr
(

U(jk)
c D(j′k′)

)
= 0, Tr

(
U(jk)D(j′k′)

c

)
= 0, j, j′, k, k′ = 1, 2 . . . , N.

(68)

In view of the Born’s rule, the numbers 0 ≤ Tr
(

ρU(jk)
)

, Tr
(

ρU(jk)
c

)
≤ 1 are the probabilities

which satisfy the Silvester criterion for the density matrix ρ. The density matrix ρ can be
expressed as the linear combination of the quantizers (67) with the coefficients determined
by the probabilities

ρ =
N

∑
j=1

D(jj)p(jj)
3 +

N

∑
j<k

D(jk)p(jk)
1 +

N

∑
j<k

D(jk)
c p(jk)

2 . (69)

Here, the probabilities p(jj)
3 , p(jk)

1 , p(jk)
2 are determined by the dequantizers (66) and the

density matrix ρ as follows:

p(11)
3 = 1

N = Tr
(

U(11)ρ
)

, p(jj)
3 = Tr

(
U(jj)ρ

)
, j = 2, 3, . . . , N,

p(jk)
1 = Tr

(
U(jk)ρ

)
, p(jk)

2 = Tr
(

U(jk)
c ρ

)
, j < k, j, k = 1, 2, . . . , N.

(70)

For arbitrary qudit, the construction of density matrix in terms of probabilities of di-
chotomic random variables can be generalized and given as follows [27]:

ρjj = 1− p(jj)
3 , ρjk = p(jk)

1 − 1
2
+ i
(

p(jk)
2 − 1

2

)
, j > k. (71)

Using other system of the dequantizers, for example, Reference [74], one can obtain dif-
ferent representations of the qudit density matrices in terms of the probabilities. The
density N×N–matrices ρ can be invertibly mapped onto probability N2 vector |p〉 with N2

components ρjk, where first, second, etc., rows of the density matrix are expressed in terms

of the probabilities p(jk)
1,2 and p(jj)

3 . Other aspects of qudit states properties were discussed
in References [75–77].
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The matrix elements ρ11, ρ12 of density matrix of qutrit state according to formulae (71)
have explicit form

ρ11 = 1− p(11)
3 , ρ12 = ρ∗(21) = p(21)

1 − 1/2− i(p(21)
2 − 1/2). (72)

Then, the probabilities p(11)
1 , p(11)

3 are expressed through the matrix elements of density
matrix and have a view

p(11)
3 = 1− ρ11, p(21)

1 = Re(ρ12) + 1/2. (73)

There is known entropic inequality for probabilities

p(12)
1 ln

(
p(12)

1

p(11)
3

)
+
(

1− p(12)
1

)
ln

(
1− p(12)

1

1− p(11)
3

)
≥ 0. (74)

Using the probability representation, we can obtain new entropic inequalities for density
matrix elements of qudit state; for example, for qutrit, we have:

(Re(ρ12) + 1/2) ln
(

Re(ρ12)− 1/2
1− ρ11

)
≥ (Re(ρ12)− 1/2) ln

(
1/2− Re(ρ12)

ρ11

)
. (75)

9. Quantum Evolution of Open System in Probability Representation of
Density Operator

The evolution of density N × N–matrix for the open system states is given by Gorini–
Kossakowski–Sudarshan–Lindblad (GKSL) equation [49,50]

ρ̇ = −i[H, ρ] +
1
2 ∑

k

(
[Vkρ, V†

k ] + [Vk, ρV†
k ]
)

. (76)

Here, H is hermitian Hamiltonian matrix, Vk are some matrices. For Vk = 0, the Equation (76)
becomes von Neumann equation. Our aim is to rewrite the Equation (76) in the form of
linear kinetic equation for the probability vector |p〉. For this, we use example of qubit, and
we map matrix ρ onto the vector |ρ〉

|ρ〉 =


ρ11
ρ12
ρ21
ρ22

,

ρ11 = p3, ρ12 = p1 − 1
2 − i

(
p2 − 1

2

)
, ρ21 = ρ∗12, ρ22 = 1− p3.

(77)

Here, the parameters pj, j = 1, 2 are dichotomic probabilities. Then, we use the following
matrix map which can be checked. Namely, if one has matrix relations for the matrices A,
ρ, B and C, ρ, D

Aρ = B, ρC = D, (78)

then these relations can be rewritten in the vector form

A|ρ〉 = |B〉, C|ρ〉 = |D〉. (79)

Here, the matrices A, C read

A = A⊗ 1 =


A11 0 A12 0
0 A11 0 A12

A21 0 A22 0
0 A21 0 A22

 (80)
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and

C = 1⊗ Ctr =


C11 C21 0 0
C12 C22 0 0
0 0 C11 C21
0 0 C12 C22

. (81)

Using these relations, the GKSL Equation (76) for qubit states can be written in the form of
kinetic equation

d
dt
|p〉 =M|p〉, (82)

where probability vector |p〉, given by (77)

|p〉 =


p3

p1 − 1
2 − i

(
p2 − 1

2

)
p1 − 1

2 + i
(

p2 − 1
2

)
1− p3

, (83)

satisfies this equation, and the matrixM reads

M = −i
(

H ⊗ 1− 1⊗ H†
)
+ ∑

k

(
Vk ⊗V∗k −

1
2

V†
k Vk ⊗ 1− 1

2
1⊗ (Vtr

k V∗k )
)

. (84)

Equations (82) and (84) are valid for arbitrary qudit. Let us consider as an example the case
of a toy-model where the particle with spin-1/2 is interacting only with an environment.
The Hamiltonian in this case is chosen to be H = 0, the matrices Vi, i = 1, 2, . . . are

V1 =

(
1 0
0 0

)
, V2 = V3 = . . . = 0,

and the matrixM (84) in explicit form reads

M =


0 0 0 0
0 − 1

2 0 0
0 0 − 1

2 0
0 0 0 0

.

Solutions of the Equation (84) for probabilities in this case read

p1(t) =
1
2
+

(
p1(0)−

1
2

)
e−t/2,

p2(t) =
1
2
+

(
p2(0)−

1
2

)
e−t/2,

p3(t) = p3(0),

where p1(0), p2(0), p3(0) are probabilities of spin projection m = +1/2 on axis x, y, z in
initial moment of time. In this case, the density matrix of qubit state expressed in terms of
probabilities is of the form
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ρ(t) = p3(0)
(

p1(0)− 1
2

)
e−t/2 − i

(
p2(0)− 1

2

)
e−t/2(

p1(0)− 1
2

)
e−t/2 + i

(
p2(0)− 1

2

)
e−t/2 1− p3(0)

. (85)

Let us consider as the next example the case of the second toy-model where qubit is
interacting with environment and with a nonzero magnetic field. The magnetic field is
directed along z–axis. The matrix of Hamiltonian in this case is chosen to be

H =

(
1 0
0 0

)
,

the matrices

V1 =

(
1 0
0 0

)
, V2 = V3 = . . . = 0.

The matrixM in this case reads

M =


0 0 0 0
0 −i− 1/2 0 0
0 0 i− 1/2 0
0 0 0 0

.

The solution of the Equation (84) for probabilities in this case are of the form

p1(t) =
1
2
+ e−

t
2

[(
p1(0)−

1
2

)
cos(t)−

(
p2(0)−

1
2

)
sin(t)

]
,

p2(t) =
1
2
+ e−

t
2

[(
p2(0)−

1
2

)
cos(t) +

(
p1(0)−

1
2

)
sin(t)

]
,

p3(t) = p3(0).

10. Conclusions

To conclude, we point out the main results of our work. We presented the review of
the method of quantizer–dequantizer operators to construct the probability representation
of quantum states. It is new formulation of quantum mechanics where the quantum states,
both for systems with continuous variables, like harmonic oscillator and free particle, as
well as qubit and qudit systems (spin and N–level atom) described by discrete variables,
are identified with probabilities. The density matrices of the quantum systems are mapped
onto the probabilities. An example of the oscillator and a new example of the free particle
are explicitly considered. In addition, qubit and qutrit systems are explicitly studied.
The GKSL evolution equation for the quantum state density matrices is presented in the
form of kinetic equation for probabilities describing the states in quantum mechanics. For
continuous variables, the probabilities we use are tomographic probability distributions,
which are symplectic or optical tomograms. The problem of quantum free particle motion
is considered as example of harmonic oscillator motion in the case of instant change of
the oscillator frequency which becomes equal to zero. The tomograms of the coherent
states and the Fock states of free particle and their evolution are found explicitly. The
free particle coherent state tomograms are found in the form of the Gaussian distributions.
The Fock state tomograms of the free particle are obtained and expressed in the form of
the probabilities expressed in terms of the Hermite polynomials. These explicit results
are new results of the suggested approach. The evolution equation for the probabilities
identified with the quantum states of open systems is presented in the form of kinetic
equation for qudit states. The examples of two toy-models for qubit open system are
explicitly considered. The qubit state example corresponds to the Wootter’s suggestion [5]
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to construct “probability tables” corresponding to the probability representation of the
quantum system. For a hundred years, from the beginning of quantum mechanics, the
quantum state notion was determined by wave functions and density matrices. Now, it
was shown that there is possibility to determine quantum states and their evolution by
probabilities. We point out as the main result of the paper that, in probability representation
of quantum mechanics, the states can be identified not only with quasi–probabilities, like
the Wigner functions, but also with probability distributions, like the symplectic tomograms
found for coherent states of the free particle in the paper.

The new result which is obtained using for qutrit not generalized Bloch sphere param-
eters of the system state but the probability parameterization is the new entropic inequality
for matrix elements of density matrix.

In the work, we presented the review of the quantum mechanics formalism in which
the quantum system states are identified with the probability distributions. This formalism
is completely equivalent to the usual formalism where the states are identified with the
wave functions and the density matrices or with the state vectors and density operators in
the Hilbert space. We review the quantum system evolution equation like von Neumann
equation written as the evolution equation for the probability distribution identified with
system state.

We plan to obtain for qudits other entropic and information equalities and inequalities
based on known in probability theory results for the quantum systems using the probability
representation of quantum mechanics in future publication.
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