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This chapter presents the basic concepts of probability theory. In the remainder of the
book, we will usually be further developing or elaborating the basic concepts present-
ed here. You will be well prepared to deal with the rest of the book if you have a good
understanding of these basic concepts when you complete the chapter.

The following basic concepts will be presented. First, set theory is used to specify
the sample space and the events of a random experiment. Second, the axioms of prob-
ability specify rules for computing the probabilities of events. Third, the notion of con-
ditional probability allows us to determine how partial information about the outcome
of an experiment affects the probabilities of events. Conditional probability also allows
us to formulate the notion of “independence” of events and of experiments. Finally, we
consider “sequential” random experiments that consist of performing a sequence of
simple random subexperiments.We show how the probabilities of events in these exper-
iments can be derived from the probabilities of the simpler subexperiments.Throughout
the book it is shown that complex random experiments can be analyzed by decompos-
ing them into simple subexperiments.

2.1 SPECIFYING RANDOM EXPERIMENTS

A random experiment is an experiment in which the outcome varies in an unpre-
dictable fashion when the experiment is repeated under the same conditions. A ran-

dom experiment is specified by stating an experimental procedure and a set of one or

more measurements or observations.

Example 2.1

Experiment Select a ball from an urn containing balls numbered 1 to 50. Note the number of
the ball.
Experiment Select a ball from an urn containing balls numbered 1 to 4. Suppose that balls 1
and 2 are black and that balls 3 and 4 are white. Note the number and color of the ball you select.
Experiment Toss a coin three times and note the sequence of heads and tails.
Experiment Toss a coin three times and note the number of heads.
Experiment Count the number of voice packets containing only silence produced from a
group of N speakers in a 10-ms period.

E5:
E4:
E3:

E2:

E1:
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22 Chapter 2 Basic Concepts of Probability Theory

Experiment A block of information is transmitted repeatedly over a noisy channel until an
error-free block arrives at the receiver. Count the number of transmissions required.
Experiment Pick a number at random between zero and one.
Experiment Measure the time between page requests in a Web server.
Experiment Measure the lifetime of a given computer memory chip in a specified environment.
Experiment Determine the value of an audio signal at time 
Experiment Determine the values of an audio signal at times and 
Experiment Pick two numbers at random between zero and one.
Experiment Pick a number X at random between zero and one, then pick a number Y at
random between zero and X.
Experiment A system component is installed at time For let as long
as the component is functioning, and let after the component fails.

The specification of a random experiment must include an unambiguous statement
of exactly what is measured or observed. For example, random experiments may consist
of the same procedure but differ in the observations made, as illustrated by and 

A random experiment may involve more than one measurement or observation,
as illustrated by and A random experiment may even involve a
continuum of measurements, as shown by 

Experiments and are examples of sequential experi-
ments that can be viewed as consisting of a sequence of simple subexperiments. Can
you identify the subexperiments in each of these? Note that in the second subex-
periment depends on the outcome of the first subexperiment.

2.1.1 The Sample Space

Since random experiments do not consistently yield the same result, it is necessary to
determine the set of possible results. We define an outcome or sample point of a ran-
dom experiment as a result that cannot be decomposed into other results. When we
perform a random experiment, one and only one outcome occurs. Thus outcomes are
mutually exclusive in the sense that they cannot occur simultaneously. The sample

space S of a random experiment is defined as the set of all possible outcomes.
We will denote an outcome of an experiment by where is an element or point

in S. Each performance of a random experiment can then be viewed as the selection at
random of a single point (outcome) from S.

The sample space S can be specified compactly by using set notation. It can be visu-
alized by drawing tables, diagrams, intervals of the real line, or regions of the plane.There
are two basic ways to specify a set:

1. List all the elements, separated by commas, inside a pair of braces:

2. Give a property that specifies the elements of the set:

Note that the order in which items are listed does not change the set, e.g.,
and are the same set.51, 2, 3, 06

50, 1, 2, 36
A = 5x : x is an integer such that 0 … x … 36.

A = 50, 1, 2, 36,

zz,

E13

E13E3 , E4 , E5 , E6 , E12 ,
E14 .

E13 .E2 , E3 , E11 , E12 ,

E4 .E3

X1t2 = 0
X1t2 = 1t Ú 0t = 0.E14:

E13:
E12:

t2 .t1E11:
t1 .E10:

E9:
E8:
E7:

E6:
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Example 2.2

The sample spaces corresponding to the experiments in Example 2.1 are given below using set
notation:

See Fig. 2.1(a).

See Fig. 2.1(b).

See Fig. 2.1(c).

See Fig. 2.1(d).

for which for and for 

where is the time when the component fails.

Random experiments involving the same experimental procedure may have dif-
ferent sample spaces as shown by Experiments and Thus the purpose of an ex-
periment affects the choice of sample space.

E4 .E3

t0 7 0

t Ú t0 ,X1t2 = 00 … t 6 t0X1t2 = 1S14 = set of functions X1t2
S13 = 51x, y2 : 0 … y … x … 16
S12 = 51x, y2 : 0 … x … 1 and 0 … y … 16
S11 = 51v1 , v22 : -q 6 v1 6 q  and -q 6 v2 6 q6
S10 = 5v : -q 6 v 6 q6 = 1-q , q2
S9 = 5t : t Ú 06 = 30, q2
S8 = 5t : t Ú 06 = 30, q2
S7 = 5x : 0 … x … 16 = 30, 14
S6 = 51, 2, 3, Á 6
S5 = 50, 1, 2, Á ,N6
S4 = 50, 1, 2, 36
S3 = 5HHH, HHT, HTH, THH, TTH, THT, HTT, TTT6
S2 = 511, b2, 12, b2, 13, w2, 14, w26
S1 = 51, 2, Á , 506

(a) Sample space for Experiment E7.

S7

x

0 1

(b) Sample space for Experiment E9.

S9

t
0

(c) Sample space for Experiment E12.

x

y

1

0 1

S12

(d) Sample space for Experiment E13.

x

y

1

0 1

S13

FIGURE 2.1
Sample spaces for Experiments and E13 .E7 , E9 , E12 ,
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1The Cartesian product of the sets A and B consists of the set of all ordered pairs (a, b), where the first ele-
ment is taken from A and the second from B.

There are three possibilities for the number of outcomes in a sample space. A
sample space can be finite, countably infinite, or uncountably infinite. We call S a
discrete sample space if S is countable; that is, its outcomes can be put into one-to-one
correspondence with the positive integers. We call S a continuous sample space if S is
not countable. Experiments and have finite discrete sample spaces.
Experiment has a countably infinite discrete sample space. Experiments through

have continuous sample spaces.
Since an outcome of an experiment can consist of one or more observations or

measurements, the sample space S can be multi-dimensional. For example, the out-
comes in Experiments and are two-dimensional, and those in Experi-
ment are three-dimensional. In some instances, the sample space can be written as
the Cartesian product of other sets.1 For example, where R is the set of
real numbers, and where 

It is sometimes convenient to let the sample space include outcomes that are
impossible. For example, in Experiment it is convenient to define the sample
space as the positive real line, even though a device cannot have an infinite life-
time.

2.1.2 Events

We are usually not interested in the occurrence of specific outcomes, but rather in
the occurrence of some event (i.e., whether the outcome satisfies certain condi-
tions). This requires that we consider subsets of S. We say that A is a subset of B if
every element of A also belongs to B. For example, in Experiment which in-
volves the measurement of a voltage, we might be interested in the event “signal
voltage is negative.” The conditions of interest define a subset of the sample space,
namely, the set of points from S that satisfy the given conditions. For example,
“voltage is negative” corresponds to the set The event occurs if
and only if the outcome of the experiment is in this subset. For this reason events

correspond to subsets of S.
Two events of special interest are the certain event, S, which consists of all out-

comes and hence always occurs, and the impossible or null event, which contains no
outcomes and hence never occurs.

Example 2.3

In the following examples, refers to an event corresponding to Experiment in Example 2.1.

“An even-numbered ball is selected,”
“The ball is white and even-numbered,”
“The three tosses give the same outcome,”
“The number of heads equals the number of tails,”
“No active packets are produced,”A5 = 506.E5:

A4 = �.E4:
A3 = 5HHH, TTT6.E3:

A2 = 514, w26.E2:
A1 = 52, 4, Á , 48, 506.E1:

EkAk

�,

z

5z : -q 6 z 6 06.
z

E10 ,

E9

S = 5H, T6.S3 = S * S * S,
S11 = R * R,

E3

E13E2 , E11 , E12 ,

E13

E7E6

E5E1 , E2 , E3 , E4 ,
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“Fewer than 10 transmissions are required,”
“The number selected is nonnegative,”
“Less than seconds elapse between page requests,”
“The chip lasts more than 1000 hours but fewer than 1500 hours,”

“The absolute value of the voltage is less than 1 volt,”
“The two voltages have opposite polarities,”

“The two numbers differ by less than 1/10,”

“The two numbers differ by less than 1/10,”
“The system is functioning at time ” for which 

An event may consist of a single outcome, as in and An event from a
discrete sample space that consists of a single outcome is called an elementary event.
Events and are elementary events. An event may also consist of the entire sam-
ple space, as in The null event, arises when none of the outcomes satisfy the con-
ditions that specify a given event, as in 

2.1.3 Review of Set Theory

In random experiments we are interested in the occurrence of events that are repre-
sented by sets. We can combine events using set operations to obtain other events. We
can also express complicated events as combinations of simple events. Before proceed-
ing with further discussion of events and random experiments, we present some essen-
tial concepts from set theory.

A set is a collection of objects and will be denoted by capital letters 
We define U as the universal set that consists of all possible objects of interest in a
given setting or application. In the context of random experiments we refer to the uni-
versal set as the sample space. For example, the universal set in Experiment is

A set A is a collection of objects from U, and these objects are called
the elements or points of the set A and will be denoted by lowercase letters,

We use the notation:

to indicate that “x is an element of A” or “x is not an element of A,” respectively.
We use Venn diagrams when discussing sets. A Venn diagram is an illustration of

sets and their interrelationships. The universal set U is usually represented as the set of
all points within a rectangle as shown in Fig. 2.2(a). The set A is then the set of points
within an enclosed region inside the rectangle.

We say A is a subset of B if every element of A also belongs to B, that is, if 
implies We say that “A is contained in B” and we write:

If A is a subset of B, then the Venn diagram shows the region for A to be inside the
region for B as shown in Fig. 2.2(e).

A( B.

x H B.
x H A

x H A and x x A

z, a, b, x, y, Á .

U = 51, 2, Á 6. E6

S, A, B, Á .

A4 .
�,A7 .

A5A2

A5 .A2

X1t12 = 1.A14 = subset of S14t1 ,E14:
A13 = 51x, y2 : 1x, y2 in S13 and ƒx - y ƒ 6 1/106.E13:

A12 = 51x, y2 : 1x, y2 in S12 and ƒx - y ƒ 6 1/106.E12:

and v2 6 026.
A11 = 51v1 , v22 : 1v1 6 0 and v2 7 02 or 1v1 7 0E11:

A10 = 5v : -1 6 v 6 16 = 1-1, 12.E10:
= 11000, 15002.

A9 = 5t : 1000 6 t 6 15006E9:
A8 = 5t : 0 … t 6 t06 = 30, t02.t0E8:

A7 = S7 .E7:
A6 = 51, Á , 96.E6:



26 Chapter 2 Basic Concepts of Probability Theory

U

(a) A � B (b) A � B

A B

A B

A B

(g) (A � B)c

(c) Ac (d) A � B � �

(e) A � B (f) A � B

A B

AA B

A

B

(h) Ac � Bc

Ac

FIGURE 2.2
Set operations and set relations.

Example 2.4

In Experiment three sets of interest might be that is, 10 or
more transmissions are required; , the number of transmissions is an even num-
ber; and Which of these sets are subsets of the others?

Clearly, C is a subset of However, C is not a subset of B, and B is not a subset
of C, because both sets contain elements the other set does not contain. Similarly, B is not a sub-
set of A, and A is not a subset of B.

The empty set is defined as the set with no elements. The empty set is a sub-
set of every set, that is, for any set A,

We say sets A and B are equal if they contain the same elements. Since every ele-
ment in A is also in B, then implies so Similarly every element in B
is also in A, so implies and so Therefore:

The standard method to show that two sets, A and B, are equal is to show that
and A second method is to list all the items in A and all the items in B,

and to show that the items are the same. A variation of this second method is to use a
B( A.A( B

A = B if and only if  A ( B and B( A.

B( A.x H Ax H B
A( B.x H B,x H A

� ( A.
��

A1C ( A2.
C = 5x: x Ú 206 = 520, 21, Á 6.

B = 52, 4, 6, Á 6
A = 5x : x Ú 106 = 510, 11, Á 6,E6
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Venn diagram to identify the region that corresponds to A and to then show that the
Venn diagram for B occupies the same region. We provide examples of both methods
shortly.

We will use three basic operations on sets. The union and the intersection opera-
tions are applied to two sets and produce a third set. The complement operation is ap-
plied to a single set to produce another set.

The union of two sets A and B is denoted by and is defined as the set of
outcomes that are either in A or in B, or both:

The operation corresponds to the logical “or” of the properties that define set A
and set B, that is, x is in if x satisfies the property that defines A, or x satisfies the
property that defines B, or both. The Venn diagram for consists of the shaded
region in Fig. 2.2(a).

The intersection of two sets A and B is denoted by and is defined as the set
of outcomes that are in both A and B:

The operation corresponds to the logical “and” of the properties that define
set A and set B. The Venn diagram for consists of the double shaded region
in Fig. 2.2(b). Two sets are said to be disjoint or mutually exclusive if their intersec-
tion is the null set, Figure 2.2(d) shows two mutually exclusive sets A
and B.

The complement of a set A is denoted by and is defined as the set of all ele-
ments not in A:

The operation corresponds to the logical “not” of the property that defines set A.
Figure 2.2(c) shows Note that and 

The relative complement or difference of sets A and B is the set of elements in A
that are not in B:

is obtained by removing from A all the elements that are also in B, as illustrat-
ed in Fig. 2.2(f). Note that Note also that 

Example 2.5

Let A, B, and C be the events from Experiment in Example 2.4. Find the following events:
and

Bc = 51, 3, 5, Á 6;
Ac = 5x : x 6 106 = 51, 2, Á , 96;
A ¨ B = 510, 12, 14, Á 6;
A ´ B = 52, 4, 6, 8, 10, 11, 12, Á 6;

B - A.A ´ B, A ¨ B, Ac, Bc, A - B,
E6

Bc = S - B.A - B = A ¨ Bc.
A - B

A - B = 5x : x H A and x x B6.

�c = S.Sc = �Ac.
Ac

Ac = 5x : x x A6.
Ac

A ¨ B = �.

A ¨ B
A ¨ B

A ¨ B = 5x : x H A and x H B6.
A ¨ B

A ´ B
A ´ B

A ´ B

A ´ B = 5x : x H A or x H B6.

A ´ B
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The three basic set operations can be combined to form other sets.The following
properties of set operations are useful in deriving new expressions for combinations
of sets:

Commutative properties:

(2.1)

Associative properties:

(2.2)

Distributive properties:

(2.3)

By applying the above properties we can derive new identities. DeMorgan’s rules pro-
vide an important such example:

DeMorgan’s rules:

(2.4)

Example 2.6

Prove DeMorgan’s rules by using Venn diagrams and by demonstrating set equality.
First we will use a Venn diagram to show the first equality. The shaded region in Fig. 2.2(g)

shows the complement of the left-hand side of the equation. The cross-hatched region in
Fig. 2.2(h) shows the intersection of and The two regions are the same and so the sets are
equal. Try sketching the Venn diagrams for the second equality in Eq. (2.4).

Next we prove DeMorgan’s rules by proving set equality.The proof has two parts: First we
show that then we show that Together these results
imply

First, suppose that then In particular, we have which im-
plies Similarly, we have which implies Hence x is in both and that is,

We have shown that 
To prove inclusion in the other direction, suppose that This implies that
so Similarly, and so Therefore, and so We

have shown that . This proves that .
To prove the second DeMorgan rule, apply the first DeMorgan rule to and to

obtain:

where we used the identity Now take complements of both sides of the above
equation:

Ac ´ Bc = 1A ¨ B2c.

A = 1Ac2c.
1Ac ´ Bc2c = 1Ac2c ¨ 1Bc2c = A ¨ B,

BcAc
1A ´ B2c = Ac ¨ BcAc ¨ Bc ( 1A ´ B2c

x H 1A ´ B2c.x x 1A ´ B2x x B.x H Bcx x A.x H Ac,
x H Ac ¨ Bc.

1A ´ B2c( Ac ¨ Bc.x H Ac ¨ Bc.
Bc,Acx H Bc.x x B,x H Ac.

x x A,x x A ´ B.x H 1A ´ B2c,
1A ´ B2c = Ac ¨ Bc.

Ac ¨ Bc ( 1A ´ B2c.1A ´ B2c( Ac ¨ Bc;

Bc.Ac
A ´ B,

1A ´ B2c = Ac ¨ Bc and 1A ¨ B2c = Ac ´ Bc

A ¨ 1B ´ C2 = 1A ¨ B2 ´ 1A ¨ C2.
A ´ 1B ¨ C2 = 1A ´ B2 ¨ 1A ´ C2 and

A ´ 1B ´ C2 = 1A ´ B2 ´ C and A ¨ 1B ¨ C2 = 1A ¨ B2 ¨ C.

A ´ B = B ´ A and A ¨ B = B ¨ A.

and B - A = 52, 4, 6, 86.
A - B = 511, 13, 15, Á 6;
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Example 2.7

For Experiment let the sets A, B, and C be defined by

You should then verify that

The union and intersection operations can be repeated for an arbitrary number
of sets. Thus the union of n sets

(2.5)

is the set that consists of all elements that are in for at least one value of k.The same
definition applies to the union of a countably infinite sequence of sets:

(2.6)

The intersection of n sets

(2.7)

is the set that consists of elements that are in all of the sets The same defi-
nition applies to the intersection of a countably infinite sequence of sets:

(2.8)

We will see that countable unions and intersections of sets are essential in dealing with
sample spaces that are not finite.

2.1.4 Event Classes

We have introduced the sample space S as the set of all possible outcomes of the ran-
dom experiment. We have also introduced events as subsets of S. Probability theory
also requires that we state the class of events of interest. Only events in this classF

t
q

k=1

Ak .

A1 , Á , An .

t
n

k=1

Ak = A1 ¨ A2 ¨ Á ¨ An

d
q

k=1

Ak .

Ak

d
n

k=1

Ak = A1 ´ A2 ´ Á ´ An

1A ´ B2c = 5v : -5 … v … 106.
A ¨ B ¨ C = �, and

1A ´ B2 ¨ C = 5v : v 7 106,
Cc = 5v : v … 06,
A ¨ B = 5v : v 6 -106,
A ´ B = 5v : v 6 -5 or v 7 106,

C = 5v : v 7 06,            “v is positive.”

B = 5v : v 6 -56,   “v is less than -5 volts,”

A = 5v : ƒv ƒ 7 106, “magnitude of v is greater than 10 volts,”

E10 ,
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are assigned probabilities. We expect that any set operation on events in will pro-
duce a set that is also an event in In particular, we insist that complements, as well
as countable unions and intersections of events in i.e., Eqs. (2.1) and (2.5) through
(2.8), result in events in When the sample space S is finite or countable, we simply
let consist of all subsets of S and we can proceed without further concerns about 
However, when S is the real line R (or an interval of the real line), we cannot let be
all possible subsets of R and still satisfy the axioms of probability. Fortunately, we can
obtain all the events of practical interest by letting be of the class of events ob-
tained as complements and countable unions and intersections of intervals of the real
line, e.g., (a, b] or We will refer to this class of events as the Borel field. In the
remainder of the book, we will refer to the event class from time to time. For the in-
troductory-level course in probability you will not need to know more than what is
stated in this paragraph.

When we speak of a class of events we are referring to a collection (set) of events
(sets), that is, we are speaking of a “set of sets.” We refer to the collection of sets as a
class to remind us that the elements of the class are sets. We use script capital letters to
refer to a class, e.g., If the class consists of the collection of sets 
then we write 

Example 2.8

Let be the outcome of a coin toss. Let every subset of S be an event. Find all possi-
ble events of S.

An event is a subset of S, so we need to find all possible subsets of S. These are:

Note that includes both the empty set and S. Let and be binary numbers where in-
dicates that the corresponding element of S is in a given subset. We generate all possible subsets
by taking all possible values of the pair and Thus corresponds to the set

Clearly there are possible subsets as listed above.

For a finite sample space, 2 we usually allow all subsets of S to be
events.This class of events is called the power set of S and we will denote it by We can
index all possible subsets of S with binary numbers and we find that the
power set of S has members. Because of this, the power set is also denoted by 

Section 2.8 discusses some of the fine points on event classes.

2.2 THE AXIOMS OF PROBABILITY

Probabilities are numbers assigned to events that indicate how “likely” it is that the
events will occur when an experiment is performed.A probability law for a random ex-
periment is a rule that assigns probabilities to the events of the experiment that belong
to the event class Thus a probability law is a function that assigns a number to sets
(events). In Section 1.3 we found a number of properties of relative frequency that any
definition of probability should satisfy. The axioms of probability formally state that a

F.

S = 2S.2k
i1 , i2, Á , ik ,

S.
S = 51, 2, Á , k6,

225H6.
iT = 0, iH = 1iH .iT

i = 1iHiTS

S = 5�, 5H6, 5T6, 5H, T66.

S = 5T, H6

C = 5A1 , Á , Ak6.
A1 , Á , Ak ,CC,F, G.

F

1-q , b].

F

F

F.F

F.
F,

F.
F

2The discussion applies to any finite sample space with arbitrary objects but we consider
for notational simplicity.51, 2, Á , k6

S = 5x1 , Á , xk6,
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probability law must satisfy these properties. In this section, we develop a number of
results that follow from this set of axioms.

Let E be a random experiment with sample space S and event class A
probability law for the experiment E is a rule that assigns to each event a
number P[A], called the probability of A, that satisfies the following axioms:

Axioms I, II, and III are enough to deal with experiments with finite sample
spaces. In order to handle experiments with infinite sample spaces, Axiom III needs to
be replaced by Note that includes Axiom III as a special case,
by letting for Thus we really only need Axioms I, II, and Never-
theless we will gain greater insight by starting with Axioms I, II, and III.

The axioms allow us to view events as objects possessing a property (i.e., their
probability) that has attributes similar to physical mass. Axiom I states that the proba-
bility (mass) is nonnegative, and Axiom II states that there is a fixed total amount of
probability (mass), namely 1 unit. Axiom III states that the total probability (mass) in
two disjoint objects is the sum of the individual probabilities (masses).

The axioms provide us with a set of consistency rules that any valid probability
assignment must satisfy.We now develop several properties stemming from the axioms
that are useful in the computation of probabilities.

The first result states that if we partition the sample space into two mutually ex-
clusive events, A and then the probabilities of these two events add up to one.

Corollary 1

Proof: Since an event A and its complement are mutually exclusive, we have
from Axiom III that

Since by Axiom II,

The corollary follows after solving for 

The next corollary states that the probability of an event is always less than or
equal to one. Corollary 2 combined with Axiom I provide good checks in problem

P3Ac4.
1 = P3S4 = P3A ´ Ac4 = P3A4 + P3Ac4.

S = A ´ Ac,

P3A ´ Ac4 = P3A4 + P3Ac4.

A ¨ Ac = �,Ac

P3Ac4 = 1 - P3A4

Ac,

III¿.k Ú 3.Ak = �

Axiom III¿Axiom III¿.

PBdq
k=1

AkR = a
q

k=1

P3Ak4.

Axiom I 0 … P3A4
Axiom II P3S4 = 1

Axiom III If A ¨ B = �, then P3A ´ B4 = P3A4 + P3B4.
Axiom III¿ If A1 , A2 , Á  is a sequence of events such that

Ai ¨ Aj = � for all i Z j, then

A HF
F.
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solving: If your probabilities are negative or are greater than one, you have made a
mistake somewhere!

Corollary 2

Proof: From Corollary 1,

since

Corollary 3 states that the impossible event has probability zero.

Corollary 3

Proof: Let and in Corollary 1:

Corollary 4 provides us with the standard method for computing the probability
of a complicated event A. The method involves decomposing the event A into the
union of disjoint events The probability of A is the sum of the proba-
bilities of the 

Corollary 4

If are pairwise mutually exclusive, then

Proof: We use mathematical induction. Axiom III implies that the result is true for Next
we need to show that if the result is true for some n, then it is also true for This, combined
with the fact that the result is true for implies that the result is true for 

Suppose that the result is true for some that is,

(2.9)

and consider the case

(2.10)

where we have applied Axiom III to the second expression after noting that the union of events
to is mutually exclusive with The distributive property then impliesbdn

k=1

Ak r ¨ An+1 = d
n

k=1

5Ak ¨ An+16 = d
n

k=1

� = �.

An+1 .AnA1

PBdn+1

k=1

AkR = PB bdn
k=1

Ak r ´ An+1R = PBdn
k=1

AkR + P3An+14,
n + 1

PBdn
k=1

AkR = a
n

k=1

P3Ak4,
n 7 2;

n Ú 2.n = 2,
n + 1.

n = 2.

PBdn
k=1

AkR = a
n

k=1

P3Ak4 for n Ú 2.

A1 , A2 , Á , An

Ak’s.
A1 , A2 , Á , An .

P3�4 = 1 - P3S4 = 0.

Ac = �A = S

P3�4 = 0

P3Ac4 Ú 0.

P3A4 = 1 - P3Ac4 … 1,

P3A4 … 1
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Substitution of Eq. (2.9) into Eq. (2.10) gives the case

Corollary 5 gives an expression for the union of two events that are not necessar-
ily mutually exclusive.

Corollary 5

Proof: First we decompose A, and B as unions of disjoint events. From the Venn diagram
in Fig. 2.3,

By substituting and from the two lower equations into the top equation,
we obtain the corollary.

By looking at the Venn diagram in Fig. 2.3, you will see that the sum 
counts the probability (mass) of the set twice. The expression in Corollary 5
makes the appropriate correction.

Corollary 5 is easily generalized to three events,

(2.11)

and in general to n events, as shown in Corollary 6.

- P3A ¨ C4 - P3B ¨ C4 + P3A ¨ B ¨ C4,
P3A ´ B ´ C4 = P3A4 + P3B4 + P3C4 - P3A ¨ B4

A ¨ B

P[A] + P[B]

P3B ¨ Ac4P3A ¨ Bc4
P3B4 = P3B ¨ Ac4 + P3A ¨ B4
P3A4 = P3A ¨ Bc4 + P3A ¨ B4
P3A ´ B4 = P3A ¨ Bc4 + P3B ¨ Ac4 + P3A ¨ B4

A ´ B,

P3A ´ B4 = P3A4 + P3B4 - P3A ¨ B4

PBdn+1

k=1

AkR = a
n+1

k=1

P3Ak4.
n + 1

A � Bc Ac � BA � B

A B

FIGURE 2.3
Decomposition of into three disjoint sets.A ´ B
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Corollary 6

Proof is by induction (see Problems 2.26 and 2.27).

Since probabilities are nonnegative, Corollary 5 implies that the probability
of the union of two events is no greater than the sum of the individual event prob-
abilities

(2.12)

The above inequality is a special case of the fact that a subset of another set must
have smaller probability. This result is frequently used to obtain upper bounds for
probabilities of interest. In the typical situation, we are interested in an event A whose
probability is difficult to find; so we find an event B for which the probability can be
found and that includes A as a subset.

Corollary 7

If then 

Proof: In Fig. 2.4, B is the union of A and thus

since

The axioms together with the corollaries provide us with a set of rules for comput-
ing the probability of certain events in terms of other events. However, we still need an
initial probability assignment for some basic set of events from which the probability of
all other events can be computed.This problem is dealt with in the next two subsections.

P3Ac ¨ B4 Ú 0.

P3B4 = P3A4 + P3Ac ¨ B4 Ú P3A4,
Ac ¨ B,

P3A4 … P3B4.A ( B,

P3A ´ B4 … P3A4 + P3B4.

+ 1-12n+1P3A1 ¨ Á ¨ An4.

PBdn
k=1

AkR = a
n

j=1

P3Aj4 - a
j6k

P3Aj ¨ Ak4 + Á

B

Ac � BA

FIGURE 2.4
If then P1A2 … P1B2.A ( B,
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2.2.1 Discrete Sample Spaces

In this section we show that the probability law for an experiment with a countable sam-

ple space can be specified by giving the probabilities of the elementary events. First, sup-
pose that the sample space is finite, and let consist of all subsets
of S. All distinct elementary events are mutually exclusive, so by Corollary 4 the prob-
ability of any event is given by

(2.13)

that is, the probability of an event is equal to the sum of the probabilities of the outcomes
in the event.Thus we conclude that the probability law for a random experiment with a fi-
nite sample space is specified by giving the probabilities of the elementary events.

If the sample space has n elements, a probability assignment of
particular interest is the case of equally likely outcomes. The probability of the ele-
mentary events is

(2.14)

The probability of any event that consists of k outcomes, say is

(2.15)

Thus if outcomes are equally likely, then the probability of an event is equal to the num-

ber of outcomes in the event divided by the total number of outcomes in the sample

space. Section 2.3 discusses counting methods that are useful in finding probabilities in
experiments that have equally likely outcomes.

Consider the case where the sample space is countably infinite,
Let the event class be the class of all subsets of S. Note that must now satisfy Eq. (2.8)
because events can consist of countable unions of sets. implies that the
probability of an event such as is given by

The probability of an event with a countably infinite sample space is determined from
the probabilities of the elementary events.

Example 2.9

An urn contains 10 identical balls numbered A random experiment involves selecting a
ball from the urn and noting the number of the ball. Find the probability of the following events:

and of and A ´ B ´ C.A ´ B

C = “number of ball selected is less than 5,”

B = “number of ball selected is a multiple of 3,”

A = “number of ball selected is odd,”

0, 1, Á , 9.
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œ64 + P35b2
œ64 + P35b3

œ64 + Á

D = 5b1 , b2 , b3 , Á 6 Axiom III¿
FF

S = 5a1 , a2 , Á 6.

P3B4 = P35a1
œ64 + Á + P35akœ 64 =

k

n
.

B = 5a1
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œ 6,
P35a164 = P35a264 = Á = P35an64 =

1
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S = 5a1 , Á , an6,

= P35a1
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œ64 + Á + P35amœ 64;
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œ 64
B = 5a1
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œ , Á , am
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The sample space is so the sets of outcomes corresponding to the above
events are

If we assume that the outcomes are equally likely, then

From Corollary 5,

where we have used the fact that so From Corollary 6,

You should verify the answers for and by enumerating the outcomes in
the events.

Many probability models can be devised for the same sample space and events by
varying the probability assignment; in the case of finite sample spaces all we need to do
is come up with n nonnegative numbers that add up to one for the probabilities of the
elementary events. Of course, in any particular situation, the probability assignment
should be selected to reflect experimental observations to the extent possible. The fol-
lowing example shows that situations can arise where there is more than one “reason-
able” probability assignment and where experimental evidence is required to decide
on the appropriate assignment.

Example 2.10

Suppose that a coin is tossed three times. If we observe the sequence of heads and tails, then
there are eight possible outcomes If
we assume that the outcomes of are equiprobable, then the probability of each of the eight el-
ementary events is 1/8. This probability assignment implies that the probability of obtaining two
heads in three tosses is, by Corollary 3,

= P35HHT64 + P35HTH64 + P35THH64 =
3

8
.

P3“2 heads in 3 tosses”4 = P35HHT, HTH, THH64

S3

S3 = 5HHH, HHT, HTH, THH, TTH, THT, HTT, TTT6.
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=

9

10
.

=
5

10
+

3

10
+

5

10
-

2

10
-
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+

1
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- P3A ¨ C4 - P3B ¨ C4 + P3A ¨ B ¨ C4
P3A ´ B ´ C4 = P3A4 + P3B4 + P3C4 - P3A ¨ B4

P3A ¨ B4 = 2>10.A ¨ B = 53, 96,
P3A ´ B4 = P3A4 + P3B4 - P3A ¨ B4 =

5

10
+

3

10
-

2
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10
,

P3C4 = P35064 + P35164 + P35264 + P35364 + P35464 =
5

10
.

P3B4 = P35364 + P35664 + P35964 =
3

10
.

P3A4 = P35164 + P35364 + P35564 + P35764 + P35964 =
5

10
.

A = 51, 3, 5, 7, 96, B = 53, 6, 96, and C = 50, 1, 2, 3, 46.

S = 50, 1, Á , 96,
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Now suppose that we toss a coin three times but we count the number of heads in three
tosses instead of observing the sequence of heads and tails. The sample space is now

If we assume the outcomes of to be equiprobable, then each of the elemen-
tary events of has probability 1/4. This second probability assignment predicts that the proba-
bility of obtaining two heads in three tosses is

The first probability assignment implies that the probability of two heads in three toss-
es is 3/8, and the second probability assignment predicts that the probability is 1/4. Thus the
two assignments are not consistent with each other. As far as the theory is concerned, either
one of the assignments is acceptable. It is up to us to decide which assignment is more ap-
propriate. Later in the chapter we will see that only the first assignment is consistent with
the assumption that the coin is fair and that the tosses are “independent.” This assignment
correctly predicts the relative frequencies that would be observed in an actual coin tossing
experiment.

Finally we consider an example with a countably infinite sample space.

Example 2.11

A fair coin is tossed repeatedly until the first heads shows up; the outcome of the experiment is
the number of tosses required until the first heads occurs. Find a probability law for this experi-
ment.

It is conceivable that an arbitrarily large number of tosses will be required until heads
occurs, so the sample space is Suppose the experiment is repeated n times.
Let be the number of trials in which the jth toss results in the first heads. If n is very large,
we expect to be approximately n/2 since the coin is fair. This implies that a second toss is
necessary about times, and again we expect that about half of these—that is,
n/4—will result in heads, and so on, as shown in Fig. 2.5. Thus for large n, the relative fre-
quencies are

We therefore conclude that a reasonable probability law for this experiment is

(2.16)

We can verify that these probabilities add up to one by using the geometric series with 

2.2.2 Continuous Sample Spaces

Continuous sample spaces arise in experiments in which the outcomes are numbers
that can assume a continuum of values, so we let the sample space S be the entire real
line R (or some interval of the real line). We could consider letting the event class con-
sist of all subsets of R. But it turns out that this class is “too large” and it is impossible

a
q
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2
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b j j = 1, 2, Á .

n - N1 L n>2
N1

Nj

S = 51, 2, 3, Á 6.

P3“2 heads in 3 tosses”4 = P35264 =
1

4
.

S4

S4S4 = 50, 1, 2, 36.
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3Section 2.9 discusses in more detail.B

to assign probabilities to all the subsets of R. Fortunately, it is possible to assign proba-
bilities to all events in a smaller class that includes all events of practical interest. This
class denoted by is called the Borel field and it contains all open and closed intervals
of the real line as well as all events that can be obtained as countable unions, intersec-
tions, and complements.3 is once again the key to calculating probabilities of
events. Let be a sequence of mutually exclusive events that are represented
by intervals of the real line, then

where each is specified by the probability law. For this reason, probability laws

in experiments with continuous sample spaces specify a rule for assigning numbers to in-

tervals of the real line.

Example 2.12

Consider the random experiment “pick a number x at random between zero and one.” The sample
space S for this experiment is the unit interval [0, 1], which is uncountably infinite. If we suppose that
all the outcomes S are equally likely to be selected, then we would guess that the probability that the
outcome is in the interval [0, 1/2] is the same as the probability that the outcome is in the interval
[1/2, 1].We would also guess that the probability of the outcome being exactly equal to 1/2 would be
zero since there are an uncountably infinite number of equally likely outcomes.

P3Ak4
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FIGURE 2.5
In n trials heads comes up in the first toss approximately n/2 times, in
the second toss approximately n/4 times, and so on.



Consider the following probability law: “The probability that the outcome falls in a subin-
terval of S is equal to the length of the subinterval,” that is,

(2.17)

where by P[[a, b]] we mean the probability of the event corresponding to the interval [a, b].
Clearly, Axiom I is satisfied since Axiom II follows from with and

We now show that the probability law is consistent with the previous guesses about the
probabilities of the events [0, 1/2], [1/2, 1], and 

In addition, if is any point in S, then since individual points have zero width.
Now suppose that we are interested in an event that is the union of several intervals; for

example, “the outcome is at least 0.3 away from the center of the unit interval,” that is,
Since the two intervals are disjoint, we have by Axiom III

The next example shows that an initial probability assignment that specifies the
probability of semi-infinite intervals also suffices to specify the probabilities of all
events of interest.

Example 2.13

Suppose that the lifetime of a computer memory chip is measured, and we find that “the propor-
tion of chips whose lifetime exceeds t decreases exponentially at a rate ” Find an appropriate
probability law.

Let the sample space in this experiment be If we interpret the above finding
as “the probability that a chip’s lifetime exceeds t decreases exponentially at a rate ” we then
obtain the following assignment of probabilities to events of the form 

(2.18)

where Note that the exponential is a number between 0 and 1 for so Axiom I is sat-
isfied. Axiom II is satisfied since

The probability that the lifetime is in the interval (r, s] is found by noting in Fig. 2.6 that
so by Axiom III,

P31r, q24 = P31r, s44 + P31s, q24.
1r, s4 ´ 1s, q2 = 1r, q2,

P3S4 = P310, q24 = 1.

t 7 0,a 7 0.

P31t, q24 = e-at for t 7 0,

1t, q2:
a,

S = 10, q2.
a.

P3A4 = P330, 0.244 + P330.8, 144 = .4.

A = 30, 0.24 ´ 30.8, 14.

P33x0 , x044 = 0x0

P330.5, 144 = 1 - 0.5 = .5

P330, 0.544 = 0.5 - 0 = .5

51/26:
b = 1.

a = 0S = 3a, b4b Ú a Ú 0.

P33a, b44 = 1b - a2 for 0 … a … b … 1,
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r s
� ��

FIGURE 2.6
1r, q2 = 1r, s4 ´ 1s, q2.



40 Chapter 2 Basic Concepts of Probability Theory

By rearranging the above equation we obtain

We thus obtain the probability of arbitrary intervals in S.

In both Example 2.12 and Example 2.13, the probability that the outcome takes on
a specific value is zero. You may ask: If an outcome (or event) has probability zero, doesn’t
that mean it cannot occur? And you may then ask: How can all the outcomes in a sam-
ple space have probability zero? We can explain this paradox by using the relative
frequency interpretation of probability.An event that occurs only once in an infinite num-
ber of trials will have relative frequency zero. Hence the fact that an event or outcome has
relative frequency zero does not imply that it cannot occur, but rather that it occurs very

infrequently. In the case of continuous sample spaces, the set of possible outcomes is so
rich that all outcomes occur infrequently enough that their relative frequencies are zero.

We end this section with an example where the events are regions in the plane.

Example 2.14

Consider Experiment where we picked two numbers x and y at random between zero and
one. The sample space is then the unit square shown in Fig. 2.7(a). If we suppose that all pairs of
numbers in the unit square are equally likely to be selected, then it is reasonable to use a proba-
bility assignment in which the probability of any region R inside the unit square is equal to the
area of R. Find the probability of the following events: and
C = 5x 7 y6.

B = 5y 7 0.56,A = 5x 7 0.56,

E12 ,

P31r, s44 = P31r, q24 - P31s, q24 = e-ar - e-as.
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FIGURE 2.7
A two-dimensional sample space and three events.
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4This section and all sections marked with an asterisk may be skipped without loss of continuity.

Figures 2.7(b) through 2.7(d) show the regions corresponding to the events A, B, and C.
Clearly each of these regions has area 1/2. Thus

We reiterate how to proceed from a problem statement to its probability model.
The problem statement implicitly or explicitly defines a random experiment, which
specifies an experimental procedure and a set of measurements and observations.
These measurements and observations determine the set of all possible outcomes and
hence the sample space S.

An initial probability assignment that specifies the probability of certain events
must be determined next. This probability assignment must satisfy the axioms of prob-
ability. If S is discrete, then it suffices to specify the probabilities of elementary events.
If S is continuous, it suffices to specify the probabilities of intervals of the real line or
regions of the plane.The probability of other events of interest can then be determined
from the initial probability assignment and the axioms of probability and their corol-
laries. Many probability assignments are possible, so the choice of probability assign-
ment must reflect experimental observations and/or previous experience.

2.3 COMPUTING PROBABILITIES USING COUNTING METHODS4

In many experiments with finite sample spaces, the outcomes can be assumed to be
equiprobable.The probability of an event is then the ratio of the number of outcomes in
the event of interest to the total number of outcomes in the sample space (Eq. (2.15)).
The calculation of probabilities reduces to counting the number of outcomes in an
event. In this section, we develop several useful counting (combinatorial) formulas.

Suppose that a multiple-choice test has k questions and that for question i the
student must select one of possible answers. What is the total number of ways of an-
swering the entire test? The answer to question i can be viewed as specifying the ith
component of a k-tuple, so the above question is equivalent to: How many distinct or-
dered k-tuples are possible if is an element from a set with distinct el-
ements?

Consider the case. If we arrange all possible choices for and for along
the sides of a table as shown in Fig. 2.8, we see that there are distinct ordered pairs.
For triplets we could arrange the possible pairs along the vertical side of
the table and the choices for along the horizontal side. Clearly, the number of pos-
sible triplets is 

In general, the number of distinct ordered k-tuples with components

from a set with distinct elements is

(2.19)

Many counting problems can be posed as sampling problems where we select
“balls” from “urns” or “objects” from “populations.” We will now use Eq. (2.19) to de-
velop combinatorial formulas for various types of sampling.

number of distinct ordered k-tuples = n1n2 Á nk .

nixi
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n1n2n3 .

x3n3

1x1 , x22n1n2

n1n2

x2x1k = 2

nixi1x1 , Á , xk2

ni

*

P3A4 =
1

2
, P3B4 =

1

2
, P3C4 =

1

2
.



42 Chapter 2 Basic Concepts of Probability Theory

2.3.1 Sampling with Replacement and with Ordering

Suppose we choose k objects from a set A that has n distinct objects, with replace-
ment—that is, after selecting an object and noting its identity in an ordered list, the ob-
ject is placed back in the set before the next choice is made. We will refer to the set A
as the “population.” The experiment produces an ordered k-tuple

where and Equation (2.19) with implies that

(2.20)

Example 2.15

An urn contains five balls numbered 1 to 5. Suppose we select two balls from the urn with re-
placement. How many distinct ordered pairs are possible? What is the probability that the two
draws yield the same number?

Equation (2.20) states that the number of ordered pairs is Table 2.1 shows the 25
possible pairs. Five of the 25 outcomes have the two draws yielding the same number; if we sup-
pose that all pairs are equiprobable, then the probability that the two draws yield the same num-
ber is 

2.3.2 Sampling without Replacement and with Ordering

Suppose we choose k objects in succession without replacement from a population A of
n distinct objects. Clearly, The number of possible outcomes in the first draw is

the number of possible outcomes in the second draw is namely all
n objects except the one selected in the first draw; and so on, up to in
the final draw. Equation (2.19) then gives

(2.21)number of distinct ordered k-tuples = n1n - 12Á 1n - k + 12.
nk = n - 1k - 12n2 = n - 1,n1 = n;

k … n.

5/25 = .2.

52 = 25.

number of distinct ordered k-tuples = nk.

n1 = n2 = Á = nk = ni = 1, Á , k.xi H A
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FIGURE 2.8
If there are distinct choices for and distinct choices
for then there are distinct ordered pairs 1x1 , x22.n1n2x2,

n2x1n1
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TABLE 2.1 Enumeration of possible outcomes in various types of
sampling of two balls from an urn containing five distinct balls.

(a) Ordered pairs for sampling with replacement.

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(b) Ordered pairs for sampling without replacement.

(1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 4) (3, 5)

(4, 1) (4, 2) (4, 3) (4, 5)

(5, 1) (5, 2) (5, 3) (5, 4)

(c) Pairs for sampling without replacement or ordering.

(1, 2) (1, 3) (1, 4) (1, 5)

(2, 3) (2, 4) (2, 5)

(3, 4) (3, 5)

(4, 5)

Example 2.16

An urn contains five balls numbered 1 to 5. Suppose we select two balls in succession without re-
placement. How many distinct ordered pairs are possible? What is the probability that the first
ball has a number larger than that of the second ball?

Equation (2.21) states that the number of ordered pairs is The 20 possible or-
dered pairs are shown in Table 2.1(b).Ten ordered pairs in Tab. 2.1(b) have the first number larg-
er than the second number; thus the probability of this event is 

Example 2.17

An urn contains five balls numbered Suppose we draw three balls with replacement.
What is the probability that all three balls are different?

From Eq. (2.20) there are possible outcomes, which we will suppose are
equiprobable. The number of these outcomes for which the three draws are different is given
by Eq. (2.21): Thus the probability that all three balls are different is

2.3.3 Permutations of n Distinct Objects

Consider sampling without replacement with This is simply drawing objects
from an urn containing n distinct objects until the urn is empty. Thus, the number of
possible orderings (arrangements, permutations) of n distinct objects is equal to the

k = n.

60/125 = .48.
5142132 = 60.

53 = 125

1, 2, Á , 5.

10/20 = 1/2.

5142 = 20.
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number of ordered n-tuples in sampling without replacement with . From Eq. (2.21),
we have

(2.22)

We refer to n! as n factorial.
We will see that n! appears in many of the combinatorial formulas. For large n,

Stirling’s formula is very useful:

(2.23)

where the sign indicates that the ratio of the two sides tends to unity as 
[Feller, p. 52].

Example 2.18

Find the number of permutations of three distinct objects Equation (2.22) gives
The six permutations are

123 312 231 132 213 321.

Example 2.19

Suppose that 12 balls are placed at random into 12 cells, where more than 1 ball is allowed to oc-
cupy a cell. What is the probability that all cells are occupied?

The placement of each ball into a cell can be viewed as the selection of a cell number be-
tween 1 and 12. Equation (2.20) implies that there are possible placements of the 12 balls in
the 12 cells. In order for all cells to be occupied, the first ball selects from any of the 12 cells, the
second ball from the remaining 11 cells, and so on. Thus the number of placements that occupy
all cells is 12!. If we suppose that all possible placements are equiprobable, we find that the
probability that all cells are occupied is

This answer is surprising if we reinterpret the question as follows. Given that 12 airplane
crashes occur at random in a year, what is the probability that there is exactly 1 crash each
month? The above result shows that this probability is very small. Thus a model that assumes
that crashes occur randomly in time does not predict that they tend to occur uniformly over time
[Feller, p. 32].

2.3.4 Sampling without Replacement and without Ordering

Suppose we pick k objects from a set of n distinct objects without replacement and that
we record the result without regard to order. (You can imagine putting each selected
object into another jar, so that when the k selections are completed we have no record
of the order in which the selection was done.) We call the resulting subset of k selected
objects a “combination of size k.”

From Eq. (2.22), there are k! possible orders in which the k objects in the second
jar could have been selected. Thus if denotes the number of combinations of size kCk

n

12!

1212 = a12

12
b a11

12
b Á a 1

12
b = 5.37110-52.

1212

1212

3! = 3122112 = 6.
51, 2, 36.

n: q'

n! ' 22p nn+1/2e-n,

number of permutations of n objects = n1n - 12Á 122112 ! n!.

k = n
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from a set of size n, then must be the total number of distinct ordered samples of
k objects, which is given by Eq. (2.21). Thus

(2.24)

and the number of different combinations of size k from a set of size is

(2.25)

The expression is called a binomial coefficient and is read “n choose k.”
Note that choosing k objects out of a set of n is equivalent to choosing the 

objects that are to be left out. It then follows that (also see Problem 2.60):

Example 2.20

Find the number of ways of selecting two objects from without regard to order.
Equation (2.25) gives

Table 2.1(c) gives the 10 pairs.

Example 2.21

Find the number of distinct permutations of k white balls and black balls.
This problem is equivalent to the following sampling problem: Put n tokens numbered 1 to

n in an urn, where each token represents a position in the arrangement of balls; pick a combina-
tion of k tokens and put the k white balls in the corresponding positions. Each combination of
size k leads to a distinct arrangement (permutation) of k white balls and black balls. Thus
the number of distinct permutations of k white balls and black balls is 

As a specific example let and The number of combinations of size 2 from a
set of four distinct objects is

The 6 distinct permutations with 2 whites (zeros) and 2 blacks (ones) are

1100 0110 0011 1001 1010 0101.

Example 2.22 Quality Control

A batch of 50 items contains 10 defective items. Suppose 10 items are selected at random and
tested. What is the probability that exactly 5 of the items tested are defective?

¢4

2
≤ =

4!

2! 2!
=

4132
2112 = 6.

k = 2.n = 4
Ck
n .n - k

n - k

n - k

¢5

2
≤ =

5!

2! 3!
= 10.

A = 51, 2, 3, 4, 56

¢n
k
≤ = ¢ n

n - k
≤ .

n - k
Ank B
Ck
n =
n1n - 12Á 1n - k + 12

k!
=

n!

k! 1n - k2! ! ¢nk≤ .

n, k … n,

Ck
nk! = n1n - 12Á 1n - k + 12,

Ck
nk!
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The number of ways of selecting 10 items out of a batch of 50 is the number of combina-
tions of size 10 from a set of 50 objects:

The number of ways of selecting 5 defective and 5 nondefective items from the batch of 50 is the
product where is the number of ways of selecting the 5 items from the set of 10 defec-
tive items, and is the number of ways of selecting 5 items from the 40 nondefective items.Thus
the probability that exactly 5 tested items are defective is

Example 2.21 shows that sampling without replacement and without ordering is
equivalent to partitioning the set of n distinct objects into two sets: B, containing the k
items that are picked from the urn, and containing the left behind. Suppose
we partition a set of n distinct objects into subsets where is as-
signed elements and 

In Problem 2.61, it is shown that the number of distinct partitions is

(2.26)

Equation (2.26) is called the multinomial coefficient. The binomial coefficient is the
case of the multinomial coefficient.

Example 2.23

A six-sided die is tossed 12 times. How many distinct sequences of faces (numbers from the set
) have each number appearing exactly twice? What is the probability of obtaining

such a sequence?
The number of distinct sequences in which each face of the die appears exactly twice is the

same as the number of partitions of the set into 6 subsets of size 2, namely

.

From Eq. (2.20) we have that there are possible outcomes in 12 tosses of a die. If we suppose
that all of these have equal probabilities, then the probability of obtaining a sequence in which
each face appears exactly twice is

12!/26

612 =
7,484,400

2,176,782,336
M 3.4110-32.

612

12!

2! 2! 2! 2! 2! 2!
=

12!

26
= 7,484,400

51, 2, Á , 126

51, 2, 3, 4, 5, 66

J = 2

n!

k1! k2! Á kJ!
.

k1 + k2 + Á + kJ = n.kJ

BJB1 , B2 , Á , BJ ,J

n - kBc,

¢10

5
≤ ¢40

5
≤¢50

10
≤ =

10! 40! 10! 40!

5! 5! 35! 5! 50!
= .016.

N2

N1N1N2 ,

¢50

10
≤ =

50!

10! 40!
.
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2.3.5 Sampling with Replacement and without Ordering

Suppose we pick k objects from a set of n distinct objects with replacement and we
record the result without regard to order. This can be done by filling out a form which
has n columns, one for each distinct object. Each time an object is selected, an “x” is
placed in the corresponding column. For example, if we are picking 5 objects from 4
distinct objects, one possible form would look like this:

Object 1 Object 2 Object 3 Object 4

xx                      / / x                        / xx

where the slash symbol (“/”) is used to separate the entries for different columns. Note
that this form can be summarized by the sequence

xx//x/xx

where the /’s indicate the lines between columns, and where nothing appears be-
tween consecutive /’s if the corresponding object was not selected. Each different
arrangement of 5 x’s and 3 /’s leads to a distinct form. If we identify x’s with “white
balls” and /’s with “black balls,” then this problem was considered in Example 2.21, and
the number of different arrangements is given by 

In the general case the form will involve k x’s and /’s. Thus the number of

different ways of picking k objects from a set of n distinct objects with replacement and

without ordering is given by

2.4 CONDITIONAL PROBABILITY

Quite often we are interested in determining whether two events, A and B, are related in
the sense that knowledge about the occurrence of one, say B, alters the likelihood of oc-
currence of the other, A.This requires that we find the conditional probability,
of event A given that event B has occurred.The conditional probability is defined by

(2.27)

Knowledge that event B has occurred implies that the outcome of the experi-
ment is in the set B. In computing we can therefore view the experiment as
now having the reduced sample space B as shown in Fig. 2.9. The event A occurs in the
reduced sample space if and only if the outcome is in Equation (2.27) simply
renormalizes the probability of events that occur jointly with B. Thus if we let 
Eq. (2.27) gives as required. It is easy to show that for fixed B,
satisfies the axioms of probability. (See Problem 2.74.)

If we interpret probability as relative frequency, then should be the rel-
ative frequency of the event in experiments where B occurred. Suppose that the
experiment is performed n times, and suppose that event B occurs times, and thatnB

A ¨ B
P3A ƒ B4

P3A ƒ B4,P3B ƒ B4 = 1,
A = B,

A ¨ B.z

P3A ƒ B4

P3A ƒ B4 =
P3A ¨ B4
P3B4 for P3B4 7 0.

P3A ƒ B4,

¢n - 1 + k

k
≤ = ¢n - 1 + k

n - 1
≤ .

n - 1

A83 B .

n - 1
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event occurs times. The relative frequency of interest is then

where we have implicitly assumed that This is in agreement with Eq. (2.27).

Example 2.24

A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls,
numbered 3 and 4. The number and color of the ball is noted, so the sample space is

Assuming that the four outcomes are equally likely, find 

and where A, B, and C are the following events:

“black ball selected,”

“even-numbered ball selected,” and

“number of ball is greater than 2.”

Since and Eq. (2.24) gives

In the first case, knowledge of B did not alter the probability of A. In the second case, knowledge
of C implied that A had not occurred.

If we multiply both sides of the definition of by P[B] we obtain

(2.28a)

Similarly we also have that

(2.28b)P3A ¨ B4 = P3B ƒ A4P3A4.

P3A ¨ B4 = P3A ƒ B4P3B4.
P3A ƒ B4

P3A ƒ C4 =
P3A ¨ C4
P3C4 =

0

.5
= 0 Z P3A4.

P3A ƒ B4 =
P3A ¨ B4
P3B4 =

.25

.5
= .5 = P3A4

P3A ¨ C4 = P3�4 = 0,P3A ¨ B4 = P312, b24
C = 513, w2, 14, w26,
B = 512, b2, 14, w26,
A = 511, b2, 12, b26,
P3A ƒ C4,

P3A ƒ B4511, b2, 12, b2, 13, w2, 14, w26.

P3B4 7 0.

nA¨B

nB
=
nA¨B/n

nB/n
:

P3A ¨ B4
P3B4 ,

nA¨BA ¨ B

B

B

A

A

S

�

FIGURE 2.9
If B is known to have occurred, then A can occur only
if occurs.A ¨ B
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In the next example we show how this equation is useful in finding probabilities
in sequential experiments. The example also introduces a tree diagram that facilitates
the calculation of probabilities.

Example 2.25

An urn contains two black balls and three white balls. Two balls are selected at random from the
urn without replacement and the sequence of colors is noted. Find the probability that both balls
are black.

This experiment consists of a sequence of two subexperiments. We can imagine working
our way down the tree shown in Fig. 2.10 from the topmost node to one of the bottom nodes:We
reach node 1 in the tree if the outcome of the first draw is a black ball; then the next subexperi-
ment consists of selecting a ball from an urn containing one black ball and three white balls. On
the other hand, if the outcome of the first draw is white, then we reach node 2 in the tree and the
second subexperiment consists of selecting a ball from an urn that contains two black balls and
two white balls. Thus if we know which node is reached after the first draw, then we can state the
probabilities of the outcome in the next subexperiment.

Let and be the events that the outcome is a black ball in the first and second draw,
respectively. From Eq. (2.28b) we have

In terms of the tree diagram in Fig. 2.10, is the probability of reaching node 1 and is
the probability of reaching the leftmost bottom node from node 1. Now since the first 
draw is from an urn containing two black balls and three white balls; since,given 
the second draw is from an urn containing one black ball and three white balls. Thus

In general, the probability of any sequence of colors is obtained by multiplying the probabilities
corresponding to the node transitions in the tree in Fig. 2.10.

P3B1 ¨ B24 =
1

4

2

5
=

1

10
.

B1 ,P3B2 ƒ B14 = 1/4
P3B14 = 2/5

P3B2 ƒ B14P3B14
P3B1 ¨ B24 = P3B2 ƒ B14P3B14.

B2B1

B2 B2 W2W2

B1 W1

3

10

3

10

3

10

1

10

0

1 2

Outcome of first draw

Outcome of second draw1

4

3

4

2

4

2

4

2

5

3

5

FIGURE 2.10
The paths from the top node to a bottom node correspond to the possible outcomes
in the drawing of two balls from an urn without replacement. The probability of a
path is the product of the probabilities in the associated transitions.
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Example 2.26 Binary Communication System

Many communication systems can be modeled in the following way. First, the user inputs a 0 or a 1
into the system, and a corresponding signal is transmitted. Second, the receiver makes a decision
about what was the input to the system, based on the signal it received. Suppose that the user sends
0s with probability and 1s with probability p, and suppose that the receiver makes random
decision errors with probability For let be the event “input was i,” and let be the
event “receiver decision was i.” Find the probabilities for and 

The tree diagram for this experiment is shown in Fig. 2.11. We then readily obtain the de-
sired probabilities

Let be mutually exclusive events whose union equals the sample
space S as shown in Fig. 2.12. We refer to these sets as a partition of S. Any event A can
be represented as the union of mutually exclusive events in the following way:

(See Fig. 2.12.) By Corollary 4, the probability of A is

By applying Eq. (2.28a) to each of the terms on the right-hand side, we obtain the
theorem on total probability:

(2.29)

This result is particularly useful when the experiments can be viewed as consist-
ing of a sequence of two subexperiments as shown in the tree diagram in Fig. 2.10.

P3A4 = P3A ƒ B14P3B14 + P3A ƒB24P3B24 + Á + P3A ƒBn4P3Bn4.

P3A4 = P3A ¨ B14 + P3A ¨ B24 + Á + P3A ¨ Bn4.

= 1A ¨ B12 ´ 1A ¨ B22 ´ Á ´ 1A ¨ Bn2.
A = A ¨ S = A ¨ 1B1 ´ B2 ´ Á ´ Bn2

B1 , B2 , Á , Bn

P3A1 ¨ B14 = p11 - e2.
P3A1 ¨ B04 = pe, and

P3A0 ¨ B14 = 11 - p2e,
P3A0 ¨ B04 = 11 - p211 - e2,

j = 0, 1.i = 0, 1P3Ai ¨ Bj4
BiAii = 0, 1,e.

1 - p

0 1

0 1 0 1

p Input into binary channel

Output from binary channel

1 � p

(1 � p)(1 � ε)

1 � ε 1 � εεε

(1 � p)ε p(1 � ε)pε

FIGURE 2.11
Probabilities of input-output pairs in a binary transmission system.
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Example 2.27

In the experiment discussed in Example 2.25, find the probability of the event that the second
ball is white.

The events and form a partition of the sam-
ple space, so applying Eq. (2.29) we have

It is interesting to note that this is the same as the probability of selecting a white ball in the first
draw.The result makes sense because we are computing the probability of a white ball in the sec-
ond draw under the assumption that we have no knowledge of the outcome of the first draw.

Example 2.28

A manufacturing process produces a mix of “good” memory chips and “bad” memory chips. The
lifetime of good chips follows the exponential law introduced in Example 2.13, with a rate of fail-
ure The lifetime of bad chips also follows the exponential law, but the rate of failure is 
Suppose that the fraction of good chips is and of bad chips, p. Find the probability that a
randomly selected chip is still functioning after t seconds.

Let C be the event “chip still functioning after t seconds,” and let G be the event “chip is
good,” and B the event “chip is bad.” By the theorem on total probability we have

where we used the fact that and P3C ƒB4 = e-1000at.P3C ƒG4 = e-at

= 11 - p2e-at + pe-1000at,

= P3C ƒG411 - p2 + P3C ƒB4p
P3C4 = P3C ƒG4P3G4 + P3C ƒB4P3B4

1 - p
1000a.a.

=
3

4

2

5
+

1

2

3

5
=

3

5
.

P3W24 = P3W2 ƒ B14P3B14 + P3W2 ƒW14P3W14

W1 = 51w, b2, 1w, w26B1 = 51b, b2, 1b, w26
W2

A

B1

B3

B2

Bn

Bn � 1

FIGURE 2.12
A partition of S into n disjoint sets.
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2.4.1 Bayes’ Rule

Let be a partition of a sample space S. Suppose that event A occurs; what
is the probability of event By the definition of conditional probability we have

(2.30)

where we used the theorem on total probability to replace P[A]. Equation (2.30) is
called Bayes’ rule.

Bayes’ rule is often applied in the following situation. We have some random ex-
periment in which the events of interest form a partition.The “a priori probabilities” of
these events, are the probabilities of the events before the experiment is per-
formed. Now suppose that the experiment is performed, and we are informed that
event A occurred; the “a posteriori probabilities” are the probabilities of the events in
the partition, given this additional information. The following two examples
illustrate this situation.

Example 2.29 Binary Communication System

In the binary communication system in Example 2.26, find which input is more probable given
that the receiver has output a 1. Assume that, a priori, the input is equally likely to be 0 or 1.

Let be the event that the input was k, then and are a partition of the sample
space of input-output pairs. Let be the event “receiver output was a 1.” The probability of is

Applying Bayes’ rule, we obtain the a posteriori probabilities

Thus, if is less than 1/2, then input 1 is more likely than input 0 when a 1 is observed at the out-
put of the channel.

Example 2.30 Quality Control

Consider the memory chips discussed in Example 2.28. Recall that a fraction p of the chips are
bad and tend to fail much more quickly than good chips. Suppose that in order to “weed out”
the bad chips, every chip is tested for t seconds prior to leaving the factory. The chips that fail
are discarded and the remaining chips are sent out to customers. Find the value of t for which
99% of the chips sent out to customers are good.

e

P3A1 ƒB14 =
P3B1 ƒA14P3A14

P3B14 =
11 - e2/2

1/2
= 11 - e2.

P3A0 ƒB14 =
P3B1 ƒA04P3A04

P3B14 =
e/2

1/2
= e

= ea1

2
b + 11 - e2a 1

2
b =

1

2
.

P3B14 = P3B1 ƒA04P3A04 + P3B1 ƒA14P3A14
B1B1

A1A0k = 0, 1,Ak

P3Bj ƒA4,

P3Bj4,

P3Bj ƒA4 =
P3A ¨ Bj4
P3A4 =

P3A ƒBj4P3Bj4
a
n

k=1

P3A ƒBk4P3Bk4
,

Bj?
B1 , B2 , Á , Bn
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Let C be the event “chip still functioning after t seconds,” and let G be the event “chip is
good,” and B be the event “chip is bad.” The problem requires that we find the value of t for
which

We find by applying Bayes’ rule:

The above equation can then be solved for t:

For example, if hours and then hours.

2.5 INDEPENDENCE OF EVENTS

If knowledge of the occurrence of an event B does not alter the probability of some
other event A, then it would be natural to say that event A is independent of B. In
terms of probabilities this situation occurs when

The above equation has the problem that the right-hand side is not defined when

We will define two events A and B to be independent if

(2.31)

Equation (2.31) then implies both

(2.32a)

and

(2.32b)

Note also that Eq. (2.32a) implies Eq. (2.31) when and Eq. (2.32b) implies
Eq. (2.31) when P3A4 Z 0.

P3B4 Z 0

P3B ƒA4 = P3B4

P3A ƒB4 = P3A4

P3A ¨ B4 = P3A4P3B4.

P3B4 = 0.

P3A4 = P3A ƒB4 =
P3A ¨ B4
P3B4 .

t = 48p = .10,1/a = 20,000

t =
1

999a
 lna 99p

1 - p
b .

=
1

1 +
pe-a1000t

11 - p2e-at
= .99.

=
11 - p2e-at

11 - p2e-at + pe-a1000t

P3G ƒC4 =
P3C ƒG4P3G4

P3C ƒG4P3G4 + P3C ƒB4P3B4

P3G ƒC4
P3G ƒC4 = .99.
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Example 2.31

A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls,
numbered 3 and 4. Let the events A, B, and C be defined as follows:

“black ball selected”;

“even-numbered ball selected”; and

“number of ball is greater than 2.”

Are events A and B independent? Are events A and C independent?
First, consider events A and B. The probabilities required by Eq. (2.31) are

and

Thus

and the events A and B are independent. Equation (2.32b) gives more insight into the meaning
of independence:

These two equations imply that because the proportion of outcomes in S that

lead to the occurrence of A is equal to the proportion of outcomes in B that lead to A.Thus knowl-
edge of the occurrence of B does not alter the probability of the occurrence of A.

Events A and C are not independent since so

In fact, A and C are mutually exclusive since so the occurrence of C implies that A
has definitely not occurred.

In general if two events have nonzero probability and are mutually exclusive,
then they cannot be independent. For suppose they were independent and mutually
exclusive; then

which implies that at least one of the events must have zero probability.

0 = P3A ¨ B4 = P3A4P3B4,

A ¨ C = �,

P3A ƒC4 = 0 Z P3A4 = .5.

P3A ¨ C4 = P3�4 = 0

P3A4 = P3A ƒB4

P3A4 =
P3A4
P3S4 =

P3511, b2, 12, b264
P3511, b2, 12, b2, 13, w2, 14, w264 =

1/2

1
.

P3A ƒB4 =
P3A ¨ B4
P3B4 =

P3512, b264
P3512, b2, 14, w264 =

1/4

1/2
=

1

2

P3A ¨ B4 =
1

4
= P3A4P3B4,

P3A ¨ B4 = P3512, b264 =
1

4
.

P3A4 = P3B4 =
1

2
,

C = 513, w2, 14, w26,
B = 512, b2, 14, w26,
A = 511, b2, 12, b26,
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Example 2.32

Two numbers x and y are selected at random between zero and one. Let the events A, B, and C

be defined as follows:

Are the events A and B independent? Are A and C independent?
Figure 2.13 shows the regions of the unit square that correspond to the above events.

Using Eq. (2.32a), we have

so events A and B are independent. Again we have that the “proportion” of outcomes in S lead-
ing to A is equal to the “proportion” in B that lead to A.

Using Eq. (2.32b), we have

so events A and C are not independent. Indeed from Fig. 2.13(b) we can see that knowledge of
the fact that x is greater than y increases the probability that x is greater than 0.5.

What conditions should three events A, B, and C satisfy in order for them to be
independent? First, they should be pairwise independent, that is,

P3A ¨ B4 = P3A4P3B4, P3A ¨ C4 = P3A4P3C4, and P3B ¨ C4 = P3B4P3C4.

P3A ƒC4 =
P3A ¨ C4
P3C4 =

3/8

1/2
=

3

4
Z

1

2
= P3A4,

P3A ƒB4 =
P3A ¨ B4
P3B4 =

1/4

1/2
=

1

2
= P3A4,

A = 5x 7 0.56, B = 5y 7 0.56, and C = 5x 7 y6.

1

2

1

2

1

2

0 1

1

y

x

A

B

0 1

1

y

x

A

C

(b) Events A and C are not independent.

(a) Events A and B are independent.

FIGURE 2.13
Examples of independent and
nonindependent events.
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In addition, knowledge of the joint occurrence of any two, say A and B, should not af-
fect the probability of the third, that is,

In order for this to hold, we must have

This in turn implies that we must have

where we have used the fact that A and B are pairwise independent. Thus we conclude
that three events A, B, and C are independent if the probability of the intersection of any

pair or triplet of events is equal to the product of the probabilities of the individual events.
The following example shows that if three events are pairwise independent, it

does not necessarily follow that 

Example 2.33

Consider the experiment discussed in Example 2.32 where two numbers are selected at random
from the unit interval. Let the events B, D, and F be defined as follows:

The three events are shown in Fig. 2.14. It can be easily verified that any pair of these events is in-
dependent:

However, the three events are not independent, since so

In order for a set of n events to be independent, the probability of an event
should be unchanged when we are given the joint occurrence of any subset of the other
events. This requirement naturally leads to the following definition of independence.
The events are said to be independent if for 

(2.33)P3Ai1 ¨ Ai2 ¨ Á ¨ Aik4 = P3Ai14P3Ai24Á P3Aik4,
k = 2, Á , n,A1 , A2 , Á , An

P3B ¨ D ¨ F4 = P3�4 = 0 Z P3B4P3D4P3F4 =
1

8
.

B ¨ D ¨ F = �,

P3D ¨ F4 =
1

4
= P3D4P3F4.

P3B ¨ F4 =
1

4
= P3B4P3F4, and

P3B ¨ D4 =
1

4
= P3B4P3D4,

F = ex 6
1

2
 and y 6

1

2
f ´ ex 7

1

2
 and y 7

1

2
f .

B = ey 7
1

2
f , D = ex 6

1

2
f

P3A ¨ B ¨ C4 = P3A4P3B4P3C4.

P3A ¨ B ¨ C4 = P3A ¨ B4P3C4 = P3A4P3B4P3C4,

P3C ƒA ¨ B4 =
P3A ¨ B ¨ C4
P3A ¨ B4 = P3C4.

P3C ƒA ¨ B4 = P3C4.
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where For a set of n events we need to verify that the
probabilities of all possible intersections factor in the right way.

The above definition of independence appears quite cumbersome because it re-
quires that so many conditions be verified. However, the most common application of
the independence concept is in making the assumption that the events of separate ex-
periments are independent.We refer to such experiments as independent experiments.
For example, it is common to assume that the outcome of a coin toss is independent of
the outcomes of all prior and all subsequent coin tosses.

Example 2.34

Suppose a fair coin is tossed three times and we observe the resulting sequence of heads and
tails. Find the probability of the elementary events.

The sample space of this experiment is 
The assumption that the coin is fair means that the outcomes of a single toss are

equiprobable, that is, If we assume that the outcomes of the coin tosses are
independent, then

P35HHT64 = P35H64P35H64P35T64 =
1

8
,

P35HHH64 = P35H64P35H64P35H64 =
1

8
,

P3H4 = P3T4 = 1/2.
HTT, TTT6.

S = 5HHH, HHT, HTH, THH, TTH, THT,

2n - n - 1
1 … i1 6 i2 6 Á 6 ik … n.

B

x

y

1

10

D

y

1

10

1

2
(a) B � {y � }

1

2
(b) D � {x � }

1

2

1

2

F

F

x

y

1

10

1

2

1

2

1

2

1

2
(c) F � {x � and y � } {x � and y � }

1

2

1

2

x

FIGURE 2.14
Events B, D, and F are pairwise independent, but the
triplet B, D, F are not independent events.
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Example 2.35 System Reliability

A system consists of a controller and three peripheral units. The system is said to be “up” if the
controller and at least two of the peripherals are functioning. Find the probability that the sys-
tem is up, assuming that all components fail independently.

Define the following events: A is “controller is functioning” and is “peripheral i is func-
tioning” where The event F, “two or more peripheral units are functioning,” occurs if
all three units are functioning or if exactly two units are functioning. Thus

Note that the events in the above union are mutually exclusive. Thus

where we have assumed that each peripheral fails with probability a, so that and

The event “system is up” is then If we assume that the controller fails with proba-
bility p, then

Let then all three peripherals are functioning of the time and
two are functioning and one is “down” of the time. Thus two or more
peripherals are functioning 97.2% of the time. Suppose that the controller is not very reliable,
say then the system is up only 77.8% of the time, mostly because of controller
failures.

Suppose a second identical controller with is added to the system, and that the
system is “up” if at least one of the controllers is functioning and if two or more of the peripher-
als are functioning. In Problem 2.94, you are asked to show that at least one of the controllers is

p = 20%

p = 20%,

311 - a22a = 24.3%
11 - a23 = 72.9%a = 10%,

= 11 - p25311 - a22a + 11 - a236.
= 11 - p2P3F4

P3“system up”4 = P3A ¨ F4 = P3A4P3F4

A ¨ F.
P3Bic4 = a.

P3Bi4 = 1 - a

= 311 - a22a + 11 - a23,
+ P3B1

c4P3B24P3B34 + P3B14P3B24P3B34
P3F4 = P3B14P3B24P3B3

c4 + P3B14P3B2
c4P3B34

´ 1B1
c ¨ B2 ¨ B32 ´ 1B1 ¨ B2 ¨ B32.

F = 1B1 ¨ B2 ¨ B3
c2 ´ 1B1 ¨ B2

c ¨ B32

i = 1, 2, 3.
Bi

P35TTT64 = P35T64P35T64P35T64 =
1

8
.

P35HTT64 = P35H64P35T64P35T64 =
1

8
, and

P35THT64 = P35T64P35H64P35T64 =
1

8
,

P35TTH64 = P35T64P35T64P35H64 =
1

8
,

P35THH64 = P35T64P35H64P35H64 =
1

8
,

P35HTH64 = P35H64P35T64P35H64 =
1

8
,
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functioning 96% of the time, and that the system is up 93.3% of the time. This is an increase of
16% over the system with a single controller.

2.6 SEQUENTIAL EXPERIMENTS

Many random experiments can be viewed as sequential experiments that consist of a
sequence of simpler subexperiments. These subexperiments may or may not be inde-
pendent. In this section we discuss methods for obtaining the probabilities of events in
sequential experiments.

2.6.1 Sequences of Independent Experiments

Suppose that a random experiment consists of performing experiments 
The outcome of this experiment will then be an n-tuple where is the
outcome of the kth subexperiment. The sample space of the sequential experiment is
defined as the set that contains the above n-tuples and is denoted by the Cartesian
product of the individual sample spaces 

We can usually determine, because of physical considerations, when the subexper-
iments are independent, in the sense that the outcome of any given subexperiment can-
not affect the outcomes of the other subexperiments. Let be events such
that concerns only the outcome of the kth subexperiment. If the subexperiments are
independent, then it is reasonable to assume that the above events are
independent. Thus

(2.34)

This expression allows us to compute all probabilities of events of the sequential ex-
periment.

Example 2.36

Suppose that 10 numbers are selected at random from the interval [0, 1]. Find the probability
that the first 5 numbers are less than 1/4 and the last 5 numbers are greater than 1/2. Let

be the sequence of 10 numbers, then the events of interest are

If we assume that each selection of a number is independent of the other selections, then

We will now derive several important models for experiments that consist of se-
quences of independent subexperiments.

= a1

4
b5a1

2
b5

.

P3A1 ¨ A2 ¨ Á ¨ A104 = P3A14P3A24ÁP3A104

Ak = exk 7
1

2
f for k = 6, Á , 10.

Ak = exk 6
1

4
f for k = 1, Á , 5

x1 , x2 , Á , x10

P3A1 ¨ A2 ¨ Á ¨ An4 = P3A14P3A24Á P3An4.

A1 , A2 , Á , An

Ak

A1 , A2 , Á , An

S1 * S2 * Á * Sn .

sks = 1s1 , Á , sn2,
E1 , E2 , Á , En .
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2.6.2 The Binomial Probability Law

A Bernoulli trial involves performing an experiment once and noting whether a partic-
ular event A occurs. The outcome of the Bernoulli trial is said to be a “success” if A oc-
curs and a “failure” otherwise. In this section we are interested in finding the
probability of k successes in n independent repetitions of a Bernoulli trial.

We can view the outcome of a single Bernoulli trial as the outcome of a toss of a coin
for which the probability of heads (success) is The probability of k successes in
n Bernoulli trials is then equal to the probability of k heads in n tosses of the coin.

Example 2.37

Suppose that a coin is tossed three times. If we assume that the tosses are independent and the
probability of heads is p, then the probability for the sequences of heads and tails is

where we used the fact that the tosses are independent. Let k be the number of heads in three
trials, then

The result in Example 2.37 is the case of the binomial probability law.

Theorem

Let k be the number of successes in n independent Bernoulli trials, then the probabilities of k are
given by the binomial probability law:

(2.35)pn1k2 = ¢n
k
≤pk11 - p2n-k for k = 0, Á , n,

n = 3

P3k = 34 = P35HHH64 = p3.

P3k = 24 = P35HHT, HTH, THH64 = 3p211 - p2, and

P3k = 14 = P35TTH, THT, HTT64 = 3p11 - p22,
P3k = 04 = P35TTT64 = 11 - p23,

P35TTT64 = P35T64P35T64P35T64 = 11 - p23
P35HTT64 = P35H64P35T64P35T64 = p11 - p22, and

P35THT64 = P35T64P35H64P35T64 = p11 - p22,
P35TTH64 = P35T64P35T64P35H64 = p11 - p22,
P35THH64 = P35T64P35H64P35H64 = p211 - p2,
P35HTH64 = P35H64P35T64P35H64 = p211 - p2,
P35HHT64 = P35H64P35H64P35T64 = p211 - p2,
P35HHH64 = P35H64P35H64P35H64 = p3,

p = P3A4.
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5See Example 2.21.

where is the probability of k successes in n trials, and

(2.36)

is the binomial coefficient.

The term n! in Eq. (2.36) is called n factorial and is defined by 
By definition 0! is equal to 1.

We now prove the above theorem. Following Example 2.34 we see that each of
the sequences with k successes and failures has the same probability, namely

Let be the number of distinct sequences that have k successes
and failures, then

(2.37)

The expression is the number of ways of picking k positions out of n for the suc-
cesses. It can be shown that5

(2.38)

The theorem follows by substituting Eq. (2.38) into Eq. (2.37).

Example 2.38

Verify that Eq. (2.35) gives the probabilities found in Example 2.37.
In Example 2.37, let “toss results in heads” correspond to a “success,” then

which are in agreement with our previous results.

You were introduced to the binomial coefficient in an introductory calculus
course when the binomial theorem was discussed:

(2.39a)1a + b2n = a
n

k=0
¢n
k
≤akbn-k.

p3132 =
3!

0! 3!
p311 - p20 = p3,

p3122 =
3!

2! 1!
p211 - p21 = 3p211 - p2, and

p3112 =
3!

1! 2!
p111 - p22 = 3p11 - p22,

p3102 =
3!

0! 3!
p011 - p23 = 11 - p23,

Nn1k2 = ¢n
k
≤ .

Nn1k2
pn1k2 = Nn1k2pk11 - p2n-k.

n - k
Nn1k2pk11 - p2n-k. n - k

122112. n! = n1n - 12Á

¢n
k
≤ =

n!

k! 1n - k2!

pn1k2
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If we let then

which is in agreement with the fact that there are distinct possible sequences of suc-
cesses and failures in n trials. If we let and in Eq. (2.39a), we then obtain

(2.39b)

which confirms that the probabilities of the binomial probabilities sum to 1.
The term n! grows very quickly with n, so numerical problems are encountered for

relatively small values of n if one attempts to compute directly using Eq. (2.35).
The following recursive formula avoids the direct evaluation of n! and thus extends the
range of n for which can be computed before encountering numerical difficulties:

(2.40)

Later in the book, we present two approximations for the binomial probabilities for
the case when n is large.

Example 2.39

Let k be the number of active (nonsilent) speakers in a group of eight noninteracting (i.e., inde-
pendent) speakers. Suppose that a speaker is active with probability 1/3. Find the probability that
the number of active speakers is greater than six.

For let denote the event “ith speaker is active.” The number of active
speakers is then the number of successes in eight Bernoulli trials with Thus the proba-
bility that more than six speakers are active is

Example 2.40 Error Correction Coding

A communication system transmits binary information over a channel that introduces random
bit errors with probability The transmitter transmits each information bit three times,
and a decoder takes a majority vote of the received bits to decide on what the transmitted bit
was. Find the probability that the receiver will make an incorrect decision.

The receiver can correct a single error, but it will make the wrong decision if the channel
introduces two or more errors. If we view each transmission as a Bernoulli trial in which a “suc-
cess” corresponds to the introduction of an error, then the probability of two or more errors in
three Bernoulli trials is

P3k Ú 24 = ¢3

2
≤1.001221.9992 + ¢3

3
≤1.00123 M 3110-62.

e = 10-3.

= .00244 + .00015 = .00259.

P3k = 74 + P3k = 84 = ¢8

7
≤ a1

3
b7a2

3
b + ¢8

8
≤ a1

3
b8

p = 1>3.
Aii = 1, Á , 8,

pn1k + 12 =
1n - k2p

1k + 1211 - p2pn1k2.
pn1k2

pn1k2

1 = a
n

k=0
¢n
k
≤pk11 - p2n-k = a

n

k=0

pn1k2,
b = 1 - pa = p

2n

2n = a
n

k=0
¢n
k
≤ = a

n

k=0

Nn1k2,
a = b = 1,
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2.6.3 The Multinomial Probability Law

The binomial probability law can be generalized to the case where we note the oc-
currence of more than one event. Let be a partition of the sample
space S of some random experiment and let The events are mutually ex-
clusive, so

Suppose that n independent repetitions of the experiment are performed. Let 

be the number of times event occurs, then the vector specifies the 

number of times each of the events occurs.The probability of the vector 
satisfies the multinomial probability law:

(2.41)

where The binomial probability law is the case of the
multinomial probability law. The derivation of the multinomial probabilities is identi-
cal to that of the binomial probabilities. We only need to note that the number of dif-
ferent sequences with instances of the events is given by
the multinomial coefficient in Eq. (2.26).

Example 2.41

A dart is thrown nine times at a target consisting of three areas. Each throw has a probability of
.2, .3, and .5 of landing in areas 1, 2, and 3, respectively. Find the probability that the dart lands
exactly three times in each of the areas.

This experiment consists of nine independent repetitions of a subexperiment that has
three possible outcomes.The probability for the number of occurrences of each outcome is given
by the multinomial probabilities with parameters and and 

Example 2.42

Suppose we pick 10 telephone numbers at random from a telephone book and note the last digit in
each of the numbers.What is the probability that we obtain each of the integers from 0 to 9 only once?

The probabilities for the number of occurrences of the integers is given by the multinomial
probabilities with parameters and if we assume that the 10 integers in
the range 0 to 9 are equiprobable.The probability of obtaining each integer once in 10 draws is then

2.6.4 The Geometric Probability Law

Consider a sequential experiment in which we repeat independent Bernoulli trials
until the occurrence of the first success. Let the outcome of this experiment be m, the
number of trials carried out until the occurrence of the first success. The sample space

10!

1! 1! Á 1!
1.1210 M 3.6110-42.

pj = 1/10M = 10, n = 10,

P313, 3, 324 =
9!

3! 3! 3!
1.2231.3231.523 = .04536.

p3 = .5:p1 = .2, p2 = .3,n = 9

B1 , B2 , Á , BMk1 , k2 , Á , kM

M = 2k1 + k2 + Á + kM = n.

P31k1 , k2 , Á , kM24 =
n!

k1! k2! Á kM!
p1
k1p2
k2 Á pM

kM ,

1k1 , Á , kM2Bj

1k1 , k2 , Á , kM2Bj

kj

p1 + p2 + Á + pM = 1.

P3Bj4 = pj .
B1 , B2 , Á , BM
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for this experiment is the set of positive integers.The probability, p(m), that m trials are
required is found by noting that this can only happen if the first trials result in
failures and the mth trial in success.6 The probability of this event is

(2.42a)

where is the event “success in ith trial.” The probability assignment specified by
Eq. (2.42a) is called the geometric probability law.

The probabilities in Eq. (2.42a) sum to 1:

(2.42b)

where and where we have used the formula for the summation of a geometric
series. The probability that more than K trials are required before a success occurs has a
simple form:

(2.43)

Example 2.43 Error Control by Retransmission

Computer A sends a message to computer B over an unreliable radio link.The message is encoded
so that B can detect when errors have been introduced into the message during transmission. If B
detects an error, it requests A to retransmit it. If the probability of a message transmission error is

what is the probability that a message needs to be transmitted more than two times?
Each transmission of a message is a Bernoulli trial with probability of success 

The Bernoulli trials are repeated until the first success (error-free transmission). The probability
that more than two transmissions are required is given by Eq. (2.43):

2.6.5 Sequences of Dependent Experiments

In this section we consider a sequence or “chain” of subexperiments in which the out-
come of a given subexperiment determines which subexperiment is performed next.
We first give a simple example of such an experiment and show how diagrams can be
used to specify the sample space.

Example 2.44

A sequential experiment involves repeatedly drawing a ball from one of two urns, noting the
number on the ball, and replacing the ball in its urn. Urn 0 contains a ball with the number 1
and two balls with the number 0, and urn 1 contains five balls with the number 1 and one ball

P3m 7 24 = q2 = 10-2.

p = 1 - q.
q = .1,

= qK.

= pqK
1

1 - q

P35m 7 K64 = p a
q

m=K+1

qm-1 = pqKa
q

j=0

qj

q = 1 - p,

a
q

m=1

p1m2 = pa
q

m=1

qm-1 = p
1

1 - q
= 1,

Ai

p1m2 = P3A1
cA2
c Á Am-1

c Am4 = 11 - p2m-1p m = 1, 2, Á ,

m - 1

6See Example 2.11 in Section 2.2 for a relative frequency interpretation of how the geometric probability law
comes about.
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with the number 0. The urn from which the first draw is made is selected at random by flipping
a fair coin. Urn 0 is used if the outcome is heads and urn 1 if the outcome is tails. Thereafter the
urn used in a subexperiment corresponds to the number on the ball selected in the previous
subexperiment.

The sample space of this experiment consists of sequences of 0s and 1s. Each possible se-
quence corresponds to a path through the “trellis” diagram shown in Fig. 2.15(a). The nodes in
the diagram denote the urn used in the nth subexperiment, and the labels in the branches denote
the outcome of a subexperiment. Thus the path 0011 corresponds to the sequence: The coin toss
was heads so the first draw was from urn 0; the outcome of the first draw was 0, so the second
draw was from urn 0; the outcome of the second draw was 1, so the third draw was from urn 1;
and the outcome from the third draw was 1, so the fourth draw is from urn 1.

Now suppose that we want to compute the probability of a particular sequence of
outcomes, say Denote this probability by Let 

and then since we have

(2.44)

Now note that in the above urn example the probability 
depends only on since the most recent outcome determines which subexperi-
ment is performed:

(2.45)P35sn6 ƒ5s06 ¨ Á ¨ 5sn-164 = P35sn6 ƒ5sn-164.
5sn-16

P35sn6 ƒ5s06 ¨ Á ¨ 5sn-164
= P35s26 ƒ5s06 ¨ 5s164P35s16 ƒ5s064P35s064.

P35s06 ¨ 5s16 ¨ 5s264 = P35s26 ƒ5s06 ¨ 5s164P35s06 ¨ 5s164
P3A ¨ B4 = P3A ƒB4P3B4B = 5s06 ¨ 5s16,

A = 5s26P35s06 ¨ 5s16 ¨ 5s264.s0 , s1 , s2 .

0

1 1 1
11

1 1 1

1
1
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h

1 2 3 4
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000
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0 0 0

(a) Each sequence of outcomes corresponds

     to a path through this trellis diagram.

(b) The probability of a sequence of outcomes is the 

      product of the probabilities along the associated path.
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FIGURE 2.15
Trellis diagram for a Markov chain.
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Therefore for the sequence of interest we have that

(2.46)

Sequential experiments that satisfy Eq. (2.45) are called Markov chains. For these
experiments, the probability of a sequence is given by

(2.47)

where we have simplified notation by omitting braces. Thus the probability of the se-
quence is given by the product of the probability of the first outcome and
the probabilities of all subsequent transitions, to to and so on. Chapter 11
deals with Markov chains.

Example 2.45

Find the probability of the sequence 0011 for the urn experiment introduced in Example 2.44.
Recall that urn 0 contains two balls with label 0 and one ball with label 1, and that urn 1

contains five balls with label 1 and one ball with label 0.We can readily compute the probabilities
of sequences of outcomes by labeling the branches in the trellis diagram with the probability of
the corresponding transition as shown in Fig. 2.15(b).Thus the probability of the sequence 0011 is
given by

where the transition probabilities are given by

and the initial probabilities are given by

If we substitute these values into the expression for P[0011], we obtain

The two-urn experiment in Examples 2.44 and 2.45 is the simplest example of the
Markov chain models that are discussed in Chapter 11. The two-urn experiment dis-
cussed here is used to model situations in which there are only two outcomes, and in
which the outcomes tend to occur in bursts. For example, the two-urn model has been
used to model the “bursty” behavior of the voice packets generated by a single speak-
er where bursts of active packets are separated by relatively long periods of silence.
The model has also been used for the sequence of black and white dots that result from
scanning a black and white image line by line.

P300114 = a5

6
b a 1

3
b a2

3
b a1

2
b =

5

54
.

P102 =
1

2
= P314.

P31 ƒ14 =
5

6
and P30 ƒ14 =

1

6
,

P31 ƒ04 =
1

3
and P30 ƒ04 =

2

3

P300114 = P31 ƒ14P31 ƒ04P30 ƒ04P304,

s2 ,s1 , s1s0

s0s0 , Á , sn

P3s0 , s1 , Á , sn4 = P3sn ƒ sn-14P3sn-1 ƒ sn-24Á P3s1 ƒ s04P3s04
s0 , s1 , Á , sn

P35s06 ¨ 5s16 ¨ 5s264 = P35s26 ƒ5s164P35s16 ƒ5s064P35s064.
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7MATLAB® and Octave are interactive computer programs for numerical computations involving matrices.
MATLAB® is a commercial product sold by The Mathworks, Inc. Octave is a free, open-source program that is
mostly compatible with MATLAB in terms of computation. Long [9] provides an introduction to Octave.

2.7 A COMPUTER METHOD FOR SYNTHESIZING RANDOMNESS: RANDOM NUMBER
GENERATORS

This section introduces the basic method for generating sequences of “random” num-
bers using a computer. Any computer simulation of a system that involves randomness
must include a method for generating sequences of random numbers. These random
numbers must satisfy long-term average properties of the processes they are simulating.
In this section we focus on the problem of generating random numbers that are “uni-
formly distributed” in the interval [0, 1]. In the next chapter we will show how these ran-
dom numbers can be used to generate numbers with arbitrary probability laws.

The first problem we must confront in generating a random number in the inter-
val [0, 1] is the fact that there are an uncountably infinite number of points in the in-
terval, but the computer is limited to representing numbers with finite precision only.
We must therefore be content with generating equiprobable numbers from some finite
set, say or By dividing these numbers by M, we obtain
numbers in the unit interval.These numbers can be made increasingly dense in the unit
interval by making M very large.

The next step involves finding a mechanism for generating random numbers. The
direct approach involves performing random experiments. For example, we can gener-
ate integers in the range 0 to by flipping a fair coin m times and replacing the
sequence of heads and tails by 0s and 1s to obtain the binary representation of an inte-
ger. Another example would involve drawing a ball from an urn containing balls num-
bered 1 to M. Computer simulations involve the generation of long sequences of
random numbers. If we were to use the above mechanisms to generate random num-
bers, we would have to perform the experiments a large number of times and store the
outcomes in computer storage for access by the simulation program. It is clear that this
approach is cumbersome and quickly becomes impractical.

2.7.1 Pseudo-Random Number Generation

The preferred approach for the computer generation of random numbers involves the
use of recursive formulas that can be implemented easily and quickly. These pseudo-

random number generators produce a sequence of numbers that appear to be random
but that in fact repeat after a very long period.The currently preferred pseudo-random
number generator is the so-called Mersenne Twister, which is based on a matrix linear
recurrence over a binary field. This algorithm can yield sequences with an extremely
long period of The Mersenne Twister generates 32-bit integers, so

in terms of our previous discussion. We obtain a sequence of numbers in
the unit interval by dividing the 32-bit integers by The sequence of such numbers
should be equally distributed over unit cubes of very high dimensionality. The
Mersenne Twister has been shown to meet this condition up to 632-dimensionality. In
addition, the algorithm is fast and efficient in terms of storage.

Software implementations of the Mersenne Twister are widely available and incor-
porated into numerical packages such as MATLAB® and Octave.7 Both MATLAB and
Octave provide a means to generate random numbers from the unit interval using the

232.
M = 232 - 1

219937 - 1.

2m - 1

51, 2, Á ,M6.50, 1, Á ,M - 16

*
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rand command. The rand (n, m) operator returns an n row by m column matrix with
elements that are random numbers from the interval [0, 1).This operator is the starting
point for generating all types of random numbers.

Example 2.46 Generation of Numbers from the Unit Interval

First, generate 6 numbers from the unit interval. Next, generate 10,000 numbers from the unit in-
terval. Plot the histogram and empirical distribution function for the sequence of 10,000 numbers.

The following command results in the generation of six numbers from the unit interval.

>rand(1,6)

ans =

Columns 1 through 6:

0.642667 0.147811 0.317465 0.512824 0.710823 0.406724

The following set of commands will generate 10000 numbers and produce the histogram
shown in Fig. 2.16.

>X-rand(10000,1); % Return result in a 10,000-element column vector X.

>K=0.005:0.01;0.995; % Produce column vector K consisting of the mid points
% for 100 bins of width 0.01 in the unit interval.

>Hist(X,K) % Produce the desired histogram in Fig 2.16.

>plot(K,empirical_cdf(K,X)) % Plot the proportion of elements in the array X less
% than or equal to k, where k is an element of K.

The empirical cdf is shown in Fig. 2.17. It is evident that the array of random numbers is uni-
formly distributed in the unit interval.

0
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FIGURE 2.16
Histogram resulting from experiment to generate 10,000 numbers in the unit interval.
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FIGURE 2.17
Empirical cdf of experiment that generates 10,000 numbers.

2.7.2 Simulation of Random Experiments

MATLAB® and Octave provide functions that are very useful in carrying out numer-
ical evaluation of probabilities involving the most common distributions. Functions
are also provided for the generation of random numbers with specific probability dis-
tributions. In this section we consider Bernoulli trials and binomial distributions. In
Chapter 3 we consider experiments with discrete sample spaces.

Example 2.47 Bernoulli Trials and Binomial Probabilities

First, generate the outcomes of eight Bernoulli trials. Next, generate the outcomes of 100 repeti-
tions of a random experiment that counts the number of successes in 16 Bernoulli trials with
probability of success Plot the histogram of the outcomes in the 100 experiments and compare 

to the binomial probabilities with and 
The following command will generate the outcomes of eight Bernoulli trials, as shown by

the answer that follows.

>X=rand(1,8)<0.5; % Generate 1 row of Bernoulli trials with 

X =

0 1 1 0 0 0 1 1

If the number produced by rand for a given Bernoulli trial is less than then the outcome
of the Bernoulli trial is 1.

p = 0.5,

p = 0.5

p = 1/2.n = 16

1�2 .
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Next we show the set of commands to generate the outcomes of 100 repetitions of random
experiments where each involves 16 Bernoulli trials.

>X=rand(100,16)<0.5; % Generate 100 rows of 16 Bernoulli trials with
%

>Y=sum(X,2); % Add the results of each row to obtain the number of
% successes in each experiment. Y contains the 100
% outcomes.

>K=0:16;

>Z=empirical_pdf(K,Y));  % Find the relative frequencies of the outcomes in Y.

>Bar(K,Z) % Produce a bar graph of the relative frequencies.

>hold on % Retains the graph for next command.

>stem(K,binomial_pdf(K,16,0.5)) % Plot the binomial probabilities along
% with the corresponding relative frequencies.

Figure 2.18 shows that there is good agreement between the relative frequencies and
the binomial probabilities.

2.8 FINE POINTS: EVENT CLASSES8

If the sample space S is discrete, then the event class can consist of all subsets of S.
There are situations where we may wish or are compelled to let the event class be a
smaller class of subsets of S. In these situations, only the subsets that belong to this
class are considered events. In this section we explain how these situations arise.

Let be the class of events of interest in a random experiment. It is reasonable to
expect that any set operation on events in will produce a set that is also an event in 
We can then ask any question regarding events of the random experiment, express it
using set operations, and obtain an event that is in Mathematically, we require that 
be a field.

A collection of sets is called a field if it satisfies the following conditions:

(i) (2.48a)

(ii) (2.48b)

(iii) (2.48c)

Using DeMorgan’s rule we can show that (ii) and (iii) imply that if and
then Conditions (ii) and (iii) then imply that any finite union or in-

tersection of events in will result in an event that is also in 

Example 2.48

Let Find the field generated by set operations on the class consisting of elementary
events of S : C = 55H6, 5T66.
S = 5T, H6.

F.F

A ¨ B HF.B HF,
A HF

if A HF then Ac HF.

if A HF and B HF, then A ´ B HF

� HF

F

CC.

C.C

C

F

*

p = 0.5.

8The “Fine Points” sections elaborate on concepts and distinctions that are not required in an introductory
course. The material in these sections is not necessarily more mathematical, but rather is not usually covered
in a first course in probability.
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7. W. Feller, An Introduction to Probability Theory and Its Applications, 3d ed.,
Wiley, New York, 1968.

8. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Dover Publica-
tions, New York, 1970.

9. P. J. G. Long, “Introduction to Octave,” University of Cambridge, September
2005, available online.

10. A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill,
New York, 2000.

PROBLEMS

Section 2.1: Specifying Random Experiments 

2.1. The (loose) minute hand in a clock is spun hard and the hour at which the hand comes to
rest is noted.

(a) What is the sample space?

(b) Find the sets corresponding to the events:
and

(c) Find the events:

2.2. A die is tossed twice and the number of dots facing up in each toss is counted and noted
in the order of occurrence.

(a) Find the sample space.

(b) Find the set A corresponding to the event “number of dots in first toss is not less than
number of dots in second toss.”

(c) Find the set B corresponding to the event “number of dots in first toss is 6.”

(d) Does A imply B or does B imply A?

(e) Find and describe this event in words.

(f) Let C correspond to the event “number of dots in dice differs by 2.” Find 

2.3. Two dice are tossed and the magnitude of the difference in the number of dots facing up
in the two dice is noted.

(a) Find the sample space.

(b) Find the set A corresponding to the event “magnitude of difference is 3.”

(c) Express each of the elementary events in this experiment as the union of elementary
events from Problem 2.2.

2.4. A binary communication system transmits a signal X that is either a voltage signal
or a voltage signal. A malicious channel reduces the magnitude of the received
signal by the number of heads it counts in two tosses of a coin. Let Y be the resulting
signal.

(a) Find the sample space.

(b) Find the set of outcomes corresponding to the event “transmitted signal was defi-
nitely ”

(c) Describe in words the event corresponding to the outcome 

2.5. A desk drawer contains six pens, four of which are dry.

(a) The pens are selected at random one by one until a good pen is found. The sequence
of test results is noted. What is the sample space?

Y = 0.

+2.

-2
+2

A ¨ C.

A ¨ Bc

A ¨ B ¨ D, Ac ¨ B, A ´ 1B ¨ Dc2, 1A ´ B2 ¨ Dc.
D = “hand is in an odd hour.”is between 2nd and 8th hours inclusive”;

A = “hand is in first 4 hours”; B = “hand
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(b) Suppose that only the number, and not the sequence, of pens tested in part a is noted.
Specify the sample space.

(c) Suppose that the pens are selected one by one and tested until both good pens have
been identified, and the sequence of test results is noted. What is the sample space?

(d) Specify the sample space in part c if only the number of pens tested is noted.

2.6. Three friends (Al, Bob, and Chris) put their names in a hat and each draws a name from
the hat. (Assume Al picks first, then Bob, then Chris.)

(a) Find the sample space.

(b) Find the sets A, B, and C that correspond to the events “Al draws his name,” “Bob
draws his name,” and “Chris draws his name.”

(c) Find the set corresponding to the event, “no one draws his own name.”

(d) Find the set corresponding to the event, “everyone draws his own name.”

(e) Find the set corresponding to the event, “one or more draws his own name.”

2.7. Let M be the number of message transmissions in Experiment E6.

(a) What is the set A corresponding to the event “M is even”?

(b) What is the set B corresponding to the event “M is a multiple of 3”?

(c) What is the set C corresponding to the event “6 or fewer transmissions are re-
quired”?

(d) Find the sets and describe the corresponding events in
words.

2.8. A number U is selected at random from the unit interval. Let the events A and B be:
and Find the

events

2.9. The sample space of an experiment is the real line. Let the events A and B correspond to
the following subsets of the real line: and where Find
an expression for the event in terms of A and B. Show that and

2.10. Use Venn diagrams to verify the set identities given in Eqs. (2.2) and (2.3). You will need
to use different colors or different shadings to denote the various regions clearly.

2.11. Show that:

(a) If event A implies B, and B implies C, then A implies C.

(b) If event A implies B, then implies 

2.12. Show that if and then 

2.13. Let A and B be events. Find an expression for the event “exactly one of the events A and
B occurs.” Draw a Venn diagram for this event.

2.14. Let A, B, and C be events. Find expressions for the following events:

(a) Exactly one of the three events occurs.

(b) Exactly two of the events occur.

(c) One or more of the events occur.

(d) Two or more of the events occur.

(e) None of the events occur.

2.15. Figure P2.1 shows three systems of three components, and Figure P2.1(a) is a
“series” system in which the system is functioning only if all three components are func-
tioning. Figure 2.1(b) is a “parallel” system in which the system is functioning as long as
at least one of the three components is functioning. Figure 2.1(c) is a “two-out-of-three”

C3 .C1 , C2 ,

A = B.A ¨ B = AA ´ B = A

Ac.Bc

A ¨ C = �.
B = A ´ CC = 1r, s]

r … s.B = 1-q , s4,A = 1-q , r4
A ¨ B, Ac ¨ B, A ´ B.

B = “1 - U is less than 1/2.”A = “U differs from 1/2 by more than 1/4”

A ¨ B, A - B, A ¨ B ¨ C
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C1 C2

C1

C2

C3

C1

C1

C2

C2

C3

C3

(a) Series system (b) Parallel system (c) Two-out-of-three system

C3

FIGURE P2.1

system in which the system is functioning as long as at least two components are func-
tioning. Let be the event “component k is functioning.” For each of the three system
configurations, express the event “system is functioning” in terms of the events Ak .

Ak

A11 A12

A21 A22

A31 A32

FIGURE P2.2

2.16. A system has two key subsystems. The system is “up” if both of its subsystems are func-
tioning. Triple redundant systems are configured to provide high reliability. The overall
system is operational as long as one of three systems is “up.” Let correspond to the
event “unit k in system j is functioning,” for and 

(a) Write an expression for the event “overall system is up.”

(b) Explain why the above problem is equivalent to the problem of having a connection
in the network of switches shown in Fig. P2.2.

k = 1, 2.j = 1, 2, 3
Ajk

2.17. In a specified 6-AM-to-6-AM 24-hour period, a student wakes up at time and goes to
sleep at some later time 

(a) Find the sample space and sketch it on the x-y plane if the outcome of this experi-
ment consists of the pair 

(b) Specify the set A and sketch the region on the plane corresponding to the event “stu-
dent is asleep at noon.”

(c) Specify the set B and sketch the region on the plane corresponding to the event “stu-
dent sleeps through breakfast (7–9 AM).”

(d) Sketch the region corresponding to and describe the corresponding event in
words.

A ¨ B

1t1 , t22.
t2 .

t1
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2.18. A road crosses a railroad track at the top of a steep hill.The train cannot stop for oncoming
cars and cars, cannot see the train until it is too late. Suppose a train begins crossing the road
at time t1 and that the car begins crossing the track at time t2, where 0 < t1 < T and 0 < t2 < T.

(a) Find the sample space of this experiment.

(b) Suppose that it takes the train d1 seconds to cross the road and it takes the car d2 sec-
onds to cross the track. Find the set that corresponds to a collision taking place.

(c) Find the set that corresponds to a collision is missed by 1 second or less.

2.19. A random experiment has sample space S = { 1, 0, +1}.

(a) Find all the subsets of S.

(b) The outcome of a random experiment consists of pairs of outcomes from S where the
elements of the pair cannot be equal. Find the sample space S of this experiment.
How many subsets does S have?

2.20. (a) A coin is tossed twice and the sequence of heads and tails is noted. Let S be the sam-
ple space of this experiment. Find all subsets of S.

(b) A coin is tossed twice and the number of heads is noted. Let S? be the sample space
of this experiment. Find all subsets of S .

(c) Consider parts a and b if the coin is tossed 10 times. How many subsets do S and
S have? How many bits are needed to assign a binary number to each possible
subset?

Section 2.2: The Axioms of Probability

2.21. A die is tossed and the number of dots facing up is noted.

(a) Find the probability of the elementary events under the assumption that all faces of
the die are equally likely to be facing up after a toss.

(b) Find the probability of the events:

(c) Find the probability of 

2.22. In Problem 2.2, a die is tossed twice and the number of dots facing up in each toss is
counted and noted in the order of occurrence.

(a) Find the probabilities of the elementary events.

(b) Find the probabilities of events and defined in Problem 2.2.

2.23. A random experiment has sample space Suppose that 
and . Use the axioms of probability to

find the probabilities of the elementary events.

2.24. Find the probabilities of the following events in terms of P[A], P[B], and 

(a) A occurs and B does not occur; B occurs and A does not occur.

(b) Exactly one of A or B occurs.

(c) Neither A nor B occur.

2.25. Let the events A and B have and Use Venn dia-
grams to find 

2.26. Show that

2.27. Use the argument from Problem 2.26 to prove Corollary 6 by induction.

+ P3A ¨ B ¨ C4.
P3A ´ B ´ C4 = P3A4 + P3B4 + P3C4 - P3A ¨ B4 - P3A ¨ C4 - P3B ¨ C4

P3A ¨ B], P3Ac ¨ Bc4, P3Ac ´ Bc4, P3A ¨ Bc4, P3Ac ´ B4.
P3A ´ B4 = z.P3A4 = x, P3B4 = y,

P3A ¨ B4:
P35d64 = 1/8, P35c, d64 = 3/8P35b, c64 = 6/8,

P35c, d64 = 3/8,S = 5a, b, c, d6.
A ¨ CA, B, C, A ¨ Bc,

A ´ B, A ¨ B, Ac.

of dots6.
A = 5more than 3 dots6; B = 5odd number

¿

¿

¿
¿

-
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2.28. A hexadecimal character consists of a group of three bits. Let be the event “ith bit in a
character is a 1.”

(a) Find the probabilities for the following events: and
Assume that the values of bits are determined by tosses of a fair coin.

(b) Repeat part a if the coin is biased.

2.29. Let M be the number of message transmissions in Problem 2.7. Find the probabilities of
the events . Assume the probability of successful
transmission is 1/2.

2.30. Use Corollary 7 to prove the following:

(a)

(b)

(c)

The second expression is called the union bound.

2.31. Let p be the probability that a single character appears incorrectly in this book. Use the
union bound for the probability of there being any errors in a page with n characters.

2.32. A die is tossed and the number of dots facing up is noted.

(a) Find the probability of the elementary events if faces with an even number of dots
are twice as likely to come up as faces with an odd number.

(b) Repeat parts b and c of Problem 2.21.

2.33. Consider Problem 2.1 where the minute hand in a clock is spun. Suppose that we now
note the minute at which the hand comes to rest.

(a) Suppose that the minute hand is very loose so the hand is equally likely to come to
rest anywhere in the clock. What are the probabilities of the elementary events?

(b) Now suppose that the minute hand is somewhat sticky and so the hand is as like-
ly to land in the second minute than in the first, 1/3 as likely to land in the third
minute as in the first, and so on.What are the probabilities of the elementary events?

(c) Now suppose that the minute hand is very sticky and so the hand is as likely to
land in the second minute than in the first, as likely to land in the third minute as
in the second, and so on. What are the probabilities of the elementary events?

(d) Compare the probabilities that the hand lands in the last minute in parts a, b, and c.

2.34. A number x is selected at random in the interval Let the events 
and

(a) Find the probabilities of and 

(b) Find the probabilities of and first, by directly evaluating
the sets and then their probabilities, and second, by using the appropriate axioms or
corollaries.

2.35. A number x is selected at random in the interval Numbers from the subinterval
[0, 2] occur half as frequently as those from 

(a) Find the probability assignment for an interval completely within complete-
ly within [0, 2]; and partly in each of the above intervals.

(b) Repeat Problem 2.34 with this probability assignment.

3-1, 02;
3-1, 02.

3-1, 24.

A ´ B ´ C,A ´ B, A ´ C,

A ¨ C.A, B, A ¨ B,

C = 5x 7 0.756.B = 5 ƒx - 0.5 ƒ 6 0.56,
A = 5x 6 06,3-1, 24.

1/2
1/2

1/2

PBtn
k=1

AkR Ú 1 - a
n

k=1

P3Akc4.

PBdn
k=1

AkR … a
n

k=1

P3Ak4.
P3A ´ B ´ C4 … P3A4 + P3B4 + P3C4.

A, B, C, Cc, A ¨ B, A - B, A ¨ B ¨ C

A1 ´ A2 ´ A3 .
A1 , A1 ¨ A3 , A1 ¨ A2 ¨ A3

Ai
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2.36. The lifetime of a device behaves according to the probability law for 
Let A be the event “lifetime is greater than 4,” and B the event “lifetime is greater than 8.”

(a) Find the probability of and 

(b) Find the probability of the event “lifetime is greater than 6 but less than or equal to 12.”

2.37. Consider an experiment for which the sample space is the real line. A probability law as-
signs probabilities to subsets of the form 

(a) Show that we must have when 

(b) Find an expression for P[(r, s]] in terms of and 

(c) Find an expression for 

2.38. Two numbers (x, y) are selected at random from the interval [0, 1].

(a) Find the probability that the pair of numbers are inside the unit circle.

(b) Find the probability that 

Section 2.3: Computing Probabilities Using Counting Methods

2.39. The combination to a lock is given by three numbers from the set Find the
number of combinations possible.

2.40. How many seven-digit telephone numbers are possible if the first number is not allowed
to be 0 or 1?

2.41. A pair of dice is tossed, a coin is flipped twice, and a card is selected at random from a
deck of 52 distinct cards. Find the number of possible outcomes.

2.42. A lock has two buttons: a “0” button and a “1” button. To open a door you need to push
the buttons according to a preset 8-bit sequence. How many sequences are there? Sup-
pose you press an arbitrary 8-bit sequence; what is the probability that the door opens? If
the first try does not succeed in opening the door, you try another number; what is the
probability of success?

2.43. A Web site requires that users create a password with the following specifications:
• Length of 8 to 10 characters
• Includes at least one special character 

• No spaces
• May contain numbers (0–9), lower and upper case letters (a–z, A–Z)
• Is case-sensitive.

How many passwords are there? How long would it take to try all passwords if a pass-
word can be tested in 1 microsecond?

2.44. A multiple choice test has 10 questions with 3 choices each. How many ways are there to
answer the test? What is the probability that two papers have the same answers?

2.45. A student has five different t-shirts and three pairs of jeans (“brand new,” “broken in,”
and “perfect”).

(a) How many days can the student dress without repeating the combination of jeans
and t-shirt?

(b) How many days can the student dress without repeating the combination of jeans
and t-shirt and without wearing the same t-shirt on two consecutive days?

2.46. Ordering a “deluxe” pizza means you have four choices from 15 available toppings. How
many combinations are possible if toppings can be repeated? If they cannot be repeated?
Assume that the order in which the toppings are selected does not matter.

2.47. A lecture room has 60 seats. In how many ways can 45 students occupy the seats in the
room?

O ,' , -, 3, 4, /, ?6
5!, @, #, $, %, ¿, &, *, 1, 2, + , = , 5, 6, ƒ , 6 , 7 ,

50, 1, Á , 596.
*

y 7 2x.

P31s, q24.
P31-q , s44P31-q , r44
r 6 s.P31-q , r44 … P31-q , s44

1-q , r4.

A ´ B.A ¨ B,

t 7 1.P31t, q24 = 1/t
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2.48. List all possible permutations of two distinct objects; three distinct objects; four distinct
objects. Verify that the number is n!.

2.49. A toddler pulls three volumes of an encyclopedia from a bookshelf and, after being scold-
ed, places them back in random order. What is the probability that the books are in the
correct order?

2.50. Five balls are placed at random in five buckets. What is the probability that each bucket
has a ball?

2.51. List all possible combinations of two objects from two distinct objects; three distinct ob-
jects; four distinct objects. Verify that the number is given by the binomial coefficient.

2.52. A dinner party is attended by four men and four women. How many unique ways can the
eight people sit around the table? How many unique ways can the people sit around the
table with men and women alternating seats?

2.53. A hot dog vendor provides onions, relish, mustard, ketchup, Dijon ketchup, and hot pep-
pers for your hot dog. How many variations of hot dogs are possible using one condi-
ment? Two condiments? None, some, or all of the condiments?

2.54. A lot of 100 items contains k defective items. M items are chosen at random and tested.

(a) What is the probability that m are found defective? This is called the hypergeometric

distribution.

(b) A lot is accepted if 1 or fewer of the M items are defective. What is the probability
that the lot is accepted?

2.55. A park has N raccoons of which eight were previously captured and tagged. Suppose that
20 raccoons are captured. Find the probability that four of these are found to be tagged.
Denote this probability, which depends on N, by p(N). Find the value of N that maximizes
this probability. Hint: Compare the ratio to unity.

2.56. A lot of 50 items has 40 good items and 10 bad items.

(a) Suppose we test five samples from the lot, with replacement. Let X be the number of
defective items in the sample. Find 

(b) Suppose we test five samples from the lot, without replacement. Let Y be the number
of defective items in the sample. Find 

2.57. How many distinct permutations are there of four red balls, two white balls, and three
black balls?

2.58. A hockey team has 6 forwards, 4 defensemen, and 2 goalies.At any time, 3 forwards, 2 de-
fensemen, and 1 goalie can be on the ice. How many combinations of players can a coach
put on the ice?

2.59. Find the probability that in a class of 28 students exactly four were born in each of the
seven days of the week.

2.60. Show that

2.61. In this problem we derive the multinomial coefficient. Suppose we partition a set of n dis-
tinct objects into J subsets of size respectively, where 
and

(a) Let denote the number of possible outcomes when the ith subset is selected.
Show that

N1 = ¢ n
k1
≤ ,N2 = ¢n - k1

k2
≤ , Á ,NJ-1 = ¢n - k1 - Á - kJ-2

kJ-1
≤ .

Ni

k1 + k2 + Á + kJ = n.
ki Ú 0,k1 , Á , kJ ,B1 , B2 , Á , BJ

¢n
k
≤ = ¢ n

n - k
≤

P3Y = k4.
P3X = k4.

p1N2/p1N - 12
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(b) Show that the number of partitions is then:

Section 2.4: Conditional Probability

2.62. A die is tossed twice and the number of dots facing up is counted and noted in the order
of occurrence. Let A be the event “number of dots in first toss is not less than number of
dots in second toss,” and let B be the event “number of dots in first toss is 6.” Find 
and

2.63. Use conditional probabilities and tree diagrams to find the probabilities for the elemen-
tary events in the random experiments defined in parts a to d of Problem 2.5.

2.64. In Problem 2.6 (name in hat), find and 

2.65. In Problem 2.29 (message transmissions), find and 

2.66. In Problem 2.8 (unit interval), find and 

2.67. In Problem 2.36 (device lifetime), find and 

2.68. In Problem 2.33, let and 

Find for parts a, b, and c.

2.69. A number x is selected at random in the interval Let the events 

and Find 

2.70. In Problem 2.36, let A be the event “lifetime is greater than t,” and B the event “lifetime
is greater than 2t.” Find Does the answer depend on t? Comment.

2.71. Find the probability that two or more students in a class of 20 students have the same
birthday. Hint: Use Corollary 1. How big should the class be so that the probability that
two or more students have the same birthday is 

2.72. A cryptographic hash takes a message as input and produces a fixed-length string as out-
put, called the digital fingerprint. A brute force attack involves computing the hash for a
large number of messages until a pair of distinct messages with the same hash is found.
Find the number of attempts required so that the probability of obtaining a match is 
How many attempts are required to find a matching pair if the digital fingerprint is 64 bits
long? 128 bits long?

2.73. (a) Find if if if 

(b) Show that if then 

2.74. Show that satisfies the axioms of probability.

(i)

(ii)

(iii) If then 

2.75. Show that 

2.76. In each lot of 100 items, two items are tested, and the lot is rejected if either of the tested
items is found defective.

(a) Find the probability that a lot with k defective items is accepted.

(b) Suppose that when the production process malfunctions, 50 out of 100 items are de-
fective. In order to identify when the process is malfunctioning, how many items
should be tested so that the probability that one or more items are found defective is
at least 99%?

P3A ¨ B ¨ C4 = P3A ƒB ¨ C4P3B ƒC4P3C4.
P3A ´ C ƒB4 = P3A ƒB4 + P3C ƒB4.A ¨ C = �,

P3S ƒB4 = 1

0 … P3A ƒB4 … 1

P3A ƒB4
P3B ƒA4 7 P3B4.P3A ƒB4 7 P3A4,
A) B.A( B;A ¨ B = �;P3A ƒB4

1/2.

1/2?

P3B ƒA4.
P3A ƒCc4, P3B ƒCc4.P3A ƒB4, P3B ƒC4,C = 5x 7 0.756.B = 5 ƒx - 0.5 ƒ 6 0.56,
A = 5x 6 06,3-1, 24.

P3B ƒA45 minutes6.
B = 5hand rests in lastA = 5hand rests in last 10 minutes6

P3A ƒB4.P3B ƒA4
P3A ƒB4.P3B ƒA4

P3A ƒB4.P3B ƒA4
P3C ƒA ¨ B4.P3B ¨ C ƒA4

P3B ƒA4.
P3A ƒB4

N1N2 ÁNJ-1 =
n!

k1! k2! Á kJ!
.
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2.77. A nonsymmetric binary communications channel is shown in Fig. P2.3. Assume the input
is “0” with probability p and “1” with probability 

(a) Find the probability that the output is 0.

(b) Find the probability that the input was 0 given that the output is 1. Find the
probability that the input is 1 given that the output is 1. Which input is more
probable?

1 - p.

2.78. The transmitter in Problem 2.4 is equally likely to send as The mali-
cious channel counts the number of heads in two tosses of a fair coin to decide by how
much to reduce the magnitude of the input to produce the output Y.

(a) Use a tree diagram to find the set of possible input-output pairs.

(b) Find the probabilities of the input-output pairs.

(c) Find the probabilities of the output values.

(d) Find the probability that the input was given that 

2.79. One of two coins is selected at random and tossed three times. The first coin comes up
heads with probability and the second coin with probability 

(a) What is the probability that the number of heads is k?

(b) Find the probability that coin 1 was tossed given that k heads were observed, for

(c) In part b, which coin is more probable when k heads have been observed?

(d) Generalize the solution in part b to the case where the selected coin is tossed m times.
In particular, find a threshold value T such that when heads are observed, coin
1 is more probable, and when are observed, coin 2 is more probable.

(e) Suppose that (that is, coin 2 is two-headed) and What is the
probability that we do not determine with certainty whether the coin is 1 or 2?

2.80. A computer manufacturer uses chips from three sources. Chips from sources A, B, and C
are defective with probabilities .005, .001, and .010, respectively. If a randomly selected
chip is found to be defective, find the probability that the manufacturer was A; that the
manufacturer was C. Assume that the proportions of chips from A, B, and C are 0.5, 0.1,
and 0.4, respectively.

2.81. A ternary communication system is shown in Fig. P2.4. Suppose that input symbols 0, 1,
and 2 occur with probability 1/3 respectively.

(a) Find the probabilities of the output symbols.

(b) Suppose that a 1 is observed at the output. What is the probability that the input was
0? 1? 2?

0 6 p1 6 1.p2 = 1

k 6 T
k 7 T

k = 0, 1, 2, 3.

p2 = 2/3 7 p1 = 1/3.p1

Y = k.X = +2

X = -2.X = +2
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Section 2.5: Independence of Events

2.82. Let and Assume the outcomes are
equiprobable. Are A, B, and C independent events?

2.83. Let U be selected at random from the unit interval. Let 
and Are any of these events independent?

2.84. Alice and Mary practice free throws at the basketball court after school.Alice makes free
throws with probability and Mary makes them with probability Find the probabil-
ity of the following outcomes when Alice and Mary each take one shot: Alice scores a
basket; Either Alice or Mary scores a basket; both score; both miss.

2.85. Show that if A and B are independent events, then the pairs A and and B, and
and are also independent.

2.86. Show that events A and B are independent if 

2.87. Let A, B, and C be events with probabilities P[A], P[B], and P[C].

(a) Find if A and B are independent.

(b) Find if A and B are mutually exclusive.

(c) Find if A, B, and C are independent.

(d) Find if A, B, and C are pairwise mutually exclusive.

2.88. An experiment consists of picking one of two urns at random and then selecting a ball
from the urn and noting its color (black or white). Let A be the event “urn 1 is selected”
and B the event “a black ball is observed.” Under what conditions are A and B inde-
pendent?

2.89. Find the probabilities in Problem 2.14 assuming that events A, B, and C are independent.

2.90. Find the probabilities that the three types of systems are “up” in Problem 2.15. As-
sume that all units in the system fail independently and that a type k unit fails with
probability

2.91. Find the probabilities that the system is “up” in Problem 2.16.Assume that all units in the
system fail independently and that a type k unit fails with probability 

2.92. A random experiment is repeated a large number of times and the occurrence of events
A and B is noted. How would you test whether events A and B are independent?

2.93. Consider a very long sequence of hexadecimal characters. How would you test whether
the relative frequencies of the four bits in the hex characters are consistent with indepen-
dent tosses of coin?

2.94. Compute the probability of the system in Example 2.35 being “up” when a second con-
troller is added to the system.

pk .

pk .

P3A ´ B ´ C4
P3A ´ B ´ C4
P3A ´ B4
P3A ´ B4

P3A ƒB4 = P3A ƒBc4.
Bc

AcBc, Ac

pm .pa

C = 51/2 6 U 6 16.B = 51/4 6 U 6 3/46,
A = 50 6 U 6 1/26,

A = 51, 26, B = 51, 36, C = 51, 46.S = 51, 2, 3, 46
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2.95. In the binary communication system in Example 2.26, find the value of for which the
input of the channel is independent of the output of the channel. Can such a channel be
used to transmit information?

2.96. In the ternary communication system in Problem 2.81, is there a choice of for which the
input of the channel is independent of the output of the channel?

Section 2.6: Sequential Experiments

2.97. A block of 100 bits is transmitted over a binary communication channel with probability
of bit error 

(a) If the block has 1 or fewer errors then the receiver accepts the block. Find the prob-
ability that the block is accepted.

(b) If the block has more than 1 error, then the block is retransmitted. Find the probabil-
ity that M retransmissions are required.

2.98. A fraction p of items from a certain production line is defective.

(a) What is the probability that there is more than one defective item in a batch of n
items?

(b) During normal production but when production malfunctions 
Find the size of a batch that should be tested so that if any items are found defective
we are 99% sure that there is a production malfunction.

2.99. A student needs eight chips of a certain type to build a circuit. It is known that 5% of
these chips are defective. How many chips should he buy for there to be a greater than
90% probability of having enough chips for the circuit?

2.100. Each of n terminals broadcasts a message in a given time slot with probability p.

(a) Find the probability that exactly one terminal transmits so the message is received by
all terminals without collision.

(b) Find the value of p that maximizes the probability of successful transmission in part a.

(c) Find the asymptotic value of the probability of successful transmission as n becomes
large.

2.101. A system contains eight chips. The lifetime of each chip has a Weibull probability law:
with parameters and for Find the probability that at
least two chips are functioning after seconds.

2.102. A machine makes errors in a certain operation with probability p. There are two types of
errors. The fraction of errors that are type 1 is and type 2 is 

(a) What is the probability of k errors in n operations?

(b) What is the probability of type 1 errors in n operations?

(c) What is the probability of type 2 errors in n operations?

(d) What is the joint probability of and type 1 and 2 errors, respectively, in n opera-
tions?

2.103. Three types of packets arrive at a router port. Ten percent of the packets are “expedited
forwarding (EF),” 30 percent are “assured forwarding (AF),” and 60 percent are “best ef-
fort (BE).”

(a) Find the probability that k of N packets are not expedited forwarding.

(b) Suppose that packets arrive one at a time. Find the probability that k packets are
received before an expedited forwarding packet arrives.

(c) Find the probability that out of 20 packets, 4 are EF packets, 6 are AF packets, and 10
are BE.

k2k1

k2

k1

1 - a.a,

2/l
t Ú 0.k = 2: P31t, q24 = e-1lt2kl

p = 10-1.p = 10-3

p = 10-2.

e

e
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2.104. A run-length coder segments a binary information sequence into strings that consist of
either a “run” of k “zeros” punctuated by a “one”, for or a string of m
“zeros.” The case is:m = 3

k = 0, Á ,m - 1,

Suppose that the information is produced by a sequence of Bernoulli trials with

(a) Find the probability of run-length k in the case.

(b) Find the probability of run-length k for general m.

2.105. The amount of time cars are parked in a parking lot follows a geometric probability law
with The charge for parking in the lot is $1 for each half-hour or less.

(a) Find the probability that a car pays k dollars.

(b) Suppose that there is a maximum charge of $6. Find the probability that a car pays k
dollars.

2.106. A biased coin is tossed repeatedly until heads has come up three times. Find the proba-
bility that k tosses are required. Hint: Show that 
where and 

2.107. An urn initially contains two black balls and two white balls. The following experiment is
repeated indefinitely: A ball is drawn from the urn; if the color of the ball is the same as
the majority of balls remaining in the urn, then the ball is put back in the urn. Otherwise
the ball is left out.

(a) Draw the trellis diagram for this experiment and label the branches by the transition
probabilities.

(b) Find the probabilities for all sequences of outcomes of length 2 and length 3.

(c) Find the probability that the urn contains no black balls after three draws; no white
balls after three draws.

(d) Find the probability that the urn contains two black balls after n trials; two white
balls after n trials.

2.108. In Example 2.45, let and be the probabilities that urn 0 or urn 1 is used in the
nth subexperiment.

(a) Find and 

(b) Express and in terms of and 

(c) Evaluate and for 

(d) Find the solution to the recursion in part b with the initial conditions given in part a.

(e) What are the urn probabilities as n approaches infinity?

Section 2.7: Synthesizing Randomness: Number Generators

2.109. An urn experiment is to be used to simulate a random experiment with sample
space and probabilities and

How many balls should the urn contain? Generalizep5 = 1 - 1p1 + p2 + p3 + p42.
p1 = 1/3, p2 = 1/5, p3 = 1/4, p4 = 1/7,S = 51, 2, 3, 4, 56

*

n = 2, 3, 4.p11n2p01n2
p11n2.p01n2p11n + 12p01n + 12

p1112.p0112
p11n2p01n2

B = 5“2 heads occurs in k - 1 tosses”6.A = 5“kth toss is heads”6
5“k tosses are required”6 = A ¨ B,

p = 1/2.

m = 3

P3“one”4 = P3success4 = p.

String Run-length k

1 0

01 1

001 2

000 3
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the result to show that an urn experiment can be used to simulate any random ex-
periment with finite sample space and with probabilities given by rational numbers.

2.110. Suppose we are interested in using tosses of a fair coin to simulate a random experiment
in which there are six equally likely outcomes, where The following
version of the “rejection method” is proposed:

1. Toss a fair coin three times and obtain a binary number by identifying heads with
zero and tails with one.

2. If the outcome of the coin tosses in step 1 is the binary representation for a num-
ber in S, output the number. Otherwise, return to step 1.

(a) Find the probability that a number is produced in step 2.

(b) Show that the numbers that are produced in step 2 are equiprobable.

(c) Generalize the above algorithm to show how coin tossing can be used to simulate
any random urn experiment.

2.111. Use the rand function in Octave to generate 1000 pairs of numbers in the unit square.
Plot an x-y scattergram to confirm that the resulting points are uniformly distributed in
the unit square.

2.112. Apply the rejection method introduced above to generate points that are uniformly dis-
tributed in the portion of the unit square. Use the rand function to generate a pair
of numbers in the unit square. If accept the number. If not, select another pair.
Plot an x-y scattergram for the pair of accepted numbers and confirm that the resulting
points are uniformly distributed in the region of the unit square.

2.113. The sample mean-squared value of the numerical outcomes of a se-
ries of n repetitions of an experiment is defined by

(a) What would you expect this expression to converge to as the number of repetitions n
becomes very large?

(b) Find a recursion formula for similar to the one found in Problem 1.9.

2.114. The sample variance is defined as the mean-squared value of the variation of the samples
about the sample mean

Note that the also depends on the sample values. (It is customary to replace the n in
the denominator with for technical reasons that will be discussed in Chapter 8. For
now we will use the above definition.)

(a) Show that the sample variance satisfies the following expression:

(b) Show that the sample variance satisfies the following recursion formula:

with 8V290 = 0.

8V29n = a1 -
1

n
b8V29n-1 +

1

n
a1 -

1

n
b1X1n2 - 8X9n-122,

8V29n = 8X29n - 8X9n2.

n - 1
8X9n

8V29n =
1

na
n

j=1

5X1j2 - 8X9n62.

8X29n

8X29n =
1

na
n

j=1

X21j2.

X112,X122, ÁX1n2
x 7 y

x 7 y,
x 7 y

S = 50, 1, 2, 3, 4, 56.
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2.115. Suppose you have a program to generate a sequence of numbers that is uniformly dis-
tributed in [0, 1]. Let 

(a) Find and so that is uniformly distributed in the interval [a, b].

(b) Let and Use Octave to generate and to compute the sample mean
and sample variance in 1000 repetitions. Compare the sample mean and sample vari-
ance to and respectively.

2.116. Use Octave to simulate 100 repetitions of the random experiment where a coin is tossed
16 times and the number of heads is counted.

(a) Confirm that your results are similar to those in Figure 2.18.

(b) Rerun the experiment with and Are the results as expected?

Section 2.8: Fine Points: Event Classes

2.117. In Example 2.49, Homer maps the outcomes from Lisa’s sample space into
a smaller sample space and 

Define the inverse image events as follows:

Let A and B be events in Homer’s sample space.

(a) Show that 

(b) Show that 

(c) Show that 

(d) Show that the results in parts a, b, and c hold for a general mapping f from a sample
space S to a set 

2.118. Let f be a mapping from a sample space S to a finite set 

(a) Show that the set of inverse images forms a partition of S.

(b) Show that any event B of can be related to a union of 

2.119. Let A be any subset of S . Show that the class of sets is a field.

Section 2.9: Fine Points: Probabilities of Sequences of Events

2.120. Find the countable union of the following sequences of events:

(a) .

(b) .

(c)

2.121. Find the countable intersection of the following sequences of events:

(a)

(b) .

(c)

2.122. (a) Show that the Borel field can be generated from the complements and countable
intersections and unions of open sets (a, b).

(b) Suggest other classes of sets that can generate the Borel field.

2.123. Find expressions for the probabilities of the events in Problem 2.120.

2.124. Find expressions for the probabilities of the events in Problem 2.121.

Cn = 1a - 1/n, b4.
Bn = 3a, b + 1/n2
An = 1a - 1/n, b + 1/n2.

Cn = 3a + 1/n, b2.
Bn = 1-n, b - 1/n]

An = 3a + 1/n, b - 1/n4

*

5�, A, Ac, S6
Ak’s.S¿

Ak = f-115yk62
S¿ = 5y1 , y2 , Á , yn6.

S¿.

f-11Ac2 = f-11A2c.
f-11A ¨ B2 = f-11A2 ¨ f-11B2.
f-11A ´ B2 = f-11A2 ´ f-11B2.

f-115R62 = A1 = 5r6 and f-115G62 = A2 = 5g, t6.

f1t2 = G.SH = 5R, G6 :f1r2 = R, f1g2 = G,
SL = 5r, g, t6

*

p = 0.75.p = 0.25

1b - a22/12,1a + b2/2
Ynb = 15.a = -5

Ynba

Yn = aUn + b.
Un
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Problems Requiring Cumulative Knowledge

2.125. Compare the binomial probability law and the hypergeometric law introduced in Prob-
lem 2.54 as follows.

(a) Suppose a lot has 20 items of which five are defective. A batch of ten items is tested
without replacement. Find the probability that k are found defective for 
Compare this to the binomial probabilities with and 

(b) Repeat but with a lot of 1000 items of which 250 are defective.A batch of ten items is
tested without replacement. Find the probability that k are found defective for

Compare this to the binomial probabilities with and 

2.126. Suppose that in Example 2.43, computer A sends each message to computer B simulta-
neously over two unreliable radio links. Computer B can detect when errors have oc-
curred in either link. Let the probability of message transmission error in link 1 and link
2 be q1 and q2 respectively. Computer B requests retransmissions until it receives an
error-free message on either link.

(a) Find the probability that more than k transmissions are required.

(b) Find the probability that in the last transmission, the message on link 2 is received
free of errors.

2.127. In order for a circuit board to work, seven identical chips must be in working order. To
improve reliability, an additional chip is included in the board, and the design allows it to
replace any of the seven other chips when they fail.

(a) Find the probability that the board is working in terms of the probability p that an
individual chip is working.

(b) Suppose that n circuit boards are operated in parallel, and that we require a 99.9%
probability that at least one board is working. How many boards are needed?

2.128. Consider a well-shuffled deck of cards consisting of 52 distinct cards, of which four are
aces and four are kings.

(a) Find the probability of obtaining an ace in the first draw.

(b) Draw a card from the deck and look at it. What is the probability of obtaining an
ace in the second draw? Does the answer change if you had not observed the first
draw?

(c) Suppose we draw seven cards from the deck. What is the probability that the seven
cards include three aces? What is the probability that the seven cards include two
kings? What is the probability that the seven cards include three aces and/or two
kings?

(d) Suppose that the entire deck of cards is distributed equally among four players.What
is the probability that each player gets an ace?

pb

= .25.
p = 5/20n = 10k = 0, Á , 10.

p = 5/20 = .25.n = 10
k = 0, Á , 10.
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In most random experiments we are interested in a numerical attribute of the outcome
of the experiment. A random variable is defined as a function that assigns a numerical
value to the outcome of the experiment. In this chapter we introduce the concept of a
random variable and methods for calculating probabilities of events involving a ran-
dom variable. We focus on the simplest case, that of discrete random variables, and in-
troduce the probability mass function. We define the expected value of a random
variable and relate it to our intuitive notion of an average. We also introduce the con-
ditional probability mass function for the case where we are given partial information
about the random variable.These concepts and their extension in Chapter 4 provide us
with the tools to evaluate the probabilities and averages of interest in the design of sys-
tems involving randomness.

Throughout the chapter we introduce important random variables and discuss
typical applications where they arise. We also present methods for generating random
variables. These methods are used in computer simulation models that predict the be-
havior and performance of complex modern systems.

3.1 THE NOTION OF A RANDOM VARIABLE

The outcome of a random experiment need not be a number. However, we are usually
interested not in the outcome itself, but rather in some measurement or numerical at-
tribute of the outcome. For example, in n tosses of a coin, we may be interested in the
total number of heads and not in the specific order in which heads and tails occur. In a
randomly selected Web document, we may be interested only in the length of the doc-
ument. In each of these examples, a measurement assigns a numerical value to the out-

come of the random experiment. Since the outcomes are random, the results of the
measurements will also be random. Hence it makes sense to talk about the probabili-
ties of the resulting numerical values. The concept of a random variable formalizes this
notion.

A random variable X is a function that assigns a real number, to each out-
come in the sample space of a random experiment. Recall that a function is simply a
rule for assigning a numerical value to each element of a set, as shown pictorially in

z

X1z2,

Discrete Random
Variables 3

CHAPTER
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S

x

X(z) � x

real

line

SX

z

FIGURE 3.1
A random variable assigns a number to each outcome in the
sample space S of a random experiment.

zX1z2

Fig. 3.1. The specification of a measurement on the outcome of a random experiment
defines a function on the sample space, and hence a random variable.The sample space
S is the domain of the random variable, and the set of all values taken on by X is the
range of the random variable. Thus is a subset of the set of all real numbers. We will
use the following notation: capital letters denote random variables, e.g., X or Y, and
lower case letters denote possible values of the random variables, e.g., x or y.

Example 3.1 Coin Tosses

A coin is tossed three times and the sequence of heads and tails is noted.The sample space for this
experiment is Let X be the number of
heads in the three tosses. X assigns each outcome in S a number from the set 
The table below lists the eight outcomes of S and the corresponding values of X.

SX = 50, 1, 2, 36.z

S = 5HHH, HHT, HTH, HTT, THH, THT, TTH, TTT6.

SX

SX

X is then a random variable taking on values in the set 

Example 3.2 A Betting Game

A player pays $1.50 to play the following game: A coin is tossed three times and the number of
heads X is counted. The player receives $1 if and $8 if but nothing otherwise. Let
Y be the reward to the player. Y is a function of the random variable X and its outcomes can be
related back to the sample space of the underlying random experiment as follows:

X = 3,X = 2

SX = 50, 1, 2, 36.

Y is then a random variable taking on values in the set SY = 50, 1, 86.

z: HHH HHT HTH THH HTT THT TTH TTT

X1z2: 3 2 2 2 1 1 1 0

z: HHH HHT HTH THH HTT THT TTH TTT

X1z2: 3 2 2 2 1 1 1 0

Y1z2: 8 1 1 1 0 0 0 0
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The above example shows that a function of a random variable produces another
random variable.

For random variables, the function or rule that assigns values to each outcome is
fixed and deterministic, as, for example, in the rule “count the total number of dots fac-
ing up in the toss of two dice.” The randomness in the experiment is complete as soon
as the toss is done. The process of counting the dots facing up is deterministic. There-
fore the distribution of the values of a random variable X is determined by the proba-
bilities of the outcomes in the random experiment. In other words, the randomness in
the observed values of X is induced by the underlying random experiment, and we
should therefore be able to compute the probabilities of the observed values of X in
terms of the probabilities of the underlying outcomes.

Example 3.3 Coin Tosses and Betting

Let X be the number of heads in three independent tosses of a fair coin. Find the probability of
the event Find the probability that the player in Example 3.2 wins $8.

Note that if and only if is in Therefore

The event occurs if and only if the outcome is HHH, therefore

Example 3.3 illustrates a general technique for finding the probabilities of events
involving the random variable X. Let the underlying random experiment have sample
space S and event class To find the probability of a subset B of R, e.g., we
need to find the outcomes in S that are mapped to B, that is,

(3.1)

as shown in Fig. 3.2. If event A occurs then so event B occurs. Conversely, if
event B occurs, then the value implies that is in A, so event A occurs. Thus the
probability that X is in B is given by:

(3.2)P3X H B4 = P3A4 = P35z :X1z2 H B64.

zX1z2
X1z2 H B,

A = 5z :X1z2 H B6
B = 5xk6,F.

P3Y = 84 = P35HHH64 = 1/8.

z5Y = 86
= 3/8.

= P35HHT64 + P35HTH64 + P35HHT64
P3X = 24 = P35HHT, HTH, HHT64

5HHT, HTH, THH6.zX1z2 = 2
5X = 26.

z

S

B

real

line

A

FIGURE 3.2
P3X in B4 � P3z in A4



We refer to A and B as equivalent events.
In some random experiments the outcome is already the numerical value we

are interested in. In such cases we simply let that is, the identity function, to
obtain a random variable.

3.1.1 Fine Point: Formal Definition of a Random Variable

In going from Eq. (3.1) to Eq. (3.2) we actually need to check that the event A is in 
because only events in have probabilities assigned to them. The formal definition of
a random variable in Chapter 4 will explicitly state this requirement.

If the event class consists of all subsets of S, then the set A will always be in 
and any function from S to R will be a random variable. However, if the event class 
does not consist of all subsets of S, then some functions from S to R may not be random
variables, as illustrated by the following example.

Example 3.4 A Function That Is Not a Random Variable

This example shows why the definition of a random variable requires that we check that the set
A is in An urn contains three balls. One ball is electronically coded with a label 00. Another
ball is coded with 01, and the third ball has a 10 label. The sample space for this experiment is

Let the event class consist of all unions, intersections, and complements of
the events and In this event class, the outcome 00 cannot be distin-
guished from the outcome 10. For example, this could result from a faulty label reader that can-
not distinguish between 00 and 10. The event class has four events 

Let the probability assignment for the events in be and

Consider the following function X from S to To
find the probability of we need the probability of However,

is not in the class and so X is not a random variable because we cannot determine the
probability that 

3.2 DISCRETE RANDOM VARIABLES AND PROBABILITY MASS FUNCTION

A discrete random variable X is defined as a random variable that assumes values from
a countable set, that is, A discrete random variable is said to be
finite if its range is finite, that is, We are interested in finding the
probabilities of events involving a discrete random variable X. Since the sample space 
is discrete, we only need to obtain the probabilities for the events 
in the underlying random experiment. The probabilities of all events involving X can be
found from the probabilities of the 

The probability mass function (pmf) of a discrete random variable X is de-
fined as:

(3.3)

Note that is a function of x over the real line, and that can be nonzero
only at the values For in we have pX1xk2 = P[Ak].SX ,xkx1 , x2 , x3 , Á .

pX1x2pX1x2
pX1x2 = P3X = x4 = P35z :X1z2 = x64 for x a real number.

Ak’s.

Ak = 5z :X1z2 = xk6
SX

SX = 5x1 , x2 , Á , xn6.
SX = 5x1 , x2 , x3 , Á 6.

X = 0.
F,5006

= 5006.5z:X1z2 = 065X = 06,
= 2.R:X1002 = 0,X1012 = 1,X1102

P350164 = 1/3.
P3500, 1064 = 2/3F500, 01, 1066.
F = 5�, 500, 106, 5016,

A2 = 5016.A1 = 500, 106
FS = 500, 01, 106.

F.

F

F,F

F

F,

*

X1z2 = z,
z
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S

xk

Ak

x2x1

A1 A2 ……
…… ……

……

FIGURE 3.3
Partition of sample space S associated with a discrete random variable.

The events form a partition of S as illustrated in Fig. 3.3. To see this,
we first show that the events are disjoint. Let then

since each is mapped into one and only one value in Next we show that S is the
union of the Every in S is mapped into some so that every belongs to an
event in the partition. Therefore:

All events involving the random variable X can be expressed as the union of
events For example, suppose we are interested in the event X in
then

The pmf satisfies three properties that provide all the information re-
quired to calculate probabilities for events involving the discrete random variable X:

(i) (3.4a)

(ii) (3.4b)

(iii) (3.4c)

Property (i) is true because the pmf values are defined as a probability,
Property (ii) follows because the events form a partition

of S. Note that the summations in Eqs. (3.4b) and (3.4c) will have a finite or infinite
number of terms depending on whether the random variable is finite or not. Next con-
sider property (iii). Any event B involving X is the union of elementary events, so by
Axiom we have:

P3X in B4 = P3d
xHB

5z :X1z2 = x64 = a
xHB

P3X = x4 = a
xHB

pX1x2.
III¿

Ak = 5X = xk6P3X= x4. pX1x2 =

P3X in B4 = a
xHB

pX1x2 where B( SX .

a
xHSX

pX1x2 = a
all k

pX1xk2 = a
all k

P3Ak4 = 1

pX1x2 Ú 0 for all x

pX1x2
= pX122 + pX152.
= P3A2 ´ A54 = P3A24 + P3A54

P3X in B4 = P35z :X1z2 = x26 ´ 5z :X1z2 = x564

B = 5x2 , x56,Ak’s.

S = A1 ´ A2 ´ Á .

Ak

zxkzAk’s.
SX .z

Aj ¨ Ak = 5z :X1z2 = xj and X1z2 = xk6 = �

j Z k,
A1 , A2 , Á



The pmf of X gives us the probabilities for all the elementary events from 
The probability of any subset of is obtained from the sum of the corresponding ele-
mentary events. In fact we have everything required to specify a probability law for the
outcomes in If we are only interested in events concerning X, then we can forget
about the underlying random experiment and its associated probability law and just
work with and the pmf of X.

Example 3.5 Coin Tosses and Binomial Random Variable

Let X be the number of heads in three independent tosses of a coin. Find the pmf of X.
Proceeding as in Example 3.3, we find:

Note that 

Example 3.6 A Betting Game

A player receives $1 if the number of heads in three coin tosses is 2, $8 if the number is 3, but
nothing otherwise. Find the pmf of the reward Y.

Note that 

Figures 3.4(a) and (b) show the graph of versus x for the random variables
in Examples 3.5 and 3.6, respectively. In general, the graph of the pmf of a discrete ran-
dom variable has vertical arrows of height at the values in We may view
the total probability as one unit of mass and as the amount of probability mass
that is placed at each of the discrete points The relative values of pmf at dif-
ferent points give an indication of the relative likelihoods of occurrence.

Example 3.7 Random Number Generator

A random number generator produces an integer number X that is equally likely to be any ele-
ment in the set Find the pmf of X.

For each k in we have Note that

We call X the uniform random variable in the set 50, 1, Á ,M - 16.
pX102 + pX112 + Á + pX1M - 12 = 1.

pX1k2 = 1/M.SX ,
SX = 50, 1, 2, Á ,M - 16.

x1 , x2 , Á .
pX1x2

SX .xkpX1xk2
pX1x2

pY102 + pY112 + pY182 = 1.

pY182 = P3z H 5HHH64 = 1/8.

pY112 = P3z H 5THH, HTH, HHT64 = 3/8

pY102 = P3z H 5TTT, TTH, THT, HTT64 = 4/8 = 1/2

pX102 + pX112 + pX122 + pX132 = 1.

p3 = P3X = 34 = P35HHH64 = p3.

p2 = P3X = 24 = P35HHT64 + P35HTH64 + P35THH64 = 311 - p2p2,

p1 = P3X = 14 = P35HTT64 + P35THT64 + P35TTH64 = 311 - p22p,

p0 = P3X = 04 = P35TTT64 = 11 - p23,

SX

SX .

SX

SX .
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FIGURE 3.4
(a) Graph of pmf in three coin tosses; (b) Graph of pmf in betting game.

Example 3.8 Bernoulli Random Variable

Let A be an event of interest in some random experiment, e.g., a device is not defective. We
say that a “success” occurs if A occurs when we perform the experiment. The Bernoulli ran-
dom variable is equal to 1 if A occurs and zero otherwise, and is given by the indicator

function for A:

(3.5a)

Find the pmf of 
is a finite discrete random variable with values from with pmf:

(3.5b)

We call the Bernoulli random variable. Note that 

Example 3.9 Message Transmissions

Let X be the number of times a message needs to be transmitted until it arrives correctly at its
destination. Find the pmf of X. Find the probability that X is an even number.

X is a discrete random variable taking on values from The event
occurs if the underlying experiment finds consecutive erroneous transmissionsk - 15X = k6

SX = 51, 2, 3, Á 6.

pI112 + pI122 = 1.IA

pI112 = P35z : z H A64 = p.

pI102 = P35z : z H Ac64 = 1 - p

SI = 50, 16,IA1z2
IA .

IA1z2 = b0 if z not in A

1 if z in A. 

IA



(“failures”) followed by a error-free one (“success”):

(3.6)

We call X the geometric random variable, and we say that X is geometrically distributed. In
Eq. (2.42b), we saw that the sum of the geometric probabilities is 1.

Example 3.10 Transmission Errors

A binary communications channel introduces a bit error in a transmission with probability p. Let
X be the number of errors in n independent transmissions. Find the pmf of X. Find the probabil-
ity of one or fewer errors.

X takes on values in the set Each transmission results in a “0” if there is
no error and a “1” if there is an error, and The probability of k errors
in n bit transmissions is given by the probability of an error pattern that has k 1’s and 0’s:

(3.7)

We call X the binomial random variable, with parameters n and p. In Eq. (2.39b), we saw that the
sum of the binomial probabilities is 1.

Finally, let’s consider the relationship between relative frequencies and the pmf
Suppose we perform n independent repetitions to obtain n observations of

the discrete random variable X. Let be the number of times the event 
occurs and let be the corresponding relative frequency. As n be-
comes large we expect that Therefore the graph of relative frequen-
cies should approach the graph of the pmf. Figure 3.5(a) shows the graph of relative

fk1n2: pX1xk2.
fk1n2 = Nk1n2/n

X = xkNk1n2
pX1xk2.

P3X … 14 = ¢n
0
≤p011 - p2n-0 + ¢n

1
≤p111 - p2n-1 = 11 - p2n + np11 - p2n-1.

pX1k2 = P3X = k4 = ¢n
k
≤pk11 - p2n-k k = 0, 1, Á , n.

n - k
P3“0”4 = 1 - p.P3“1”4 = p

SX = 50, 1, Á , n6.

P3X is even4 = a
q

k=1

pX12k2 = pa
q

k=1

q2k-1 = p
1

1 - q2 =
1

1 + q
.

pX1k2 = P3X = k4 = P300 Á 014 = 11 - p2k-1p = qk-1p k = 1, 2, Á .

(a)

0 1 2 3 4 5 6 7 8�1
0
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0.04
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0.08

0.1

0.12

0.14

0

0.1

0.2

0.3

0.4
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(b)
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FIGURE 3.5
(a) Relative frequencies and corresponding uniform pmf; (b) Relative frequencies and corresponding geometric pmf.
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frequencies for 1000 repetitions of an experiment that generates a uniform random
variable from the set and the corresponding pmf. Figure 3.5(b) shows the
graph of relative frequencies and pmf for a geometric random variable with 
and repetitions. In both cases we see that the graph of relative frequencies
approaches that of the pmf.

3.3 EXPECTED VALUE AND MOMENTS OF DISCRETE RANDOM VARIABLE

In order to completely describe the behavior of a discrete random variable, an entire
function, namely must be given. In some situations we are interested in a few
parameters that summarize the information provided by the pmf. For example, Fig. 3.6
shows the results of many repetitions of an experiment that produces two random vari-
ables. The random variable Y varies about the value 0, whereas the random variable X
varies around the value 5. It is also clear that X is more spread out than Y. In this sec-
tion we introduce parameters that quantify these properties.

The expected value or mean of a discrete random variable X is defined by

(3.8)

The expected value E[X] is defined if the above sum converges absolutely, that is,

(3.9)

There are random variables for which Eq. (3.9) does not converge. In such cases, we say
that the expected value does not exist.

E3 ƒX ƒ 4 = a
k

ƒxk ƒpX1xk2 6 q .

mX = E3X4 = a
xHSX

xpX1x2 = a
k

xkpX1xk2.

pX1x2,

n = 1000
p = 1/2

50, 1, Á , 76

10 20 30 40 50 60 70

Trial number

80 90 100 110 120 130 140 1500

0Yi

Xi
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FIGURE 3.6
The graphs show 150 repetitions of the experiments yielding X and Y. It is clear
that X is centered about the value 5 while Y is centered about 0. It is also clear that
X is more spread out than Y.



If we view as the distribution of mass on the points in the real
line, then E[X] represents the center of mass of this distribution. For example, in Fig.
3.5(a), we can see that the pmf of a discrete random variable that is uniformly distrib-
uted in has a center of mass at 3.5.

Example 3.11 Mean of Bernoulli Random Variable

Find the expected value of the Bernoulli random variable 
From Example 3.8, we have

where p is the probability of success in the Bernoulli trial.

Example 3.12 Three Coin Tosses and Binomial Random Variable

Let X be the number of heads in three tosses of a fair coin. Find E[X].
Equation (3.8) and the pmf of X that was found in Example 3.5 gives:

Note that the above is the case of a binomial random variable, which we will see
has

Example 3.13 Mean of a Uniform Discrete Random Variable

Let X be the random number generator in Example 3.7. Find E[X].
From Example 3.5 we have for so

where we used the fact that Note that for 
which is consistent with our observation of the center of mass in Fig. 3.5(a).

The use of the term “expected value” does not mean that we expect to observe
E[X] when we perform the experiment that generates X. For example, the expected
value of a Bernoulli trial is p, but its outcomes are always either 0 or 1.

E[X] corresponds to the “average of X” in a large number of observations of X.
Suppose we perform n independent repetitions of the experiment that generates X,
and we record the observed values as where x( j) is the observation
in the jth experiment. Let be the number of times is observed, and let

be the corresponding relative frequency. The arithmetic average, or
sample mean, of the observations, is:

(3.10)= a
k

xkfk1n2.
= x1f11n2 + x2f21n2 + Á + xkfk1n2 + Á

Á + xkNk1n2 + Á8X9n =
x112 + x122 + Á + x1n2

n
=
x1N11n2 + x2N21n2 +

n

fk1n2 = Nk1n2/n
xkNk1n2

x112, x122, Á , x1n2,

M = 8, E3X4 = 3.5,1 + 2 + Á + L = 1L + 12L/2.

E3X4 = a
M-1

k=0

k
1

M
=

1

M
50 + 1 + 2 + Á + M - 16 =

1M - 12M
2M

=
1M - 12

2

j = 0, Á ,M - 1,pX1j2 = 1/M

E3X4 = np.
n = 3, p = 1/2

E3X4 = a
3

k=0

kpX1k2 = 0a1

8
b + 1a3

8
b + 2a3

8
b + 3a1

8
b = 1.5.

E3IA4 = 0pI102 + 1pI112 = p.

IA .

50, Á , 76

x1 , x2 , ÁpX1x2
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The first numerator adds the observations in the order in which they occur, and the sec-
ond numerator counts how many times each occurs and then computes the total.As n
becomes large, we expect relative frequencies to approach the probabilities 

(3.11)

Equation (3.10) then implies that:

(3.12)

Thus we expect the sample mean to converge to E[X] as n becomes large.

Example 3.14 A Betting Game

A player at a fair pays $1.50 to toss a coin three times. The player receives $1 if the number of
heads is 2, $8 if the number is 3, but nothing otherwise. Find the expected value of the reward Y.
What is the expected value of the gain?

The expected reward is:

The expected gain is:

Players lose 12.5 cents on average per game, so the house makes a nice profit over the long run.
In Example 3.18 we will see that some engineering designs also “bet” that users will behave a
certain way.

Example 3.15 Mean of a Geometric Random Variable

Let X be the number of bytes in a message, and suppose that X has a geometric distribution with
parameter p. Find the mean of X.

X can take on arbitrarily large values since The expected value is:

This expression is readily evaluated by differentiating the series

(3.13)

to obtain

(3.14)

Letting we obtain

(3.15)

We see that X has a finite expected value as long as p 7 0.

E3X4 = p
1

11 - q22 =
1

p
.

x = q,

1

11 - x22 = a
q

k=0

kxk-1.

1

1 - x
= a

q

k=0

xk

E3X4 = a
q

k=1

kpqk-1 = pa
q

k=1

kqk-1.

SX = 51, 2, Á 6.

E3Y - 1.54 =
11

8
-

12

8
= -

1

8
.

E3Y4 = 0pY102 + 1pY1122 + 8pY182 = 0a 4

8
b + 1a3

8
b + 8a 1

8
b = a 11

8
b .

8X9n = a
k

xkfk1n2: a
k

xkpX1xk2 = E3X4.

lim
n:q

fk1n2 = pX1xk2 for all k.

pX1xk2:
xk



For certain random variables large values occur sufficiently frequently that the
expected value does not exist, as illustrated by the following example.

Example 3.16 St. Petersburg Paradox

A fair coin is tossed repeatedly until a tail comes up. If X tosses are needed, then the casino
pays the gambler dollars. How much should the gambler be willing to pay to play this
game?

If the gambler plays this game a large number of times, then the payoff should be the ex-
pected value of If the coin is fair, and so:

This game does indeed appear to offer the gambler a sweet deal, and so the gambler should be
willing to pay any amount to play the game! The paradox is that a sane person would not pay a
lot to play this game. Problem 3.34 discusses ways to resolve the paradox.

Random variables with unbounded expected value are not uncommon and ap-
pear in models where outcomes that have extremely large values are not that rare. Ex-
amples include the sizes of files in Web transfers, frequencies of words in large bodies
of text, and various financial and economic problems.

3.3.1 Expected Value of Functions of a Random Variable

Let X be a discrete random variable, and let Since X is discrete,
will assume a countable set of values of the form where Denote the set
of values assumed by g(X) by One way to find the expected value of Z is
to use Eq. (3.8), which requires that we first find the pmf of Z. Another way is to use
the following result:

(3.16)

To show Eq. (3.16) group the terms that are mapped to each value 

The sum inside the braces is the probability of all terms for which which
is the probability that that is,

Example 3.17 Square-Law Device

Let X be a noise voltage that is uniformly distributed in with 
for k in Find E[Z] where 

Using the first approach we find the pmf of Z:

pZ112 = pX1-12 + pX112 = 1/2

pZ192 = P[X H 5-3, +36] = pX1-32 + pX132 = 1/2

Z = X2.SX .
pX1k2 = 1/4SX = 5-3, -1, +1, +36

pZ1zj2.Z = zj ,
g1xk2 = zj ,xk

a
k

g1xk2pX1xk2 = a
j

zjb a
xk:g1xk2=zj

pX1xk2 r = a
j

zjpZ1zj2 = E3Z4.
zj:xk

E3Z4 = E3g1X24 = a
k

g1xk2pX1xk2.

5z1 , z2 , Á 6.
xk H SX .g1xk2

Z = g1X2Z = g1X2.

E3Y4 = a
q

k=1

2kpY12k2 = a
q

k=1

2ka1

2
bk = 1 + 1 + Á = q .

P3Y = 2k4 = 11/22k,P3X = k4 = 11/22kY = 2X.

Y = 2X
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and so

The second approach gives:

Equation 3.16 implies several very useful results. Let Z be the function

where a, b, and c are real numbers, then:

(3.17a)

From Eq. (3.16) we have:

Equation (3.17a), by setting a, b, and/or c to 0 or 1, implies the following expressions:

(3.17b)

(3.17c)

(3.17d)

(3.17e)

Example 3.18 Square-Law Device

The noise voltage X in the previous example is amplified and shifted to obtain 
and then squared to produce Find E[Z].

Example 3.19 Voice Packet Multiplexer

Let X be the number of voice packets containing active speech produced by independent
speakers in a 10-millisecond period as discussed in Section 1.4. X is a binomial random variable
with parameter n and probability Suppose a packet multiplexer transmits up to

active packets every 10 ms, and any excess active packets are discarded. Let Z be the
number of packets discarded. Find E[Z].
M = 20

p = 1/3.

n = 48

= 4E3X24 + 40E3X4 + 100 = 4152 + 40102 + 100 = 120.

E3Z4 = E312X + 10224 = E34X2 + 40X + 1004
Z = Y2 = 12X + 1022.

Y = 2X + 10,

E3c4 = c.

E3X + c4 = E3X4 + c.

E3aX4 = aE3X4.
E3g1X2 + h1X24 = E3g1X24 + E3h1X24.

= aE3g1X24 + bE3h1X24 + c.

= aa
k

g1xk2pX1xk2 + ba
k

h1xk2pX1xk2 + ca
k

pX1xk2
E3Z4 = E3ag1X2 + bh1X2 + c4 = a

k

1ag1xk2 + bh1xk2 + c2pX1xk2

E3Z4 = aE3g1X24 + bE3h1X24 + c.

Z = ag1X2 + bh1X2 + c

E3Z4 = E3X24 = a
k

k2pX1k2 =
1

4
51-322 + 1-122 + 12 + 326 =

20

4
= 5.

E3Z4 = 1a 1

2
b + 9a 1

2
b = 5.



The number of packets discarded every 10 ms is the following function of X:

Every 10 ms active packets are produced on average, so the fraction of active
packets discarded is which users will tolerate. This example shows that engi-
neered systems also play “betting” games where favorable statistics are exploited to use re-
sources efficiently. In this example, the multiplexer transmits 20 packets per period instead of 48
for a reduction of 

3.3.2 Variance of a Random Variable

The expected value E[X], by itself, provides us with limited information about X. For ex-
ample, if we know that then it could be that X is zero all the time. However,
it is also possible that X can take on extremely large positive and negative values. We
are therefore interested not only in the mean of a random variable, but also in the ex-
tent of the random variable’s variation about its mean. Let the deviation of the random
variable X about its mean be which can take on positive and negative val-
ues. Since we are interested in the magnitude of the variations only, it is convenient to
work with the square of the deviation, which is always positive,
The expected value is a constant, so we will denote it by The variance of

the random variable X is defined as the expected value of D:

(3.18)

The standard deviation of the random variable X is defined by:

(3.19)

By taking the square root of the variance we obtain a quantity with the same units as X.
An alternative expression for the variance can be obtained as follows:

(3.20)

is called the second moment of X. The nth moment of X is defined as 
Equations (3.17c), (3.17d), and (3.17e) imply the following useful expressions for

the variance. Let then

(3.21)= E31X - E3X4224 = VAR3X4.
VAR3X + c4 = E31X + c - 1E3X4 + c24224

Y = X + c,

E3Xn4.E3X24
= E3X24 - mX

2 .

= E3X24 - 2mXE3X4 + mX
2

VAR3X4 = E31X - mX224 = E3X2 - 2mXX + mX
2 4

sX = STD3X4 = VAR3X41/2.

= a
xHSX

1x - mX22pX1x2 = a
q

k=1

1xk - mX22pX1xk2.
sX

2 = VAR3X4 = E31X - mX224

mX = E3X4.
D1X2 = 1X - E3X422.

X - E3X4,

E3X4 = 0,

28/48 = 58%.

0.182/16 = 1.1%,
E3X4 = np = 16

E3Z4 = a
48

k=20

1k - 202¢48

k
≤ a1

3
bka 2

3
b48-k

= 0.182.

Z = 1X - M2+ ! b0 ifX … M

X - M ifX 7 M.
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Adding a constant to a random variable does not affect the variance. Let 
then:

(3.22)

Scaling a random variable by c scales the variance by and the standard deviation by 
Now let a random variable that is equal to a constant with probability 1, then

(3.23)

A constant random variable has zero variance.

Example 3.20 Three Coin Tosses

Let X be the number of heads in three tosses of a fair coin. Find VAR[X].

Recall that this is an binomial random variable.We see later that variance for the
binomial random variable is npq.

Example 3.21 Variance of Bernoulli Random Variable

Find the variance of the Bernoulli random variable 

(3.24)

Example 3.22 Variance of Geometric Random Variable

Find the variance of the geometric random variable.
Differentiate the term in Eq. (3.14) to obtain

Let and multiply both sides by pq to obtain:

So the second moment is

E3X24 =
2pq

11 - q23 + E3X4 =
2q

p2 +
1

p
=

1 + q

p2

= a
q

k=0

k1k - 12pqk-1 = E3X24 - E3X4.

2pq

11 - q23 = pqa
q

k=0

k1k - 12qk-2

x = q

2

11 - x23 = a
q

k=0

k1k - 12xk-2.

11 - x22-1

 VAR3IA4 = p - p2 = p11 - p2 = pq.

E3IA2 4 = 0pI102 + 12pI112 = p and so

IA .

n = 3, p = 1>2
VAR3X4 = E3X24 - mX

2 = 3 - 1.52 = 0.75.

E3X24 = 0a1

8
b + 12a 3

8
b + 22a3

8
b + 32a1

8
b = 3 and

VAR3X4 = E31X - c224 = E304 = 0.

X = c,
ƒ c ƒ .c2

VAR3cX4 = E31cX - cE3X4224 = E3c21X - E3X4224 = c2 VAR3X4.
Z = cX,



and the variance is

3.4 CONDITIONAL PROBABILITY MASS FUNCTION

In many situations we have partial information about a random variable X or about
the outcome of its underlying random experiment. We are interested in how this infor-
mation changes the probability of events involving the random variable. The condi-
tional probability mass function addresses this question for discrete random variables.

3.4.1 Conditional Probability Mass Function

Let X be a discrete random variable with pmf and let C be an event that has
nonzero probability, See Fig. 3.7. The conditional probability mass function

of X is defined by the conditional probability:

(3.25)

Applying the definition of conditional probability we have:

(3.26)

The above expression has a nice intuitive interpretation:The conditional probability of the
event is given by the probabilities of outcomes for which both and

are in C, normalized by P[C].
The conditional pmf satisfies Eqs. (3.4a) – (3.4c). Consider Eq. (3.4b). The set of 

events is a partition of S, so

and

=
1

P3C4aall k

P3Ak ¨ C4 =
P3C4
P3C4 = 1.

a
xkHSX

pX1xk ƒ C2 = a
all k

pX1xk ƒ C2 = a
all k

P35X = xk6 ¨ C4
P3C4

C = d
k

1Ak ¨ C2,
Ak = 5X = xk6

z

X1z2 = xkz5X = xk6

pX1x ƒ C2 =
P35X = x6 ¨ C4

P3C4 .

pX1x ƒ C2 = P3X = x ƒ C4 for x a real number.

P3C4 7 0.
pX1x2,

VAR3X4 = E3X24 - E3X42 =
1 + q

p2
-

1

p2
=
q

p2
.

S

X(z) � xk

xk

Ak

C

FIGURE 3.7
Conditional pmf of X given event C.
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Similarly we can show that:

Example 3.23 A Random Clock

The minute hand in a clock is spun and the outcome is the minute where the hand comes to
rest. Let X be the hour where the hand comes to rest. Find the pmf of X. Find the conditional
pmf of X given given 

We assume that the hand is equally likely to rest at any of the minutes in the range
so for k in S. X takes on values from 

and it is easy to show that for j in Since 

The event B above involves X only. The event D, however, is stated in terms of the out-
comes in the underlying experiment (i.e., minutes not hours), so the probability of the intersec-
tion has to be expressed accordingly:

Most of the time the event C is defined in terms of X, for example 
or For in we have the following general result:

(3.27)

The above expression is determined entirely by the pmf of X.

Example 3.24 Residual Waiting Times

Let X be the time required to transmit a message, where X is a uniform random variable with
Suppose that a message has already been transmitting for m time units, find

the probability that the remaining transmission time is j time units.
SX = 51, 2, Á , L6.

pX1xk ƒC2 = c pX1xk2P3C4 if xk H C

0 if xk x C.

SX ,xkC = 5a … X … b6.
C = 5X 7 106

= f P3z H 52, 3, 4, 564
10/60

=
4

10
for j = 1

P3z H 56, 7, 8, 9, 1064
10/60

=
5

10
for j = 2

P3z H 51164
10/60

=
1

10
for j = 3.

pX1j ƒD2 =
P35X = j6 ¨ D4

P3D4 =
P3z :X1z2 = j and z H 52, Á , 1164

P3z H 52, Á , 1164

= c P3X = j4
1/3

=
1

4
if j H 51, 2, 3, 46

0 otherwise.

pX1j ƒB2 =
P35X = j6 ¨ B4

P3B4 =
P3X H 5j6 ¨ 51, 2, 3, 464
P3X H 51, 2, 3, 464

B = 51, 2, 3, 46:SX .pX1j2 = 1/12
SX = 51, 2, Á , 126P3z = k4 = 1/60S = 51, 2, Á , 606,

D = 51 6 z … 116.B = 5first 4 hours6;
z

P3X in B ƒC4 = a
xHB

pX1x ƒC2 where B( SX .



We are given so for 

(3.28)

X is equally likely to be any of the remaining possible values. As m increases,
increases implying that the end of the message transmission becomes increasingly likely.

Many random experiments have natural ways of partitioning the sample space S
into the union of disjoint events Let be the conditional pmf of
X given event The theorem on total probability allows us to find the pmf of X in
terms of the conditional pmf’s:

(3.29)

Example 3.25 Device Lifetimes

A production line yields two types of devices. Type 1 devices occur with probability and work
for a relatively short time that is geometrically distributed with parameter r.Type 2 devices work
much longer, occur with probability and have a lifetime that is geometrically distributed
with parameter s. Let X be the lifetime of an arbitrary device. Find the pmf of X.

The random experiment that generates X involves selecting a device type and then ob-
serving its lifetime. We can partition the sets of outcomes in this experiment into event con-
sisting of those outcomes in which the device is type 1, and consisting of those outcomes in
which the device is type 2. The conditional pmf’s of X given the device type are:

and

We obtain the pmf of X from Eq. (3.29):

3.4.2 Conditional Expected Value

Let X be a discrete random variable, and suppose that we know that event B has oc-
curred. The conditional expected value of X given B is defined as:

(3.30)mX ƒB = E3X ƒB4 = a
xHSX

xpX1x ƒB2 = a
k

xkpX1xk ƒB2

= 11 - r2k-1ra + 11 - s2k-1s11 - a2 for k = 1, 2, Á .

pX1k2 = pX1k ƒB12P3B14 + pX1k ƒB22P3B24

pX ƒB2
1k2 = 11 - s2k-1s for k = 1, 2, Á .

pX ƒB1
1k2 = 11 - r2k-1r for k = 1, 2, Á

B2,
B1,

1 - a,

a

pX1x2 = a
n

i=1

pX1x ƒBi2P3Bi4.

Bi .
pX1x ƒBi2B1 , B2 , Á , Bn .

1/1L - m2L - m

=

1

L

L - m

L

=
1

L - m
form + 1 … m + j … L.

pX1m + j ƒX 7 m2 =
P3X = m + j4
P3X 7 m4

m + 1 … m + j … L:C = 5X 7 m6,
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where we apply the absolute convergence requirement on the summation.The conditional

variance of X given B is defined as:

Note that the variation is measured with respect to not 

Let be the partition of S, and let be the conditional pmf of X

given event . E[X] can be calculated from the conditional expected values :

(3.31a)

By the theorem on total probability we have:

where we first express in terms of the conditional pmf’s, and we then change
the order of summation. Using the same approach we can also show

(3.31b)

Example 3.26 Device Lifetimes

Find the mean and variance for the devices in Example 3.25.
The conditional mean and second moment of each device type is that of a geometric ran-

dom variable with the corresponding parameter:

The mean and the second moment of X are then:

Finally, the variance of X is:

Note that we do not use the conditional variances to find VAR[Y] because Eq.
(3.31b) does not apply to conditional variances. (See Problem 3.40.) However, the
equation does apply to the conditional second moments.

VAR3X4 = E3X24 - m X
2 =

a11 + r2
r2

+
11 - a211 + s2

s2
- aa
r

+
11 - a2
s

b2

.

E3X24 = E3X2 ƒB14a + E3X2 ƒB2411 - a2 = a11 + r2/r2 + 11 - a211 + s2/s2.
mX = mX ƒB1

a + mX ƒB2
11 - a2 = a/r + 11 - a2/s

mX ƒB2
= 1/s E3X2 ƒB24 = 11 + s2/s2.

mX ƒB1
= 1/r E3X2 ƒB14 = 11 + r2/r2

E3g1X24 = a
n

i=1

E3g1X2 ƒBi4P3Bi4.

pX1xk2
= a

n

i=1
ba
k

kpX1xk ƒBi2 rP3Bi4 = a
n

i=1

E3X ƒBi4P3Bi4,

E3X4 = a
k

kpX1xk2 = a
k

kban
i=1

pX1xk ƒBi2P3Bi4 r
E3X4 = a

n

i=1

E3X ƒBi4P3Bi4.
E3X ƒB4Bi

pX1x ƒBi2B1,B2,...,Bn

mX .mX ƒB,

= E3X2 ƒB4 - mX ƒB
2 .

VAR3X ƒB4 = E31X - mX ƒB22 ƒB4 = a
q

k=1

1xk - mX ƒB22pX1xk ƒB2



3.5 IMPORTANT DISCRETE RANDOM VARIABLES

Certain random variables arise in many diverse, unrelated applications. The pervasive-
ness of these random variables is due to the fact that they model fundamental mecha-
nisms that underlie random behavior. In this section we present the most important of
the discrete random variables and discuss how they arise and how they are interrelat-
ed. Table 3.1 summarizes the basic properties of the discrete random variables dis-
cussed in this section. By the end of this chapter, most of these properties presented in
the table will have been introduced.

TABLE 3.1 Discrete random variables

Bernoulli Random Variable

Remarks: The Bernoulli random variable is the value of the indicator function for some event A;
if A occurs and 0 otherwise.

X = 1IA

E3X4 = p VAR3X4 = p11 - p2 GX1z2 = 1q + pz2
p0 = q = 1 - p p1 = p 0 … p … 1

SX = 50, 16

Binomial Random Variable

Remarks: X is the number of successes in n Bernoulli trials and hence the sum of n independent, identically
distributed Bernoulli random variables.

E3X4 = np VAR3X4 = np11 - p2 GX1z2 = 1q + pz2n
pk = ¢n

k
≤pk11 - p2n-k k = 0, 1, Á , n

SX = 50, 1, Á , n6

Geometric Random Variable

First Version:

Remarks: X is the number of failures before the first success in a sequence of independent Bernoulli trials.

E3X4 =
1 - p

p
VAR3X4 =

1 - p

p2
GX1z2 =

p

1 - qz

pk = p11 - p2k k = 0, 1, Á

SX = 50, 1, 2, Á 6

The geometric random variable is the only discrete random variable with the memoryless property.

Second Version:

Remarks: is the number of trials until the first success in a sequence of independent Bernoulli
trials.

X¿ = X + 1

E3X¿4 =
1

p
VAR3X¿4 =

1 - p

p2
GX¿1z2 =

pz

1 - qz

pk = p11 - p2k-1 k = 1, 2, Á

SX¿ = 51, 2, Á 6
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Discrete random variables arise mostly in applications where counting is in-
volved. We begin with the Bernoulli random variable as a model for a single coin toss.
By counting the outcomes of multiple coin tosses we obtain the binomial, geometric,
and Poisson random variables.

TABLE 3.1 Continued

Negative Binomial Random Variable

where r is a positive integer

Remarks: X is the number of trials until the rth success in a sequence of independent Bernoulli trials.

E3X4 =
r

p
VAR3X4 =

r11 - p2
p2

GX1z2 = a pz

1 - qz
b r

pk = ¢k - 1

r - 1
≤pr11 - p2k- r k = r, r + 1, Á

SX = 5r, r + 1, Á 6

Poisson Random Variable

Remarks: X is the number of events that occur in one time unit when the time between events is exponen-
tially distributed with mean 1/a.

E3X4 = a VAR3X4 = a GX1z2 = ea1z-12
pk =

ak

k!
e-a k = 0, 1, Á  and a 7 0

SX = 50, 1, 2, Á 6

Uniform Random Variable

Remarks: The uniform random variable occurs whenever outcomes are equally likely. It plays a key role in
the generation of random numbers.

E3X4 =
L + 1

2
 VAR3X4 =

L2 - 1

12
GX1z2 =

z

L

1 - zL

1 - z

pk =
1

L
k = 1, 2, Á , L

SX = 51, 2, Á , L6

Zipf Random Variable

where L is a positive integer

Remarks: The Zipf random variable has the property that a few outcomes occur frequently but most out-
comes occur rarely.

E3X4 =
L

cL
VAR3X4 =

L1L + 12
2cL

-
L2

cL
2

pk =
1

cL

1

k
k = 1, 2, Á , L where cL is given by Eq. 13.452

SX = 51, 2, Á , L6



3.5.1 The Bernoulli Random Variable

Let A be an event related to the outcomes of some random experiment. The Bernoulli
random variable (defined in Example 3.8) equals one if the event A occurs, and zero
otherwise. is a discrete random variable since it assigns a number to each outcome
of S. It is a discrete random variable with and its pmf is

(3.32)

where
In Example 3.11 we found the mean of 

The sample mean in n independent Bernoulli trials is simply the relative frequency of
successes and converges to p as n increases:

In Example 3.21 we found the variance of 

The variance is quadratic in p, with value zero at and and maximum at
This agrees with intuition since values of p close to 0 or to 1 imply a prepon-

derance of successes or failures and hence less variability in the observed values. The
maximum variability occurs when which corresponds to the case that is most
difficult to predict.

Every Bernoulli trial, regardless of the event A, is equivalent to the tossing of a
biased coin with probability of heads p. In this sense, coin tossing can be viewed as rep-
resentative of a fundamental mechanism for generating randomness, and the Bernoul-
li random variable is the model associated with it.

3.5.2 The Binomial Random Variable

Suppose that a random experiment is repeated n independent times. Let X be the num-
ber of times a certain event A occurs in these n trials. X is then a random variable with
range For example, X could be the number of heads in n tosses of
a coin. If we let be the indicator function for the event A in the jth trial, then

that is, X is the sum of the Bernoulli random variables associated with each of the n in-
dependent trials.

In Section 2.6, we found that X has probabilities that depend on n and p:

(3.33)

X is called the binomial random variable. Figure 3.8 shows the pdf of X for and
and Note that is maximum at where [x]kmax = 31n + 12p4,P3X = k4p = .5.p = .2

n = 24

P3X = k4 = pX1k2 = ¢n
k
≤pk11 - p2n-k for k = 0, Á , n.

X = I1 + I2 + Á + In ,

Ij

SX = 50, 1, Á , n6.

p = 1/2

p = 1/2.
p = 1p = 0

sI
2 = VAR3IA4 = p11 - p2 = pq.

IA:

8IA9n =
0N01n2 + 1N11n2

n
= f11n2: p.

mI = E3IA4 = p.

IA:
P3A4 = p.

pI102 = 1 - p and pI112 = p,

range = 50, 16,
IA

IA
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denotes the largest integer that is smaller than or equal to x.When is an inte-
ger, then the maximum is achieved at and (See Problem 3.50.)

The factorial terms grow large very quickly and cause overflow problems in the 

calculation of We can use Eq. (2.40) for the ratio of successive terms in the 

pmf allows us to calculate in terms of and delays the onset of
overflows:

(3.34)

The binomial random variable arises in applications where there are two types of
objects (i.e., heads/tails, correct/erroneous bits, good/defective items, active/silent speak-
ers), and we are interested in the number of type 1 objects in a randomly selected batch
of size n, where the type of each object is independent of the types of the other objects in
the batch. Examples involving the binomial random variable were given in Section 2.6.

Example 3.27 Mean of a Binomial Random Variable

The expected value of X is:

(3.35)

where the first line uses the fact that the term in the sum is zero, the second line cancels out
the k and factors np outside the summation, and the last line uses the fact that the summation is
equal to one since it adds all the terms in a binomial pmf with parameters and p.n - 1

k = 0

= npa
n-1

j=0

1n - 12!
j!1n - 1 - j2!pj11 - p2n-1- j = np,

= npa
n

k=1

1n - 12!
1k - 12!1n - k2!pk-111 - p2n-k

E3X4 = a
n

k=0

kpX1k2 = a
n

k=0

k¢n
k
≤pk11 - p2n-k = a

n

k=1

k
n!

k!1n - k2!pk11 - p2n-k

pX1k + 12
pX1k2 =

n - k

k + 1

p

1 - p
where pX102 = 11 - p2n.

pX1k2pX1k + 12
¢n
k
≤ .

kmax - 1.kmax

1n + 12p

(a)

n � 24

p � .2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

.05

.1

.15

.2

(b)

n � 24

p � .5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

.05

.1

.15

.2

FIGURE 3.8
Probability mass functions of binomial random variable (a) (b) p � 0.5.p � 0.2;



The expected value agrees with our intuition since we expect a fraction p of
the outcomes to result in success.

Example 3.28 Variance of a Binomial Random Variable

To find below, we remove the term and then let 

In the third line we see that the first sum is the mean of a binomial random variable with para-
meters and p, and hence equal to The second sum is the sum of the binomial
probabilities and hence equal to 1.

We obtain the variance as follows:

We see that the variance of the binomial is n times the variance of a Bernoulli random variable.
We observe that values of p close to 0 or to 1 imply smaller variance, and that the maximum vari-
ability is when 

Example 3.29 Redundant Systems

A system uses triple redundancy for reliability: Three microprocessors are installed and the sys-
tem is designed so that it operates as long as one microprocessor is still functional. Suppose that
the probability that a microprocessor is still active after t seconds is Find the probabil-
ity that the system is still operating after t seconds.

Let X be the number of microprocessors that are functional at time t. X is a binomial ran-
dom variable with parameter and p. Therefore:

3.5.3 The Geometric Random Variable

The geometric random variable arises when we count the number M of independent
Bernoulli trials until the first occurrence of a success. M is called the geometric random
variable and it takes on values from the set In Section 2.6, we found that the
pmf of M is given by

(3.36)

where is the probability of “success” in each Bernoulli trial. Figure 3.5(b)
shows the geometric pmf for Note that decays geometrically with k,
and that the ratio of consecutive terms is As p increas-
es, the pmf decays more rapidly.

pM1k + 12>pM1k2 = 11-p2 = q.
P3M = k4p = 1/2.

p = P3A4
P3M = k4 = pM1k2 = 11 - p2k-1p k = 1, 2, Á ,

51, 2, Á 6.

P3X Ú 14 = 1 - P3X = 04 = 1 - 11 - e-lt23.
n = 3

p = e-lt.

p = 1/2.

sX
2 = E3X24 - E3X42 = np1np + q2 - 1np22 = npq = np11 - p2.

1n - 12p.1n - 12

= np51n - 12p + 16 = np1np + q2.
= npb an-1

k¿ =0

k¿ ¢n - 1

k¿
≤pk¿11 - p2n-1-k + a

n-1

k¿ =0

1¢n - 1

k¿
≤pk¿11 - p2n-1-k¿ r= npa

n-1

k¿ =0

1k¿ + 12¢n - 1

k¿
≤pk¿11 - p2n-1-k

E3X24 = a
n

k=0

k2 n!

k!1n - k2!pk11 - p2n-k = a
n

k=1

k
n!

1k - 12!1n - k2!pk11 - p2n-k
k¿ = k - 1:k = 0E3X24

E3X4 = np
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The probability that can be written in closed form:

(3.37)

Sometimes we are interested in the number of failures before a success
occurs. We also refer to as a geometric random variable. Its pmf is:

(3.38)

In Examples 3.15 and 3.22, we found the mean and variance of the geometric ran-
dom variable:

We see that the mean and variance increase as p, the success probability, decreases.
The geometric random variable is the only discrete random variable that satisfies

the memoryless property:

(See Problems 3.54 and 3.55.) The above expression states that if a success has not oc-
curred in the first j trials, then the probability of having to perform at least k more tri-
als is the same as the probability of initially having to perform at least k trials. Thus,
each time a failure occurs, the system “forgets” and begins anew as if it were perform-
ing the first trial.

The geometric random variable arises in applications where one is interested in
the time (i.e., number of trials) that elapses between the occurrence of events in a se-
quence of independent experiments, as in Examples 2.11 and 2.43. Examples where the
modified geometric random variable arises are: number of customers awaiting ser-
vice in a queueing system; number of white dots between successive black dots in a
scan of a black-and-white document.

3.5.4 The Poisson Random Variable

In many applications, we are interested in counting the number of occurrences of an
event in a certain time period or in a certain region in space. The Poisson random vari-
able arises in situations where the events occur “completely at random” in time or
space. For example, the Poisson random variable arises in counts of emissions from ra-
dioactive substances, in counts of demands for telephone connections, and in counts of
defects in a semiconductor chip.

The pmf for the Poisson random variable is given by

(3.39)

where is the average number of event occurrences in a specified time interval or region
in space. Figure 3.9 shows the Poisson pmf for several values of For 
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FIGURE 3.9
Probability mass functions of Poisson random variable (a) 
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The pmf of the Poisson random variable sums to one, since

where we used the fact that the second summation is the infinite series expansion for 
It is easy to show that the mean and variance of a Poisson random variable is

given by:

Example 3.30 Queries at a Call Center

The number N of queries arriving in t seconds at a call center is a Poisson random variable with
where is the average arrival rate in queries/second. Assume that the arrival rate is four

queries per minute. Find the probability of the following events: (a) more than 4 queries in 10
seconds; (b) fewer than 5 queries in 2 minutes.

The arrival rate in queries/second is In part a, the
time interval is 10 seconds, so we have a Poisson random variable with 

queries. The probability of interest is evaluated numerically:

In part b, the time interval of interest is seconds, so The
probability of interest is:

Example 3.31 Arrivals at a Packet Multiplexer

The number N of packet arrivals in t seconds at a multiplexer is a Poisson random variable with
where is the average arrival rate in packets/second. Find the probability that there are

no packet arrivals in t seconds.

This equation has an interesting interpretation. Let Z be the time until the first packet ar-
rival. Suppose we ask, “What is the probability that that is, the next arrival occurs t or
more seconds later?” Note that implies and vice versa, so 
The probability of no arrival decreases exponentially with t.

Note that we can also show that

One of the applications of the Poisson probabilities in Eq. (3.39) is to approxi-
mate the binomial probabilities in the case where p is very small and n is very large,
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1lt2k
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that is, where the event A of interest is very rare but the number of Bernoulli trials is
very large. We show that if is fixed, then as n becomes large:

(3.40)

Equation (3.40) is obtained by taking the limit in the expression for while
keeping fixed. First, consider the probability that no events occur in n trials:

(3.41)

where the limit in the last expression is a well known result from calculus. Consider the
ratio of successive binomial probabilities:

Thus the limiting probabilities satisfy

(3.42)

Thus the Poisson pmf can be used to approximate the binomial pmf for large n and
small p, using

Example 3.32 Errors in Optical Transmission

An optical communication system transmits information at a rate of bits/second. The proba-
bility of a bit error in the optical communication system is Find the probability of five or
more errors in 1 second.

Each bit transmission corresponds to a Bernoulli trial with a “success” corresponding to a
bit error in transmission. The probability of k errors in transmissions (1 second) is then
given by the binomial probability with and The Poisson approximation uses

Thus

The Poisson random variable appears in numerous physical situations because
many models are very large in scale and involve very rare events. For example, the
Poisson pmf gives an accurate prediction for the relative frequencies of the number of
particles emitted by a radioactive mass during a fixed time period. This correspon-
dence can be explained as follows. A radioactive mass is composed of a large number
of atoms, say n. In a fixed time interval each atom has a very small probability p of dis-
integrating and emitting a radioactive particle. If atoms disintegrate independently of
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FIGURE 3.10
Event occurrences in n subintervals of [0, T].

other atoms, then the number of emissions in a time interval can be viewed as the num-
ber of successes in n trials. For example, one microgram of radium contains about

atoms, and the probability that a single atom will disintegrate during a one-
millisecond time interval is [Rozanov, p. 58]. Thus it is an understatement to
say that the conditions for the approximation in Eq. (3.40) hold: n is so large and p so
small that one could argue that the limit has been carried out and that the num-
ber of emissions is exactly a Poisson random variable.

The Poisson random variable also comes up in situations where we can imagine a
sequence of Bernoulli trials taking place in time or space. Suppose we count the num-
ber of event occurrences in a T-second interval. Divide the time interval into a very
large number, n, of subintervals as shown in Fig. 3.10. A pulse in a subinterval indicates
the occurrence of an event. Each subinterval can be viewed as one in a sequence of in-
dependent Bernoulli trials if the following conditions hold: (1) At most one event can
occur in a subinterval, that is, the probability of more than one event occurrence is neg-
ligible; (2) the outcomes in different subintervals are independent; and (3) the proba-
bility of an event occurrence in a subinterval is where is the average
number of events observed in a 1-second interval. The number N of events in 1 second
is a binomial random variable with parameters n and Thus as N be-
comes a Poisson random variable with parameter In Chapter 9 we will revisit this re-
sult when we discuss the Poisson random process.

3.5.5 The Uniform Random Variable

The discrete uniform random variable Y takes on values in a set of consecutive inte-
gers with equal probability:

(3.43)

This humble random variable occurs whenever outcomes are equally likely, e.g., toss of
a fair coin or a fair die, spinning of an arrow in a wheel divided into equal segments, se-
lection of numbers from an urn. It is easy to show that the mean and variance are:

Example 3.33 Discrete Uniform Random Variable in Unit Interval

Let X be a uniform random variable in We define the discrete uniform
random variable in the unit interval by

U =
X

L
so SU = e0,

1
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,
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,
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f .
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E3Y4 = j +
L + 1

2
 and VAR3Y4 =

L2 - 1

12
.
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U has pmf:

The pmf of U puts equal probability mass 1/L on equally spaced points in the unit in-

terval.The probability of a subinterval of the unit interval is equal to the number of points in the

subinterval multiplied by 1/L. As L becomes very large, this probability is essentially the length

of the subinterval.

3.5.6 The Zipf Random Variable

The Zipf random variable is named for George Zipf who observed that the frequen-
cy of words in a large body of text is proportional to their rank. Suppose that words
are ranked from most frequent, to next most frequent, and so on. Let X be the rank
of a word, then where L is the number of distinct words. The pmf
of X is:

(3.44)

where is a normalization constant. The second word has 1/2 the frequency of occur-
rence as the first, the third word has 1/3 the frequency of the first, and so on. The nor-
malization constant is given by the sum:

(3.45)

The constant occurs frequently in calculus and is called the Lth harmonic
mean and increases approximately as lnL. For example, for 
and It can be shown that as 

The mean of X is given by:

(3.46)

The second moment and variance of X are:

and

(3.47)

The Zipf and related random variables have gained prominence with the
growth of the Internet where they have been found in a variety of measurement
studies involving Web page sizes, Web access behavior, and Web page interconnectiv-
ity. These random variables had previously been found extensively in studies on the
distribution of wealth and, not surprisingly, are now found in Internet video rentals
and book sales.
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Zipf distribution and its long tail.
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FIGURE 3.12
Lorenz curve for Zipf random variable with L � 100.

Example 3.34 Rare Events and Long Tails

The Zipf random variable X has the property that a few outcomes (words) occur frequently but
most outcomes occur rarely. Find the probability of words with rank higher than m.

(3.48)

We call the probability of the tail of the distribution of X. Figure 3.11 shows
the with which has Figure 3.12 also shows

for a geometric random variable with the same mean, that is, It can be
seen that for the geometric random variable drops off much more quickly than

The Zipf distribution is said to have a “long tail” because rare events are more like-
ly to occur than in traditional probability models.

Example 3.35 80/20 Rule and the Lorenz Curve

Let X correspond to a level of wealth and be the proportion of a population that has
wealth k. Suppose that X is a Zipf random variable. Thus is the proportion of the popula-
tion with wealth 1, the proportion with wealth 2, and so on. The long tail of the Zipf dis-
tribution suggests that very rich individuals are not very rare. We frequently hear statements
such as “20% of the population owns 80% of the wealth.”The Lorenz curve plots the proportion
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of wealth owned by the poorest fraction x of the population, as the x varies from 0 to 1. Find the
Lorenz curve for 

For k in the fraction of the population with wealth k or less is:

(3.49)

The proportion of wealth owned by the population that has wealth k or less is:

(3.50)

The denominator in the above expression is the total wealth of the entire population. The Lorenz
curve consists of the plot of points which is shown in Fig. 3.12 for In the graph the
70% poorest proportion of the population own only 20% of the total wealth, or conversely, the 30%
wealthiest fraction of the population owns 80% of the wealth. See Problem 3.75 for a discussion of
what the Lorenz curve should look like in the cases of extreme fairness and extreme unfairness.

The explosive growth in the Internet has led to systems of huge scale. For proba-
bility models this growth has implied random variables that can attain very large val-
ues. Measurement studies have revealed many instances of random variables with long
tail distributions.

If we try to let L approach infinity in Eq. (3.45), grows without bound since the
series does not converge. However, if we make the pmf proportional to then the
series converges as long as We define the Zipf or zeta random variable with
range to have pmf:

(3.51)

where is a normalization constant given by the zeta function which is defined by:

(3.52)

The convergence of the above series is discussed in standard calculus books.
The mean of Z is given by:

where the sum of the sequence converges only if that is, We
can similarly show that the second moment (and hence the variance) exists only if 

3.6 GENERATION OF DISCRETE RANDOM VARIABLES

Suppose we wish to generate the outcomes of a random experiment that has sam-
ple space with probability of elementary events 
We divide the unit interval into n subintervals. The jth subinterval has length andpj
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Generating a binomial random variable with n � 5, p � 1/2.

corresponds to outcome Each trial of the experiment first uses rand to obtain a
number U in the unit interval. The outcome of the experiment is if U is in the jth
subinterval. Figure 3.13 shows the portioning of the unit interval according to the
pmf of an binomial random variable.

The Octave function discrete_rnd implements the above method and can be
used to generate random numbers with desired probabilities. Functions to generate
random numbers with common distributions are also available. For example,
poisson_rnd (lambda, r, c) can be used to generate an array of Poisson-distributed
random numbers with rate lambda.

Example 3.36 Generation of Tosses of a Die

Use discrete_rnd to generate 20 samples of a toss of a die.

> V=1:6; %Define

>P=[1/6, 1/6, 1/6, 1/6, 1/6, 1/6]; % Set all the pmf values for X to 1/6.

> discrete_rnd (20, V, P) %Generate 20 samples from with pmf P.

ans =

6 2 2 6 5 2 6 1 3 6 3 1 6 3 4 2 5 3 4 1

Example 3.37 Generation of Poisson Random Variable

Use the built-in function to generate 20 samples of a Poisson random variable with 

> Poisson_rnd (2,1,20) %Generate a array of samples of a Poisson
% random variable with 

ans =

4 3 0 2 3 2 1 2 1 4 0 1 2 2 3 4 0 1 3

a = 2.
1 * 20

a = 2.

SX

SX = 51, 2, 3, 4, 5, 66.

n = 5, p = 0.5

aj

aj .
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The problems at the end of the chapter elaborate on the rich set of experiments
that can be simulated using these basic capabilities of MATLAB or Octave. In the re-
mainder of this book, we will use Octave in examples because it is freely available.

SUMMARY

• A random variable is a function that assigns a real number to each outcome of a
random experiment.A random variable is defined if the outcome of a random ex-
periment is a number, or if a numerical attribute of an outcome is of interest.

• The notion of an equivalent event enables us to derive the probabilities of events
involving a random variable in terms of the probabilities of events involving the
underlying outcomes.

• A random variable is discrete if it assumes values from some countable set. The
probability mass function is sufficient to calculate the probability of all events
involving a discrete random variable.

• The probability of events involving discrete random variable X can be expressed
as the sum of the probability mass function 

• If X is a random variable, then is also a random variable.

• The mean, variance, and moments of a discrete random variable summarize some
of the information about the random variable X. These parameters are useful in
practice because they are easier to measure and estimate than the pmf.

• The conditional pmf allows us to calculate the probability of events given partial
information about the random variable X.

• There are a number of methods for generating discrete random variables with
prescribed pmf’s in terms of a random variable that is uniformly distributed in
the unit interval.

CHECKLIST OF IMPORTANT TERMS

Y = g1X2
pX1x2.

Discrete random variable
Equivalent event
Expected value of X
Function of a random variable
nth moment of X

Probability mass function
Random variable
Standard deviation of X
Variance of X

ANNOTATED REFERENCES

Reference [1] is the standard reference for electrical engineers for the material on ran-
dom variables. Reference [2] discusses some of the finer points regarding the concepts
of a random variable at a level accessible to students of this course. Reference [3] is a
classic text, rich in detailed examples. Reference [4] presents detailed discussions of the
various methods for generating random numbers with specified distributions. Refer-
ence [5] is entirely focused on discrete random variables.
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PROBLEMS

Section 3.1: The Notion of a Random Variable

3.1. Let X be the maximum of the number of heads obtained when Carlos and Michael each
flip a fair coin twice.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to the range of X.

(c) Find the probabilities for the various values of X.

3.2. A die is tossed and the random variable X is defined as the number of full pairs of dots in
the face showing up.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to the range of X.

(c) Find the probabilities for the various values of X.

(d) Repeat parts a, b, and c, if Y is the number of full or partial pairs of dots in the face
showing up.

(e) Explain why and are not equal.

3.3. The loose minute hand of a clock is spun hard. The coordinates (x, y) of the point where
the tip of the hand comes to rest is noted. Z is defined as the sgn function of the product
of x and y, where sgn(t) is 1 if if and if 

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its events.

(b) Show the mapping from S to the range of X.

(c) Find the probabilities for the various values of X.

3.4. A data source generates hexadecimal characters. Let X be the integer value correspond-
ing to a hex character. Suppose that the four binary digits in the character are indepen-
dent and each is equally likely to be 0 or 1.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to the range of X.

(c) Find the probabilities for the various values of X.

(d) Let Y be the integer value of a hex character but suppose that the most significant bit
is three times as likely to be a “0” as a “1”. Find the probabilities for the values of Y.

3.5. Two transmitters send messages through bursts of radio signals to an antenna. During
each time slot each transmitter sends a message with probability Simultaneous trans-
missions result in loss of the messages. Let X be the number of time slots until the first
message gets through.

1>2.

SX ,

SX ,

t 6 0.-1t = 0,t 7 0, 0

P3Y = 04P3X = 04

SX ,

SX ,



Problems 131

(a) Describe the underlying sample space S of this random experiment and specify the
probabilities of its elementary events.

(b) Show the mapping from S to the range of X.

(c) Find the probabilities for the various values of X.

3.6. An information source produces binary triplets 
with corresponding probabilities A binary code
assigns a codeword of length to triplet k. Let X be the length of the string as-
signed to the output of the information source.

(a) Show the mapping from S to the range of X.

(b) Find the probabilities for the various values of X.

3.7. An urn contains 9 $1 bills and one $50 bill. Let the random variable X be the total
amount that results when two bills are drawn from the urn without replacement.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to the range of X.

(c) Find the probabilities for the various values of X.

3.8. An urn contains 9 $1 bills and one $50 bill. Let the random variable X be the total
amount that results when two bills are drawn from the urn with replacement.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to the range of X.

(c) Find the probabilities for the various values of X.

3.9. A coin is tossed n times. Let the random variable Y be the difference between the num-
ber of heads and the number of tails in the n tosses of a coin. Assume 

(a) Describe the sample space of S.

(b) Find the probability of the event 

(c) Find the probabilities for the other values of Y.

3.10. An m-bit password is required to access a system.A hacker systematically works through
all possible m-bit patterns. Let X be the number of patterns tested until the correct pass-
word is found.

(a) Describe the sample space of S.

(b) Show the mapping from S to the range of X.

(c) Find the probabilities for the various values of X.

Section 3.2: Discrete Random Variables and Probability Mass Function

3.11. Let X be the maximum of the coin tosses in Problem 3.1.

(a) Compare the pmf of X with the pmf of Y, the number of heads in two tosses of a fair
coin. Explain the difference.

(b) Suppose that Carlos uses a coin with probability of heads Find the pmf
of X.

3.12. Consider an information source that produces binary pairs that we designate as
Find and plot the pmf in the following cases:

(a) for all k in

(b) for k = 2, 3, 4.pk+1 = pk/2

SX .pk = p1/k

SX = 51, 2, 3, 46.

p = 3/4.

SX ,

5Y = 06.
P[heads] = p.

SX ,

SX ,

SX ,

- log2 pk

51/4, 1/4, 1/8, 1/8, 1/16, 1/16, 1/16, 1/166.
5000, 111, 010, 101, 001, 110, 100, 0116
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(c) for

(d) Can the random variables in parts a, b, and c be extended to take on values in the set
If yes, specify the pmf of the resulting random variables. If no, explain

why not.

3.13. Let X be a random variable with pmf for 

(a) Estimate the value of c numerically. Note that the series converges.

(b) Find

(c) Find

3.14. Compare and for outputs of the data source in Problem 3.4.

3.15. In Problem 3.5 suppose that terminal 1 transmits with probability in a given time slot,
but terminal 2 transmits with probability p.

(a) Find the pmf for the number of transmissions X until a message gets through.

(b) Given a successful transmission, find the probability that terminal 2 transmitted.

3.16. (a) In Problem 3.7 what is the probability that the amount drawn from the urn is more
than $2? More than $50?

(b) Repeat part a for Problem 3.8.

3.17. A modem transmits a voltage signal into a channel. The channel adds to this signal a
noise term that is drawn from the set with respective probabilities

(a) Find the pmf of the output Y of the channel.

(b) What is the probability that the output of the channel is equal to the input of the
channel?

(c) What is the probability that the output of the channel is positive?

3.18. A computer reserves a path in a network for 10 minutes.To extend the reservation the com-
puter must successfully send a “refresh” message before the expiry time. However, mes-
sages are lost with probability Suppose that it takes 10 seconds to send a refresh
request and receive an acknowledgment. When should the computer start sending refresh
messages in order to have a 99% chance of successfully extending the reservation time?

3.19. A modem transmits over an error-prone channel, so it repeats every “0” or “1” bit trans-
mission five times. We call each such group of five bits a “codeword.” The channel
changes an input bit to its complement with probability p = 1/10 and it does so indepen-
dently of its treatment of other input bits. The modem receiver takes a majority vote of
the five received bits to estimate the input signal. Find the probability that the receiver
makes the wrong decision.

3.20. Two dice are tossed and we let X be the difference in the number of dots facing up.

(a) Find and plot the pmf of X.

(b) Find the probability that for all k.

Section 3.3: Expected Value and Moments of Discrete Random Variable

3.21. (a) In Problem 3.11, compare E[Y] to E[X] where X is the maximum of coin tosses.

(b) Compare VAR[X] and VAR[Y].

3.22. Find the expected value and variance of the output of the information sources in Problem
3.12, parts a, b, and c.

3.23. (a) Find E[X] for the hex integers in Problem 3.4.

(b) Find VAR[X].

ƒX ƒ … k

1>2.

54/10, 3/10, 2/10, 1/106.
50, -1, -2, -36

+2

1>2
P3Y Ú 84P3X Ú 84

P36 … X … 84.
P3X 7 44.

k = 1, 2, Á .pk = c/k2

51, 2, Á 6?
k = 2, 3, 4.pk+1 = pk/2

k
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3.24. Find the mean codeword length in Problem 3.6. How can this average be interpreted in a
very large number of encodings of binary triplets?

3.25. (a) Find the mean and variance of the amount drawn from the urn in Problem 3.7.

(b) Find the mean and variance of the amount drawn from the urn in Problem 3.8.

3.26. Find E[Y] and VAR[Y] for the difference between the number of heads and tails in Problem
3.9. In a large number of repetitions of this random experiment, what is the meaning of E[Y]?

3.27. Find E[X] and VAR[X] in Problem 3.13.

3.28. Find the expected value and variance of the modem signal in Problem 3.17.

3.29. Find the mean and variance of the time that it takes to renew the reservation in Problem 3.18.

3.30. The modem in Problem 3.19 transmits 1000 5-bit codewords.What is the average number
of codewords in error? If the modem transmits 1000 bits individually without repetition,
what is the average number of bits in error? Explain how error rate is traded off against
transmission speed.

3.31. (a) Suppose a fair coin is tossed n times. Each coin toss costs d dollars and the reward in
obtaining X heads is Find the expected value of the net reward.

(b) Suppose that the reward in obtaining X heads is where Find the expected
value of the reward.

3.32. Let where 

(a) Find E[g (X)] for X as in Problem 3.12a with 

(b) Repeat part a for X as in Problem 3.12b with 

(c) Repeat part a for X as in Problem 3.12c with 

3.33. Let (see Example 3.19).

(a) Find E[X] for X as in Problem 3.12a with 

(b) Repeat part a for X as in Problem 3.12b with 

(c) Repeat part a for X as in Problem 3.12c with 

3.34. Consider the St. Petersburg Paradox in Example 3.16. Suppose that the casino has a total
of dollars, and so it can only afford a finite number of coin tosses.

(a) How many tosses can the casino afford?

(b) Find the expected payoff to the player.

(c) How much should a player be willing to pay to play this game?

Section 3.4: Conditional Probability Mass Function

3.35. (a) In Problem 3.11a, find the conditional pmf of X, the maximum of coin tosses, given
that

(b) Find the conditional pmf of X given that Michael got one head in two tosses.

(c) Find the conditional pmf of X given that Michael got one head in the first toss.

(d) In Problem 3.11b, find the probability that Carlos got the maximum given that 

3.36. Find the conditional pmf for the quaternary information source in Problem 3.12, parts a,
b, and c given that 

3.37. (a) Find the conditional pmf of the hex integer X in Problem 3.4 given that 

(b) Find the conditional pmf of X given that the first bit is 0.

(c) Find the conditional pmf of X given that the 4th bit is 0.

3.38. (a) Find the conditional pmf of X in Problem 3.5 given that no message gets through in
time slot 1.

(b) Find the conditional pmf of X given that the first transmitter transmitted in time slot 1.

X 6 8.

X 6 4.

X = 2.

X 7 0.

M = 2m

SX = 51, 2, Á , 156.
SX = 51, 2, Á , 156.

SX = 51, 2, Á , 156.
g1X2 = 1X - 102+

SX = 51, 2, Á , 156.
SX = 51, 2, Á , 156.
SX = 51, 2, Á , 156.

A = 5X 7 106.g1X2 = IA ,

a 7 0.aX,

aX2 + bX.
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3.39. (a) Find the conditional expected value of X in Problem 3.5 given that no message gets
through in the first time slot. Show that .

(b) Find the conditional expected value of X in Problem 3.5 given that a message gets
through in the first time slot.

(c) Find E[X] by using the results of parts a and b.

(d) Find and VAR[X] using the approach in parts b and c.

3.40. Explain why Eq. (3.31b) can be used to find but it cannot be used to directly find
VAR[X].

3.41. (a) Find the conditional pmf for X in Problem 3.7 given that the first draw produced k
dollars.

(b) Find the conditional expected value corresponding to part a.

(c) Find E[X] using the results from part b.

(d) Find and VAR[X] using the approach in parts b and c.

3.42. Find E[Y] and VAR[Y] for the difference between the number of heads and tails in n
tosses in Problem 3.9. Hint: Condition on the number of heads.

3.43. (a) In Problem 3.10 find the conditional pmf of X given that the password has not been
found after k tries.

(b) Find the conditional expected value of X given

(c) Find E[X] from the results in part b.

Section 3.5: Important Discrete Random Variables

3.44. Indicate the value of the indicator function for the event A, for each in the sam-
ple space S. Find the pmf and expected of 

(a) and

(b) and

(c) and

(d) and

3.45. Let A and B be events for a random experiment with sample space S. Show that the
Bernoulli random variable satisfies the following properties:

(a) and

(b) and

(c) Find the expected value of the indicator functions in parts a and b.

3.46. Heat must be removed from a system according to how fast it is generated. Suppose the
system has eight components each of which is active with probability 0.25, independently
of the others. The design of the heat removal system requires finding the probabilities of
the following events:

(a) None of the systems is active.

(b) Exactly one is active.

(c) More than four are active.

(d) More than two and fewer than six are active.

3.47. Eight numbers are selected at random from the unit interval.

(a) Find the probability that the first four numbers are less than 0.25 and the last four
are greater than 0.25.

IA´B = IA + IB - IAIB .IA¨B = IAIB

I� = 0.IS = 1

A = 5z 7 a6.S = 1-q , q2
A = 5z = 1x, y2 : 0.25 6 x + y 6 1.256.
S = 5z = 1x, y2 : 0 6 x 6 1, 0 6 y 6 16

A = 50.3 6 z … 0.76.S = 30, 14
A = 5z 7 36.S = 51, 2, 3, 4, 56

IA .
zIA1z2,

X 7 k.

E3X24

E3X24,
E3X24

E3X ƒX 7 14 = E3X4 + 1
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(b) Find the probability that four numbers are less than 0.25 and four are greater than 0.25.

(c) Find the probability that the first three numbers are less than 0.25, the next two are
between 0.25 and 0.75, and the last three are greater than 0.75.

(d) Find the probability that three numbers are less than 0.25, two are between 0.25 and
0.75, and three are greater than 0.75.

(e) Find the probability that the first four numbers are less than 0.25 and the last four
are greater than 0.75.

(f) Find the probability that four numbers are less than 0.25 and four are greater than 0.75.

3.48. (a) Plot the pmf of the binomial random variable with and and
and

(b) Use Octave to plot the pmf of the binomial random variable with and
and

3.49. Let X be a binomial random variable that results from the performance of n Bernoulli
trials with probability of success p.

(a) Suppose that Find the probability that the single event occurred in the kth
Bernoulli trial.

(b) Suppose that Find the probability that the two events occurred in the jth and
kth Bernoulli trials where 

(c) In light of your answers to parts a and b in what sense are the successes distributed
“completely at random” over the n Bernoulli trials?

3.50. Let X be the binomial random variable.

(a) Show that

(b) Show that part a implies that: (1) is maximum at 
where [x] denotes the largest integer that is smaller than or equal to x; and (2) when

is an integer, then the maximum is achieved at and 

3.51. Consider the expression 

(a) Use the binomial expansion for and c to obtain an expression for 

(b) Now expand all terms of the form and obtain an expression that in-
volves the multinomial coefficient for mutually exclusive events,

(c) Let Use the result from part b to show that
the multinomial probabilities add to one.

3.52. A sequence of characters is transmitted over a channel that introduces errors with prob-
ability p = 0.01.

(a) What is the pmf of N, the number of error-free characters between erroneous char-
acters?

(b) What is E[N]?

(c) Suppose we want to be 99% sure that at least 1000 characters are received correctly
before a bad one occurs. What is the appropriate value of p?

3.53. Let N be a geometric random variable with 

(a) Find

(b) Find the probability that N is odd.

P3N = k ƒN … m4.
SN = 51, 2, Á 6.

p1 = P3A14, p2 = P3A24, p3 = P3A34.
A1 , A2 , A3 .

M = 3
1a + b2k

1a + b + c2n.1a + b2
1a + b + c2n.

kmax - 1.kmax1n + 12p
kmax = 31n + 12p4,P3X = k4

pX1k + 12
pX1k2 =

n - k

k + 1

p

1 - p
where pX102 = 11 - p2n.

j 6 k.
X = 2.

X = 1.

p = 0.90.p = 0.10, p = 0.5,
n = 100

p = 0.90.p = 0.10, p = 0.5,
n = 5,n = 4
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3.54. Let M be a geometric random variable. Show that M satisfies the memoryless property:
for all j,

3.55. Let X be a discrete random variable that assumes only nonnegative integer values and
that satisfies the memoryless property. Show that X must be a geometric random vari-
able. Hint: Find an equation that must be satisfied by 

3.56. An audio player uses a low-quality hard drive. The initial cost of building the player is
$50. The hard drive fails after each month of use with probability 1/12. The cost to repair
the hard drive is $20. If a 1-year warranty is offered, how much should the manufacturer
charge so that the probability of losing money on a player is 1% or less? What is the av-
erage cost per player?

3.57. A Christmas fruitcake has Poisson-distributed independent numbers of sultana raisins,
iridescent red cherry bits, and radioactive green cherry bits with respective averages 48,
24, and 12 bits per cake. Suppose you politely accept 1/12 of a slice of the cake.

(a) What is the probability that you get lucky and get no green bits in your slice?

(b) What is the probability that you get really lucky and get no green bits and two or
fewer red bits in your slice?

(c) What is the probability that you get extremely lucky and get no green or red bits and
more than five raisins in your slice?

3.58. The number of orders waiting to be processed is given by a Poisson random variable with
parameter where is the average number of orders that arrive in a day, is
the number of orders that can be processed by an employee per day, and n is the number
of employees. Let and Find the number of employees required so the prob-
ability that more than four orders are waiting is less than 10%. What is the probability
that there are no orders waiting?

3.59. The number of page requests that arrive at a Web server is a Poisson random variable
with an average of 6000 requests per minute.

(a) Find the probability that there are no requests in a 100-ms period.

(b) Find the probability that there are between 5 and 10 requests in a 100-ms period.

3.60. Use Octave to plot the pmf of the Poisson random variable with 

3.61. Find the mean and variance of a Poisson random variable.

3.62. For the Poisson random variable, show that for is maximum at 
for is maximum at and if is a positive integer, then is
maximum at and at Hint: Use the approach of Problem 3.50.

3.63. Compare the Poisson approximation and the binomial probabilities for and
and and and 

3.64. At a given time, the number of households connected to the Internet is a Poisson random
variable with mean 50. Suppose that the transmission bit rate available for the household
is 20 Megabits per second.

(a) Find the probability of the distribution of the transmission bit rate per user.

(b) Find the transmission bit rate that is available to a user with probability 90% or
higher.

(c) What is the probability that a user has a share of 1 Megabit per second or higher?

3.65. An LCD display has pixels. A display is accepted if it has 15 or fewer faulty
pixels.The probability that a pixel is faulty coming out of the production line is Find
the proportion of displays that are accepted.

10-5.
1000 * 750

p = 0.01.n = 100p = 0.05;n = 10, p = 0.1; n = 20
k = 0, 1, 2, 3

k = a - 1.k = a,
P3N = k4a3a4;a 7 1, P3N = k4

k = 0;a 6 1, P3N = k4

a = 0.1, 0.75, 2, 20.

m = 1.l = 5

mla = l/nm,

g1m2 = P3M Ú m4.

k 7 1.P3M Ú k + j ƒM Ú j + 14 = P3M Ú k4
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3.66. A data center has 10,000 disk drives. Suppose that a disk drive fails in a given day with
probability

(a) Find the probability that there are no failures in a given day.

(b) Find the probability that there are fewer than 10 failures in two days.

(c) Find the number of spare disk drives that should be available so that all failures in a
day can be replaced with probability 99%.

3.67. A binary communication channel has a probability of bit error of Suppose that
transmissions occur in blocks of 10,000 bits. Let N be the number of errors introduced by
the channel in a transmission block.

(a) Find

(b) For what value of p will the probability of 1 or more errors in a block be 99%?

3.68. Find the mean and variance of the uniform discrete random variable that takes on values
in the set with equal probability. You will need the following formulas:

3.69. A voltage X is uniformly distributed in the set 

(a) Find the mean and variance of X.

(b) Find the mean and variance of 

(c) Find the mean and variance of 

(d) Find the mean and variance of 

3.70. Ten news Web sites are ranked in terms of popularity, and the frequency of requests to
these sites are known to follow a Zipf distribution.

(a) What is the probability that a request is for the top-ranked site?

(b) What is the probability that a request is for one of the bottom five sites?

3.71. A collection of 1000 words is known to have a Zipf distribution.

(a) What is the probability of the 10 top-ranked words?

(b) What is the probability of the 10 lowest-ranked words?

3.72. What is the shape of the log of the Zipf probability vs. the log of the rank?

3.73. Plot the mean and variance of the Zipf random variable for to 

3.74. An online video store has 10,000 titles. In order to provide fast response, the store caches
the most popular titles. How many titles should be in the cache so that with probability
99% an arriving video request will be in the cache?

3.75. (a) Income distribution is perfectly equal if every individual has the same income. What
is the Lorenz curve in this case?

(b) In a perfectly unequal income distribution, one individual has all the income and all
others have none. What is the Lorenz curve in this case?

3.76. Let X be a geometric random variable in the set 

(a) Find the pmf of X.

(b) Find the Lorenz curve of X. Assume L is infinite.

(c) Plot the curve for 

3.77. Let X be a zeta random variable with parameter 

(a) Find an expression for P3X … k4.
a.

p = 0.1, 0.5, 0.9.

51, 2, Á 6.

L = 100.L = 1

Z = cos21pX/82.
W = cos1pX/82.
Y = -2X2 + 3.

5-3, Á , 3, 46.
a
n

i=1

i =
n1n + 12

2 a
n

i=1

i2 =
n1n + 1212n + 12

6
.

51, 2, Á , L6

P3N = 04, P3N … 34.

10-6.

10-3.
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(b) Plot the pmf of X for and 3.

(c) Plot for and 3.

Section 3.6: Generation of Discrete Random Variables

3.78. Octave provides function calls to evaluate the pmf of important discrete random vari-
ables. For example, the function Poisson_pdf(x, lambda) computes the pmf at x for the
Poisson random variable.

(a) Plot the Poisson pmf for as well as and 

(b) Plot the binomial pmf for and as well as 
and

(c) Compare the binomial probabilities with the Poisson approximation for 

3.79. The discrete_pdf function in Octave makes it possible to specify an arbitrary pmf for a
specified

(a) Plot the pmf for Zipf random variables with as well as 
and

(b) Plot the pmf for the reward in the St. Petersburg Paradox for in Problem 3.34, as
well as and (You will need to use a log scale for the values of k.)

3.80. Use Octave to plot the Lorenz curve for the Zipf random variables in Problem 3.79a.

3.81. Repeat Problem 3.80 for the binomial random variable with and 
and 0.9.

3.82. (a) Use the discrete_rnd function in Octave to simulate the urn experiment discussed in
Section 1.3.Compute the relative frequencies of the outcomes in 1000 draws from the urn.

(b) Use the discrete_pdf function in Octave to specify a pmf for a binomial random
variable with and Use discrete_rnd to generate 100 samples and
plot the relative frequencies.

(c) Use binomial_rnd to generate the 100 samples in part b.

3.83. Use the discrete_rnd function to generate 200 samples of the Zipf random vari-
able in Problem 3.79a. Plot the sequence of outcomes as well as the overall relative
frequencies.

3.84. Use the discrete_rnd function to generate 200 samples of the St. Petersburg Paradox
random variable in Problem 3.79b. Plot the sequence of outcomes as well as the overall
relative frequencies.

3.85. Use Octave to generate 200 pairs of numbers, in which the components are inde-
pendent, and each component is uniform in the set 

(a) Plot the relative frequencies of the X and Y outcomes.

(b) Plot the relative frequencies of the random variable Can you discern
the pmf of Z?

(c) Plot the relative frequencies of Can you discern the pmf of Z?

(d) Plot the relative frequencies of Is the pmf discernable?

3.86. Use Octave function binomial_rnd to generate 200 pairs of numbers, in which
the components are independent, and where are binomial with parameter

and are binomial with parameter n = 4, p = 0.5.Yin = 8, p = 0.5
Xi

1Xi , Yi2,
V = X/Y.

W = XY.

Z = X + Y.

51, 2, Á , 9, 106.
1Xi , Yi2,

p = 0.2.n = 5

p = 0.1, 0.5,n = 100

P3X 7 k4.P3X … k4
m = 20

P3X 7 k4.
P3X … k4L = 10, 100, 1000,

SX .

p = 0.01.
n = 100,

P3X 7 k4.
P3X … k4p = 0.10, 0.30, 0.50, 0.75,n = 48

P3X 7 k4.P3X … k4l = 0.5, 5, 50,

a = 1.5, 2,P3X … k4
a = 1.5, 2,
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(a) Plot the relative frequencies of the X and Y outcomes.

(b) Plot the relative frequencies of the random variable Does this corre-
spond to the pmf you would expect? Explain.

3.87. Use Octave function Poisson_rnd to generate 200 pairs of numbers, in which
the components are independent, and where are the number of arrivals to a system in
one second and are the number of arrivals to the system in the next two seconds. As-
sume that the arrival rate is five customers per second.

(a) Plot the relative frequencies of the X and Y outcomes.

(b) Plot the relative frequencies of the random variable Does this corre-
spond to the pmf you would expect? Explain.

Problems Requiring Cumulative Knowledge

3.88. The fraction of defective items in a production line is p. Each item is tested and defective
items are identified correctly with probability a.

(a) Assume nondefective items always pass the test. What is the probability that k items
are tested until a defective item is identified?

(b) Suppose that the identified defective items are removed. What proportion of the
remaining items is defective?

(c) Now suppose that nondefective items are identified as defective with probability b.
Repeat part b.

3.89. A data transmission system uses messages of duration T seconds. After each message
transmission, the transmitter stops and waits T seconds for a reply from the receiver.The re-
ceiver immediately replies with a message indicating that a message was received correctly.
The transmitter proceeds to send a new message if it receives a reply within T seconds; oth-
erwise, it retransmits the previous message. Suppose that messages can be completely gar-
bled while in transit and that this occurs with probability p. Find the maximum possible rate
at which messages can be successfully transmitted from the transmitter to the receiver.

3.90. An inspector selects every nth item in a production line for a detailed inspection. Sup-
pose that the time between item arrivals is an exponential random variable with mean 1
minute, and suppose that it takes 2 minutes to inspect an item. Find the smallest value of
n such that with a probability of 90% or more, the inspection is completed before the ar-
rival of the next item that requires inspection.

3.91. The number X of photons counted by a receiver in an optical communication system is a
Poisson random variable with rate when a signal is present and a Poisson random variable
with rate when a signal is absent. Suppose that a signal is present with probability p.

(a) Find and 

(b) The receiver uses the following decision rule:

If decide signal present;
otherwise, decide signal absent.

Show that this decision rule leads to the following threshold rule:

If decide signal present; otherwise, decide signal absent.

(c) What is the probability of error for the above decision rule?

X 7 T,

P3signal present ƒX = k4 7 P3signal absent ƒX = k4,

P3signal absent ƒX = k4.P3signal present ƒX = k4
l0 6 l1

l1

Z = X + Y.

Yi

Xi

1Xi , Yi2,
Z = X + Y.
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3.92. A binary information source (e.g., a document scanner) generates very long strings of 0’s fol-
lowed by occasional 1’s.Suppose that symbols are independent and that 
is very close to one. Consider the following scheme for encoding the run X of 0’s between
consecutive 1’s:

1. If express n as a multiple of an integer and a remainder r, that is, find
k and r such that where 

2. The binary codeword for n then consists of a prefix consisting of k 0’s followed by a 1,
and a suffix consisting of the m-bit representation of the remainder r.The decoder can
deduce the value of n from this binary string.

(a) Find the probability that the prefix has k zeros, assuming that 

(b) Find the average codeword length when 

(c) Find the compression ratio, which is defined as the ratio of the average run length
to the average codeword length when pM = 1/2.

pM = 1/2.

pM = 1/2.

0 … r 6 M - 1;n = kM + r,
M = 2mX = n,

p = P3symbol = 04



In Chapter 3 we introduced the notion of a random variable and we developed meth-
ods for calculating probabilities and averages for the case where the random variable is
discrete. In this chapter we consider the general case where the random variable may
be discrete, continuous, or of mixed type. We introduce the cumulative distribution
function which is used in the formal definition of a random variable, and which can
handle all three types of random variables. We also introduce the probability density
function for continuous random variables. The probabilities of events involving a ran-
dom variable can be expressed as integrals of its probability density function. The ex-
pected value of continuous random variables is also introduced and related to our
intuitive notion of average. We develop a number of methods for calculating probabil-
ities and averages that are the basic tools in the analysis and design of systems that in-
volve randomness.

4.1 THE CUMULATIVE DISTRIBUTION FUNCTION

The probability mass function of a discrete random variable was defined in terms of
events of the form The cumulative distribution function is an alternative ap-
proach which uses events of the form The cumulative distribution function
has the advantage that it is not limited to discrete random variables and applies to all
types of random variables. We begin with a formal definition of a random variable.

Definition: Consider a random experiment with sample space S and event
class A random variable X is a function from the sample space S to R with
the property that the set is in for every b in R.

The definition simply requires that every set have a well defined probability in
the underlying random experiment, and this is not a problem in the cases we will consider.
Why does the definition use sets of the form and not 
We will see that all events of interest in the real line can be expressed in terms of sets of
the form 

The cumulative distribution function (cdf) of a random variable X is defined as
the probability of the event 

(4.1)FX1x2 = P3X … x4 for -q 6 x 6 +q ,

5X … x6:
5z :X1z2 … b6.

5z :X1z2 = xb6?5z :X1z2 … b6
Ab

FAb = 5z :X1z2 … b6
F.

5X … b6.5X = b6.
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that is, it is the probability that the random variable X takes on a value in the set
In terms of the underlying sample space, the cdf is the probability of the

event The event and its probability vary as x is varied; in
other words, is a function of the variable x.

The cdf is simply a convenient way of specifying the probability of all semi-infi-
nite intervals of the real line of the form The events of interest when dealing
with numbers are intervals of the real line, and their complements, unions, and inter-
sections.We show below that the probabilities of all of these events can be expressed in
terms of the cdf.

The cdf has the following interpretation in terms of relative frequency. Suppose
that the experiment that yields the outcome and hence is performed a large
number of times. is then the long-term proportion of times in which 

Before developing the general properties of the cdf, we present examples of the
cdfs for three basic types of random variables.

Example 4.1 Three Coin Tosses

Figure 4.1(a) shows the cdf X, the number of heads in three tosses of a fair coin. From Example 3.1
we know that X takes on only the values 0, 1, 2, and 3 with probabilities 1/8, 3/8, 3/8, and 1/8, respec-
tively, so is simply the sum of the probabilities of the outcomes from that are less
than or equal to x.The resulting cdf is seen to be a nondecreasing staircase function that grows from
0 to 1.The cdf has jumps at the points 0, 1, 2, 3 of magnitudes 1/8, 3/8, 3/8, and 1/8, respectively.

Let us take a closer look at one of these discontinuities, say, in the vicinity of
For a small positive number, we have

so the limit of the cdf as x approaches 1 from the left is 1/8. However,

and furthermore the limit from the right is

FX11 + d2 = P3X … 1 + d4 = P30 or 1 heads4 =
1

2
.

FX112 = P3X … 14 = P30 or 1 heads4 =
1

8
+

3

8
=

1

2
,

FX11 - d2 = P3X … 1 - d4 = P50 heads6 =
1

8

dx = 1.

50, 1, 2, 36FX1x2

X1z2 … b.FX1b2
X1z2,z,

1-q , b4.
FX1x2

5X … x65z :X1z2 … x6.
1-q , x4.

(b)

0 1 2 3
x

(a)

FX(x) fX(x)

0 1 2 3

x

1

8

1

8

3

8
3

8

FIGURE 4.1
cdf (a) and pdf (b) of a discrete random variable.
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Thus the cdf is continuous from the right and equal to 1/2 at the point Indeed,
we note the magnitude of the jump at the point is equal to 

Henceforth we will use dots in the graph to indicate the value of the cdf at
the points of discontinuity.

The cdf can be written compactly in terms of the unit step function:

(4.2)

then

Example 4.2 Uniform Random Variable in the Unit Interval

Spin an arrow attached to the center of a circular board. Let be the final angle of the arrow,
where The probability that falls in a subinterval of is proportional to
the length of the subinterval. The random variable X is defined by Find the cdf
of X:

As increases from 0 to X increases from 0 to 1. No outcomes lead to values so

For occurs when so

(4.3)

Finally, for all outcomes lead to therefore:

We say that X is a uniform random variable in the unit interval. Figure 4.2(a) shows the cdf
of the general uniform random variable X. We see that is a nondecreasing continuous
function that grows from 0 to 1 as x ranges from its minimum values to its maximum values.

FX1x2

FX1x2 = P3X … x4 = P30 6 u … 2p4 = 1 for x 7 1.

5X1u2 … 1 6 x6,ux 7 1,

FX1x2 = P3X … x4 = P35u … 2px64 = 2px/2p = x 0 6 x … 1.

5u … 2px60 6 x … 1, 5X … x6
FX1x2 = P3X … x4 = P3�4 = 0 for x 6 0.

x … 0,u2p,u

X1u2 = u>2p.
10, 2p4u0 6 u … 2p.

u

FX1x2 =
1

8
u1x2 +

3

8
u1x - 12 +

3

8
u1x - 22 +

1

8
u1x - 32.

u1x2 = b0 for

1 for
 
x 6 0

x Ú 0,

- 1/8 = 3/8.
P3X = 14 = 1/2x = 1
x = 1.

a b

(a)

1

x

FX(x)

a b

(b)

fX(x)
1

b � a

x

FIGURE 4.2
cdf (a) and pdf (b) of a continuous random variable.
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0 01 1

(a)

1

x

p

p

FX(x) fX(x)

(b)

1 � p

x

FIGURE 4.3
cdf (a) and pdf (b) of a random variable of mixed type.

Example 4.3

The waiting time X of a customer at a taxi stand is zero if the customer finds a taxi parked at the
stand, and a uniformly distributed random length of time in the interval 0, 1 (in hours) if no
taxi is found upon arrival. The probability that a taxi is at the stand when the customer arrives is
p. Find the cdf of X.

The cdf is found by applying the theorem on total probability:

Note that when and 0 otherwise. Furthermore 
is given by Eq. (4.3), therefore

The cdf, shown in Fig. 4.3(a), combines some of the properties of the cdf in Example 4.1
(discontinuity at 0) and the cdf in Example 4.2 (continuity over intervals). Note that can
be expressed as the sum of a step function with amplitude p and a continuous function of x.

We are now ready to state the basic properties of the cdf.The axioms of probabil-
ity and their corollaries imply that the cdf has the following properties:

(i)

(ii)

(iii)

(iv) is a nondecreasing function of x, that is, if then 

(v) is continuous from the right, that is, for 

These five properties confirm that, in general, the cdf is a nondecreasing function that
grows from 0 to 1 as x increases from to We already observed these properties
in Examples 4.1, 4.2, and 4.3. Property (v) implies that at points of discontinuity, the cdf

q .-q

= FX1b+2.
h 7 0, FX1b2 = lim

h:0
FX1b + h2FX1x2

FX1a2 … FX1b2.a 6 b,FX1x2
lim
x:-q

FX1x2 = 0.

lim
x:q

FX1x2 = 1.

0 … FX1x2 … 1.

FX1x2

FX1x2 = c 0 x 6 0

p + 11 - p2x 0 … x … 1

1 x 7 1.

P3X … x ƒ no taxi4x Ú 0P3X … x ƒ find taxi4 = 1

FX1x2 = P3X … x4 = P3X … x ƒ find taxi4p + P3X … x ƒ no taxi411 - p2.

43
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is equal to the limit from the right. We observed this property in Examples 4.1 and 4.3.
In Example 4.2 the cdf is continuous for all values of x, that is, the cdf is continuous both
from the right and from the left for all x.

The cdf has the following properties which allow us to calculate the probability of
events involving intervals and single values of X:

(vi)

(vii)

(viii)

Property (vii) states that the probability that is given by the magnitude of the
jump of the cdf at the point b. This implies that if the cdf is continuous at a point b, then

Properties (vi) and (vii) can be combined to compute the probabilities
of other types of intervals. For example, since 

then

(4.4)

If the cdf is continuous at the endpoints of an interval, then the endpoints have zero
probability, and therefore they can be included in, or excluded from, the interval with-
out affecting the probability.

Example 4.4

Let X be the number of heads in three tosses of a fair coin. Use the cdf to find the probability of
the events and 

From property (vi) and Fig. 4.1 we have

The cdf is continuous at and so

Since from Eq. (4.4) we have

and using property (vii) for 

Example 4.5

Let X be the uniform random variable from Example 4.2. Use the cdf to find the probability of
the events and 5 ƒX - 0.4 ƒ 7 0.26.5-0.5 6 X 6 0.256, 50.3 6 X 6 0.656,

= FX12-2 - FX11-2 = 4/8 - 1/8 = 3/8.

P51 … X 6 24 = FX122 - FX11-2 - P3X = 24 = FX122 - FX11-2 - 1FX122 - FX12-22
P3X = 24:

P51 … X 6 24 + P3X = 24 = FX122 - FX11-2,
51 … X 6 26 ´ 5X = 26 = 51 … X … 26,

P30.5 … X 6 2.54 = FX12.52 - FX10.52 = 7/8 - 1/8 = 6/8.

x = 2.5,x = 0.5

P31 6 X … 24 = FX122 - FX112 = 7/8 - 1/2 = 3/8.

C = 51 … X 6 26.A = 51 6 X … 26, B = 50.5 … X 6 2.56,

= FX1a2 - FX1a-2 + FX1b2 - FX1a2 = FX1b2 - FX1a-2.
P3a … X … b4 = P3X = a4 + P3a 6 X … b4

… b6, 5a … X … b6 = 5X = a6 ´ 5a 6 X
P3X = b4 = 0.

X = b

P3X 7 x4 = 1 - FX1x2.
P3X = b4 = FX1b2 - FX1b-2.
P3a 6 X … b4 = FX1b2 - FX1a2.
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The cdf of X is continuous at every point so we have:

We now consider the proof of the properties of the cdf.

• Property (i) follows from the fact that the cdf is a probability and hence must sat-
isfy Axiom I and Corollary 2.

• To obtain property (iv), we note that the event is a subset of 
and so it must have smaller or equal probability (Corollary 7).

• To show property (vi), we note that can be expressed as the union of
mutually exclusive events: and so by
Axiom III,

• Property (viii) follows from and Corollary 1.

While intuitively clear, properties (ii), (iii), (v), and (vii) require more advanced limit-
ing arguments that are discussed at the end of this section.

4.1.1 The Three Types of Random Variables

The random variables in Examples 4.1, 4.2, and 4.3 are typical of the three most basic
types of random variable that we are interested in.

Discrete random variables have a cdf that is a right-continuous, staircase function
of x, with jumps at a countable set of points The random variable in
Example 4.1 is a typical example of a discrete random variable. The cdf of a dis-
crete random variable is the sum of the probabilities of the outcomes less than x and
can be written as the weighted sum of unit step functions as in Example 4.1:

(4.5)

where the pmf gives the magnitude of the jumps in the cdf. We
see that the pmf can be obtained from the cdf and vice versa.

A continuous random variable is defined as a random variable whose cdf 
is continuous everywhere, and which, in addition, is sufficiently smooth that it can be
written as an integral of some nonnegative function f(x):

(4.6)

The random variable discussed in Example 4.2 can be written as an integral of the function
shown in Fig. 4.2(b). The continuity of the cdf and property (vii) implies that continuous

FX1x2 = L
x

-q
f1t2 dt.

FX1x2
pX1xk2 = P3X = xk4

FX1x2 = a
xk…x

pX1xk2 = a
k

pX1xk2u1x - xk2,

FX1x2
x0 , x1 , x2 , Á .

5X 7 x6 = 5X … x6c
FX1a2 + P3a 6 X … b4 = FX1b2.

5X … a6 ´ 5a 6 X … b6 = 5X … b6,
5X … b6

5X … b6,5X … a6

= FX10.22 + 11 - FX10.622 = 0.2 + 0.4 = 0.6.

P3 ƒX - 0.4 ƒ 7 0.24 = P35X 6 0.26 ´ 5X 7 0.64 = P3X 6 0.24 + P3X 7 0.64
P30.3 6 X 6 0.654 = FX10.652 - FX10.32 = 0.65 - 0.3 = 0.35,

P3-0.5 6 X … 0.254 = FX10.252 - FX1-0.52 = 0.25 - 0 = 0.25,
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random variables have for all x. Every possible outcome has probability
zero! An immediate consequence is that the pmf cannot be used to characterize the proba-
bilities of X.A comparison of Eqs. (4.5) and (4.6) suggests how we can proceed to charac-
terize continuous random variables. For discrete random variables, (Eq. 4.5), we calculate
probabilities as summations of probability masses at discrete points. For continuous ran-
dom variables, (Eq. 4.6), we calculate probabilities as integrals of “probability densities”
over intervals of the real line.

A random variable of mixed type is a random variable with a cdf that has jumps
on a countable set of points but that also increases continuously over at
least one interval of values of x. The cdf for these random variables has the form

where and is the cdf of a discrete random variable and is the cdf
of a continuous random variable. The random variable in Example 4.3 is of mixed type.

Random variables of mixed type can be viewed as being produced by a two-step
process: A coin is tossed; if the outcome of the toss is heads, a discrete random variable
is generated according to otherwise, a continuous random variable is generated
according to 

4.1.2 Fine Point: Limiting properties of cdf

Properties (ii), (iii), (v), and (vii) require the continuity property of the probability
function discussed in Section 2.9. For example, for property (ii), we consider the se-
quence of events which increases to include all of the sample space S as n ap-
proaches that is, all outcomes lead to a value of X less than infinity. The continuity
property of the probability function (Corollary 8) implies that:

For property (iii), we take the sequence which decreases to the empty set
that is, no outcome leads to a value of X less than 

For property (v), we take the sequence of events which decreases to
from the right:

Finally, for property (vii), we take the sequence of events, which
decreases to from the left:

= P3 lim
n:q
5b - 1/n 6 X … b64 = P3X = b4.

lim
n:q
1FX1b2 - FX1b - 1/n22 = lim

n:q
P3b - 1/n 6 X … b4

5b6 5b - 1/n 6 X … b6
= P3 lim

n:q
5X … x + 1/n64 = P35X … x64 = FX1x2.

lim
n:q
FX1x + 1/n2 = lim

n:q
P3X … x + 1/n4

5X … x6
5X … x + 1/n6

lim
n:q
FX1-n2 = lim

n:q
P3X … -n4 = P3 lim

n:q
5X … -n64 = P3�4 = 0.

-q :�,
5X … -n6

lim
n:q
FX1n2 = lim

n:q
P3X … n4 = P3 lim

n:q
5X … n64 = P3S4 = 1.

q ,
5X … n6

*

F21x2.
F11x2;

F21x2F11x20 6 p 6 1,

FX1x2 = pF11x2 + 11 - p2F21x2,

x0 , x1 , x2 , Á ,

P3X = x4 = 0
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4.2 THE PROBABILITY DENSITY FUNCTION

The probability density function of X (pdf), if it exists, is defined as the derivative of

(4.7)

In this section we show that the pdf is an alternative, and more useful, way of specify-
ing the information contained in the cumulative distribution function.

The pdf represents the “density” of probability at the point x in the following
sense: The probability that X is in a small interval in the vicinity of x—that is,

—is

(4.8)

If the cdf has a derivative at x, then as h becomes very small,

(4.9)

Thus represents the “density” of probability at the point x in the sense that the prob-
ability that X is in a small interval in the vicinity of x is approximately The deriva-
tive of the cdf, when it exists, is positive since the cdf is a nondecreasing function of x, thus

(i) (4.10)

Equations (4.9) and (4.10) provide us with an alternative approach to specifying
the probabilities involving the random variable X. We can begin by stating a nonnega-
tive function called the probability density function, which specifies the proba-
bilities of events of the form “X falls in a small interval of width dx about the point x,”
as shown in Fig. 4.4(a). The probabilities of events involving X are then expressed in
terms of the pdf by adding the probabilities of intervals of width dx. As the widths of
the intervals approach zero, we obtain an integral in terms of the pdf. For example, the
probability of an interval [a, b] is

(ii) (4.11)

The probability of an interval is therefore the area under in that interval, as shown
in Fig. 4.4(b). The probability of any event that consists of the union of disjoint inter-
vals can thus be found by adding the integrals of the pdf over each of the intervals.

The cdf of X can be obtained by integrating the pdf:

(iii) (4.12)

In Section 4.1, we defined a continuous random variable as a random variable X whose
cdf was given by Eq. (4.12). Since the probabilities of all events involving X can be
written in terms of the cdf, it then follows that these probabilities can be written in

FX1x2 = L
x

-q
fX1t2 dt.

fX1x2
P3a … X … b4 = L

b

a

fX1x2 dx.

fX1x2,

fX1x2 Ú 0.

fX1x2h.
fX1x2

P3x 6 X … x + h4 M fX1x2h.

=
FX1x + h2 - FX1x2

h
h.

P3x 6 X … x + h4 = FX1x + h2 - FX1x2
… x + h6

5x 6 X

fX1x2 =
dFX1x2
dx

.

FX1x2:
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fX(x) fX(x)

x
x x � dx

P�a � X � b� � 	a
b fX(x)dx

a b

(a) (b)

P�x � X � x � dx� � fX(x)dx

x

FIGURE 4.4
(a) The probability density function specifies the probability of intervals of infinitesimal width. (b) The probability of an
interval [a, b] is the area under the pdf in that interval.

terms of the pdf. Thus the pdf completely specifies the behavior of continuous random

variables.
By letting x tend to infinity in Eq. (4.12), we obtain a normalization condition for

pdf’s:

(iv) (4.13)

The pdf reinforces the intuitive notion of probability as having attributes similar
to “physical mass.” Thus Eq. (4.11) states that the probability “mass” in an interval is
the integral of the “density of probability mass” over the interval. Equation (4.13)
states that the total mass available is one unit.

A valid pdf can be formed from any nonnegative, piecewise continuous function

g(x) that has a finite integral:

(4.14)

By letting we obtain a function that satisfies the normalization condi-
tion. Note that the pdf must be defined for all real values of x; if X does not take on val-
ues from some region of the real line, we simply set in the region.

Example 4.6 Uniform Random Variable

The pdf of the uniform random variable is given by:

(4.15a)fX1x2 = c 1

b - a
a … x … b

0 x 6 a and x 7 b

fX1x2 = 0

fX1x2 = g1x2/c,
L

q

-q
g1x2 dx = c 6 q .

1 = L
+q

-q
fX1t2 dt.
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and is shown in Fig. 4.2(b). The cdf is found from Eq. (4.12):

(4.15b)

The cdf is shown in Fig. 4.2(a).

Example 4.7 Exponential Random Variable

The transmission time X of messages in a communication system has an exponential distrib-
ution:

Find the cdf and pdf of X.
The cdf is given by 

(4.16a)

The pdf is obtained by applying Eq. (4.7):

(4.16b)

Example 4.8 Laplacian Random Variable

The pdf of the samples of the amplitude of speech waveforms is found to decay exponentially at
a rate so the following pdf is proposed:

(4.17)

Find the constant c, and then find the probability 

We use the normalization condition in (iv) to find c:

Therefore The probability is found by integrating the pdf:

4.2.1 pdf of Discrete Random Variables

The derivative of the cdf does not exist at points where the cdf is not continuous. Thus
the notion of pdf as defined by Eq. (4.7) does not apply to discrete random variables
at the points where the cdf is discontinuous. We can generalize the definition of the

P3 ƒX ƒ 6 v4 =
a

2L
v

-v

e-a ƒx ƒ dx = 2aa
2
bL

v

0

e-ax dx = 1 - e-av.

P[ ƒX ƒ 6 v]c = a/2.

1 = L
q

-q
ce-a ƒx ƒ dx = 2L

q

0

ce-ax dx =
2c

a
.

P3 ƒX ƒ 6 v4.
fX1x2 = ce-a ƒx ƒ -q 6 x 6 q .

a,

fX1x2 = Fœ
X1x2 = b0 x 6 0

le-lx x Ú 0.

FX1x2 = b0 x 6 0

1 - e-lx x Ú 0.

FX1x2 = 1 - P3X 7 x4

P3X 7 x4 = e-lx x 7 0.

FX1x2 = d 0 x 6 a

x - a

b - a
a … x … b

1 x 7 b.
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probability density function by noting the relation between the unit step function and
the delta function. The unit step function is defined as

(4.18a)

The delta function is related to the unit step function by the following equation:

(4.18b)

A translated unit step function is then:

(4.18c)

Substituting Eq. (4.18c) into the cdf of a discrete random variables:

(4.19)

This suggests that we define the pdf for a discrete random variable by

(4.20)

Thus the generalized definition of pdf places a delta function of weight at
the points where the cdf is discontinuous.

To provide some intuition on the delta function, consider a narrow rectangular
pulse of unit area and width centered at 

Consider the integral of :

(4.21)

As we see that the integral of the narrow pulse approaches the unit step func-
tion. For this reason, we visualize the delta function as being zero everywhered1t2

¢ : 0,

L
x

-q
p¢1t2 dt = e Lx-q

p¢1t2 dt = L
x

-q
0 dt = 0 for x 6 -¢/2

L
x

-q
p¢1t2 dt = L

¢/2

-¢/2

1/¢ dt = 1 for x 7 ¢/2

u : u1x2.
p¢(t)

p¢1t2 = b1/¢  -¢/2 … t … ¢/2

0 ƒ t ƒ 7 ¢.

t = 0:¢

xk

P3X = xk4
fX1x2 =

d

dx
FX1x2 = a

k

pX1xk2d1x - xk2.

= L
x

-q
a
k

pX1xk2d1t - xk2 dt.

FX1x2 = a
k

pX1xk2u1x - xk2 = a
k

pX1xk2L
x

-q
d1t - xk2 dt

u1x - x02 = L
x-x0

-q
d1t2 dt = L

x

-q
d1t¿ - x02 dt¿.

u1x2 = L
x

-q
d1t2 dt.

d1t2
u1x2 = b0 x 6 0

1 x Ú 0.
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except at where it is unbounded.The above equation does not apply at the value
To maintain the right continuity in Eq. (4.18a), we use the convention:

If we replace in the above derivation with we obtain the “sifting”
property of the delta function:

(4.22)

The delta function is viewed as sifting through x and picking out the value of g at the
point where the delta functions is centered, that is, for the expression on the right.

The pdf for the discrete random variable discussed in Example 4.1 is shown in
Fig. 4.1(b).The pdf of a random variable of mixed type will also contain delta functions
at the points where its cdf is not continuous. The pdf for the random variable discussed
in Example 4.3 is shown in Fig. 4.3(b).

Example 4.9

Let X be the number of heads in three coin tosses as in Example 4.1. Find the pdf of X. Find
and by integrating the pdf.

In Example 4.1 we found that the cdf of X is given by

It then follows from Eqs. (4.18) and (4.19) that

When delta functions appear in the limits of integration, we must indicate whether the delta
functions are to be included in the integration. Thus in the
delta function located at 1 is excluded from the integral and the delta function at 2 is included:

Similarly, we have that

4.2.2 Conditional cdf’s and pdf’s

Conditional cdf’s can be defined in a straightforward manner using the same approach
we used for conditional pmf’s. Suppose that event C is given and that The
conditional cdf of X given C is defined by

(4.23)FX1x ƒC2 =
P35X … x6 ¨ C4

P3C4  if P3C4 7 0.

P3C4 7 0.

P32 … X 6 34 = L
3-

2-

fX1x2 dx =
3

8
.

P31 6 X … 24 = L
2+

1+

fX1x2 dx =
3

8
.

P31 6 X … 24 = P3X in 11, 244,

fX1x2 =
1

8
d1x2 +

3

8
d1x - 12 +

3

8
d1x - 22 +

1

8
d1x - 32.

FX1x2 =
1

8
u1x2 +

3

8
u1x - 12 +

3

8
u1x - 22 +

1

8
u1x - 32.

P32 … X 6 34P31 6 X … 24

g1x02

g102 = L
q

-q
g1t2d1t2 dt and g1x02 = L

q

-q
g1t2d1t - x02 dt.

g1t2p¢1t2,p¢1t2
u102 = 1 = L

0

-q
d1t2 dt.

x = 0.
x = 0
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It is easy to show that satisfies all the properties of a cdf. (See Problem 4.29.)
The conditional pdf of X given C is then defined by

(4.24)

Example 4.10

The lifetime X of a machine has a continuous cdf Find the conditional cdf and pdf given
the event (i.e., “machine is still working at time t”).

The conditional cdf is

The intersection of the two events in the numerator is equal to the empty set when and to
when Thus

The conditional pdf is found by differentiating with respect to x:

Now suppose that we have a partition of the sample space S into the union of dis-
joint events Let be the conditional cdf of X given event 
The theorem on total probability allows us to find the cdf of X in terms of the condi-
tional cdf’s:

(4.25)

The pdf is obtained by differentiation:

(4.26)

Example 4.11

A binary transmission system sends a “0” bit by transmitting a voltage signal, and a “1” bit by
transmitting a The received signal is corrupted by Gaussian noise and given by:

where X is the transmitted signal, and N is a noise voltage with pdf Assume that
Find the pdf of Y.P3“1”4 = p = 1 - P3“0”4.

fN1x2.
Y = X + N

+v.
-v

fX1x2 =
d

dx
FX1x2 = a

n

i=1

fX1x ƒ Bi2P3Bi4.

FX1x2 = P3X … x4 = a
n

i=1

P3X … x ƒ Bi4P3Bi4 = a
n

i=1

FX1x ƒ Bi2P3Bi4.

Bi .FX1x ƒBi2B1 , B2 , Á , Bn .

fX1x ƒX 7 t2 =
fX1x2

1 - FX1t2 x Ú t.

FX1x ƒX 7 t2 = c 0 x … t
FX1x2 - FX1t2

1 - FX1t2 x 7 t.

x Ú t.5t 6 X … x6
x 6 t

FX1x ƒX 7 t2 = P3X … x ƒX 7 t4 =
P35X … x6 ¨ 5X 7 t64

P3X 7 t4 .

C = 5X 7 t6
FX1x2.

fX1x ƒ C2 =
d

dx
FX1x ƒC2.

FX1x ƒC2
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Let be the event “0” is transmitted and be the event “1” is transmitted, then 
form a partition, and

Since the event is equivalent to and 

and the event is equivalent to Therefore the conditional
cdf’s are:

and

The cdf is:

The pdf of N is then:

The Gaussian random variable has pdf:

The conditional pdfs are:

fY1x ƒB02 = fN1x + v2 =
1

22ps2
e-1x+v22/2s2

fN1x2 =
1

22ps2
e-x

2/2s2

-q 6 x 6 q .

= fN1x + v211 - p2 + fN1x - v2p.

=
d

dx
FN1x + v211 - p2 +

d

dx
FN1x - v2p

fY1x2 =
d

dx
FY1x2

FY1x2 = FN1x + v211 - p2 + FN1x - v2p.

FY1x ƒB12 = P3N … x - v4 = FN1x - v2.

FY1x ƒB02 = P3N … x + v4 = FN1x + v2
5N 6 x + v6.5Y 6 x ƒX = -v6

5N 6 x - v6,5v + N 6 x65Y 6 x ƒX = v6Y = X + N,

= P3Y … x ƒX = -v411 - p2 + P3Y … x ƒX = v4p.

FY1x2 = FY1x ƒ B023B04 + FY1x ƒ B123B14

B0 , B1B1B0

fN(x � v)

0�v v

x

fN(x � v)

FIGURE 4.5
The conditional pdfs given the input signal
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and

The pdf of the received signal Y is then:

Figure 4.5 shows the two conditional pdfs.We can see that the transmitted signal X shifts the cen-
ter of mass of the Gaussian pdf.

4.3 THE EXPECTED VALUE OF X

We discussed the expected value for discrete random variables in Section 3.3, and found
that the sample mean of independent observations of a random variable approaches
E X . Suppose we perform a series of such experiments for continuous random vari-
ables. Since continuous random variables have for any specific value
of x, we divide the real line into small intervals and count the number of times 
the observations fall in the interval As n becomes large, then the
relative frequency will approach the probability of the inter-
val. We calculate the sample mean in terms of the relative frequencies and let 

The expression on the right-hand side approaches an integral as we decrease 
The expected value or mean of a random variable X is defined by

(4.27)

The expected value E[X] is defined if the above integral converges absolutely, that is,

If we view as the distribution of mass on the real line, then E[X] represents the
center of mass of this distribution.

We already discussed E[X] for discrete random variables in detail, but it is worth
noting that the definition in Eq. (4.27) is applicable if we express the pdf of a discrete
random variable using delta functions:

= a
k

pX1xk2xk .

= a
k

pX1xk2L
+q

-q
ta
k

d1t - xk2 dt

E3X4 = L
+q

-q
ta
k

pX1xk2d1t - xk2 dt

fX1x2
E3 ƒX ƒ 4 = L

+q

-q
ƒ t ƒfX1t2 dt 6q .

E3X4 = L
+q

-q
tfX1t2 dt.

¢.

8X9n = a
k

xkfk1n2: a
k

xkfX1xk2¢.

n: q :
fX1xk2¢,fk1n2 = Nk1n2/n

5xk 6 X 6 xk + ¢6.
Nk1n2

P3X = x4 = 0
43

fY1x2 =
1

22ps2
e-1x+v22/2s211 - p2 +

1

22ps2
e-1x-v22/2s2

p.

fY1x ƒB12 = fN1x - v2 =
1

22ps2
e-1x-v22/2s2

.
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Example 4.12 Mean of a Uniform Random Variable

The mean for a uniform random variable is given by

which is exactly the midpoint of the interval [a, b].The results shown in Fig. 3.6 were obtained by
repeating experiments in which outcomes were random variables Y and X that had uniform cdf’s
in the intervals and [3, 7], respectively. The respective expected values, 0 and 5, corre-
spond to the values about which X and Y tend to vary.

The result in Example 4.12 could have been found immediately by noting that
when the pdf is symmetric about a point m. That is, if

then, assuming that the mean exists,

The first equality above follows from the symmetry of about and the odd
symmetry of about the same point. We then have that 

Example 4.13 Mean of a Gaussian Random Variable

The pdf of a Gaussian random variable is symmetric about the point Therefore 

The following expressions are useful when X is a nonnegative random variable:

(4.28)

and

(4.29)

The derivation of these formulas is discussed in Problem 4.47.

Example 4.14 Mean of Exponential Random Variable

The time X between customer arrivals at a service station has an exponential distribution. Find
the mean interarrival time.

Substituting Eq. (4.17) into Eq. (4.27) we obtain

E3X4 = L
q

0

tle-lt dt.

E3X4 = a
q

k=0

P3X 7 k4 ifX nonnegative, integer-valued.

E3X4 = L
q

0

11 - FX1t22 dt ifX continuous and nonnegative

E3X4 = m.x = m.

E3X4 = m.1m - t2
t = mfX1t2

0 = L
+q

-q
1m - t2fX1t2 dt = m - L

+q

-q
tfX1t2 dt.

fX1m - x2 = fX1m + x2 for all x,

E3X4 = m

3-1, 14

E3X4 = 1b - a2-1

L
b

a

t dt =
a + b

2
,
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We evaluate the integral using integration by parts with and

where we have used the fact that and go to zero as t approaches infinity.
For this example, Eq. (4.28) is much easier to evaluate:

Recall that is the customer arrival rate in customers per second. The result that the mean inter-
arrival time seconds per customer then makes sense intuitively.

4.3.1 The Expected Value of 

Suppose that we are interested in finding the expected value of As in the
case of discrete random variables (Eq. (3.16)), E[Y] can be found directly in terms of
the pdf of X:

(4.30)

To see how Eq. (4.30) comes about, suppose that we divide the y-axis into intervals
of length h, we index the intervals with the index k and we let be the value in the
center of the kth interval. The expected value of Y is approximated by the follow-
ing sum:

Suppose that g(x) is strictly increasing, then the kth interval in the y-axis has a unique
corresponding equivalent event of width in the x-axis as shown in Fig. 4.6. Let be
the value in the kth interval such that then since 

By letting h approach zero, we obtain Eq. (4.30). This equation is valid even if g(x) is
not strictly increasing.

E3Y4 M a
k

g1xk2fX1xk2hk .

fY1yk2h = fX1xk2hk ,g1xk2 = yk ,
xkhk

E3Y4 M a
k

ykfY1yk2h.

yk

E3Y4 = L
q

-q
g1x2fX1x2 dx.

Y = g1X2.
Y � g1X2

E3X4 = 1/l
l

E3X4 = L
q

0

e-lt dt =
1

l
.

te-lte-lt

= lim
t:q

-e-lt

l
+

1

l
=

1

l
,

= lim
t:q
te-lt - 0 + b -e-lt

l
r

0

q

E3X4 = - te-lt `
0

q

+ L
q

0

e-lt dt

dv = le-lt dt:
u = t11udv = uv - 1vdu2,



158 Chapter 4 One Random Variable

y � g(x)

yk

hk

xk

x

h

FIGURE 4.6
Two infinitesimal equivalent events.

Example 4.15 Expected Values of a Sinusoid with Random Phase

Let where and t are constants, and is a uniform random variable
in the interval The random variable Y results from sampling the amplitude of a sinu-
soid with random phase Find the expected value of Y and expected value of the power of

The average power is

Note that these answers are in agreement with the time averages of sinusoids: the time average
(“dc” value) of the sinusoid is zero; the time-average power is a2/2.

=
a2

2
+
a2

2 L
2p

0

 cos12vt + u2 du
2p

=
a2

2
.

E3Y24 = E3a2 cos21vt + ®24 = EBa2

2
+
a2

2
cos12vt + 2®2R

= -a sin1vt + 2p2 + a sin1vt2 = 0.

= L
2p

0

a cos1vt + u2 du
2p

= -a sin1vt + u2 `
0

2p

E3Y4 = E3a cos1vt + ®24
Y, Y2.

®.
10, 2p2.

®a, v,Y = a cos1vt + ®2



Section 4.3 The Expected Value of X 159

Example 4.16 Expected Values of the Indicator Function

Let be the indicator function for the event in where C is some interval or
union of intervals in the real line:

then

Thus the expected value of the indicator of an event is equal to the probability of the event.

It is easy to show that Eqs. (3.17a)–(3.17e) hold for continuous random variables
using Eq. (4.30). For example, let c be some constant, then

(4.31)

and

(4.32)

The expected value of a sum of functions of a random variable is equal to the sum
of the expected values of the individual functions:

(4.33)

Example 4.17

Let where are constants, then

where we have used Eq. (4.33), and Eqs. (4.31) and (4.32). A special case of this result is that

that is, we can shift the mean of a random variable by adding a constant to it.

E3X + c4 = E3X4 + c,

= a0 + a1E3X4 + a2E3X24 + Á + anE3Xn4,
E3Y4 = E3a04 + E3a1X4 + Á + E3anXn4

akY = g1X2 = a0 + a1X + a2X
2 + Á + anX

n,

= a
n

k=1

E3gk1X24.

= L
q

-q
a
n

k=1

gk1x2fX1x2 dx = a
n

k=1L
q

-q
gk1x2fX1x2 dx

E3Y4 = EBan
k=1

gk1X2R
E3cX4 = L

q

-q
cxfX1x2 dx = cL

q

-q
xfX1x2 dx = cE3X4.

E3c4 = L
q

-q
cfX1x2 dx = cL

q

-q
fX1x2 dx = c

E3Y4 = L
+q

-q
g1X2fX1x2 dx = LCfX1x2 dx = P3X in C4.

g1X2 = b0 X not in C

1 X in C,

C6,5Xg1X2 = IC1X2



160 Chapter 4 One Random Variable

4.3.2 Variance of X

The variance of the random variable X is defined by

(4.34)

The standard deviation of the random variable X is defined by

(4.35)

Example 4.18 Variance of Uniform Random Variable

Find the variance of the random variable X that is uniformly distributed in the interval [a, b].
Since the mean of X is

Let

The random variables in Fig. 3.6 were uniformly distributed in the interval and [3, 7], re-
spectively. Their variances are then 1/3 and 4/3. The corresponding standard deviations are 0.577
and 1.155.

Example 4.19 Variance of Gaussian Random Variable

Find the variance of a Gaussian random variable.
First multiply the integral of the pdf of X by to obtain

Differentiate both sides with respect to 

By rearranging the above equation, we obtain

This result can also be obtained by direct integration. (See Problem 4.46.) Figure 4.7 shows the
Gaussian pdf for several values of it is evident that the “width” of the pdf increases with 

The following properties were derived in Section 3.3:

(4.36)

(4.37)

(4.38)

where c is a constant.

VAR3cX4 = c2 VAR3X4,
VAR3X + c4 = VAR3X4
VAR3c4 = 0

s.s;

VAR3X4 =
1

22p sL
q

-q
1x - m22e-1x-m22/2s2

dx = s2.

L
q

-q
¢ 1x - m22

s3 ≤e-1x-m22/2s2

dx = 22p .

s:

L
q

-q
e-1x-m22/2s2

dx = 22p s.

22p s

3-1, 14
VAR3X4 =

1

b - aL
1b-a2/2

-1b-a2/2
y2 dy =

1b - a22
12

.

y = 1x - 1a + b2/22,
VAR3X4 =

1

b - aL
b

a

ax -
a + b

2
b2

dx.

1a + b2/2,

STD3X4 = VAR3X41/2.

VAR3X4 = E31X - E3X4224 = E3X24 - E3X42
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1fX(x)

.9

s �

s � 1

.8

.7

.6

.5

.4

.3

.2

.1

0
m � 4 m � 2 m

x

m � 2 m � 4

1

2

FIGURE 4.7
Probability density function of Gaussian random variable.

The mean and variance are the two most important parameters used in summa-
rizing the pdf of a random variable. Other parameters are occasionally used. For ex-
ample, the skewness defined by measures the degree of
asymmetry about the mean. It is easy to show that if a pdf is symmetric about its
mean, then its skewness is zero. The point to note with these parameters of the pdf is
that each involves the expected value of a higher power of X. Indeed we show in a
later section that, under certain conditions, a pdf is completely specified if the expect-
ed values of all the powers of X are known. These expected values are called the mo-
ments of X.

The nth moment of the random variable X is defined by

(4.39)

The mean and variance can be seen to be defined in terms of the first two moments,
E X and

Example 4.20 Analog-to-Digital Conversion: A Detailed Example

A quantizer is used to convert an analog signal (e.g., speech or audio) into digital form. A quan-
tizer maps a random voltage X into the nearest point q(X) from a set of representation values
as shown in Fig. 4.8(a).The value X is then approximated by q(X), which is identified by an R-bit
binary number. In this manner, an “analog” voltage X that can assume a continuum of values is
converted into an R-bit number.

The quantizer introduces an error as shown in Fig. 4.8(b). Note that Z is a
function of X and that it ranges in value between and d/2, where d is the quantizer step size.
Suppose that X has a uniform distribution in the interval that the quantizer has 
levels, and that It is easy to show that Z is uniformly distributed in the interval

(see Problem 4.93).3-d/2, d/24
2xmax = 2Rd.

2R3-xmax , xmax4,
-d/2

Z = X - q1X2

2R

*

E3X24.43

E3Xn4 = L
q

-q
xnfX1x2 dx.

E31X - E3X4234/STD3X43
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�

FIGURE 4.8
(a) A uniform quantizer maps the input x into the closest point from the set (b) The uniform
quantizer error for the input x is x - q1x2.

5;d/2, ;3d/2, ;5d/2, ;7d/26.

Therefore from Example 4.12,

The error Z thus has mean zero.
By Example 4.18,

This result is approximately correct for any pdf that is approximately flat over each quantizer in-
terval. This is the case when is large.

The approximation q(x) can be viewed as a “noisy” version of X since

where Z is the quantization error Z. The measure of goodness of a quantizer is specified by the
SNR ratio, which is defined as the ratio of the variance of the “signal” X to the variance of the
distortion or “noise” Z:

where we have used the fact that When X is nonuniform, the value is select-
ed so that is small. A typical choice is The SNR is then

This important formula is often quoted in decibels:

SNR dB = 10 log10 SNR = 6R - 7.3 dB.

SNR =
3

16
22R.

xmax = 4 STD3X4.P3 ƒX ƒ 7 xmax4
xmaxd = 2xmax/2

R.

=
VAR3X4
xmax

2 /3
22R,

SNR =
VAR3X4
VAR3Z4 =

VAR3X4
d2/12

Q1X2 = X - Z,

2R

VAR3Z4 =
1d/2 - 1-d/2222

12
=
d2

12
.

E3Z4 =
d/2 - d/2

2
= 0.
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The SNR increases by a factor of 4 (6 dB) with each additional bit used to represent X. This
makes sense since each additional bit doubles the number of quantizer levels, which in turn re-
duces the step size by a factor of 2. The variance of the error should then be reduced by the
square of this, namely 

4.4 IMPORTANT CONTINUOUS RANDOM VARIABLES

We are always limited to measurements of finite precision, so in effect, every random
variable found in practice is a discrete random variable. Nevertheless, there are several
compelling reasons for using continuous random variable models. First, in general, con-
tinuous random variables are easier to handle analytically. Second, the limiting form of
many discrete random variables yields continuous random variables. Finally, there are
a number of “families” of continuous random variables that can be used to model a
wide variety of situations by adjusting a few parameters. In this section we continue
our introduction of important random variables. Table 4.1 lists some of the more im-
portant continuous random variables.

4.4.1 The Uniform Random Variable

The uniform random variable arises in situations where all values in an interval of the real
line are equally likely to occur.The uniform random variable U in the interval [a,b] has pdf:

(4.40)

and cdf

(4.41)

See Figure 4.2. The mean and variance of U are given by:

(4.42)

The uniform random variable appears in many situations that involve equally
likely continuous random variables. Obviously U can only be defined over intervals
that are finite in length. We will see in Section 4.9 that the uniform random variable
plays a crucial role in generating random variables in computer simulation models.

4.4.2 The Exponential Random Variable

The exponential random variable arises in the modeling of the time between occur-
rence of events (e.g., the time between customer demands for call connections), and in
the modeling of the lifetime of devices and systems. The exponential random variable

X with parameter has pdfl

E3U4 =
a + b

2
 and VAR3X4 =

1b - a22
2

.

FU1x2 = d 0 x 6 a

x - a

b - a
a … x … b

1 x 7 b.

fU1x2 = c 1

b - a
a … x … b

0 x 6 a and x 7 b

22 = 4.
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TABLE 4.1 Continuous random variables.

Uniform Random Variable

E3X4 =
a + b

2
VAR3X4 =

1b - a22
12

£X1v2 =
ejvb - ejva

jv1b - a2

fX1x2 =
1

b - a
a … x … b

SX = 3a, b4

Exponential Random Variable

Remarks: The exponential random variable is the only continuous random variable with the memoryless
property.

E3X4 =
1

l
VAR3X4 =

1

l2
£X1v2 =

l

l - jv

fX1x2 = le-lx x Ú 0 and l 7 0

SX = 30, q2

Gaussian (Normal) Random Variable

Remarks: Under a wide range of conditions X can be used to approximate the sum of a large number of in-
dependent random variables.

E3X4 = m VAR3X4 = s2 £X1v2 = ejmv-s2v2/2

fX1x2 =
e-1x-m22/2s2

22ps
-q 6 x 6 +q and s 7 0

SX = 1-q , +q2

Gamma Random Variable

where is the gamma function (Eq. 4.56).

Special Cases of Gamma Random Variable

m–1 Erlang Random Variable: a positive integer

Remarks: An m–1 Erlang random variable is obtained by adding m independent exponentially distributed
random variables with parameter 

Chi-Square Random Variable with k degrees of freedom: k a positive integer, and 

Remarks: The sum of k mutually independent, squared zero-mean, unit-variance Gaussian random vari-
ables is a chi-square random variable with k degrees of freedom.

fX1x2 =
x1k-22/2e-x/2
2k/2≠1k/22 x 7 0 £X1v2 = a 1

1 - 2jv
bk/2

l = 1/2a = k/2,

l.

fX1x2 =
le-lx1lx2m-2

1m - 12! x 7 0 £X1v2 = a 1

1 - jv/l
bm

a = m,

E3X4 = a/l VAR3X4 = a/l2 £X1v2 =
1

11 - jv/l2a
≠1z2

fX1x2 =
l1lx2a-1e-lx

≠1a2 x 7 0 and a 7 0, l 7 0

SX = 10, +q2
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TABLE 4.1 Continuous random variables.

Laplacian Random Variable

E3X4 = 0 VAR3X4 = 2/a2 £X1v2 =
a2

v2 + a2

fX1x2 =
a

2
e-a ƒx ƒ -q 6 x 6 +q and a 7 0

SX = 1-q , q2

Rayleigh Random Variable

E3X4 = a2p/2 VAR3X4 = 12 - p/22a2

fX1x2 =
x

a2
e-x

2/2a2

x Ú 0 and a 7 0

SX = [0, q2

Cauchy Random Variable

Mean and variance do not exist. £X1v2 = e-a ƒv ƒ

fX1x2 =
a/p

x2 + a2
-q 6 x 6 +q and a 7 0

SX = 1-q , +q2

Pareto Random Variable

Remarks: The Pareto random variable is the most prominent example of random variables with “long
tails,” and can be viewed as a continuous version of the Zipf discrete random variable.

E3X4 =
axm

a - 1
 for a 7 1 VAR3X4 =

axm
2

1a - 221a - 122 for a 7 2

fX1x2 = c 0 x 6 xm

a
xm
a

xa+1
x Ú xm

SX = 3xm , q2xm 7 0.

Beta Random Variable

Remarks: The beta random variable is useful for modeling a variety of pdf shapes for random variables
that range over finite intervals.

E[X] =
a

a + b
VAR3X4 =

ab

1a + b221a + b + 12

fX1x2 = c ≠1a + b2
≠1a2 ≠1b2 xa-111 - x2b-1 0 6 x 6 1 and a 7 0, b 7 0

0 otherwise
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(4.43)

and cdf

(4.44)

The cdf and pdf of X are shown in Fig. 4.9.
The parameter is the rate at which events occur, so in Eq. (4.44) the probability

of an event occurring by time x increases at the rate increases. Recall from Example
3.31 that the interarrival times between events in a Poisson process (Fig. 3.10) is an ex-
ponential random variable.

The mean and variance of X are given by:

(4.45)

In event interarrival situations, is in units of events/second and is in units of sec-
onds per event interarrival.

The exponential random variable satisfies the memoryless property:

(4.46)

The expression on the left side is the probability of having to wait at least h additional
seconds given that one has already been waiting t seconds. The expression on the right
side is the probability of waiting at least h seconds when one first begins to wait. Thus
the probability of waiting at least an additional h seconds is the same regardless of how
long one has already been waiting! We see later in the book that the memoryless prop-
erty of the exponential random variable makes it the cornerstone for the theory of

P3X 7 t + h ƒX 7 t4 = P3X 7 h4.

1/ll

E3U4 =
1

l
 and VAR3X4 =

1

l2
.

l

l

FX1x2 = b0 x 6 0

1 - e-lx x Ú 0.

fX1x2 = b0 x 6 0

le-lx x Ú 0

x

FX(x)

1

0

1 � e�lx le�lx

x

fX(x)

0

(a) (b)

FIGURE 4.9
An example of a continuous random variable—the exponential random variable. Part (a) is the cdf and part (b) is the pdf.
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1This result, called the central limit theorem, will be discussed in Chapter 7.

Markov chains, which is used extensively in evaluating the performance of computer
systems and communications networks.

We now prove the memoryless property:

It can be shown that the exponential random variable is the only continuous random
variable that satisfies the memoryless property.

Examples 2.13, 2.28, and 2.30 dealt with the exponential random variable.

4.4.3 The Gaussian (Normal) Random Variable

There are many situations in manmade and in natural phenomena where one deals with a
random variable X that consists of the sum of a large number of “small” random variables.
The exact description of the pdf of X in terms of the component random variables can be-
come quite complex and unwieldy. However, one finds that under very general conditions,
as the number of components becomes large, the cdf of X approaches that of the Gaussian

(normal) random variable.1 This random variable appears so often in problems involving
randomness that it has come to be known as the “normal” random variable.

The pdf for the Gaussian random variable X is given by

(4.47)

where m and are real numbers, which we showed in Examples 4.13 and 4.19 to be
the mean and standard deviation of X. Figure 4.7 shows that the Gaussian pdf is a “bell-
shaped” curve centered and symmetric about m and whose “width” increases with 

The cdf of the Gaussian random variable is given by

(4.48)

The change of variable results in

(4.49)

where is the cdf of a Gaussian random variable with and 

(4.50)£1x2 =
1

22pL
x

-q
e-t

2/2 dt.

s = 1:m = 0£1x2
= £ ax - m

s
b

FX1x2 =
1

22pL
1x-m2/s

-q
e-t

2/2 dt

t = 1x¿ - m2/s
P3X … x4 =

1

22psL
x

-q
e-1x¿ -m22/2s2

dx¿.

s.

s 7 0

fX1x2 =
1

22ps
e-1x-m22/2s2

-q 6 x 6 q ,

= e-lh = P3X 7 h4.
=
P3X 7 t + h4
P3X 7 t4 =

e-l1t+h2
e-lt

P3X 7 t + h ƒX 7 t4 =
P35X 7 t + h6 ¨ 5X 7 t64

P3X 7 t4 for h 7 0
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Therefore any probability involving an arbitrary Gaussian random variable can be ex-
pressed in terms of 

Example 4.21

Show that the Gaussian pdf integrates to one. Consider the square of the integral of the pdf:

Let and and carry out the change from Cartesian to polar coordinates,
then we obtain:

In electrical engineering it is customary to work with the Q-function, which is de-
fined by

(4.51)

(4.52)

Q(x) is simply the probability of the “tail” of the pdf. The symmetry of the pdf im-
plies that

(4.53)

The integral in Eq. (4.50) does not have a closed-form expression. Traditionally
the integrals have been evaluated by looking up tables that list Q(x) or by using ap-
proximations that require numerical evaluation [Ross]. The following expression has
been found to give good accuracy for Q(x) over the entire range 

(4.54)

where and [Gallager]. Table 4.2 shows Q(x) and the value given by the
above approximation. In some problems, we are interested in finding the value of x for
which Table 4.3 gives these values for 

The Gaussian random variable plays a very important role in communication sys-
tems, where transmission signals are corrupted by noise voltages resulting from the
thermal motion of electrons. It can be shown from physical principles that these volt-
ages will have a Gaussian pdf.

k = 1, Á , 10.Q1x2 = 10-k.

b = 2pa = 1/p

Q1x2 M B 1

11 - a2x + a2x2 + b
R 1

22p
e-x

2/2,

0 6 x 6 q :

Q102 = 1/2 and Q1-x2 = 1 - Q1x2.

=
1

22pL
q

x

e-t
2/2 dt.

Q1x2 = 1 - £1x2

= 1.

= 3-e-r2/240q
1

2pL
q

0 L
2p

0

e-r
2/2r dr du = L

q

0

re-r
2/2 dr

y = r sin ux = r cos u

=
1

2pL
q

-qL
q

-q
e-1x2+y22/2 dx dy.

B 1

22pL
q

-q
e-x

2/2 dxR2

=
1

2pL
q

-q
e-x

2/2 dxL
q

-q
e-y

2/2 dy

£1x2.
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TABLE 4.2 Comparison of Q(x) and approximation given by Eq. (4.54).

x Q(x) Approximation x Q(x) Approximation

0 5.00E-01 5.00E-01 2.7 3.47E-03 3.46E-03

0.1 4.60E-01 4.58E-01 2.8 2.56E-03 2.55E-03

0.2 4.21E-01 4.17E-01 2.9 1.87E-03 1.86E-03

0.3 3.82E-01 3.78E-01 3.0 1.35E-03 1.35E-03

0.4 3.45E-01 3.41E-01 3.1 9.68E-04 9.66E-04

0.5 3.09E-01 3.05E-01 3.2 6.87E-04 6.86E-04

0.6 2.74E-01 2.71E-01 3.3 4.83E-04 4.83E-04

0.7 2.42E-01 2.39E-01 3.4 3.37E-04 3.36E-04

0.8 2.12E-01 2.09E-01 3.5 2.33E-04 2.32E-04

0.9 1.84E-01 1.82E-01 3.6 1.59E-04 1.59E-04

1.0 1.59E-01 1.57E-01 3.7 1.08E-04 1.08E-04

1.1 1.36E-01 1.34E-01 3.8 7.24E-05 7.23E-05

1.2 1.15E-01 1.14E-01 3.9 4.81E-05 4.81E-05

1.3 9.68E-02 9.60E-02 4.0 3.17E-05 3.16E-05

1.4 8.08E-02 8.01E-02 4.5 3.40E-06 3.40E-06

1.5 6.68E-02 6.63E-02 5.0 2.87E-07 2.87E-07

1.6 5.48E-02 5.44E-02 5.5 1.90E-08 1.90E-08

1.7 4.46E-02 4.43E-02 6.0 9.87E-10 9.86E-10

1.8 3.59E-02 3.57E-02 6.5 4.02E-11 4.02E-11

1.9 2.87E-02 2.86E-02 7.0 1.28E-12 1.28E-12

2.0 2.28E-02 2.26E-02 7.5 3.19E-14 3.19E-14

2.1 1.79E-02 1.78E-02 8.0 6.22E-16 6.22E-16

2.2 1.39E-02 1.39E-02 8.5 9.48E-18 9.48E-18

2.3 1.07E-02 1.07E-02 9.0 1.13E-19 1.13E-19

2.4 8.20E-03 8.17E-03 9.5 1.05E-21 1.05E-21

2.5 6.21E-03 6.19E-03 10.0 7.62E-24 7.62E-24

2.6 4.66E-03 4.65E-03

Example 4.22

A communication system accepts a positive voltage V as input and outputs a voltage
where and N is a Gaussian random variable with parameters and

Find the value of V that gives 
The probability is written in terms of N as follows:

From Table 4.3 we see that the argument of the Q-function should be Thus
V = 14.7532s/a = 950.6.

aV/s = 4.753.

= P3N 6 -aV4 = £ a -aV
s
b = QaaV

s
b = 10-6.

P3Y 6 04 = P3aV + N 6 04
P3Y 6 04

P3Y 6 04 = 10-6.s = 2.
m = 0a = 10-2Y = aV + N,
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TABLE 4.3 Q1x2 = 10-k

k x = Q�1110�k2
1 1.2815

2 2.3263

3 3.0902

4 3.7190

5 4.2649

6 4.7535

7 5.1993

8 5.6120

9 5.9978

10 6.3613

4.4.4 The Gamma Random Variable

The gamma random variable is a versatile random variable that appears in many appli-
cations. For example, it is used to model the time required to service customers in queue-
ing systems, the lifetime of devices and systems in reliability studies, and the defect
clustering behavior in VLSI chips.

The pdf of the gamma random variable has two parameters, and 
and is given by

(4.55)

where is the gamma function, which is defined by the integral

(4.56)

The gamma function has the following properties:

The versatility of the gamma random variable is due to the richness of the gamma
function The pdf of the gamma random variable can assume a variety of shapes
as shown in Fig. 4.10. By varying the parameters and it is possible to fit the gamma
pdf to many types of experimental data. In addition, many random variables are spe-
cial cases of the gamma random variable. The exponential random variable is obtained
by letting By letting and where k is a positive integer, we ob-
tain the chi-square random variable, which appears in certain statistical problems. The
m-Erlang random variable is obtained when a positive integer. The m-Erlang
random variable is used in the system reliability models and in queueing systems mod-
els. Both of these random variables are discussed in later examples.

a = m,

a = k/2,l = 1/2a = 1.

la

≠1z2.

≠1z + 12 = z≠1z2 for z 7 0, and

≠1m + 12 = m! form a nonnegative integer.

≠a1

2
b = 2p ,

≠1z2 = L
q

0

xz-1e-x dx z 7 0.

≠1z2
fX1x2 =

l1lx2a-1e-lx

≠1a2 0 6 x 6 q ,

l 7 0,a 7 0
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FIGURE 4.10
Probability density function of gamma random variable.

Example 4.23

Show that the pdf of a gamma random variable integrates to one.
The integral of the pdf is

Let then and the integral becomes

where we used the fact that the integral equals 

In general, the cdf of the gamma random variable does not have a closed-form
expression. We will show that the special case of the m-Erlang random variable does
have a closed-form expression for the cdf by using its close interrelation with the expo-
nential and Poisson random variables. The cdf can also be obtained by integration of
the pdf (see Problem 4.74).

Consider once again the limiting procedure that was used to derive the Poisson
random variable. Suppose that we observe the time that elapses until the occur-
rence of the mth event. The times between events are exponential ran-
dom variables, so we must have

Sm = X1 + X2 + Á + Xm .

X1 ,X2 , Á ,Xm

Sm

≠1a2.

la

≠1a2laL
q

0

ya-1e-y dy = 1,

dx = dy/ly = lx,

=
la

≠1a2L
q

0

xa-1e-lx dx.

L
q

0

fX1x2 dx = L
q

0

l1lx2a-1e-lx

≠1a2 dx
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We will show that is an m-Erlang random variable. To find the cdf of let N(t) be
the Poisson random variable for the number of events in t seconds. Note that the mth
event occurs before time t—that is, —if and only if m or more events occur in t
seconds, namely The reasoning goes as follows. If the mth event has oc-
curred before time t, then it follows that m or more events will occur in time t. On the
other hand, if m or more events occur in time t, then it follows that the mth event oc-
curred by time t. Thus

(4.57)

(4.58)

where we have used the result of Example 3.31. If we take the derivative of the above
cdf, we finally obtain the pdf of the m-Erlang random variable. Thus we have shown
that is an m-Erlang random variable.

Example 4.24

A factory has two spares of a critical system component that has an average lifetime of 
month. Find the probability that the three components (the operating one and the two spares)
will last more than 6 months.Assume the component lifetimes are exponential random variables.

The remaining lifetime of the component in service is an exponential random variable
with rate by the memoryless property. Thus, the total lifetime X of the three components is the
sum of three exponential random variables with parameter Thus X has a 3-Erlang distri-
bution with From Eq. (4.58) the probability that X is greater than 6 is

4.4.5 The Beta Random Variable

The beta random variable X assumes values over a closed interval and has pdf:

(4.59)

where the normalization constant is the reciprocal of the beta function

and where the beta function is related to the gamma function by the following expression:

When we have the uniform random variable. Other choices of a and b give
pdfs over finite intervals that can differ markedly from the uniform. See Problem 4.75. If

a = b = 1,

B1a, b2 =
≠1a2≠1b2
≠1a + b2 .

1

c
= B1a, b2 =L

1

0

 

 

xa-111 - x2b-1 dx

fX1x2 = cxa-111 - x2b-1 for 0 6 x 6 1

= a
2

k=0

6k

k!
e-6 = .06197.

P3X 7 64 = 1 - P3X … 64
l = 1.

l = 1.
l

1/l = 1

Sm

= 1 - a
m-1

k=0

1lt2k
k!
e-lt,

FSm1t2 = P3Sm … t4 = P3N1t2 Ú m4

N1t2 Ú m.
Sm … t

Sm ,Sm
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then the pdf is symmetric about and is concentrated about 
as well.When then the pdf is symmetric but the density is concentrated at the
edges of the interval.When (or ) the pdf is skewed to the right (or left).

The mean and variance are given by:

(4.60)

The versatility of the pdf of the beta random variable makes it useful to model a
variety of behaviors for random variables that range over finite intervals. For example,
in a Bernoulli trial experiment, the probability of success p could itself be a random
variable. The beta pdf is frequently used to model p.

4.4.6 The Cauchy Random Variable

The Cauchy random variable X assumes values over the entire real line and has pdf:

(4.61)

It is easy to verify that this pdf integrates to 1. However, X does not have any moments
since the associated integrals do not converge. The Cauchy random variable arises as
the tangent of a uniform random variable in the unit interval.

4.4.7 The Pareto Random Variable

The Pareto random variable arises in the study of the distribution of wealth where it
has been found to model the tendency for a small portion of the population to own a
large portion of the wealth. Recently the Pareto distribution has been found to cap-
ture the behavior of many quantities of interest in the study of Internet behavior,
e.g., sizes of files, packet delays, audio and video title preferences, session times in
peer-to-peer networks, etc.The Pareto random variable can be viewed as a continuous
version of the Zipf discrete random variable.

The Pareto random variable X takes on values in the range where 
is a positive real number. X has complementary cdf with shape parameter 
given by:

(4.62)

The tail of X decays algebraically with x which is rather slower in comparison to the ex-
ponential and Gaussian random variables. The Pareto random variable is the most
prominent example of random variables with “long tails.”

The cdf and pdf of X are:

(4.63)FX1x2 = c 0 x 6 xm

1 -
xm
a

xa
x Ú xm .

P3X 7 x4 = c 1 x 6 xm
xm
a

xa
x Ú xm .

a 7 0
xmx 7 xm ,

fX1x2 =
1/p

1 + x2
.

E3X4 =
a

a + b
 and VAR3X4 =

ab

1a + b221a + b + 12 .

a 7 ba 6 b
a = b 6 1,

x = 1/2x = 1/2a = b 7 1,
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Because of its long tail, the cdf of X approaches 1 rather slowly as x increases.

(4.64)

Example 4.25 Mean and Variance of Pareto Random Variable

Find the mean and variance of the Pareto random variable.

(4.65)

where the integral is defined for and

where the second moment is defined for 
The variance of X is then:

(4.66)

4.5 FUNCTIONS OF A RANDOM VARIABLE

Let X be a random variable and let g(x) be a real-valued function defined on the real
line. Define that is, Y is determined by evaluating the function g(x) at the
value assumed by the random variable X. Then Y is also a random variable. The prob-
abilities with which Y takes on various values depend on the function g(x) as well as
the cumulative distribution function of X. In this section we consider the problem of
finding the cdf and pdf of Y.

Example 4.26

Let the function be defined as follows:

For example, let X be the number of active speakers in a group of N speakers, and let Y be the
number of active speakers in excess of M, then In another example, let X be a 

voltage input to a halfwave rectifier, then is the output.Y = 1X2+
Y = 1X - M2+.

1x2+ = b 0 if x 6 0

x if x Ú 0.

h1x2 = 1x2+

Y = g1X2,

VAR3X4 =
axm

2

a - 2
- ¢ axm2
a - 1

≤2

=
axm

2

1a - 221a - 122 for a 7 2.

a 7 2.

E3X24 = L
q

xm

t2a
xm
a

ta+1
dt = L

q

xm

a
xm
a

ta-1 dt =
a

a - 2

xm
a

xm
a-2 =

axm
2

a - 2
for a 7 2

a 7 1,

E3X4 = L
q

xm

ta
xm
a

ta+1
dt = L

q

xm

a
xm
a

ta
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a

a - 1

xm
a

xm
a-1 =

axm

a - 1
for a 7 1

fX1x2 = c 0 x 6 xm

a
xm
a

xa+1
x Ú xm .
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Example 4.27

Let the function q(x) be defined as shown in Fig. 4.8(a), where the set of points on the real line are
mapped into the nearest representation point from the set 

Thus, for example, all the points in the interval (0, d) are mapped into the
point d/2.The function q(x) represents an eight-level uniform quantizer.

Example 4.28

Consider the linear function where a and b are constants. This function arises in
many situations. For example, c(x) could be the cost associated with the quantity x, with the constant
a being the cost per unit of x, and b being a fixed cost component. In a signal processing context,

could be the amplified version (if ) or attenuated version (if ) of the voltage x.

The probability of an event C involving Y is equal to the probability of the equiv-
alent event B of values of X such that g(X) is in C:

Three types of equivalent events are useful in determining the cdf and pdf of 
(1) The event is used to determine the magnitude of the jump at a point 
where the cdf of Y is known to have a discontinuity; (2) the event is used to
find the cdf of Y directly; and (3) the event is useful in determining
the pdf of Y. We will demonstrate the use of these three methods in a series of examples.

The next two examples demonstrate how the pmf is computed in cases where
is discrete. In the first example, X is discrete. In the second example, X is

continuous.

Example 4.29

Let X be the number of active speakers in a group of N independent speakers. Let p be the prob-
ability that a speaker is active. In Example 2.39 it was shown that X has a binomial distribution
with parameters N and p. Suppose that a voice transmission system can transmit up to M voice
signals at a time, and that when X exceeds M, randomly selected signals are discarded.
Let Y be the number of signals discarded, then

Y takes on values from the set Y will equal zero whenever X is less
than or equal to M, and Y will equal when X is equal to Therefore

and

where is the pmf of X.pj

P3Y = k4 = P3X = M + k4 = pM+k 0 6 k … N - M,

P3Y = 04 = P3X in 50, 1, Á ,M64 = a
M

j=0

pj

M + k.k 7 0
SY = 50, 1, Á ,N - M6.

Y = 1X - M2+.

X - M

Y = g1X2

5y 6 g1X2 … y + h65g1X2 … y6
yk5g1X2 = yk6

Y = g1X2:
P3Y in C4 = P3g1X2 in C4 = P3X in B4.

a 6 1a 7 1c1x2 = ax

c1x2 = ax + b,

0.5d, 1.5d, 2.5d, 3.5d6.
SY = 5-3.5d, -2.5d, -1.5d, -0.5d,
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Example 4.30

Let X be a sample voltage of a speech waveform, and suppose that X has a uniform distribution
in the interval Let where the quantizer input-output characteristic is as
shown in Fig. 4.10. Find the pmf for Y.

The event for q in is equivalent to the event where is an interval
of points mapped into the representation point q. The pmf of Y is therefore found by evaluating

It is easy to see that the representation point has an interval of length d mapped into it. Thus the
eight possible outputs are equiprobable, that is, for q in

In Example 4.30, each constant section of the function q(X) produces a delta
function in the pdf of Y. In general, if the function g(X) is constant during certain in-
tervals and if the pdf of X is nonzero in these intervals, then the pdf of Y will contain
delta functions. Y will then be either discrete or of mixed type.

The cdf of Y is defined as the probability of the event In principle, it
can always be obtained by finding the probability of the equivalent event 
as shown in the next examples.

Example 4.31 A Linear Function

Let the random variable Y be defined by

where a is a nonzero constant. Suppose that X has cdf then find 
The event occurs when occurs. If then 

(see Fig. 4.11), and thus

On the other hand, if then and

We can obtain the pdf of Y by differentiating with respect to y. To do this we need to use the
chain rule for derivatives:

where u is the argument of F. In this case, and we then obtain

fY1y2 =
1

a
fXay - b

a
b a 7 0

u = 1y - b2/a,

dF

dy
=
dF

du

du

dy
,

FY1y2 = P cX Ú
y - b

a
d = 1 - FXay - b

a
b a 6 0.

A = 5X Ú 1y - b2/a6,a 6 0,

FY1y2 = P cX …
y - b

a
d = FXay - b

a
b a 7 0.

(y - b2/a6
A = 5X …a 7 0,A = 5aX + b … y65Y … y6

FY1y2.FX1x2,
Y = aX + b,

5g1X2 … y6
5Y … y6.

SY .P3Y = q4 = 1/8

P3Y = q4 = LIqfX1t2 dt.

Iq5X in Iq6,SY5Y = q6
Y = q1X2,3-4d, 4d4.
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FIGURE 4.11
The equivalent event for is the event

if a 7 0.5X … 1y - b2/a6,
5Y … y6

and

The above two results can be written compactly as

(4.67)

Example 4.32 A Linear Function of a Gaussian Random Variable

Let X be a random variable with a Gaussian pdf with mean m and standard deviation 

(4.68)

Let then find the pdf of Y.
Substitution of Eq. (4.68) into Eq. (4.67) yields

Note that Y also has a Gaussian distribution with mean and standard deviation 
Therefore a linear function of a Gaussian random variable is also a Gaussian random variable.

Example 4.33

Let the random variable Y be defined by

where X is a continuous random variable. Find the cdf and pdf of Y.

Y = X2,

ƒa ƒ s.b + am

fY1y2 =
1

22p ƒas ƒ
e-1y-b-am22/21as22.

Y = aX + b,

fX1x2 =
1

22p s
e-1x-m22/2s2

-q 6 x 6 q .

s:

fY1y2 =
1

ƒa ƒ
fXay - b

a
b .

fY1y2 =
1

-a
fXay - b

a
b a 6 0.
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�Y � y�

Y � X2

�y� �y

FIGURE 4.12
The equivalent event for is the event

if y Ú 0.5-1y … X … 1y6,
5Y … y6

The event occurs when or equivalently when 
for y nonnegative; see Fig. 4.12. The event is null when y is negative. Thus

and differentiating with respect to y,

(4.69)

Example 4.34 A Chi-Square Random Variable

Let X be a Gaussian random variable with mean and standard deviation X is then
said to be a standard normal random variable. Let Find the pdf of Y.

Substitution of Eq. (4.68) into Eq. (4.69) yields

(4.70)

From Table 4.1 we see that is the pdf of a chi-square random variable with one degree of

freedom.

The result in Example 4.33 suggests that if the equation has n solu-
tions, then will be equal to n terms of the type on the right-handfY1y02x0 , x1 , Á , xn ,

y0 = g1x2

fY1y2
fY1y2 =

e-y/2

22yp
y Ú 0.

Y = X2.
s = 1.m = 0

=
fX11y2

21y +
fX1-1y2

21y .

fY1y2 =
fX11y2

21y -
fX1-1y2

-21y y 7 0

FY1y2 = b0 y 6 0

FX11y2 - FX1-1y2 y 7 0

5-1y … X … 1y65X2 … y65Y … y6



Section 4.5 Functions of a Random Variable 179
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FIGURE 4.13
The equivalent event of is 
´ 5x2 + dx2 6 X 6 x26 ´ 5x3 6 X 6 x3 + dx36.

5x1 6 X 6 x1 + dx165y 6 Y 6 y + dy6

side of Eq. (4.69).We now show that this is generally true by using a method for direct-
ly obtaining the pdf of Y in terms of the pdf of X.

Consider a nonlinear function such as the one shown in Fig. 4.13. Con-
sider the event and let be its equivalent event. For y indi-
cated in the figure, the equation has three solutions and and the
equivalent event has a segment corresponding to each solution:

The probability of the event is approximately

(4.71)

where is the length of the interval Similarly, the probability of
the event is approximately

(4.72)

Since and are equivalent events, their probabilities must be equal. By equating
Eqs. (4.71) and (4.72) we obtain

(4.73)

(4.74)

It is clear that if the equation has n solutions, the expression for the pdf of Y
at that point is given by Eqs. (4.73) and (4.74), and contains n terms.

g1x2 = y

= a
k

fX1x2 ` dx
dy
` `
x=xk

.

fY1y2 = a
k

fX1x2
ƒdy>dx ƒ ` x=xk

ByCy

P3By4 = fX1x12 ƒdx1 ƒ + fX1x22 ƒdx2 ƒ + fX1x32 ƒdx3 ƒ .

By

y 6 Y … y + dy.ƒdy ƒ

P3Cy4 = fY1y2 ƒdy ƒ ,
Cy

´ 5x3 6 X 6 x3 + dx36.
By = 5x1 6 X 6 x1 + dx16 ´ 5x2 + dx2 6 X 6 x26
By

x3 ,x1 , x2 ,g1x2 = y
ByCy = 5y 6 Y 6 y + dy6

Y = g1X2
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FIGURE 4.14
has two roots in the interval 10, 2p2.y = cos x

Example 4.35

Let as in Example 4.34. For the equation has two solutions, and
so Eq. (4.73) has two terms. Since Eq. (4.73) yields

This result is in agreement with Eq. (4.69). To use Eq. (4.74), we note that

which when substituted into Eq. (4.74) then yields Eq. (4.69) again.

Example 4.36 Amplitude Samples of a Sinusoidal Waveform

Let where X is uniformly distributed in the interval Y can be viewed as the
sample of a sinusoidal waveform at a random instant of time that is uniformly distributed over
the period of the sinusoid. Find the pdf of Y.

It can be seen in Fig. 4.14 that for the equation has two solutions in 

the interval of interest, and Since (see an introductory calculus
textbook)

and since in the interval of interest, Eq. (4.73) yields

=
1

p21 - y2
for -1 6 y 6 1.

fY1y2 =
1

2p21 - y2
+

1

2p21 - y2

fX1x2 = 1/2p

dy

dx
`
x0

= -sin1x02 = -sin1cos-11y22 = -21 - y2 ,

x1 = 2p - x0 .x0 = cos-11y2
y = cos1x2-1 6 y 6 1

10, 2p].Y = cos1X2,

dx

dy
=
d

dy
; 1y = ;

1

21y ,

fY1y2 =
fX11y2

21y +
fX1-1y2

21y .

dy/dx = 2x,x1 = -1y ,
x0 = 1yy = x2y Ú 0,Y = X2
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The cdf of Y is found by integrating the above:

Y is said to have the arcsine distribution.

4.6 THE MARKOV AND CHEBYSHEV INEQUALITIES

In general, the mean and variance of a random variable do not provide enough infor-
mation to determine the cdf/pdf. However, the mean and variance of a random vari-
able X do allow us to obtain bounds for probabilities of the form Suppose
first that X is a nonnegative random variable with mean E X . The Markov inequality

then states that

(4.75)

We obtain Eq. (4.75) as follows:

The first inequality results from discarding the integral from zero to a; the second in-
equality results from replacing t with the smaller number a.

Example 4.37

The mean height of children in a kindergarten class is 3 feet, 6 inches. Find the bound on the prob-
ability that a kid in the class is taller than 9 feet.The Markov inequality gives 

The bound in the above example appears to be ridiculous. However, a bound, by
its very nature, must take the worst case into consideration. One can easily construct a
random variable for which the bound given by the Markov inequality is exact.The rea-
son we know that the bound in the above example is ridiculous is that we have knowl-
edge about the variability of the children’s height about their mean.

Now suppose that the mean and the variance of a 
random variable are known, and that we are interested in bounding 
The Chebyshev inequality states that

(4.76)P3 ƒX - m ƒ Ú a4 …
s2

a2
.

P3 ƒX - m ƒ Ú a4.
VAR3X4 = s2E3X4 = m

= .389.
P3H Ú 94 … 42/108

Ú L
q

a

afX1t2 dt = aP3X Ú a4.

E3X4 = L
a

0

tfX1t2 dt + L
q

a

tfX1t2 dt Ú L
q

a

tfX1t2 dt

P3X Ú a4 …
E3X4
a

forX nonnegative.

43 P3 ƒX ƒ Ú t4.

FY1y2 = d 0 y 6 -1

1

2
+

sin-1y

p
-1 … y … 1

1 y 7 1.
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The Chebyshev inequality is a consequence of the Markov inequality. Let 
be the squared deviation from the mean.Then the Markov inequality applied to

gives

Equation (4.76) follows when we note that and are equiv-
alent events.

Suppose that a random variable X has zero variance; then the Chebyshev in-
equality implies that

(4.77)

that is, the random variable is equal to its mean with probability one. In other words, X

is equal to the constant m in almost all experiments.

Example 4.38

The mean response time and the standard deviation in a multi-user computer system are known
to be 15 seconds and 3 seconds, respectively. Estimate the probability that the response time is
more than 5 seconds from the mean.

The Chebyshev inequality with seconds, seconds, and seconds gives

Example 4.39

If X has mean m and variance then the Chebyshev inequality for gives

Now suppose that we know that X is a Gaussian random variable, then for 
whereas the Chebyshev inequality gives the upper bound .25.

Example 4.40 Chebyshev Bound Is Tight

Let the random variable X have The mean is zero and the vari-
ance is 

Note that The Chebyshev inequality states:

We see that the bound and the exact value are in agreement, so the bound is tight.

P3 ƒX ƒ Ú v4 … 1 -
VAR3X4
v2 = 1.

P3 ƒX ƒ Ú v4 = 1.

VAR3X4 = E3X24 = 1-v22 0.5 + v2 0.5 = v2.
P3X = -v4 = P3X = v4 = 0.5.

= .0456,
k = 2, P3 ƒX - m ƒ Ú 2s4

P3 ƒX - m ƒ Ú ks4 …
1

k2 .

a = kss2,

P3 ƒX - 15 ƒ Ú 54 …
9

25
= .36.

a = 5s = 3m = 15

P3X = m4 = 1,

5 ƒX - m ƒ Ú a65D2 Ú a26
P3D2 Ú a24 …

E31X - m224
a2

=
s2

a2
.

D2
- m22

D2 = 1X



Section 4.6 The Markov and Chebyshev Inequalities 183

0 a

es(t � a)

FIGURE 4.15
Bounds on indicator function for .A = 5t Ú a6

We see from Example 4.38 that for certain random variables, the Chebyshev in-
equality can give rather loose bounds. Nevertheless, the inequality is useful in situations
in which we have no knowledge about the distribution of a given random variable other
than its mean and variance. In Section 7.2, we will use the Chebyshev inequality to prove
that the arithmetic average of independent measurements of the same random variable
is highly likely to be close to the expected value of the random variable when the num-
ber of measurements is large. Problems 4.100 and 4.101 give examples of this result.

If more information is available than just the mean and variance, then it is possi-
ble to obtain bounds that are tighter than the Markov and Chebyshev inequalities.
Consider the Markov inequality again. The region of interest is so let

be the indicator function, that is, if and otherwise. The
key step in the derivation is to note that in the region of interest. In effect we
bounded by t/a as shown in Fig. 4.15. We then have:

By changing the upper bound on we can obtain different bounds on 

Consider the bound also shown in Fig. 4.15, where The resulting
bound is:

(4.78)

This bound is called the Chernoff bound, which can be seen to depend on the expected
value of an exponential function of X. This function is called the moment generating
function and is related to the transforms that are introduced in the next section.We de-
velop the Chernoff bound further in the next section.

= e-saL
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P3X Ú a4.IA1t2,
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q
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a
fX1t2 dt =

E3X4
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IA1t2
t/a Ú 1

IA1t2 = 0t H AIA1t2 = 1IA1t2
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4.7 TRANSFORM METHODS

In the old days, before calculators and computers, it was very handy to have loga-
rithm tables around if your work involved performing a large number of multiplica-
tions. If you wanted to multiply the numbers x and y, you looked up log(x) and
log(y), added log(x) and log(y), and then looked up the inverse logarithm of the
result. You probably remember from grade school that longhand multiplication is
more tedious and error-prone than addition. Thus logarithms were very useful as a
computational aid.

Transform methods are extremely useful computational aids in the solution of
equations that involve derivatives and integrals of functions. In many of these problems,
the solution is given by the convolution of two functions: * We will define
the convolution operation later. For now, all you need to know is that finding the con-
volution of two functions can be more tedious and error-prone than longhand multipli-
cation! In this section we introduce transforms that map the function into another
function and that satisfy the property that * In
other words, the transform of the convolution is equal to the product of the individual
transforms. Therefore transforms allow us to replace the convolution operation by
the much simpler multiplication operation. The transform expressions introduced in
this section will prove very useful when we consider sums of random variables in
Chapter 7.

4.7.1 The Characteristic Function

The characteristic function of a random variable X is defined by

(4.79a)

(4.79b)

where is the imaginary unit number. The two expressions on the right-hand
side motivate two interpretations of the characteristic function. In the first expression,

can be viewed as the expected value of a function of X, in which the para-
meter is left unspecified. In the second expression, is simply the Fourier
transform of the pdf (with a reversal in the sign of the exponent). Both of these
interpretations prove useful in different contexts.

If we view as a Fourier transform, then we have from the Fourier trans-
form inversion formula that the pdf of X is given by

(4.80)

It then follows that every pdf and its characteristic function form a unique Fourier
transform pair. Table 4.1 gives the characteristic function of some continuous random
variables.

fX1x2 =
1

2pL
q

-q
£X1v2e-jvx dv.

£X1v2
fX1x2

£X1v2v

ejvX,£X1v2
j = 2-1

= L
q

-q
fX1x2ejvx dx,

£X1v2 = E3ejvX4

f21x24 = f11v2f21v2.f 3f11x2fk1v2,
fk1x2

f21x2.f11x2
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Example 4.41 Exponential Random Variable

The characteristic function for an exponentially distributed random variable with parameter is
given by

If X is a discrete random variable, substitution of Eq. (4.20) into the definition of
gives

Most of the time we deal with discrete random variables that are integer-valued. The
characteristic function is then

(4.81)

Equation (4.81) is the Fourier transform of the sequence Note that the
Fourier transform in Eq. (4.81) is a periodic function of with period since 

and Therefore the characteristic function of integer-
valued random variables is a periodic function of The following inversion formula
allows us to recover the probabilities from 

(4.82)

Indeed, a comparison of Eqs. (4.81) and (4.82) shows that the are simply the co-
efficients of the Fourier series of the periodic function 

Example 4.42 Geometric Random Variable

The characteristic function for a geometric random variable is given by

Since and form a transform pair, we would expect to be able to ob-
tain the moments of X from The moment theorem states that the moments of£X1v2.

£X1v2fX1x2
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p

1 - qejv
.
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q
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q
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2p,v
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X are given by

(4.83)

To show this, first expand in a power series in the definition of 

Assuming that all the moments of X are finite and that the series can be integrated
term by term, we obtain

If we differentiate the above expression once and evaluate the result at we obtain

If we differentiate n times and evaluate at we finally obtain

which yields Eq. (4.83).
Note that when the above power series converges, the characteristic function and

hence the pdf by Eq. (4.80) are completely determined by the moments of X.

Example 4.43

To find the mean of an exponentially distributed random variable, we differentiate 
once, and obtain

The moment theorem then implies that 
If we take two derivatives, we obtain

so the second moment is then The variance of X is then given by
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l2 .
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Example 4.44 Chernoff Bound for Gaussian Random Variable

Let X be a Gaussian random variable with mean m and variance Find the Chernoff bound
for X.

The Chernoff bound (Eq. 4.78) depends on the moment generating function:

In terms of the characteristic function the bound is given by:

The parameter s can be selected to minimize the upper bound.
The bound for the Gaussian random variable is:

We minimize the upper bound by minimizing the exponent:

The resulting upper bound is:

This bound is much better than the Chebyshev bound and is similar to the estimate given in
Eq. (4.54).

4.7.2 The Probability Generating Function

In problems where random variables are nonnegative, it is usually more convenient to
use the z-transform or the Laplace transform. The probability generating function

of a nonnegative integer-valued random variable N is defined by

(4.84a)

(4.84b)

The first expression is the expected value of the function of The second expres-
sion is the z-transform of the pmf (with a sign change in the exponent). Table 3.1 shows
the probability generating function for some discrete random variables. Note that the
characteristic function of N is given by 

Using a derivation similar to that used in the moment theorem, it is easy to show
that the pmf of N is given by

(4.85)

This is why is called the probability generating function. By taking the first two
derivatives of and evaluating the result at it is possible to find the firstz = 1,GN1z2

GN1z2
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dk

dzk
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.
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two moments of X:

and

Thus the mean and variance of X are given by

(4.86)

and

(4.87)

Example 4.45 Poisson Random Variable

The probability generating function for the Poisson random variable with parameter is given by

The first two derivatives of are given by

and

Therefore the mean and variance of the Poisson are

4.7.3 The Laplace Transform of the pdf

In queueing theory one deals with service times, waiting times, and delays. All of these
are nonnegative continuous random variables. It is therefore customary to work with
the Laplace transform of the pdf,

(4.88)

Note that can be interpreted as a Laplace transform of the pdf or as an expected 

value of a function of X, e-sX.
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The moment theorem also holds for 

(4.89)

Example 4.46 Gamma Random Variable

The Laplace transform of the gamma pdf is given by

where we used the change of variable We can then obtain the first two moments
of X as follows:

and

Thus the variance of X is

4.8 BASIC RELIABILITY CALCULATIONS

In this section we apply some of the tools developed so far to the calculation of
measures that are of interest in assessing the reliability of systems. We also show
how the reliability of a system can be determined in terms of the reliability of its
components.

4.8.1 The Failure Rate Function

Let T be the lifetime of a component, a subsystem, or a system. The reliability at time t
is defined as the probability that the component, subsystem, or system is still function-
ing at time t:

(4.90)

The relative frequency interpretation implies that, in a large number of components or
systems, R(t) is the fraction that fail after time t. The reliability can be expressed in
terms of the cdf of T:

(4.91)R1t2 = 1 - P3T … t4 = 1 - FT1t2.

R1t2 = P3T 7 t4.

VAR1X2 = E3X24 - E3X42 =
a

l2 .

E3X24 =
d2

ds2
la

1l + s2a ` s=0

=
a1a + 12la
1l + s2a+2

`
s=0

=
a1a + 12
l2 .

E3X4 = -
d

ds

la

1l + s2a ` s=0

=
ala

1l + s2a+1
`
s=0

=
a

l

y = 1l + s2x.
=
la

≠1a2
1

1l + s2aL
q

0

ya-1e-y dy =
la

1l + s2a ,

X*1s2 = L
q

0

laxa-1e-lxe-sx

≠1a2 dx =
la

≠1a2L
q

0

xa-1e-1l+ s2x dx

E3Xn4 = 1-12n dn
dsn
X*1s2 `

s=0

.

X*1s2:



190 Chapter 4 One Random Variable

Note that the derivative of R(t) gives the negative of the pdf of T:

(4.92)

The mean time to failure (MTTF) is given by the expected value of T:

where the second expression was obtained using Eqs. (4.28) and (4.91).
Suppose that we know a system is still functioning at time t; what is its future be-

havior? In Example 4.10, we found that the conditional cdf of T given that is
given by

(4.93)

The pdf associated with is

(4.94)

Note that the denominator of Eq. (4.94) is equal to R(t).
The failure rate function r(t) is defined as evaluated at 

(4.95)

since by Eq. (4.92), The failure rate function has the following meaning:

(4.96)

In words, r(t) dt is the probability that a component that has functioned up to time t will
fail in the next dt seconds.

Example 4.47 Exponential Failure Law

Suppose a component has a constant failure rate function, say Find the pdf and the
MTTF for its lifetime T.

Equation (4.95) implies that

(4.97)

Equation (4.97) is a first-order differential equation with initial condition If we
integrate both sides of Eq. (4.97) from 0 to t, we obtain
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r(t)

t

FIGURE 4.16
Failure rate function for a typical system.

which implies that

The initial condition implies that Thus

(4.98)

and

Thus if T has a constant failure rate function, then T is an exponential random variable. This is
not surprising, since the exponential random variable satisfies the memoryless property. The

The derivation that was used in Example 4.47 can be used to show that, in gener-
al, the failure rate function and the reliability are related by

(4.99)

and from Eq. (4.92),

(4.100)

Figure 4.16 shows the failure rate function for a typical system. Initially there may
be a high failure rate due to defective parts or installation. After the “bugs” have been
worked out, the system is stable and has a low failure rate. At some later point, ageing
and wear effects set in, resulting in an increased failure rate. Equations (4.99) and
(4.100) allow us to postulate reliability functions and the associated pdf’s in terms of
the failure rate function, as shown in the following example.

fT1t2 = r1t2 expb -L t0

r1t¿2 dt¿ r .

R1t2 = expb -L t0

r1t¿2 dt¿ r
MTTF = E3T4 = 1/l.

fT1t2 = le-lt t 7 0.

R1t2 = e-lt t 7 0

K = 1.R102 = 1

R1t2 = Ke-lt, whereK = ek.
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FIGURE 4.17
Probability density function of Weibull random variable, and
b = 1, 2, 4.

a = 1

Example 4.48 Weibull Failure Law

The Weibull failure law has failure rate function given by

(4.101)

where and are positive constants. Equation (4.99) implies that the reliability is given by

Equation (4.100) then implies that the pdf for T is

(4.102)

Figure 4.17 shows for and several values of Note that yields the expo-
nential failure law, which has a constant failure rate. For Eq. (4.101) gives a failure rate
function that increases with time. For Eq. (4.101) gives a failure rate function that de-
creases with time. Further properties of the Weibull random variable are developed in the
problems.

4.8.2 Reliability of Systems

Suppose that a system consists of several components or subsystems. We now show
how the reliability of a system can be computed in terms of the reliability of its subsys-
tems if the components are assumed to fail independently of each other.

b 6 1,
b 7 1,

b = 1b.a = 1fT1t2
fT1t2 = abtb-1e-at

b
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R1t2 = e-at
b

.

ba
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C2 CnC1

(a)

(b)

C2

Cn

C1

FIGURE 4.18
(a) System consisting of n components in series. (b) System consisting
of n components in parallel.

Consider first a system that consists of the series arrangement of n components
as shown in Fig. 4.18(a). This system is considered to be functioning only if all the com-
ponents are functioning. Let be the event “system functioning at time t,” and let 
be the event “jth component is functioning at time t,” then the probability that the sys-
tem is functioning at time t is

(4.103)

since the reliability function of the jth component. Since probabilities
are numbers that are less than or equal to one, we see that R (t) can be no more reliable
than the least reliable of the components, that is,

If we apply Eq. (4.99) to each of the in Eq. (4.103), we then find that the fail-
ure rate function of a series system is given by the sum of the component failure rate
functions:

Example 4.49

Suppose that a system consists of n components in series and that the component lifetimes are
exponential random variables with rates Find the system reliability.l1 , l2 , Á , ln .

= expE -1 t0 3r11t¿2 + r21t¿2 + Á + rn1t¿24 dt¿ F .
R1t2 = expE -1 t0r11t¿2 dt¿ F expE -1 t0r21t¿2 dt¿ F Á expE -1 t0rn1t¿2 dt¿ F

Rj1t2
R1t2 … minj Rj1t2.

P3Aj4 = Rj1t2,
= R11t2R21t2Á Rn1t2,
= P3A1 ¨ A2 ¨ Á ¨ An4 = P3A14P3A24Á P3An4

R1t2 = P3As4

AjAs
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From Eqs. (4.98) and (4.103), we have

Thus the system reliability is exponentially distributed with rate 

Now suppose that a system consists of n components in parallel, as shown in
Fig. 4.18(b). This system is considered to be functioning as long as at least one of the
components is functioning. The system will not be functioning if and only if all the
components have failed, that is,

Thus

and finally,

(4.104)

Example 4.50

Compare the reliability of a single-unit system against that of a system that operates two units in
parallel. Assume all units have exponentially distributed lifetimes with rate 1.

The reliability of the single-unit system is

The reliability of the two-unit system is

The parallel system is more reliable by a factor of

More complex configurations can be obtained by combining subsystems consisting
of series and parallel components.The reliability of such systems can then be computed in
terms of the subsystem reliabilities. See Example 2.35 for an example of such a calculation.

4.9 COMPUTER METHODS FOR GENERATING RANDOM VARIABLES

The computer simulation of any random phenomenon involves the generation of ran-
dom variables with prescribed distributions. For example, the simulation of a queueing
system involves generating the time between customer arrivals as well as the service
times of each customer. Once the cdf’s that model these random quantities have been
selected, an algorithm for generating random variables with these cdf’s must be found.
MATLAB and Octave have built-in functions for generating random variables for all

12 - e-t2 7 1.

= e-t12 - e-t2.
Rp1t2 = 1 - 11 - e-t211 - e-t2

Rs1t2 = e-t.

R1t2 = 1 - 11 - R11t2211 - R21t22Á 11 - Rn1t22.

1 - R1t2 = 11 - R11t2211 - R21t22Á 11 - Rn1t22,

P3Asc4 = P3A1
c4P3A2

c4Á P3Anc4.

l1 + l2 + Á + ln .

= e-1l1+ Á +ln2t.

R1t2 = e-l1te-l2tÁ e-lnt
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of the well known distributions. In this section we present the methods that are used
for generating random variables. All of these methods are based on the availability of
random numbers that are uniformly distributed between zero and one. Methods for
generating these numbers were discussed in Section 2.7.

All of the methods for generating random variables require the evaluation of ei-
ther the pdf, the cdf, or the inverse of the cdf of the random variable of interest.We can
write programs to perform these evaluations, or we can use the functions available in
programs such as MATLAB and Octave. The following example shows some typical
evaluations for the Gaussian random variable.

Example 4.51 Evaluation of pdf, cdf, and Inverse cdf

Let X be a Gaussian random variable with mean 1 and variance 2. Find the pdf at Find the
cdf at Find the value of x at which the 

The following commands show how these results are obtained using Octave.

> normal_pdf (7, 1, 2)

ans = 3.4813e-05

> normal_cdf (-2, 1, 2)

ans = 0.016947

> normal_inv (0.25, 1, 2)

ans = 0.046127

4.9.1 The Transformation Method

Suppose that U is uniformly distributed in the interval [0, 1]. Let be the cdf of
the random variable we are interested in generating. Define the random variable,

that is, first U is selected and then Z is found as indicated in Fig. 4.19.The
cdf of Z is

But if U is uniformly distributed in [0, 1] and then (see
Example 4.6). Thus

and has the desired cdf.

Transformation Method for Generating X:

1. Generate U uniformly distributed in [0, 1].

2. Let

Example 4.52 Exponential Random Variable

To generate an exponentially distributed random variable X with parameter we need to invert
the expression We obtain

X = -
1

l
ln11 - U2.

u = FX1x2 = 1 - e-lx.
l,

Z = FX
-11U2.

Z = FX
-11U2

P3Z … x4 = FX1x2,
P3U … h4 = h0 … h … 1,

P3Z … x4 = P3FX-11U2 … x4 = P3U … FX1x24.
Z = FX

-11U2;
FX1x2

cdf = 0.25.x = -2.
x = 7.
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Note that we can use the simpler expression since is also uniform-
ly distributed in [0, 1].The first two lines of the Octave commands below show how to implement
the transformation method to generate 1000 exponential random variables with Figure
4.20 shows the histogram of values obtained. In addition, the figure shows the probability that
samples of the random variables fall in the corresponding histogram bins. Good correspondence
between the histograms and these probabilities are observed. In Chapter 8 we introduce meth-
ods for assessing the goodness-of-fit of data to a given distribution. Both MATLAB and Octave
use the transformation method in their function exponential_rnd.

> U=rand (1, 1000); %Generate 1000 uniform random variables.
> X=-log(U); %Compute 1000 exponential RVs.
> K=0.25:0.5:6;

> P(1)=1-exp(-0.5)

> for i=2:12, %The remaining lines show how to generate
> P(i)=P(i-1)*exp(-0.5) % the histogram bins.
> end;

> stem (K, P)

> hold on

> Hist (X, K, 1)

4.9.2 The Rejection Method

We first consider the simple version of this algorithm and explain why it works; then
we present it in its general form. Suppose that we are interested in generating a ran-
dom variable Z with pdf as shown in Fig. 4.21. In particular, we assume that: (1)
the pdf is nonzero only in the interval [0, a], and (2) the pdf takes on values in the
range [0, b]. The rejection method in this case works as follows:

fX1x2

l = 1.

1 - UX = - ln1U2/l,

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

U

Z = FX
�1(U)

FX(x)

FIGURE 4.19
Transformation method for generating a random variable with cdf FX1x2.
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FIGURE 4.20
Histogram of 1000 exponential random variables using transformation method.

1. Generate uniform in the interval [0, a].

2. Generate Y uniform in the interval [0, b].

3. If then output else, reject and return to step 1.X1Z = X1 ;Y … fX1X12,
X1

0
0

Y

b

x

X1

x � dx
a

fX(x)

Reject

Accept

FIGURE 4.21
Rejection method for generating a random variable with pdf fX1x2.
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Note that this algorithm will perform a random number of steps before it produces the
output Z.

We now show that the output Z has the desired pdf. Steps 1 and 2 select a point at
random in a rectangle of width a and height b. The probability of selecting a point in
any region is simply the area of the region divided by the total area of the rectangle, ab.
Thus the probability of accepting is the probability of the region below divid-
ed by ab. But the area under any pdf is 1, so we conclude that the probability of success
(i.e., acceptance) is 1/ab. Consider now the following probability:

Therefore when accepted has the desired pdf. Thus Z has the desired pdf.

Example 4.53 Generating Beta Random Variables

Show that the beta random variables with can be generated using the rejection method.
The pdf of the beta random variable with is similar to that shown in Fig. 4.21.

This beta pdf is maximum at and the maximum value is:

Therefore we can generate this beta random variable using the rejection method with 

The algorithm as stated above can have two problems. First, if the rectangle does
not fit snugly around the number of that need to be generated before ac-
ceptance may be excessive. Second, the above method cannot be used if is un-
bounded or if its range is not finite. The general version of this algorithm overcomes
both problems. Suppose we want to generate Z with pdf Let W be a random
variable with pdf that is easy to generate and such that for some constant 

that is, the region under contains as shown in Fig. 4.22.

Rejection Method for Generating X:

1. Generate with pdf Define 

2. Generate Y uniform in 

3. If then output else reject and return to step 1.

See Problem 4.143 for a proof that Z has the desired pdf.

X1Z = X1 ;Y … fX1X12,
30, B1X124.

B1X12 = KfW1X12.fW1x2.X1

fX1x2KfW1x2
KfW1x2 Ú fX1x2 for all x,

K 7 1,fW1x2
fX1x2.

fX1x2
X1’sfX1x2,

b = 1.5.

11/222-111/222-1

B12, 22 =
1/4

≠122≠122/≠142 =
1/4

1!1!/3!
=

3

2
.

x = 1/2
a¿ = b¿ = 2

a¿ = b¿ = 2

X1

= fX1x2 dx.
=

shaded area/ab

1/ab
=
fX1x2 dx/ab

1/ab

=
P35x 6 X1 … x + dx6 ¨ 5X1 accepted64

P3X1 accepted4

P3x 6 X1 … x + dx ƒX1 is accepted4

fX1x2X1



Section 4.9 Computer Methods for Generating Random Variables 199

0
0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

X1

KfW(x)

fX(x)

Reject

Accept

FIGURE 4.22
Rejection method for generating a random variable with gamma pdf and with
0 6 a 6 1.

Example 4.54 Gamma Random Variable

We now show how the rejection method can be used to generate X with gamma pdf and parameters
and A function that “covers” is easily obtained (see Fig. 4.22):

The pdf that corresponds to the function on the right-hand side is

The cdf of W is

W is easy to generate using the transformation method, with

FW
-11u2 = d c 1a + e2u

e
d1/a

u … e/1a + e2
- ln c1a + e2 11 - u2

ae
d u 7 e/1a + e2.

FW1x2 = d exaa + e
0 … x … 1

1 - ae
e-x

a + e
x 7 1.

fW1x2 = d aexa-1

a + e
0 … x … 1

ae
e-x

a + e
x Ú 1.

fW1x2

fX1x2 =
xa-1e-x

≠1a2 … KfW1x2 = d xa-1

≠1a2 0 … x … 1

e-x

≠1a2 x 7 1.

fX1x2KfW1x2l = 1.0 6 a 6 1
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We can therefore use the transformation method to generate this and then the rejec-
tion method to generate any gamma random variable X with parameters and

Finally we note that if we let then W will be gamma with parameters and
The generation of gamma random variables with is discussed in Problem 4.142.

Example 4.55 Implementing Rejection Method for Gamma Random Variables

Given below is an Octave function definition to implement the rejection method using the above
transformation.

%Generate random numbers from the gamma distribution for 
function X = gamma_rejection_method_altone(alpha)

while (true),

X = special_inverse(alpha); % Step 1: Generate X with pdf 
B = special_pdf (X, alpha); % Step 2: Generate Y uniform in 
Y = rand.* B;

if (Y <= fx_gamma_pdf (X, alpha)), % Step 3: Accept or reject
break;

end

end

%Helper function to generate random variables according to 
function X = special_inverse (alpha)

u = rand;

if (u <= e./(alpha+e)),

X = ((alpha+e).*u./e). ^ (1./alpha);

elseif (u > e./(alpha+e)),

X = -log((alpha+e).*(1-u)./(alpha.*e));

end

%Return B in order to generate uniform variables in 
function B = special_pdf (X, alpha)

if (X >=0 && X <= 1),

B = alpha.*e.*X.^(alpha-1)./(alpha + e);

elseif (X > 1),

B = alpha.*e.*(e. ^(-X)./(alpha + e));

end

% pdf of the gamma distribution.
%Could also use the built in gamma_pdf (X, A, B) function supplied with Octave

setting B = 1

function Y = fx_gamma_pdf (x, alpha)

y = (x.^ (alpha-1)).*(e.^ (-x))./(gamma(alpha));

Figure 4.23 shows the histogram of 1000 samples obtained using this function. The figure
also shows the probability that the samples fall in the bins of the histogram.

We have presented the most common methods that are used to generate ran-
dom variables.These methods are incorporated in the functions provided by programs
such as MATLAB and Octave, so in practice you do not need to write programs to

30,KfZ1X24.

KfZ1x2.

Á

30,KfX1X24.
fX1x2.

0 … a … 1.

a 7 1l.
aW = lX,l = 1.

0 6 a 6 1
fW1x2,
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FIGURE 4.23
1000 samples of gamma random variable using rejection method.

generate the most common random variables. You simply need to invoke the appro-
priate functions.

Example 4.56 Generating Gamma Random Variables

Use Octave to obtain eight Gamma random variables with and 
The Octave command and the corresponding answer are given below:

> gamma_rnd (0.25, 1, 1, 8)

ans =

Columns 1 through 6:

0.00021529   0.09331491   0.24606757   0.08665787

0.00013400   0.23384718

Columns 7 and 8:

1.72940941   1.29599702

4.9.3 Generation of Functions of a Random Variable

Once we have a simple method of generating a random variable X, we can easily gener-
ate any random variable that is defined by or even 
where are n outputs of the random variable generator.X1 , Á ,Xn

Z = h1X1 ,X2 , Á ,Xn2,Y = g1X2

l = 1.a = 0.25
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Example 4.57 m-Erlang Random Variable

Let be independent, exponentially distributed random variables with parameter 
In Chapter 7 we show that the random variable

has an m-Erlang pdf with parameter We can therefore generate an m-Erlang random variable
by first generating m exponentially distributed random variables using the transformation
method, and then taking the sum. Since the m-Erlang random variable is a special case of the
gamma random variable, for large m it may be preferable to use the rejection method described
in Problem 4.142.

4.9.4 Generating Mixtures of Random Variables

We have seen in previous sections that sometimes a random variable consists of a mix-
ture of several random variables. In other words, the generation of the random variable
can be viewed as first selecting a random variable type according to some pmf, and
then generating a random variable from the selected pdf type. This procedure can be
simulated easily.

Example 4.58 Hyperexponential Random Variable

A two-stage hyperexponential random variable has pdf

It is clear from the above expression that X consists of a mixture of two exponential random
variables with parameters a and b, respectively. X can be generated by first performing a
Bernoulli trial with probability of success p. If the outcome is a success, we then use the transfor-
mation method to generate an exponential random variable with parameter a. If the outcome is
a failure, we generate an exponential random variable with parameter b instead.

4.10 ENTROPY

Entropy is a measure of the uncertainty in a random experiment. In this section, we
first introduce the notion of the entropy of a random variable and develop several of
its fundamental properties. We then show that entropy quantifies uncertainty by the
amount of information required to specify the outcome of a random experiment. Fi-
nally, we discuss the method of maximum entropy, which has found wide use in charac-
terizing random variables when only some parameters, such as the mean or variance,
are known.

4.10.1 The Entropy of a Random Variable

Let X be a discrete random variable with and pmf 
We are interested in quantifying the uncertainty of the event Clearly, the 
uncertainty of is low if the probability of is close to one, and it is high if theAkAk

Ak = 5X = k6.pk = P3X = k4.SX = 51, 2, Á ,K6

*

fX1x2 = pae-ax + 11 - p2be-bx.

l.

Y = X1 + X2 + Á + Xm

l.X1 ,X2 , Á
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SUMMARY

• The cumulative distribution function is the probability that X falls in the
interval The probability of any event consisting of the union of inter-
vals can be expressed in terms of the cdf.

• A random variable is continuous if its cdf can be written as the integral of a non-
negative function.A random variable is mixed if it is a mixture of a discrete and a
continuous random variable.

• The probability of events involving a continuous random variable X can be ex-
pressed as integrals of the probability density function 

• If X is a random variable, then is also a random variable.The notion of
equivalent events allows us to derive expressions for the cdf and pdf of Y in terms
of the cdf and pdf of X.

• The cdf and pdf of the random variable X are sufficient to compute all probabili-
ties involving X alone. The mean, variance, and moments of a random variable
summarize some of the information about the random variable X.These parame-
ters are useful in practice because they are easier to measure and estimate than
the cdf and pdf.

• Conditional cdf’s or pdf’s incorporate partial knowledge about the outcome of an
experiment in the calculation of probabilities of events.

• The Markov and Chebyshev inequalities allow us to bound probabilities involv-
ing X in terms of its first two moments only.

• Transforms provide an alternative but equivalent representation of the pmf and
pdf. In certain types of problems it is preferable to work with the transforms
rather than the pmf or pdf. The moments of a random variable can be obtained
from the corresponding transform.

• The reliability of a system is the probability that it is still functioning after t hours
of operation. The reliability of a system can be determined from the reliability of
its subsystems.

• There are a number of methods for generating random variables with prescribed
pmf’s or pdf’s in terms of a random variable that is uniformly distributed in the
unit interval. These methods include the transformation and the rejection meth-
ods as well as methods that simulate random experiments (e.g., functions of ran-
dom variables) and mixtures of random variables.

• The entropy of a random variable X is a measure of the uncertainty of X in terms
of the average amount of information required to identify its value.

• The maximum entropy method is a procedure for estimating the pmf or pdf of a
random variable when only partial information about X, in the form of expected
values of functions of X, is available.

Y = g1X2
fX1x2.

1-q , x4.
FX1x2
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PROBLEMS

Section 4.1: The Cumulative Distribution Function 

4.1. An information source produces binary pairs that we designate as with
the following pmf’s:

(i)

(ii)

(iii)

(a) Plot the cdf of these three random variables.

(b) Use the cdf to find the probability of the events:

4.2. A die is tossed. Let X be the number of full pairs of dots in the face showing up, and Y be the
number of full or partial pairs of dots in the face showing up. Find and plot the cdf of X and Y.

4.3. The loose minute hand of a clock is spun hard. The coordinates (x, y) of the point where
the tip of the hand comes to rest is noted. Z is defined as the sgn function of the product
of x and y, where sgn(t) is 1 if 0 if and if 

(a) Find and plot the cdf of the random variable X.

(b) Does the cdf change if the clock hand has a propensity to stop at 3, 6, 9, and 12 o’clock?

4.4. An urn contains 8 $1 bills and two $5 bills. Let X be the total amount that results when
two bills are drawn from the urn without replacement, and let Y be the total amount that
results when two bills are drawn from the urn with replacement.

(a) Plot and compare the cdf’s of the random variables.

(b) Use the cdf to compare the probabilities of the following events in the two prob-
lems:

4.5. Let Y be the difference between the number of heads and the number of tails in the 3
tosses of a fair coin.

(a) Plot the cdf of the random variable Y.

(b) Express in terms of the cdf of Y.

4.6. A dart is equally likely to land at any point inside a circular target of radius 2. Let R be
the distance of the landing point from the origin.

(a) Find the sample space S and the sample space of R,

(b) Show the mapping from S to

(c) The “bull’s eye” is the central disk in the target of radius 0.25. Find the event A in
corresponding to “dart hits the bull’s eye.” Find the equivalent event in S and P[A].

(d) Find and plot the cdf of R.

4.7. A point is selected at random inside a square defined by 
Assume the point is equally likely to fall anywhere in the square. Let the random variable
Z be given by the minimum of the two coordinates of the point where the dart lands.

(a) Find the sample space S and the sample space of Z, SZ .

51x, y2: 0 … x … b, 0 … y … b6.

SR

SR .

SR .

P3 ƒY ƒ 6 y4

5X = $26, 5X 6 $76, 5X Ú 66.

t 6 0.-1t = 0,t 7 0,

50.5 6 X … 26, 51 6 X 6 46.
5X … 16, 5X 6 2.56,

pk+1 = pk/2
k for k = 2, 3, 4.

pk+1 = pk/2 for k = 2, 3, 4.

pk = p1/k for all k in SX .

SX = 51, 2, 3, 46
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(b) Show the mapping from S to

(c) Find the region in the square corresponding to the event 

(d) Find and plot the cdf of Z.

(e) Use the cdf to find:

4.8. Let be a point selected at random from the unit interval. Consider the random variable

(a) Sketch X as a function of 

(b) Find and plot the cdf of X.

(c) Find the probability of the events 

4.9. The loose hand of a clock is spun hard and the outcome is the angle in the range 
where the hand comes to rest. Consider the random variable 

(a) Sketch X as a function of 

(b) Find and plot the cdf of X.

(c) Find the probability of the events 

4.10. Repeat Problem 4.9 if 80% of the time the hand comes to rest anywhere in the circle, but
20% of the time the hand comes to rest at 3, 6, 9, or 12 o’clock.

4.11. The random variable X is uniformly distributed in the interval 

(a) Find and plot the cdf of X.

(b) Use the cdf to find the probabilities of the following events:
and

4.12. The cdf of the random variable X is given by:

(a) Plot the cdf and identify the type of random variable.

(b) Find

4.13. A random variable X has cdf:

(a) Plot the cdf and identify the type of random variable.

(b) Find

4.14. The random variable X has cdf shown in Fig. P4.1.

(a) What type of random variable is X?

(b) Find the following probabilities:

4.15. For and the Weibull random variable Y has cdf:

FX1x2 = b0  for x 6 0

1 - e-1x/l2b  for x Ú 0.

l 7 0,b 7 0

P3-0.5 … X 6 04, P3-0.5 … X … 0.54, P3 ƒX - 0.5 ƒ 6 0.54.
P3X 6 -14, P3X … -14, P3-1 6 X 6 -0.754,

P3X … 24, P3X = 04, P3X 6 04, P32 6 X 6 64, P3X 7 104.

FX1x2 = c 0  for x 6 0

1 -
1

4
e-2x  for x Ú 0.

P3X … 24, P3X 7 34.
P3X … -14, P3X = -14, P3X 6 0.54, P3- 0.5 6 X 6 0.54, P3X 7 -14,

FX1x2 = d 0 x 6 -1

0.5 -1 … x … 0

11 + x2/2 0 … x … 1

1 x Ú 1.

C = 5X 7 -0.56.5 ƒX - 0.5 ƒ 6 16,
5X … 06,

3-1, 24.

5X 7 16, 5-1/2 6 X 6 1/26, 5X … 1/126.
z.

X1z2 = 2 sin1z/42.
[0, 2p2z

5X 7 16, 55 6 X 6 76, 5X … 206.
z.

X = 11 - z2-1/2.
z

P3Z 7 04, P3Z 7 b4, P3Z … b/24, P3Z 7 b/44.
5Z … z6.

SZ .



(a) Plot the cdf of Y for and 2.

(b) Find the probability and 

(c) Plot vs. log x.

4.16. The random variable X has cdf:

(a) What values can c assume?

(b) Plot the cdf.

(c) Find

Section 4.2: The Probability Density Function 

4.17. A random variable X has pdf:

(a) Find c and plot the pdf.

(b) Plot the cdf of X.

(c) Find and 

4.18. A random variable X has pdf:

(a) Find c and plot the pdf.

(b) Plot the cdf of X.

(c) Find

4.19. (a) In Problem 4.6, find and plot the pdf of the random variable R, the distance from the
dart to the center of the target.

(b) Use the pdf to find the probability that the dart is outside the bull’s eye.

4.20. (a) Find and plot the pdf of the random variable Z in Problem 4.7.

(b) Use the pdf to find the probability that the minimum is greater than b/3.

P30 6 X 6 0.54, P3X = 14, P3.25 6 X 6 0.54.

fX1x2 = b cx11 - x22 0 … x … 1

0 elsewhere.

P3 ƒX - 0.5 ƒ 6 0.254.P3X = 04, P30 6 X 6 0.54,

fX1x2 = b c11 - x22 -1 … x … 1

0 elsewhere.

P3X 7 04.

FX1x2 = c 0 x 6 0

0.5 + c sin21px/22 0 … x … 1

1 x 7 1.

log P3X 7 x4
P3X 7 jl4.P3jl 6 X 6 1j + 12l4

b = 0.5, 1,
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4.21. (a) Find and plot the pdf in Problem 4.8.

(b) Use the pdf to find the probabilities of the events: and 

4.22. (a) Find and plot the pdf in Problem 4.12.

(b) Use the pdf to find 

4.23. (a) Find and plot the pdf in Problem 4.13.

(b) Use the pdf to find 

4.24. (a) Find and plot the pdf of the random variable in Problem 4.14.

(b) Use the pdf to calculate the probabilities in Problem 4.14b.

4.25. Find and plot the pdf of the Weibull random variable in Problem 4.15a.

4.26. Find the cdf of the Cauchy random variable which has pdf:

4.27. A voltage X is uniformly distributed in the set 

(a) Find the pdf and cdf of the random variable X.

(b) Find the pdf and cdf of the random variable 

(c) Find the pdf and cdf of the random variable 

(d) Find the pdf and cdf of the random variable 

4.28. Find the pdf and cdf of the Zipf random variable in Problem 3.70.

4.29. Let C be an event for which Show that satisfies the eight properties of
a cdf.

4.30. (a) In Problem 4.13, find where 

(b) Find where 

4.31. (a) In Problem 4.10, find where 

(b) Find

4.32. In Problem 4.13, find and where 

4.33. Let X be the exponential random variable.

(a) Find and plot How does differ from 

(b) Find and plot 

(c) Show that Explain why this is called the mem-
oryless property.

4.34. The Pareto random variable X has cdf:

(a) Find and plot the pdf of X.

(b) Repeat Problem 4.33 parts a and b for the Pareto random variable.

(c) What happens to as t becomes large? Interpret this result.

4.35. (a) Find and plot Compare to 

(b) Find and plot 

4.36. In Problem 4.6, find and fR1r ƒ R 7 12.FR1r ƒ R 7 12
fX1x ƒ a … X … b2.

FX1x2.FX1x ƒ a … X … b2FX1x ƒ a … X … b2.
P3X 7 t + x ƒX 7 t4

FX1x2 = c 0 x 6 xm

1 -
xm
a

xa
x Ú xm .

P3X 7 t + x ƒX 7 t4 = P3X 7 x4.
fX1x ƒX 7 t2.

FX1x2?FX1x ƒX 7 t2FX1x ƒX 7 t2.
B = 5X 7 0.256.FX1x ƒ B2fX1x ƒ B2

FX1x ƒ Bc2.
o’clock6.

B = 5hand does not stop at 3, 6, 9, or 12FX1x ƒ B2
C = 5X = 06.FX1x ƒ C2

C = 5X 7 06.FX1x ƒC2
FX1x ƒC2P3C4 7 0.

Z = cos21pX/82.
W = cos1pX/82.
Y = -2X2 + 3.

5-3, -2, Á , 3, 46.
fX1x2 =

a/p

x2 + a2 -q 6 x 6 q .

P3X = 04, P3X 7 84.
P3-1 … X 6 0.254.

5X 7 2a6.5X 7 a6
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4.37. (a) In Problem 4.7, find and 

(b) Find and where 

4.38. A binary transmission system sends a “0” bit using a voltage signal and a “1” bit by
transmitting a The received signal is corrupted by noise N that has a Laplacian distri-
bution with parameter Assume that “0” bits and “1” bits are equiprobable.

(a) Find the pdf of the received signal where X is the transmitted signal,
given that a “0” was transmitted; that a “1” was transmitted.

(b) Suppose that the receiver decides a “0” was sent if and a “1” was sent if
What is the probability that the receiver makes an error given that a was

transmitted? a was transmitted?

(c) What is the overall probability of error?

Section 4.3: The Expected Value of X

4.39. Find the mean and variance of X in Problem 4.17.

4.40. Find the mean and variance of X in Problem 4.18.

4.41. Find the mean and variance of Y, the distance from the dart to the origin, in Problem 4.19.

4.42. Find the mean and variance of Z, the minimum of the coordinates in a square, in Problem 4.20.

4.43. Find the mean and variance of in Problem 4.21. Find E[X] using Eq. (4.28).

4.44. Find the mean and variance of X in Problems 4.12 and 4.22.

4.45. Find the mean and variance of X in Problems 4.13 and 4.23. Find E[X] using Eq. (4.28).

4.46. Find the mean and variance of the Gaussian random variable by direct integration of
Eqs. (4.27) and (4.34).

4.47. Prove Eqs. (4.28) and (4.29).

4.48. Find the variance of the exponential random variable.

4.49. (a) Show that the mean of the Weibull random variable in Problem 4.15 is 
where is the gamma function defined in Eq. (4.56).

(b) Find the second moment and the variance of the Weibull random variable.

4.50. Explain why the mean of the Cauchy random variable does not exist.

4.51. Show that E[X] does not exist for the Pareto random variable with and 

4.52. Verify Eqs. (4.36), (4.37), and (4.38).

4.53. Let where A has mean m and variance and and c are constants.
Find the mean and variance of Y. Compare the results to those obtained in Example 4.15.

4.54. A limiter is shown in Fig. P4.2.

vs2Y = A cos1vt2 + c

xm = 1.a = 1

≠1x2
≠11 + 1/b2

X = 11 - z2-1/2

-1
+1Y Ú 0.

Y 6 0,

Y = X + N,

a.
+1.

-1

B = 5x 7 b/26.fZ1z ƒ B2,FZ1z ƒ B2
fZ1z ƒ b/4 … Z … b/22.FZ1z ƒ b/4 … Z … b/22
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(a) Find an expression for the mean and variance of for an arbitrary contin-
uous random variable X.

(b) Evaluate the mean and variance if X is a Laplacian random variable with .

(c) Repeat part (b) if X is from Problem 4.17 with a = 1/2.

(d) Evaluate the mean and variance if where U is a uniform random variable in
the unit interval, .

4.55. A limiter with center-level clipping is shown in Fig. P4.3.

(a) Find an expression for the mean and variance of for an arbitrary contin-
uous random variable X.

(b) Evaluate the mean and variance if X is Laplacian with and .

(c) Repeat part (b) if X is from Problem 4.22, a = 1/2, b = 3/2.

(d) Evaluate the mean and variance if where U is a uniform random
variable in the unit interval and a = 3/4, b = 1/2.3-1, 14

X = b cos12pU2
b = 2l = a = 1

Y = g(X)

3-1, 14 and a = 1/2
X = U3

l = a = 1

Y = g(X)

a
x

y

b

�b

�b

�a

b

FIGURE P4.3

4.56. Let

(a) Find the mean and variance of Y in terms of the mean and variance of X.

(b) Evaluate the mean and variance of Y if X is Laplacian.

(c) Evaluate the mean and variance of Y if X is an arbitrary Gaussian random variable.

(d) Evaluate the mean and variance of Y if where U is a uniform ran-
dom variable in the unit interval.

4.57. Find the nth moment of U, the uniform random variable in the unit interval. Repeat for X
uniform in [a, b].

4.58. Consider the quantizer in Example 4.20.

(a) Find the conditional pdf of X given that X is in the interval (d, 2d).

(b) Find the conditional expected value and conditional variance of X given that X is in
the interval (d, 2d).

X = b cos12pU2

Y = 3X + 2.
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(c) Now suppose that when X falls in (d, 2d), it is mapped onto the point c where
Find an expression for the expected value of the mean square error:

(d) Find the value c that minimizes the above mean square error. Is c the midpoint of
the interval? Explain why or why not by sketching possible conditional pdf shapes.

(e) Find an expression for the overall mean square error using the approach in parts c and d.

Section 4.4: Important Continuous Random Variables  

4.59. Let X be a uniform random variable in the interval Find and plot 

4.60. In Example 4.20, let the input to the quantizer be a uniform random variable in the inter-
val Show that is uniformly distributed in 

4.61. Let X be an exponential random variable with parameter 

(a) For and k a nonnegative integer, find 

(b) Segment the positive real line into four equiprobable disjoint intervals.

4.62. The rth percentile, of a random variable X is defined by 

(a) Find the 90%, 95%, and 99% percentiles of the exponential random variable with
parameter

(b) Repeat part a for the Gaussian random variable with parameters and 

4.63. Let X be a Gaussian random variable with and 

(a) Find

(b) find a.

(c) find b.

(d) find c.

4.64. Show that the Q-function for the Gaussian random variable satisfies 

4.65. Use Octave to generate Tables 4.2 and 4.3.

4.66. Let X be a Gaussian random variable with mean m and variance 

(a) Find

(b) Find for 

(c) Find the value of k for which for 

4.67. A binary transmission system transmits a signal X ( to send a “0” bit; to send a “1”
bit).The received signal is where noise N has a zero-mean Gaussian distrib-
ution with variance Assume that “0” bits are three times as likely as “1” bits.

(a) Find the conditional pdf of Y given the input value: and

(b) The receiver decides a “0” was transmitted if the observed value of y satisfies

and it decides a “1” was transmitted otherwise. Use the results from part a to show
that this decision rule is equivalent to: If decide “0”; if decide “1”.

(c) What is the probability that the receiver makes an error given that a was trans-
mitted? a was transmitted? Assume 

(d) What is the overall probability of error?

s2 = 1/16.-1
+1

y Ú Ty 6 T

fY1y ƒX = -12P3X = -14 7 fY1y ƒX = +12P3X = +14

fY1y ƒX = -12.
fY1y ƒX = +12

s2.
Y = X + N

+1-1

j = 1, 2, 3, 4, 5, 6.Q1k2 = P3X 7 m + ks4 = 10-j

k = 1, 2, 3, 4, 5, 6.P3 ƒX - m ƒ 6 ks4,
P3X … m4.

s2.

Q1-x2 = 1 - Q1x2.
P313 6 X … c4 = 0.0123,

P3X 7 b4 = 0.11131,

P3X 6 a4 = 0.8869,

P3X 7 44, P3X Ú 74, P36.72 6 X 6 10.164, P32 6 X 6 74, P36 … X … 84.
s2 = 16.m = 5

s2.m = 0

l.

P3X … p1r24 = r/100.p1r2,
P3kd 6 X 6 1k + 12d4.d 7 0

l.

3-d/2, d/24.Z = X - Q1X23-4d, 4d4.
P3 ƒX ƒ 7 x4.3-2, 24.

E31X - c22 ƒ d 6 X 6 2d4.
d 6 c 6 2d.
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4.68. Two chips are being considered for use in a certain system. The lifetime of chip 1 is mod-
eled by a Gaussian random variable with mean 20,000 hours and standard deviation
5000 hours. (The probability of negative lifetime is negligible.) The lifetime of chip 2 is
also a Gaussian random variable but with mean 22,000 hours and standard deviation
1000 hours. Which chip is preferred if the target lifetime of the system is 20,000 hours?
24,000 hours?

4.69. Passengers arrive at a taxi stand at an airport at a rate of one passenger per minute. The
taxi driver will not leave until seven passengers arrive to fill his van. Suppose that pas-
senger interarrival times are exponential random variables, and let X be the time to fill a
van. Find the probability that more than 10 minutes elapse until the van is full.

4.70. (a) Show that the gamma random variable has mean:

(b) Show that the gamma random variable has second moment, and variance given by:

(c) Use parts a and b to obtain the mean and variance of an m-Erlang random variable.

(d) Use parts a and b to obtain the mean and variance of a chi-square random variable.

4.71. The time X to complete a transaction in a system is a gamma random variable with mean
4 and variance 8. Use Octave to plot as a function of x. Note: Octave uses

.

4.72. (a) Plot the pdf of an m-Erlang random variable for and 

(b) Plot the chi-square pdf for 

4.73. A repair person keeps four widgets in stock. What is the probability that the widgets in
stock will last 15 days if the repair person needs to replace widgets at an average rate of
one widget every three days, where the time between widget failures is an exponential
random variable?

4.74. (a) Find the cdf of the m-Erlang random variable by integration of the pdf. Hint: Use in-
tegration by parts.

(b) Show that the derivative of the cdf given by Eq. (4.58) gives the pdf of an m-Erlang
random variable.

4.75. Plot the pdf of a beta random variable with:

Section 4.5: Functions of a Random Variable 

4.76. Let X be a Gaussian random variable with mean 2 and variance 4.The reward in a system
is given by Find the pdf of Y.

4.77. The amplitude of a radio signal X is a Rayleigh random variable with pdf:

(a) Find the pdf of 

(b) Find the pdf of 

4.78. A wire has length X, an exponential random variable with mean The wire is cut to
make rings of diameter 1 cm. Find the probability for the number of complete rings pro-
duced by each length of wire.

5p cm.

Z = X2.

Z = 1X - r2+ .

fX1x2 =
x

a2 e
-x2/2a2

x 7 0, a 7 0.

Y = 1X2+ .

a = 2, b = 5.
a = b = 1/4, 1, 4, 8; a = 5, b = 1; a = 1, b = 3;

k = 1, 2, 3.

l = 1.m = 1, 2, 3

b = 1/2
P3X 7 x4

E3X24 = a1a + 12/l2 and VAR3X4 = a/l2.

E3X4 = a/l.
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4.79. A signal that has amplitudes with a Gaussian pdf with zero mean and unit variance is ap-
plied to the quantizer in Example 4.27.

(a) Pick d so that the probability that X falls outside the range of the quantizer is 1%.

(b) Find the probability of the output levels of the quantizer.

4.80. The signal X is amplified and shifted as follows: where X is the random
variable in Problem 4.12. Find the cdf and pdf of Y.

4.81. The net profit in a transaction is given by where X is the random variable in
Problem 4.13. Find the cdf and pdf of Y.

4.82. Find the cdf and pdf of the output of the limiter in Problem 4.54 parts b, c, and d.

4.83. Find the cdf and pdf of the output of the limiter with center-level clipping in Problem 4.55
parts b, c, and d.

4.84. Find the cdf and pdf of in Problem 4.56 parts b, c, and d.

4.85. The exam grades in a certain class have a Gaussian pdf with mean m and standard devia-
tion Find the constants a and b so that the random variable has a Gauss-
ian pdf with mean and standard deviation 

4.86. Let where n is a positive integer and U is a uniform random variable in the unit
interval. Find the cdf and pdf of X.

4.87. Repeat Problem 4.86 if U is uniform in the interval 

4.88. Let be the output of a full-wave rectifier with input voltage X.

(a) Find the cdf of Y by finding the equivalent event of Find the pdf of Y by
differentiation of the cdf.

(b) Find the pdf of Y by finding the equivalent event of Does the
answer agree with part a?

(c) What is the pdf of Y if the is an even function of x?

4.89. Find and plot the cdf of Y in Example 4.34.

4.90. A voltage X is a Gaussian random variable with mean 1 and variance 2. Find the pdf of
the power dissipated by an R-ohm resistor 

4.91. Let

(a) Find the cdf and pdf of Y in terms of the cdf and pdf of X.

(b) Find the pdf of Y when X is a Gaussian random variable. In this case Y is said to be
a lognormal random variable. Plot the pdf and cdf of Y when X is zero-mean with
variance 1/8; repeat with variance 8.

4.92. Let a radius be given by the random variable X in Problem 4.18.

(a) Find the pdf of the area covered by a disc with radius X.

(b) Find the pdf of the volume of a sphere with radius X.

(c) Find the pdf of the volume of a sphere in 

4.93. In the quantizer in Example 4.20, let Find the pdf of Z if X is a Lapla-
cian random variable with parameter 

4.94. Let where X is uniformly distributed in the interval 

(a) Show that Y is a Cauchy random variable.

(b) Find the pdf of Y = 1/X.

1-1, 12.Y = a tan pX,

a = d/2.
Z = X - q1X2.

Y = b 12p21n-12/2Xn/12 * 4 * Á * n2 for n even

212p21n-12/2Xn/11 * 3 * Á * n2 for n odd.

Rn:

Y = eX.

P = RX2.

fX1x2
5y 6 Y … y + dy6.
5Y … y6.

Y = ƒX ƒ

3-1, 14.
X = Un

s¿.m¿
y = aX + bs.

Y = 3X + 2

Y = 2 - 4X

Y = 2X + 3,
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4.95. Let X be a Weibull random variable in Problem 4.15. Let Find the cdf and
pdf of Y.

4.96. Find the pdf of where U is a uniform random variable in (0, 1).

Section 4.6: The Markov and Chebyshev Inequalities 

4.97. Compare the Markov inequality and the exact probability for the event as a func-
tion of c for:

(a) X is a uniform random variable in the interval [0, b].

(b) X is an exponential random variable with parameter 

(c) X is a Pareto random variable with 

(d) X is a Rayleigh random variable.

4.98. Compare the Markov inequality and the exact probability for the event as a func-
tion of c for:

(a) X is a uniform random variable in 

(b) X is a geometric random variable.

(c) X is a Zipf random variable with 

(d) X is a binomial random variable with 

4.99. Compare the Chebyshev inequality and the exact probability for the event 
as a function of c for:

(a) X is a uniform random variable in the interval 

(b) X is a Laplacian random variable with parameter 

(c) X is a zero-mean Gaussian random variable.

(d) X is a binomial random variable with 

4.100. Let X be the number of successes in n Bernoulli trials where the probability of success is
p. Let be the average number of successes per trial. Apply the Chebyshev in-
equality to the event What happens as 

4.101. Suppose that light bulbs have exponentially distributed lifetimes with unknown mean
E[X]. Suppose we measure the lifetime of n light bulbs, and we estimate the mean E[X]
by the arithmetic average Y of the measurements. Apply the Chebyshev inequality to the
event What happens as Hint: Use the m-Erlang random
variable.

Section 4.7: Transform Methods

4.102. (a) Find the characteristic function of the uniform random variable in 

(b) Find the mean and variance of X by applying the moment theorem.

4.103. (a) Find the characteristic function of the Laplacian random variable.

(b) Find the mean and variance of X by applying the moment theorem.

4.104. Let be the characteristic function of an exponential random variable. What ran-
dom variable does correspond to?£X

n 1v2
£X1v2

3-b, b4.

n: q?5 ƒY - E3X4 ƒ 7 a6.

n: q?5 ƒY - p ƒ 7 a6.
Y = X/n

n = 10, p = 0.5; n = 50, p = 0.5.

a.

3-b, b4.
5 ƒX - m ƒ 7 c6

n = 10, p = 0.5; n = 50, p = 0.5.

L = 10; L = 100.

51, 2, Á , L6.
5X 7 c6

a 7 1.

l.

5X 7 c6

X = - ln11 - U2,
Y = 1X/l2b.
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4.105. Find the mean and variance of the Gaussian random variable by applying the moment
theorem to the characteristic function given in Table 4.1.

4.106. Find the characteristic function of where X is a Gaussian random variable.
Hint: Use Eq. (4.79).

4.107. Show that the characteristic function for the Cauchy random variable is 

4.108. Find the Chernoff bound for the exponential random variable with Compare the
bound to the exact value for 

4.109. (a) Find the probability generating function of the geometric random variable.

(b) Find the mean and variance of the geometric random variable from its pgf.

4.110. (a) Find the pgf for the binomial random variable X with parameters n and p.

(b) Find the mean and variance of X from the pgf.

4.111. Let be the pgf for a binomial random variable with parameters n and p, and let
be the pgf for a binomial random variable with parameters m and p. Consider the

function Is this a valid pgf? If so, to what random variable does it corre-
spond?

4.112. Let be the pgf for a Poisson random variable with parameter and let be
the pgf for a Poisson random variable with parameters Consider the function

Is this a valid pgf? If so, to what random variable does it correspond?

4.113. Let N be a Poisson random variable with parameter Compare the Chernoff bound
and the exact value for 

4.114. (a) Find the pgf for the discrete uniform random variable U.

(b) Find the mean and variance from the pgf.

(c) Consider Does this function correspond to a pgf? If so, find the mean of the
corresponding random variable.

4.115. (a) Find for the negative binomial random variable from the pgf in Table 3.1.

(b) Find the mean of X.

4.116. Derive Eq. (4.89).

4.117. Obtain the nth moment of a gamma random variable from the Laplace transform of
its pdf.

4.118. Let X be the mixture of two exponential random variables (see Example 4.58). Find the
Laplace transform of the pdf of X.

4.119. The Laplace transform of the pdf of a random variable X is given by:

Find the pdf of X. Hint: Use a partial fraction expansion of 

4.120. Find a relationship between the Laplace transform of a gamma random variable pdf with
parameters and and the Laplace transform of a gamma random variable with para-
meters and What does this imply if X is an m-Erlang random variable?

4.121. (a) Find the Chernoff bound for for the gamma random variable.

(b) Compare the bound to the exact value of for an Erlang
random variable.

m = 3, l = 1P3X Ú 94
P3X 7 t4

l.a - 1
la

X*1s2.
X*1s2 =

a

s + a

b

s + b
.

P3X = r4
GU1z22.
GU1z2

P3X Ú 54.
a = 1.

GN1z2 GM1z2.
b.

GM1z2a,GN1z2
GX1z2 GY1z2.

GY1z2
GX1z2

P3X 7 54.
l = 1.

e-ƒv ƒ.

Y = aX + b
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Section 4.8: Basic Reliability Calculations 

4.122. The lifetime T of a device has pdf

(a) Find the reliability and MTTF of the device.

(b) Find the failure rate function.

(c) How many hours of operation can be considered to achieve 99% reliability?

4.123. The lifetime T of a device has pdf

(a) Find the reliability and MTTF of the device.

(b) Find the failure rate function.

(c) How many hours of operation can be considered to achieve 99% reliability?

4.124. The lifetime T of a device is a Rayleigh random variable.

(a) Find the reliability of the device.

(b) Find the failure rate function. Does r(t) increase with time?

(c) Find the reliability of two devices that are in series.

(d) Find the reliability of two devices that are in parallel.

4.125. The lifetime T of a device is a Weibull random variable.

(a) Plot the failure rates for and ; for and .

(b) Plot the reliability functions in part a.

(c) Plot the reliability of two devices that are in series.

(d) Plot the reliability of two devices that are in parallel.

4.126. A system starts with m devices, 1 active and on standby. Each device has an expo-
nential lifetime.When a device fails it is immediately replaced with another device (if one
is still available).

(a) Find the reliability of the system.

(b) Find the failure rate function.

4.127. Find the failure rate function of the memory chips discussed in Example 2.28. Plot
In(r(t)) versus 

4.128. A device comes from two sources. Devices from source 1 have mean m and exponentially
distributed lifetimes. Devices from source 2 have mean m and Pareto-distributed lifetimes
with Assume a fraction p is from source 1 and a fraction from source 2.

(a) Find the reliability of an arbitrarily selected device.

(b) Find the failure rate function.

1 - pa 7 1.

at.

m - 1

b = 2a = 1b = 0.5a = 1

fT1t2 = b1/T0 a … t … a + T0

0 elsewhere.

fT1t2 = c 1/10T0 0 6 t 6 T0

0.9le-l1t-T02 t Ú T0

0 t 6 T0 .
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4.129. A device has the failure rate function:

Find the reliability function and the pdf of the device.

4.130. A system has three identical components and the system is functioning if two or more
components are functioning.

(a) Find the reliability and MTTF of the system if the component lifetimes are expo-
nential random variables with mean 1.

(b) Find the reliability of the system if one of the components has mean 2.

4.131. Repeat Problem 4.130 if the component lifetimes are Weibull distributed with 

4.132. A system consists of two processors and three peripheral units. The system is functioning
as long as one processor and two peripherals are functioning.

(a) Find the system reliability and MTTF if the processor lifetimes are exponential ran-
dom variables with mean 5 and the peripheral lifetimes are Rayleigh random vari-
ables with mean 10.

(b) Find the system reliability and MTTF if the processor lifetimes are exponential ran-
dom variables with mean 10 and the peripheral lifetimes are exponential random
variables with mean 5.

4.133. An operation is carried out by a subsystem consisting of three units that operate in a se-
ries configuration.

(a) The units have exponentially distributed lifetimes with mean 1. How many subsys-
tems should be operated in parallel to achieve a reliability of 99% in T hours of
operation?

(b) Repeat part a with Rayleigh-distributed lifetimes.

(c) Repeat part a with Weibull-distributed lifetimes with 

Section 4.9: Computer Methods for Generating Random Variables 

4.134. Octave provides function calls to evaluate the pdf and cdf of important continuous ran-
dom variables. For example, the functions \normal_cdf(x, m, var) and normal_pdf(x, m,
var) compute the cdf and pdf, respectively, at x for a Gaussian random variable with
mean m and variance var.

(a) Plot the conditional pdfs in Example 4.11 if and the noise is zero-mean and
unit variance.

(b) Compare the cdf of the Gaussian random variable with the Chernoff bound ob-
tained in Example 4.44.

4.135. Plot the pdf and cdf of the gamma random variable for the following cases.

(a) and

(b) and a = 1/2, 1, 3/2, 5/2.l = 1/2

a = 1, 2, 4.l = 1

v = ;2

b = 3.

b = 3.

r1t2 = c 1 + 911 - t2 0 … t 6 1

1 1 … t 6 10

1 + 101t - 102 t Ú 10.
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4.136. The random variable X has the triangular pdf shown in Fig. P4.4.

(a) Find the transformation needed to generate X.

(b) Use Octave to generate 100 samples of X. Compare the empirical pdf of the samples
with the desired pdf.

4.137. For each of the following random variables: Find the transformation needed to generate
the random variable X; use Octave to generate 1000 samples of X; Plot the sequence of
outcomes; compare the empirical pdf of the samples with the desired pdf.

(a) Laplacian random variable with 

(b) Pareto random variable with 

(c) Weibull random variable with and 

4.138. A random variable Y of mixed type has pdf

where X is a Laplacian random variable and p is a number between zero and one. Find
the transformation required to generate Y.

4.139. Specify the transformation method needed to generate the geometric random variable
with parameter Find the average number of comparisons needed in the search
to determine each outcome.

4.140. Specify the transformation method needed to generate the Poisson random variable with
small parameter Compute the average number of comparisons needed in the search.

4.141. The following rejection method can be used to generate Gaussian random variables:

1. Generate a uniform random variable in the unit interval.

2. Let

3. Generate a uniform random variable in the unit interval. If 
accept Otherwise, reject and go to step 1.

4. Generate a random sign with equal probability. Output X equal to 
with the resulting sign.

(a) Show that if is accepted, then its pdf corresponds to the pdf of the absolute value
of a Gaussian random variable with mean 0 and variance 1.

(b) Show that X is a Gaussian random variable with mean 0 and variance 1.

4.142. Cheng (1977) has shown that the function bounds the pdf of a gamma random
variable with where

Find the cdf of and the corresponding transformation needed to generate Z.fZ1x2
fZ1x2 =

lalxl-1

1al + xl22 and K = 12a - 121/2.

a 7 1,
KfZ1x2

X1

X11+  or -2
X1X1 .exp5-1X1 - 122/26,

U2 …U2 ,

X1 = - ln1U12.
U1 ,

a.

p = 1/2.

fY1x2 = pd1x2 + 11 - p2fY1x2,

l = 1.b = 0.5, 2, 3

a = 1.5, 2, 2.5.

a = 1.

0 a�a

c

fX(x)

x

FIGURE P4.4
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4.143. (a) Show that in the modified rejection method, the probability of accepting is 1/K.
Hint: Use conditional probability.

(b) Show that Z has the desired pdf.

4.144. Two methods for generating binomial random variables are: (1) Generate n Bernoulli
random variables and add the outcomes; (2) Divide the unit interval according to bino-
mial probabilities. Compare the methods under the following conditions:

(a)

(b)

(c) Use Octave to implement the two methods by generating 1000 binomially distrib-
uted samples.

4.145. Let the number of event occurrences in a time interval be a Poisson random variable. In
Section 3.4, it was found that the time between events for a Poisson random variable is an
exponentially distributed random variable.

(a) Explain how one can generate Poisson random variables from a sequence of expo-
nentially distributed random variables.

(b) How does this method compare with the one presented in Problem 4.140?

(c) Use Octave to implement the two methods when and 

4.146. Write a program to generate the gamma pdf with using the rejection method dis-
cussed in Problem 4.142. Use this method to generate m-Erlang random variables with

and and compare the method to the straightforward generation of m ex-
ponential random variables as discussed in Example 4.57.

*Section 4.10: Entropy 

4.147. Let X be the outcome of the toss of a fair die.

(a) Find the entropy of X.

(b) Suppose you are told that X is even. What is the reduction in entropy?

4.148. A biased coin is tossed three times.

(a) Find the entropy of the outcome if the sequence of heads and tails is noted.

(b) Find the entropy of the outcome if the number of heads is noted.

(c) Explain the difference between the entropies in parts a and b.

4.149. Let X be the number of tails until the first heads in a sequence of tosses of a biased coin.

(a) Find the entropy of X given that 

(b) Find the entropy of X given that 

4.150. One of two coins is selected at random: Coin A has and coin B has

(a) Suppose the coin is tossed once. Find the entropy of the outcome.

(b) Suppose the coin is tossed twice and the sequence of heads and tails is observed.
Find the entropy of the outcome.

4.151. Suppose that the randomly selected coin in Problem 4.150 is tossed until the first occur-
rence of heads. Suppose that heads occurs in the kth toss. Find the entropy regarding the
identity of the coin.

4.152. A communication channel accepts input I from the set The channel
output is mod 7, where N is equally likely to be or 

(a) Find the entropy of I if all inputs are equiprobable.

(b) Find the entropy of I given that X = 4.

-1.+1X = I + N
50, 1, 2, 3, 4, 5, 66.

P[heads] = 9/10.
P[heads] = 1/10

X … k.

X Ú k.

l = 1m = 2, 10

a 7 1

a = 100.a = 3, a = 25,

p = 0.1, n = 5, 25, 50.

p = 1/2, n = 5, 25, 50;

X1
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4.153. Let X be a discrete random variable with entropy 

(a) Find the entropy of 

(b) Find the entropy of any invertible transformation of X.

4.154. Let (X, Y) be the pair of outcomes from two independent tosses of a die.

(a) Find the entropy of X.

(b) Find the entropy of the pair (X, Y).

(c) Find the entropy in n independent tosses of a die. Explain why entropy is additive in
this case.

4.155. Let X be the outcome of the toss of a die, and let Y be a randomly selected integer less
than or equal to X.

(a) Find the entropy of Y.

(b) Find the entropy of the pair (X, Y) and denote it by H(X, Y).

(c) Find the entropy of Y given and denote it by Find

(d) Show that Explain the meaning of this equation.

4.156. Let X take on values from Suppose that and let be the
entropy of X given that X is not equal to K. Show that 

4.157. Let X be a uniform random variable in Example 4.62. Find and plot the entropy of Q as a
function of the variance of the error Hint: Express the variance of the error
in terms of d and substitute into the expression for the entropy of Q.

4.158. A communication channel accepts as input either 000 or 111. The channel transmits each
binary input correctly with probability and erroneously with probability p. Find
the entropy of the input given that the output is 000; given that the output is 010.

4.159. Let X be a uniform random variable in the interval Suppose we are told that the
X is positive. Use the approach in Example 4.62 to find the reduction in entropy. Show
that this is equal to the difference of the differential entropy of X and the differential en-
tropy of X given

4.160. Let X be uniform in [a, b], and let Compare the differential entropies of X and
Y. How does this result differ from the result in Problem 4.153?

4.161. Find the pmf for the random variable X for which the sequence of questions in Fig. 4.26(a)
is optimum.

4.162. Let the random variable X have and pmf (3/8, 3/8, 1/8, 1/16, 1/32,
1/32). Find the entropy of X. What is the best code you can find for X?

4.163. Seven cards are drawn from a deck of 52 distinct cards. How many bits are required to
represent all possible outcomes?

4.164. Find the optimum encoding for the geometric random variable with 

4.165. An urn experiment has 10 equiprobable distinct outcomes. Find the performance of the
best tree code for encoding (a) a single outcome of the experiment; (b) a sequence of n
outcomes of the experiment.

4.166. A binary information source produces n outputs. Suppose we are told that there are k 1’s
in these n outputs.

(a) What is the best code to indicate which pattern of k 1’s and 0’s occurred?

(b) How many bits are required to specify the value of k using a code with a fixed num-
ber of bits?

n - k

p = 1/2.

SX = 51, 2, 3, 4, 5, 66

Y = 2X.

5X 7 06.

3-a, a4.
1 - p

X - Q1X2.
ln11 - p2 + 11 - p2HY .

HX = -p ln p - 11 - p2
HYP3X = K4 = p,51, 2, Á ,K6.

H1X, Y2 = HX + E3H1Y ƒX24.
E3g1X24 = E3H1Y ƒX24.

g1k2 = H1Y ƒX = k2.X = k

Y = 2X.

HX .
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4.167. The random variable X takes on values from the set Find the maximum en-
tropy pmf for X given that 

4.168. The random variable X is nonnegative. Find the maximum entropy pdf for X given that

4.169. Find the maximum entropy pdf of X given that 

4.170. Suppose we are given two parameters of the random variable X, and

(a) Show that the maximum entropy pdf for X has the form

(b) Find the entropy of X.

4.171. Find the maximum entropy pdf of X given that and 

Problems Requiring Cumulative Knowledge

4.172. Three types of customers arrive at a service station. The time required to service type 1
customers is an exponential random variable with mean 2. Type 2 customers have a Pare-
to distribution with and Type 3 customers require a constant service time
of 2 seconds. Suppose that the proportion of type 1, 2, and 3 customers is 1/2, 1/8, and 3/8,
respectively. Find the probability that an arbitrary customer requires more than 15 sec-
onds of service time. Compare the above probability to the bound provided by the
Markov inequality.

4.173. The lifetime X of a light bulb is a random variable with

Suppose three new light bulbs are installed at time At time all three light
bulbs are still working. Find the probability that at least one light bulb is still working at
time

4.174. The random variable X is uniformly distributed in the interval [0, a]. Suppose a is un-
known, so we estimate a by the maximum value observed in n independent repetitions of
the experiment; that is, we estimate a by

(a) Find

(b) Find the mean and variance of Y, and explain why Y is a good estimate for a when N

is large.

4.175. The sample X of a signal is a Gaussian random variable with and Suppose
that X is quantized by a nonuniform quantizer consisting of four intervals:

and

(a) Find the value of a so that X is equally likely to fall in each of the four intervals.

(b) Find the representation point for X in (0, a] that minimizes the mean-
squared error, that is,

Hint: Differentiate the above expression with respect to Find the representation
points for the other intervals.

(c) Evaluate the mean-squared error of the quantizer E31X - q1X224.
xi .

3
 

a

0
 

1x - x122 fX1x2 dx is minimized.

xi = q1X2
1a, q2.1-q , -a4, 1-a, 04, 10, a4,

s2 = 1.m = 0

P3Y … y4.
Y = max5X1 ,X2 , Á ,Xn6.

t = 9.

t = 1t = 0.

P3X 7 t4 = 2/12 + t2 for t 7 0.

xm = 1.a = 3

VAR3X4 = s2.E3X4 = m

fX1x2 = Ce-l1g11x2-l2g21x2.

E3g21X24 = c2 .
E3g11X24 = c1

E3X24 = c.

E3X4 = 10.

E3X4 = 2.
51, 2, 3, 46.
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4.176. The output Y of a binary communication system is a unit-variance Gaussian random with
mean zero when the input is “0” and mean one when the input is “one”.Assume the input
is 1 with probability p.

(a) Find and 

(b) The receiver uses the following decision rule:

If decide input
was 1; otherwise, decide input was 0.

Show that this decision rule leads to the following threshold rule:

If decide input was 1; otherwise, decide input was 0.

(c) What is the probability of error for the above decision rule?

Y 7 T,

P3input is 1 ƒ y 6 Y 6 y + h4 7 P3input is 0 ƒ y 6 Y 6 y + h4,
P3input is 0 ƒ y 6 Y 6 y + h4.P3input is 1 ƒ y 6 Y 6 y + h4



Many random experiments involve several random variables. In some experiments a
number of different quantities are measured. For example, the voltage signals at sever-
al points in a circuit at some specific time may be of interest. Other experiments in-
volve the repeated measurement of a certain quantity such as the repeated
measurement (“sampling”) of the amplitude of an audio or video signal that varies
with time. In Chapter 4 we developed techniques for calculating the probabilities of
events involving a single random variable in isolation. In this chapter, we extend the
concepts already introduced to two random variables:

• We use the joint pmf, cdf, and pdf to calculate the probabilities of events that in-
volve the joint behavior of two random variables;

• We use expected value to define joint moments that summarize the behavior of
two random variables;

• We determine when two random variables are independent, and we quantify
their degree of “correlation” when they are not independent;

• We obtain conditional probabilities involving a pair of random variables.

In a sense we have already covered all the fundamental concepts of probability
and random variables, and we are “simply” elaborating on the case of two or more ran-
dom variables. Nevertheless, there are significant analytical techniques that need to be
learned, e.g., double summations of pmf’s and double integration of pdf’s, so we first
discuss the case of two random variables in detail because we can draw on our geomet-
ric intuition. Chapter 6 considers the general case of vector random variables.Through-
out these two chapters you should be mindful of the forest (fundamental concepts) and
the trees (specific techniques)!

5.1 TWO RANDOM VARIABLES

The notion of a random variable as a mapping is easily generalized to the case where
two quantities are of interest. Consider a random experiment with sample space S and
event class We are interested in a function that assigns a pair of real numbersF.

233
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(a)

(b)

y

x

A

B

S

z X(z)

y

x

S
R2

z X(z)

to each outcome in S. Basically we are dealing with a vector
function that maps S into the real plane, as shown in Fig. 5.1(a). We are ultimately in-
terested in events involving the pair (X, Y).

Example 5.1

Let a random experiment consist of selecting a student’s name from an urn. Let denote the
outcome of this experiment, and define the following two functions:

assigns a pair of numbers to each in S.
We are interested in events involving the pair (H, W). For example, the event

represents students with height less that 183 cm (6 feet) and weight less
than 82 kg (180 lb).

Example 5.2

A Web page provides the user with a choice either to watch a brief ad or to move directly to the
requested page. Let be the patterns of user arrivals in T seconds, e.g., number of arrivals, and
listing of arrival times and types. Let be the number of times the Web page is directly re-
quested and let be the number of times that the ad is chosen. assigns a pair
of nonnegative integers to each in S. Suppose that a type 1 request brings 0.001¢ in revenue
and a type 2 request brings in 1¢. Find the event “revenue in T seconds is less than $100.”

The total revenue in T seconds is 0.001 and so the event of interest is
B = 50.001N1 + 1N2 6 10,0006.

N1 + 1N2 ,

z

1N11z2,N21z22N21z2
N11z2

z

B = 5H … 183,W … 826
z1H1z2,W1z22

W1z2 = weight of student z in kilograms 

H1z2 = height of student z in centimeters 

z

R2,
zX1z2 = 1X1z2, Y1z22

FIGURE 5.1
(a) A function assigns a pair of real numbers to each outcome
in S. (b) Equivalent events for two random variables.
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y

x
(10, 0)

(0, 10)

y

B

A

x

(5, 5)

(0, 10)

(10, 0)

y

xC

FIGURE 5.2
Examples of two-dimensional events.

Example 5.3

Let the outcome in a random experiment be the length of a randomly selected message. Sup-
pose that messages are broken into packets of maximum length M bytes. Let Q be the number of
full packets in a message and let R be the number of bytes left over. assigns a pair
of numbers to each in S. Q takes on values in the range and R takes on values in the
range An event of interest may be “the last packet is less than
half full.”

Example 5.4

Let the outcome of a random experiment result in a pair that results from two in-
dependent spins of a wheel. Each spin of the wheel results in a number in the interval 
Define the pair of numbers (X, Y) in the plane as follows:

The vector function assigns a pair of numbers in the plane to each in S. The
square root term corresponds to a radius and to an angle.

We will see that (X, Y) models the noise voltages encountered in digital communication
systems. An event of interest here may be “total noise power is less
than ”

The events involving a pair of random variables (X, Y) are specified by conditions
that we are interested in and can be represented by regions in the plane. Figure 5.2
shows three examples of events:

Event A divides the plane into two regions according to a straight line. Note that the
event in Example 5.2 is of this type. Event C identifies a disk centered at the origin and

 C = 5X2 + Y2 … 1006.
B = 5min1X, Y2 … 56
A = 5X + Y … 106

r2.
B = 5X2 + Y2 6 r26,
z2

z1X1z2, Y1z22

X1z2 = ¢2 ln
2p

z1
≤1/2

 cos z2 Y1z2 = ¢2 ln
2p

z1
≤1/2

 sin z2 .

10, 2p].
z = 1z1 , z22

B = 5R 6 M/26,0, 1, Á ,M - 1.
0, 1, 2, Á ,z

1Q1z2, R1z22
z
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it corresponds to the event in Example 5.4. Event B is found by noting that
that is, the minimum of X and Y is less

than or equal to 5 if either X and/or Y is less than or equal to 5.
To determine the probability that the pair is in some region B in the

plane, we proceed as in Chapter 3 to find the equivalent event for B in the underlying
sample space S:

(5.1a)

The relationship between and B is shown in Fig. 5.1(b). If A is in then
it has a probability assigned to it, and we obtain:

(5.1b)

The approach is identical to what we followed in the case of a single random variable.
The only difference is that we are considering the joint behavior of X and Y that is in-
duced by the underlying random experiment.

A scattergram can be used to deduce the joint behavior of two random variables.
A scattergram plot simply places a dot at every observation pair (x, y) that results from
performing the experiment that generates (X, Y). Figure 5.3 shows the scattergram for
200 observations of four different pairs of random variables.The pairs in Fig. 5.3(a) ap-
pear to be uniformly distributed in the unit square. The pairs in Fig. 5.3(b) are clearly
confined to a disc of unit radius and appear to be more concentrated near the origin.
The pairs in Fig. 5.3(c) are concentrated near the origin, and appear to have circular
symmetry, but are not bounded to an enclosed region. The pairs in Fig. 5.3(d) again are
concentrated near the origin and appear to have a clear linear relationship of some
sort, that is, larger values of x tend to have linearly proportional increasing values of y.
We later introduce various functions and moments to characterize the behavior of
pairs of random variables illustrated in these examples.

The joint probability mass function, joint cumulative distribution function, and
joint probability density function provide approaches to specifying the probability law
that governs the behavior of the pair (X, Y). Our general approach is as follows. We
first focus on events that correspond to rectangles in the plane:

(5.2)

where is a one-dimensional event (i.e., subset of the real line). We say that these
events are of product form. The event B occurs when both and 
occur jointly. Figure 5.4 shows some two-dimensional product-form events. We use Eq.
(5.1b) to find the probability of product-form events:

(5.3)

By defining A appropriately we then obtain the joint pmf, joint cdf, and joint pdf of
(X, Y).

5.2 PAIRS OF DISCRETE RANDOM VARIABLES

Let the vector random variable assume values from some countable set
The joint probability mass function of X

specifies the probabilities of the event 5X = x6 ¨ 5Y = y6:
SX,Y = 51xj , yk2, j = 1, 2, Á , k = 1, 2, Á 6.

X = 1X, Y2

P3B4 = P35X in A16 ¨ 5Y in A264 ! P3X in A1 , Y in An4.

5Y in A265X in A16
Ak

B = 5X in A16 ¨ 5Y in A26

P3X in B4 = P3A4 = P35z: 1X1z2, Y1z22 in B64.
F,A = X-11B2

A = X-11B2 = 5z: 1X1z2, Y1z22 in B6.

X = 1X, Y2
5min1X, Y2 … 56 = 5X … 56 ´ 5Y … 56,
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FIGURE 5.4
Some two-dimensional product-form events.

FIGURE 5.3
A scattergram for 200 observations of four different pairs of random variables.
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(5.4a)

The values of the pmf on the set provide the essential information:

(5.4b)

There are several ways of showing the pmf graphically: (1) For small sample
spaces we can present the pmf in the form of a table as shown in Fig. 5.5(a). (2) We can
present the pmf using arrows of height placed at the points in
the plane, as shown in Fig. 5.5(b), but this can be difficult to draw. (3) We can place dots
at the points and label these with the corresponding pmf value as shown in
Fig. 5.5(c).

The probability of any event B is the sum of the pmf over the outcomes in B:

(5.5)

Frequently it is helpful to sketch the region that contains the points in B as shown, for
example, in Fig. 5.6. When the event B is the entire sample space we have:

(5.6)

Example 5.5

A packet switch has two input ports and two output ports.At a given time slot a packet arrives at
each input port with probability and is equally likely to be destined to output port 1 or 2. Let
X and Y be the number of packets destined for output ports 1 and 2, respectively. Find the pmf
of X and Y, and show the pmf graphically.

The outcome for an input port j can take the following values: “n”, no packet arrival 

(with probability );“a1”, packet arrival destined for output port 1 (with probability );“a2”,

packet arrival destined for output port 2 (with probability ). The underlying sample space S
consists of the pair of input outcomes The mapping for (X, Y) is shown in the table
below:

z = 1I1 , I22.
1/4

1/41/2

Ij

1/2,

a
q

j=1
a
q

k=1

pX,Y1xj , yk2 = 1.

SX,Y ,

P3X in B4 = a1xj,yk2ain BpX,Y1xj , yk2.

51xj , yk26
51xj , yk26pX,Y1xj , yk2

! P3X = xj , Y = yk4 1xj , yk2 H SX,Y .

pX,Y1xj , yk2 = P35X = xj6 ¨ 5Y = yk64
SX,Y

! P3X = x, Y = y4 for 1x, y2 H R2.

pX,Y1x, y2 = P35X = x6 ¨ 5Y = y64

The pmf of (X, Y) is then:

pX,Y10, 12 = P3z H 51n, a22, 1a2, n264 = 2*
1

8
=

1

4
,

pX,Y10, 02 = P3z = 1n, n24 =
1

2

1

2
=

1

4
,

z (n, n) (n, a1) (n, a2) (a1, n) (a1, a1) (a1, a2) (a2, n) (a2, a1) (a2, a2)

X, Y (0, 0) (1, 0) (0, 1) (1, 0) (2, 0) (1, 1) (0, 1) (1, 1) (0, 2)
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1/16

210

1/41/4

1/81/4

1/16

0

1

2

y

x

PY(2) � 1/16

P
X

(0
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FIGURE 5.5
Graphical representations of pmf’s: (a) in table format; (b) use of arrows to show height;
(c) labeled dots corresponding to pmf value.
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1

2

3

4

5

6

1/42 1/42 1/42

1/42

1/422/42 1/42

1/42 1/42 2/42 1/421/42 1/42

1/42 1/42 1/421/42 2/42

1/42 2/42 1/42 1/421/42 1/42

2/42 1/42 1/42 1/421/42 1/42

1/42 1/42 2/421/42 1/421/42

1 2 3 4 5 6
x

y

FIGURE 5.6
Showing the pmf via a sketch containing the points in B.

Figure 5.5(a) shows the pmf in tabular form where the number of rows and columns ac-
commodate the range of X and Y respectively. Each entry in the table gives the pmf value for the
corresponding x and y. Figure 5.5(b) shows the pmf using arrows in the plane.An arrow of height

is placed at each of the points in 
Figure 5.5(c) shows the pmf using labeled dots in the plane. A dot with label is placed
at each of the points in 

Example 5.6

A random experiment consists of tossing two “loaded” dice and noting the pair of numbers
(X, Y) facing up. The joint pmf for and is given by the two-
dimensional table shown in Fig. 5.6. The ( j, k) entry in the table contains the value 
Find the 

Figure 5.6 shows the region that corresponds to the set The probability
of this event is given by:

5min1x, y2 = 36.
P3min1X, Y2 = 34.

pX,Y1j, k2.
k = 1, Á , 6j = 1, Á , 6pX,Y1j, k2

SX,Y .
pX,Y1j, k2

SX,Y = 510, 02, 10, 12, 11, 02, 11, 12, 10, 22, 12, 026.pX,Y1j, k2

pX,Y12, 02 = P3z = 1a1, a124 =
1

16
.

pX,Y10, 22 = P3z = 1a2, a224 =
1

16
,

pX,Y11, 12 = P3z H 51a1, a22, 1a2, a1264 =
1

8
,

pX,Y11, 02 = P3z H 51n, a12, 1a1, n264 =
1

4
,
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5.2.1 Marginal Probability Mass Function

The joint pmf of X provides the information about the joint behavior of X and Y. We
are also interested in the probabilities of events involving each of the random variables
in isolation. These can be found in terms of the marginal probability mass functions:

(5.7a)

and similarly,

(5.7b)

The marginal pmf’s satisfy all the properties of one-dimensional pmf’s, and they
supply the information required to compute the probability of events involving the
corresponding random variable.

The probability can be interpreted as the long-term relative frequency
of the joint event in a sequence of repetitions of the random
experiment. Equation (5.7a) corresponds to the fact that the relative frequency of the
event is found by adding the relative frequencies of all outcome pairs in which

appears. In general, it is impossible to deduce the relative frequencies of pairs of values
X and Y from the relative frequencies of X and Y in isolation.The same is true for pmf’s:
In general, knowledge of the marginal pmf’s is insufficient to specify the joint pmf.

Example 5.7

Find the marginal pmf for the output ports (X, Y) in Example 5.2.
Figure 5.5(a) shows that the marginal pmf is found by adding entries along a row or column

in the table. For example, by adding along the column we have:

Similarly, by adding along the row:

Figure 5.5(b) shows the marginal pmf using arrows on the real line.

pY102 = P3Y = 04 = pX,Y10, 02 + pX,Y11, 02 + pX,Y12, 02 =
1

4
+

1

4
+

1

16
=

9

16
.

y = 0

pX112 = P3X = 14 = pX,Y11, 02 + pX,Y11, 12 =
1

4
+

1

8
=

3

8
.

x = 1

Xj

5X = Xj6
5X = Xj6 ¨ 5Y = Yk6
pX,Y1xj , yk2

= a
q

j=1

pX,Y1xj , yk2.
pY1yk2 = P3Y = yk4

= a
q

k=1

pX,Y1xj , yk2,
= P35X = xj and Y = y16 ´ 5X = xj and Y = y26 ´ Á4
= P3X = xj , Y = anything4

pX1xj2 = P3X = xj4

= 6a 1

42
b +

2

42
=

8

42
.

+ pX,Y13, 32 + pX,Y13, 42 + pX,Y13, 52 + pX,Y13, 62
P3min1X, Y2 = 34 = pX,Y16, 32 + pX,Y15, 32 + pX,Y14, 32
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Example 5.8

Find the marginal pmf’s in the loaded dice experiment in Example 5.2.
The probability that is found by summing over the first row:

Similarly, we find that for The probability that is found by
summing over the kth column. We then find that for Thus each
die, in isolation, appears to be fair in the sense that each face is equiprobable. If we knew only
these marginal pmf’s we would have no idea that the dice are loaded.

Example 5.9

In Example 5.3, let the number of bytes N in a message have a geometric distribution with para-
meter and range Find the joint pmf and the marginal pmf’s of Q and R.

If a message has N bytes, then the number of full packets is the quotient Q in the division
of N by M, and the number of remaining bytes is the remainder R. The probability of the pair

is given by

The marginal pmf of Q is

The marginal pmf of Q is geometric with parameter The marginal pmf of R is:

R has a truncated geometric pmf. As an exercise, you should verify that all the above marginal
pmf’s add to 1.

5.3 THE JOINT CDF OF XAND Y

In Chapter 3 we saw that semi-infinite intervals of the form are a basic build-
ing block from which other one-dimensional events can be built. By defining the cdf

as the probability of we were then able to express the probabilities of
other events in terms of the cdf. In this section we repeat the above development for
two-dimensional random variables.

1-q , x4,FX1x2
1-q , x4

= a
q

q=0

11 - p2pqM+ r =
11 - p2
1 - pM

pr r = 0, 1, Á ,M - 1.

P3R = r4 = P3N in5r,M + r, 2M + r, Á 64
pM.

= 11 - p2pqM 1 - pM

1 - p
= 11 - pM21pM2q q = 0, 1, 2, Á

= a
1M-12
k=0

11 - p2pqM+k

P3Q = q4 = P3N in5qM, qM + 1, Á , qM + 1M - 1264

P3Q = q, R = r4 = P3N = qM + r4 = 11 - p2pqM+ r.

51q, r26

SN = 50, 1, 2, Á 6.1 - p

k = 1, 2, Á , 6.P3Y = k4 = 1/6
Y = kj = 2, Á , 6.P3X = j4 = 1/6

P3X = 14 =
2

42
+

1

42
+ Á +

1

42
=

1

6
.

X = 1
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x

y

(x1, y1)

FX, Y (x1y1) � P[X � x1, Y � y1]

A basic building block for events involving two-dimensional random variables is
the semi-infinite rectangle defined by as shown in Fig. 5.7.
We also use the more compact notation to refer to this region. The
joint cumulative distribution function of X and Y is defined as the probability of the
event

(5.8)

In terms of relative frequency, represents the long-term proportion
of time in which the outcome of the random experiment yields a point X that falls in
the rectangular region shown in Fig. 5.7. In terms of probability “mass,”
represents the amount of mass contained in the rectangular region.

The joint cdf satisfies the following properties.

(i) The joint cdf is a nondecreasing function of x and y:

(5.9a)

(ii) (5.9b)

(iii) We obtain the marginal cumulative distribution functions by removing the
constraint on one of the variables. The marginal cdf’s are the probabilities of
the regions shown in Fig. 5.8:

(5.9c)

(iv) The joint cdf is continuous from the “north” and from the “east,” that is,

(5.9d)

(v) The probability of the rectangle is given by:

(5.9e)FX,Y1x2 , y22 - FX,Y1x2 , y12 - FX,Y1x1 , y22 + FX,Y1x1 , y12.
P3x1 6 X … x2 , y1 6 Y … y24 =

5x1 6 x … x2 , y1 6 y … y26
lim
x:a+
FX,Y1x, y2 = FX,Y1a, y2 and lim

y:b+
FX,Y1x, y2 = FX,Y1x, b2.

FX1x12 = FX,Y1x1 , q2 and FY1y12 = FX,Y1q , y12.

FX,Y1x1 , -q2 = 0, FX,Y1-q , y12 = 0, FX,Y1q , q2 = 1.

FX,Y1x1 , y12 … FX,Y1x2 , y22 if x1 … x2 and y1 … y2 ,

FX,Y1x1 , y12
FX,Y1x1 , y12

FX,Y1x1 , y12 = P3X … x1 , Y … y14.
5X … x16 ¨ 5Y … y16:

5x … x1 , y … y16
51x, y2: x … x1 and y … y16,

FIGURE 5.7
The joint cumulative distribution function is defined as
the probability of the semi-infinite rectangle defined by
the point 1x1 , y12.



244 Chapter 5 Pairs of Random Variables

x

y

x1

FY(y1) � P[X � �, Y � y1]FX(x1) � P[X � x1, Y � �]

x

y

y1

FIGURE 5.8
The marginal cdf’s are the probabilities of these half-planes.

y

x

x1

y1

x2

(x1, y1) (x2, y1)

(a)

y

x

x1

y2

y1

x2

(x1, y2)

(x1, y1)

(x2, y2)

(x2, y1)

(b)

B

A

B

Property (i) follows by noting that the semi-infinite rectangle defined by is
contained in that defined by and applying Corollary 7. Properties (ii) to (iv)
are obtained by limiting arguments. For example, the sequence 
is decreasing and approaches the empty set so

For property (iii) we take the sequence which increases to
so

For property (v) note in Fig. 5.9(a) that 

In Fig. 5.9(b), note that 
Property (v) follows by solving for P[A] and substituting the expression for P[B].

+ FX,Y1x1 , y22.FX,Y1x2 , y22 = P3A4 + P3B4- FX,Y1x1 , y12.
= FX,Y1x2 , y12Y … y16 - 5X … x1 , Y … y16, so P3B4 = P3x1 6 X … x2 , Y … y14

= 5X … x2 ,B = 5x1 6 x … x2 , y … y16
lim
n:q
FX,Y1x1 , n2 = P3X … x14 = FX1x12.

5x … x16,
5x … x1 and y … n6

FX,Y1x1 , -q2 = lim
n:q
FX,Y1x1 , -n2 = P3�4 = 0.

�,
5x … x1 and y … -n61x2 , y22

1x1 , y12

FIGURE 5.9
The joint cdf can be used to determine the probability of various events.
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Example 5.10

Plot the joint cdf of X and Y from Example 5.6. Find the marginal cdf of X.
To find the cdf of X, we identify the regions in the plane according to which points in 

are included in the rectangular region defined by (x, y). For example,

• The regions outside the first quadrant do not include any of the points, so 
• The region contains the point (0, 0), so 

Figure 5.10 shows the cdf after all possible regions are examined.
We need to consider several cases to find For we have For

we have For we have 
Finally, for we have Therefore FX(x) is a

staircase function and X is a discrete random variable with and

Example 5.11

The joint cdf for the pair of random variables is given by

(5.10)

Plot the joint cdf and find the marginal cdf of X.
Figure 5.11 shows a plot of the joint cdf of X and Y. is continuous for all points

in the plane. for all and which implies that X and Y each assume
values less than or equal to one.

y Ú 1,x Ú 1FX,Y1x, y2 = 1
FX,Y1x, y2

FX,Y1x, y2 = e 0 x 6 0 or y 6 0

xy 0 … x … 1, 0 … y … 1

x 0 … x … 1, y 7 1

y 0 … y … 1, x 7 1

1 x Ú 1, y Ú 1.

X = 1X, Y2

pX122 = 1/16.
pX102 = 9/16, pX112 = 6/16,

FX1x2 = FX,Y1x, q2 = 1.x Ú 1,1x, q2 = 15/16.
FX1x2 = FX,Y1 … x 6 2,FX1x2 = FX,Y1x, q2 = 9/16.0 … x 6 1,
FX1x2 = 0.x 6 0,FX1x2.

FX,Y1x, y2 = 1/4.50 … x 6 1, 0 … y 6 16
FX,Y1x, y2 = 0.

SX,Y

FIGURE 5.10
Joint cdf for packet switch example.
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y

The marginal cdf of X is:

X is uniformly distributed in the unit interval.

Example 5.12

The joint cdf for the vector of random variable is given by

Find the marginal cdf’s.
The marginal cdf’s are obtained by letting one of the variables approach infinity:

X and Y individually have exponential distributions with parameters and respectively.b,a

FY1y2 = lim
x:q
FX,Y1x, y2 = 1 - e-by y Ú 0.

FX1x2 = lim
y:q
FX,Y1x, y2 = 1 - e -ax x Ú 0

FX,Y1x, y2 = b 11 - e-ax211 - e-by2 x Ú 0, y Ú 0

0 elsewhere.

X = 1X, Y2

FX1x2 = FX,Y1x, q2 = c 0 x 6 0

x  0 … x … 1

1 x Ú 1.

FIGURE 5.11
Joint cdf for two uniform random variables.
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Example 5.13

Find the probability of the events where 
and and in Example 5.12.

The probability of A is given directly by the cdf:

The probability of B requires more work. By DeMorgan’s rule:

Corollary 5 in Section 2.2 gives the probability of the union of two events:

Finally we obtain the probability of B:

You should sketch the region B on the plane and identify the events involved in the calculation
of the probability of 

The probability of event D is found by applying property (vi) of the joint cdf:

5.3.1 Random Variables That Differ in Type

In some problems it is necessary to work with joint random variables that differ in
type, that is, one is discrete and the other is continuous. Usually it is rather clumsy to
work with the joint cdf, and so it is preferable to work with either or

These probabilities are sufficient to compute the joint cdf
should we have to.

Example 5.14 Communication Channel with Discrete Input and Continuous Output

The input X to a communication channel is volt or volt with equal probability.The output
Y of the channel is the input plus a noise voltage N that is uniformly distributed in the interval
from volts to volts. Find 

This problem lends itself to the use of conditional probability:

P3X = +1, Y … y4 = P3Y … y ƒX = +14P3X = +14,

P3X = +1, Y … 04.+2-2

-1+1

P3X = k, y1 6 Y … y24.
P[X = k, Y … y]

-11 - e-a211 - e-5b2 + 11 - e-a211 - e-2b2.
= 11 - e-2a211 - e-5b2 - 11 - e-2a211 - e-2b2
= FX,Y12, 52 - FX,Y12, 22 - FX,Y11, 52 + FX,Y11, 22

P31 6 X … 2, 2 6 Y … 54

Bc.

P3B4 = 1 - P3Bc4 = e-axe-by.

= 1 - e-axe-by.

= 11 - e-ax2 + 11 - e-by2 - 11 - e-ax211 - e-by2
P3Bc4 = P3X … x4 + P3Y … y4 - P3X … x, Y … y4

Bc = 15X 7 x6 ¨ 5Y 7 y62c = 5X … x6 ´ 5Y … y6.

P3A4 = P3X … 1, Y … 14 = FX,Y11, 12 = 11 - e-a211 - e-b2.

D = 51 6 X … 2, 2 6 Y … 56y 7 0,
x 7 0A = 5X … 1, Y … 16, B = 5X 7 x, Y 7 y6,
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where When the input the output Y is uniformly distributed in the
interval therefore

Thus

5.4 THE JOINT PDF OF TWO CONTINUOUS RANDOM VARIABLES

The joint cdf allows us to compute the probability of events that correspond to “rectangu-
lar” shapes in the plane. To compute the probability of events corresponding to regions
other than rectangles, we note that any reasonable shape (i.e., disk, polygon, or half-plane)
can be approximated by the union of disjoint infinitesimal rectangles, For example,

Fig. 5.12 shows how the events and are
approximated by rectangles of infinitesimal width. The probability of such events can
therefore be approximated by the sum of the probabilities of infinitesimal rectangles, and
if the cdf is sufficiently smooth, the probability of each rectangle can be expressed in
terms of a density function:

As and approach zero, the above equation becomes an integral of a probability
density function over the region B.

We say that the random variables X and Y are jointly continuous if the probabil-
ities of events involving (X, Y) can be expressed as an integral of a probability density
function. In other words, there is a nonnegative function called the jointfX,Y1x, y2,

¢y¢x

P3B4 L a
j
a
k

P3Bj,k4 = b1xj, yk2HBfX,Y1xj , yk2 ¢x¢y.

+ X2 … 16B = 5X2A = 5X + Y … 16
Bj,k .

P3X = +1, Y … 04 = P3Y … 0 ƒX = +14P3X = +14 = 11/2211/42 = 1/8.

P3Y … y ƒX = +14 =
y + 1

4
 for -1 … y … 3.

3-1, 34;
X = 1,P3X = +14 = 1/2.

y

x

y

x

Bj,k

Bj,k

FIGURE 5.12
Some two-dimensional non-product form events.
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y

x

f (x, y)

dA

probability density function, that is defined on the real plane such that for every event
B, a subset of the plane,

(5.11)

as shown in Fig. 5.13. Note the similarity to Eq. (5.5) for discrete random variables.
When B is the entire plane, the integral must equal one:

(5.12)

Equations (5.11) and (5.12) again suggest that the probability “mass” of an event is
found by integrating the density of probability mass over the region corresponding to
the event.

The joint cdf can be obtained in terms of the joint pdf of jointly continuous ran-
dom variables by integrating over the semi-infinite rectangle defined by (x, y):

(5.13)

It then follows that if X and Y are jointly continuous random variables, then the pdf
can be obtained from the cdf by differentiation:

(5.14)fX,Y1x, y2 =
02FX,Y1x, y2

0x 0y
.

FX,Y1x, y2 = L
x

-qL
y

-q
fX,Y1x¿, y¿2 dx¿ dy¿.

1 = L
q

-qL
q

-q
fX,Y1x¿, y¿2 dx¿ dy¿.

P3X in B4 = LBLfX,Y1x¿, y¿2 dx¿ dy¿,

FIGURE 5.13
The probability of A is the integral of over the region
defined by A.

fX,Y1x, y2
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Note that if X and Y are not jointly continuous, then it is possible that the above partial
derivative does not exist. In particular, if the is discontinuous or if its partial de-
rivatives are discontinuous, then the joint pdf as defined by Eq. (5.14) will not exist.

The probability of a rectangular region is obtained by letting 
in Eq. (5.11):

(5.15)

It then follows that the probability of an infinitesimal rectangle is the product of the
pdf and the area of the rectangle:

(5.16)

Equation (5.16) can be interpreted as stating that the joint pdf specifies the probability
of the product-form events

The marginal pdf’s and are obtained by taking the derivative of the
corresponding marginal cdf’s, and Thus

(5.17a)

Similarly,

(5.17b)

Thus the marginal pdf’s are obtained by integrating out the variables that are not of
interest.

Note that is the probability of the
infinitesimal strip shown in Fig. 5.14(a). This reminds us of the interpretation of
the marginal pmf’s as the probabilities of columns and rows in the case of discrete
random variables. It is not surprising then that Eqs. (5.17a) and (5.17b) for the
marginal pdf’s and Eqs. (5.7a) and (5.7b) for the marginal pmf’s are identical
except for the fact that one contains an integral and the other a summation. As in
the case of pmf’s, we note that, in general, the joint pdf cannot be obtained from
the marginal pdf’s.

fX1x2 dx M P3x 6 X … x + dx, Y 6 q4

fY1y2 = L
q

-q
fX,Y1x¿, y2 dx¿.

= L
q

-q
fX,Y1x,y¿2 dy¿.

fX1x2 =
d

dxL
x

-q
b Lq

-q
fX,Y1x¿, y¿2 dy¿ r dx¿FY1y2 = FX,Y1q , y2.FX1x2 = FX,Y1x,q2

fY1y2fX1x2
5x 6 X … x + dx6 ¨ 5y 6 Y … y + dy6.

M fX,Y1x, y2 dx dy.

P3x 6 X … x + dx, y 6 Y … y + dy4 = L
x+dx

x L
y+dy

y

fX,Y1x¿, y¿2 dx¿ dy¿

P3a1 6 X … b1 , a2 6 Y … b24 = L
b1

a1 L
b2

a2

fX,Y1x¿, y¿2 dx¿ dy¿.

b1 and a2 6 y … b26
B = 51x, y2: a1 6 x …

FX,Y1x, y2
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Example 5.15 Jointly Uniform Random Variables

A randomly selected point (X, Y) in the unit square has the uniform joint pdf given by

The scattergram in Fig. 5.3(a) corresponds to this pair of random variables. Find the joint cdf of
X and Y.

The cdf is found by evaluating Eq. (5.13).You must be careful with the limits of the integral:
The limits should define the region consisting of the intersection of the semi-infinite rectangle
defined by (x, y) and the region where the pdf is nonzero.There are five cases in this problem, cor-
responding to the five regions shown in Fig. 5.15.

1. If or the pdf is zero and Eq. (5.14) implies

2. If (x, y) is inside the unit interval,

3. If and 

4. Similarly, if and 

FX,Y1x, y2 = y.

0 … y … 1,x 7 1

FX,Y1x, y2 = L
x

0 L
1

0

1 dx¿ dy¿ = x.

y 7 1,0 … x … 1

FX,Y1x, y2 = L
x

0 L
y

0

1 dx¿ dy¿ = xy.

FX,Y1x, y2 = 0.

y 6 0,x 6 0

fX,Y1x, y2 = b1 0 … x … 1 and 0 … y … 1

0 elsewhere.

y

x
x x 
 dx

y 
 dy

y

x

y

fX(x)dx � P[x � X � x 
 dx, Y � �] fY(y)dy � P[X � �, y � Y � y 
 dy]

(a) (b)

FIGURE 5.14
Interpretation of marginal pdf’s.
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5. Finally, if and 

We see that this is the joint cdf of Example 5.11.

Example 5.16

Find the normalization constant c and the marginal pdf’s for the following joint pdf:

The pdf is nonzero in the shaded region shown in Fig. 5.16(a).The constant c is found from
the normalization condition specified by Eq. (5.12):

Therefore The marginal pdf’s are found by evaluating Eqs. (5.17a) and (5.17b):

and

You should fill in the steps in the evaluation of the integrals as well as verify that the marginal
pdf’s integrate to 1.

fY1y2 = L
q

0

fX,Y1x, y2 dx = L
q

y

2e-xe-y dx = 2e-2y 0 … y 6 q .

fX1x2 = L
q

0

fX,Y1x, y2 dy = L
x

0

2e-xe-y dy = 2e-x11 - e-x2 0 … x 6 q

c = 2.

1 = L
q

0 L
x

0

ce-xe-y dy dx = L
q

0

ce-x11 - e-x2 dx =
c

2
.

fX,Y1x, y2 = b ce-xe-y 0 … y … x 6 q

0 elsewhere.

FX,Y1x, y2 = L
1

0 L
1

0

1 dx¿ dy¿ = 1.

y 7 1,x 7 1

y

x

1

I

0 1

III

II IV

V

FIGURE 5.15
Regions that need to be considered separately in computing cdf
in Example 5.15.
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Example 5.17

Find in Example 5.16.
Figure 5.16(b) shows the intersection of the event and the region where the

pdf is nonzero. We obtain the probability of the event by “adding” (actually integrating) infini-
tesimal rectangles of width dy as indicated in the figure:

Example 5.18 Jointly Gaussian Random Variables

The joint pdf of X and Y, shown in Fig. 5.17, is

(5.18)

We say that X and Y are jointly Gaussian.1 Find the marginal pdf’s.
The marginal pdf of X is found by integrating over y:

fX1x2 =
e-x

2/211-r22
2p21 - r2L

q

-q
e-1y2-2rxy2/211-r22 dy.

fX,Y1x, y2

fX,Y1x, y2 =
1

2p21 - r2
e-1x2-2rxy+y22/211-r22 -q 6 x, y 6 q .

= 1 - 2e-1.

P3X + Y … 14 = L
.5

0 L
1-y

y

2e-xe-y dx dy = L
.5

0

2e-y3e-y - e-11-y24 dy

5X + Y … 16
P3X + Y … 14

y

x � y

x

(a)

y

x � y x 
 y � 1

x

(b)

1

2

1

2

FIGURE 5.16
The random variables X and Y in Examples 5.16 and 5.17 have a pdf that is nonzero only in the shaded
region shown in part (a).

1This is an important special case of jointly Gaussian random variables.The general case is discussed in Section 5.9.
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We complete the square of the argument of the exponent by adding and subtracting that is,
Therefore

where we have noted that the last integral equals one since its integrand is a Gaussian pdf with
mean and variance The marginal pdf of X is therefore a one-dimensional Gaussian
pdf with mean 0 and variance 1. From the symmetry of in x and y, we conclude that the
marginal pdf of Y is also a one-dimensional Gaussian pdf with zero mean and unit variance.

5.5 INDEPENDENCE OF TWO RANDOM VARIABLES

X and Y are independent random variables if any event defined in terms of X is in-
dependent of any event defined in terms of Y; that is,

(5.19)

In this section we present a simple set of conditions for determining when X and Y are
independent.

Suppose that X and Y are a pair of discrete random variables, and suppose we
are interested in the probability of the event where involves only
X and involves only Y. In particular, if X and Y are independent, then and

are independent events. If we let and then theA2 = 5Y = yk6,A1 = 5X = xj6A2

A1A2

A1A = A1 ¨ A2 ,

P3X in A1 , Y in A24 = P3X in A14P3Y in A24.
A2

A1

fX,Y1x, y2
1 - r2.rx

=
e-x

2/2

22p
,

=
e-x

2/2

22pL
q

-q

e-1y-rx22/211-r22
22p11 - r22 dy

fX1x2 =
e-x

2/211-r22
2p21 - r2L

q

-q
e-31y-rx22-r2x24/211-r22 dy

y2 - 2rxy + r2x2 - r2x2 = 1y - rx22 - r2x2.
r2x2,

f
X,Y

(x,y)

0.4

0.3

0.2

0.1

0
–3 –2

–1 0
1 2 3

3

2

1

0

-3

-2

-1

FIGURE 5.17
Joint pdf of two jointly Gaussian random variables.
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independence of X and Y implies that

(5.20)

Therefore, if X and Y are independent discrete random variables, then the joint pmf is

equal to the product of the marginal pmf’s.

Now suppose that we don’t know if X and Y are independent, but we do know that
the pmf satisfies Eq. (5.20). Let be a product-form event as above, then

(5.21)

which implies that and are independent events. Therefore, if the joint pmf of X

and Y equals the product of the marginal pmf’s, then X and Y are independent. We have
just proved that the statement “X and Y are independent” is equivalent to the state-
ment “the joint pmf is equal to the product of the marginal pmf’s.” In mathematical
language, we say, the “discrete random variables X and Y are independent if and only if

the joint pmf is equal to the product of the marginal pmf’s for all ”

Example 5.19

Is the pmf in Example 5.6 consistent with an experiment that consists of the independent tosses
of two fair dice?

The probability of each face in a toss of a fair die is 1/6. If two fair dice are tossed and if the
tosses are independent, then the probability of any pair of faces, say j and k, is:

Thus all possible pairs of outcomes should be equiprobable. This is not the case for the joint pmf
given in Example 5.6. Therefore the tosses in Example 5.6 are not independent.

Example 5.20

Are Q and R in Example 5.9 independent? From Example 5.9 we have

= 11 - p2pMq+ r
P3Q = q4P3R = r4 = 11 - pM21pM2q 11 - p2

1 - pM
pr

P3X = j, Y = k4 = P3X = j4P3Y = k4 =
1

36
.

xj , yk .

A2A1

= P3A14P3A24,
= a
xj in A1

pX1xj2 a
yk in A2

pY1yk2

= a
xj in A1

a
yk in A2

pX1xj2pY1yk2

P3A4 = a
xj in A1

a
yk in A2

pX,Y1xj , yk2
A = A1 ¨ A2

= pX1xj2pY1yk2 for all xj and yk .

= P3X = xj4P3Y = yk4
pX,Y1xj , yk2 = P3X = xj , Y = yk4
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Therefore Q and R are independent.

In general, it can be shown that the random variables X and Y are independent if

and only if their joint cdf is equal to the product of its marginal cdf’s:

(5.22)

Similarly, if X and Y are jointly continuous, then X and Y are independent if and

only if their joint pdf is equal to the product of the marginal pdf’s:

(5.23)

Equation (5.23) is obtained from Eq. (5.22) by differentiation. Conversely, Eq. (5.22) is
obtained from Eq. (5.23) by integration.

Example 5.21

Are the random variables X and Y in Example 5.16 independent?
Note that and are nonzero for all and all Hence is

nonzero in the entire positive quadrant. However is nonzero only in the region 
inside the positive quadrant. Hence Eq. (5.23) does not hold for all x, y and the random variables
are not independent. You should note that in this example the joint pdf appears to factor, but
nevertheless it is not the product of the marginal pdf’s.

Example 5.22

Are the random variables X and Y in Example 5.18 independent? The product of the marginal
pdf’s of X and Y in Example 5.18 is

By comparing to Eq. (5.18) we see that the product of the marginals is equal to the joint pdf if
and only if Therefore the jointly Gaussian random variables X and Y are independent if
and only if We see in a later section that is the correlation coefficient between X and Y.

Example 5.23

Are the random variables X and Y independent in Example 5.12? If we multiply the marginal
cdf’s found in Example 5.12 we find

Therefore Eq. (5.22) is satisfied so X and Y are independent.

If X and Y are independent random variables, then the random variables defined
by any pair of functions g(X) and h(Y) are also independent.To show this, consider the

FX1x2FY1y2 = 11 - e-ax211 - e-by2 = FX,Y1x, y2 for all x and y.

rr = 0.
r = 0.

fX1x2fY1y2 =
1

2p
e-1x2+y22/2 -q 6 x, y 6 q .

y 6 xfX,Y1x, y2
fX1x2fY1y2y 7 0.x 7 0fY1y2fX1x2

fX,Y1x, y2 = fX1x2fY1y2 for all x and y.

FX,Y1x, y2 = FX1x2FY1y2 for all x and y.

r = 0, Á ,M - 1.

= P3Q = q, R = r4 for all q = 0, 1, Á
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one-dimensional events A and B. Let be the set of all values of x such that if x is in
then g(x) is in A, and let be the set of all values of y such that if y is in then

h(y) is in B. (In Chapter 3 we called and the equivalent events of A and B.) Then

(5.24)

The first and third equalities follow from the fact that A and and B and are
equivalent events. The second equality follows from the independence of X and Y.
Thus g(X) and h(Y) are independent random variables.

5.6 JOINT MOMENTS AND EXPECTED VALUES OF A FUNCTION OF TWO RANDOM
VARIABLES

The expected value of X identifies the center of mass of the distribution of X. The
variance, which is defined as the expected value of provides a measure of
the spread of the distribution. In the case of two random variables we are interested
in how X and Y vary together. In particular, we are interested in whether the varia-
tion of X and Y are correlated. For example, if X increases does Y tend to increase or
to decrease? The joint moments of X and Y, which are defined as expected values of
functions of X and Y, provide this information.

5.6.1 Expected Value of a Function of Two Random Variables

The problem of finding the expected value of a function of two or more random vari-
ables is similar to that of finding the expected value of a function of a single random
variable. It can be shown that the expected value of can be found using
the following expressions:

(5.25)

Example 5.24 Sum of Random Variables

Let Find E[Z].

(5.26)= L
q

-q
x¿fX1x¿2 dx¿ + L

q

-q
y¿fY1y¿2 dy¿ = E3X4 + E3Y4.

= L
q

-qL
q

-q
x¿fX,Y1x¿, y¿2 dy¿ dx¿ + L

q

-qL
q

-q
y¿ fX,Y1x¿, y¿2 dx¿ dy¿

= L
q

-qL
q

-q
1x¿ + y¿2fX,Y1x¿, y¿2 dx¿ dy¿

E3Z4 = E3X + Y4
Z = X + Y.

E3Z4 = d Lq

-qL
q

-q
g1x, y2fX,Y1x, y2 dx dy X, Y jointly continuous

a
i
a
n

g1xi , yn2pX,Y1xi , yn2 X, Y discrete.

Z = g1X, Y2

1X - m22,

B¿A¿

= P3g1X2 in A4P3h1Y2 in B4.
= P3X in A¿4P3Y in B¿4

P3g1X2 in A, h1Y2 in B4 = P3X in A¿, Y in B¿4
B¿A¿

B¿B¿A¿
A¿
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Thus the expected value of the sum of two random variables is equal to the sum of the individual
expected values. Note that X and Y need not be independent.

The result in Example 5.24 and a simple induction argument show that the ex-

pected value of a sum of n random variables is equal to the sum of the expected values:

(5.27)

Note that the random variables do not have to be independent.

Example 5.25 Product of Functions of Independent Random Variables

Suppose that X and Y are independent random variables, and let Find

5.6.2 Joint Moments, Correlation, and Covariance 

The joint moments of two random variables X and Y summarize information about
their joint behavior. The jkth joint moment of X and Y is defined by

(5.28)

If we obtain the moments of Y, and if we obtain the moments of X. In
electrical engineering, it is customary to call the moment, E[XY], the
correlation of X and Y. If then we say that X and Y are orthogonal.

The jkth central moment of X and Y is defined as the joint moment of the cen-
tered random variables, and 

Note that gives VAR(X) and gives VAR(Y).
The covariance of X and Y is defined as the central moment:

(5.29)

The following form for COV(X, Y) is sometimes more convenient to work with:

COV1X, Y2 = E3XY - XE3Y4 - YE3X4 + E3X4E3Y44

COV1X, Y2 = E31X - E3X421Y - E3Y424.
j = k = 1

j = 0 k = 2j = 2 k = 0

E31X - E3X42j1Y - E3Y42k4.
Y - E3Y4:X - E3X4

E3XY4 = 0,
j = 1 k = 1

k = 0,j = 0,

E3XjYk4 = d Lq

-qL
q

-q
xjykfX,Y1x, y2 dx dy X, Y jointly continuous

a
i
a
n

xi
jyn
kpX,Y1xi , yn2 X, Y discrete.

= E3g11X24E3g21Y24.
= b Lq

-q
g11x¿2fX1x¿2 dx¿ r b Lq

-q
g21y¿2fY1y¿2 dy¿ rE3g11X2g21Y24 = L

q

-qL
q

-q
g11x¿2g21y¿2fX1x¿2fY1y¿2 dx¿ dy¿

E3g1X, Y24 = E3g11X2g21Y24.
g1X, Y2 = g11X2g21Y2.

E3X1 + X2 + Á + Xn4 = E3X14 + Á + E3Xn4.
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(5.30)

Note that if either of the random variables has mean zero.

Example 5.26 Covariance of Independent Random Variables

Let X and Y be independent random variables. Find their covariance.

where the second equality follows from the fact that X and Y are independent, and the third
equality follows from Therefore pairs of independent

random variables have covariance zero.

Let’s see how the covariance measures the correlation between X and Y.The covari-
ance measures the deviation from and If a positive value of

tends to be accompanied by a positive values of and negative
tend to be accompanied by negative then 

will tend to be a positive value, and its expected value, COV(X, Y), will be positive.This is
the case for the scattergram in Fig. 5.3(d) where the observed points tend to cluster along a
line of positive slope. On the other hand, if and tend to have oppo-
site signs, then COV(X, Y) will be negative.A scattergram for this case would have obser-
vation points cluster along a line of negative slope. Finally if and 
sometimes have the same sign and sometimes have opposite signs, then COV(X, Y) will be
close to zero.The three scattergrams in Figs. 5.3(a), (b), and (c) fall into this category.

Multiplying either X or Y by a large number will increase the covariance, so we
need to normalize the covariance to measure the correlation in an absolute scale. The
correlation coefficient of X and Y is defined by

(5.31)

where and are the standard deviations of X and
Y, respectively.

The correlation coefficient is a number that is at most 1 in magnitude:

(5.32)

To show Eq. (5.32), we begin with an inequality that results from the fact that the
expected value of the square of a random variable is nonnegative:

 0 … Eb ¢X - E3X4
sX

;
Y - E3Y4
sY

≤2 r
-1 … rX,Y … 1.

sY = 2VAR1Y2sX = 2VAR1X2

rX,Y =
COV1X, Y2
sXsY

=
E3XY4 - E3X4E3Y4

sXsY
,

1Y - mY21X - mX2
1Y - mY21X - mX2

1X - mX21Y - mY21Y - mY2;1X - mX2
1Y - mY2,1X - mX2

mY = E3Y4.mX = E3X4

E3X - E3X44 = E3X4 - E3X4 = 0.

= 0,

= E3X - E3X44E3Y - E3Y44
COV1X, Y2 = E31X - E3X421Y - E3Y424

COV1X, Y2 = E3XY4
= E3XY4 - E3X4E3Y4.
= E3XY4 - 2E3X4E3Y4 + E3X4E3Y4
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The last equation implies Eq. (5.32).
The extreme values of are achieved when X and Y are related linearly,

if and if In Section 6.5 we show that
can be viewed as a statistical measure of the extent to which Y can be predicted by

a linear function of X.
X and Y are said to be uncorrelated if If X and Y are independent, then

so Thus if X and Y are independent, then X and Y are un-

correlated. In Example 5.22, we saw that if X and Y are jointly Gaussian and

then X and Y are independent random variables. Example 5.27 shows that this is not al-
ways true for non-Gaussian random variables: It is possible for X and Y to be uncorre-
lated but not independent.

Example 5.27 Uncorrelated but Dependent Random Variables

Let be uniformly distributed in the interval Let

The point (X, Y) then corresponds to the point on the unit circle specified by the angle as shown
in Fig. 5.18. In Example 4.36, we saw that the marginal pdf’s of X and Y are arcsine pdf’s, which are
nonzero in the interval The product of the marginals is nonzero in the square defined by

and so if X and Y were independent the point (X, Y) would assume all
values in this square.This is not the case, so X and Y are dependent.

We now show that X and Y are uncorrelated:

Since Eq. (5.30) then implies that X and Y are uncorrelated.

Example 5.28

Let X and Y be the random variables discussed in Example 5.16. Find E[XY], COV(X, Y), and

Equations (5.30) and (5.31) require that we find the mean, variance, and correlation of
X and Y. From the marginal pdf’s of X and Y obtained in Example 5.16, we find that

and and that and The correlation of
X and Y is

= L
q

0

2xe-x11 - e-x - xe-x2 dx = 1.

E3XY4 = L
q

0 L
x

0

xy2e-xe-y dy dx

VAR3Y4 = 1/4.E3Y4 = 1/2VAR3X4 = 5/4,E3X4 = 3/2

rX,Y .

E3X4 = E3Y4 = 0,

=
1

4pL
2p

0

 sin 2f df = 0.

E3XY4 = E3sin ® cos ®4 =
1

2pL
2p

0

 sin f cos f df

-1 … y … 1,-1 … x … 1
1-1, 12.

®,

X = cos ® and Y = sin ®.

10, 2p2.®

rX,Y = 0,
rX,Y = 0.COV1X, Y2 = 0,

rX,Y = 0.

rX,Y

a 6 0.rX,Y = -1a 7 0Y = aX + b; rX,Y = 1
rX,Y

= 211 ; rX,Y2.
= 1 ; 2rX,Y + 1
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Thus the correlation coefficient is given by

5.7 CONDITIONAL PROBABILITY AND CONDITIONAL EXPECTATION

Many random variables of practical interest are not independent:The output Y of a com-
munication channel must depend on the input X in order to convey information; consec-
utive samples of a waveform that varies slowly are likely to be close in value and hence
are not independent. In this section we are interested in computing the probability of
events concerning the random variable Y given that we know We are also inter-
ested in the expected value of Y given We show that the notions of conditional
probability and conditional expectation are extremely useful tools in solving problems,
even in situations where we are only concerned with one of the random variables.

5.7.1 Conditional Probability

The definition of conditional probability in Section 2.4 allows us to compute the prob-
ability that Y is in A given that we know that 

(5.33)P3Y in A ƒX = x4 =
P3Y in A,X = x4
P3X = x4  for P3X = x4 7 0.

X = x:

X = x.
X = x.

rX,Y =

1 -
3

2

1

2

A
5

4A
1

4

=
1

25
.

1

�1

�1 1

y

x

(cos θ, sin θ)

θ

FIGURE 5.18
(X, Y) is a point selected at random on the unit circle. X and Y
are uncorrelated but not independent.
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Case 1: X Is a Discrete Random Variable

For X and Y discrete random variables, the conditional pmf of Y given is defined by:

(5.34)

for x such that We define for x such that 
Note that is a function of y over the real line, and that only for
y in a discrete set 

The conditional pmf satisfies all the properties of a pmf, that is, it assigns non-
negative values to every y and these values add to 1. Note from Eq. (5.34) that

is simply the cross section of along the column in Fig. 5.6,
but normalized by the probability 

The probability of an event A given is found by adding the pmf values of
the outcomes in A:

(5.35)

If X and Y are independent, then using Eq (5.20) 

(5.36)

In other words, knowledge that does not affect the probability of events A
involving Y.

Equation (5.34) implies that the joint pmf can be expressed as the
product of a conditional pmf and a marginal pmf:

(5.37)

This expression is very useful when we can view the pair (X, Y) as being generated sequen-
tially, e.g., first X, and then Y given We find the probability that Y is in A as follows:

(5.38)

Equation (5.38) is simply a restatement of the theorem on total probability discussed
in Chapter 2. In other words, to compute P[Y in A] we can first compute

and then “average” over Xk .P3Y in A ƒX = xk4

= a
all xk

P3Y in A ƒX = xk4pX1xk2.
= a

all xk

pX1xk2 a
yj in A

pY1yj ƒ xk2
= a

all xk
a
yj in A

pY1yj ƒ xk2pX1xk2
P3Y in A4 = a

all xk
a
yj in A

pX,Y1xk , yj2
X = x.

pX,Y1xk , yj2 = pY1yj ƒ xk2pX1xk2 and pX,Y1xk , yj2 = pX1xk ƒ yj2pY1yj2.

pX,Y1x, y2
X = xk

pY1yj ƒ xk2 =
P3X = xk ,Y = yj4
P3X = xk4 = P3Y = yj4 = pY1yj2.

P3Y in A ƒX = xk4 = a
yj in A

pY1yj ƒ xk2.

X = xk

pX1xk2.
X = xkpX,Y1xk ,y2pY1y ƒ xk2

5y1 , y2 , Á 6.
pY1y ƒ x2 7 0pY1y ƒ x2

P3X = x4 = 0.pY1y ƒ x2 = 0P3X = x4 7 0.

pY1y ƒ x2 = P3Y = y ƒX = x4 =
P3X = x, Y = y4
P3X = x4 =

pX,Y1x, y2
pX1x2

X � x
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Example 5.29 Loaded Dice

Find in the loaded dice experiment considered in Examples 5.6 and 5.8.
In Example 5.8 we found that Therefore:

Clearly this die is loaded.

Example 5.30 Number of Defects in a Region; Random Splitting of Poisson Counts

The total number of defects X on a chip is a Poisson random variable with mean Each defect
has a probability p of falling in a specific region R and the location of each defect is independent
of the locations of other defects. Find the pmf of the number of defects Y that fall in the region R.

We can imagine performing a Bernoulli trial each time a defect occurs with a “success”
occurring when the defect falls in the region R. If the total number of defects is then Y
is a binomial random variable with parameters k and p:

From Eq. (5.38) and noting that we have

Thus Y is a Poisson random variable with mean 

Suppose Y is a continuous random variable. Eq. (5.33) can be used to define the
conditional cdf of Y given

(5.39)

It is easy to show that satisfies all the properties of a cdf. The conditional pdf

of Y given if the derivative exists, is given by

(5.40)fY1y ƒ xk2 =
d

dy
FY1y ƒ xk2.

X � xk,
FY1y ƒ xk2

FY1y ƒ xk2 =
P3Y … y,X = xk4
P3X = xk4 , for P3X = xk4 7 0.

X � xk:

ap.

=
1ap2je-a
j!

e11-p2a =
1ap2j
j!
e-ap.

=
1ap2je-a
j! a

q

k= j

511 - p2a6k- j
1k - j2!

pY1j2 = a
q

k=0

pY1j ƒ k2pX1k2 = a
q

k= j

k!

j!1k - j2!pj11 - p2k- jak
k!
e-a

k Ú j,

pY1j ƒ k2 = c 0

ak
j
bpj11 - p2k- j

 
j 7 k

0 … j … k.

X = k,

a.

pY11 ƒ 52 = pY12 ƒ 52 = pY13 ƒ 52 = pY14 ƒ 52 = pY16 ƒ 52 = 1/7.

pY1y ƒ 52 =
pX,Y15, y2
pX152  and so pY15 ƒ 52 = 2/7 and

pX152 = 1/6.
pY1y ƒ 52
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If X and Y are independent, so
and The probability of event A given is obtained by

integrating the conditional pdf:

(5.41)

We obtain P[Y in A] using Eq. (5.38).

Example 5.31 Binary Communications System

The input X to a communication channel assumes the values or with probabilities 1/3 and
2/3. The output Y of the channel is given by where N is a zero-mean, unit variance
Gaussian random variable. Find the conditional pdf of Y given and given 
Find

The conditional cdf of Y given is:

where we noted that if then and Y depends only on N. Thus, if 
then Y is a Gaussian random variable with mean 1 and unit variance. Similarly, if then
Y is Gaussian with mean and unit variance.

The probabilities that given and is:

Applying Eq. (5.38), we obtain:

From Bayes’ theorem we find:

We conclude that if then is more likely than Therefore the receiver
should decide that the input is when it observes 

In the previous example, we made an interesting step that is worth elaborating on
because it comes up quite frequently: where

Let’s take a closer look:Y = X + N.
P3Y … y ƒX = +14 = P3N + 1 … y4,

Y 7 0.X = +1
X = -1.X = +1Y 7 0,

P3X = +1 ƒ Y 7 04 =
P3Y 7 0 ƒX = +14P3X = +14

P3Y 7 04 =
11 - Q1122/3
11 + Q1122/3 = 0.726.

P3Y 7 04 = P3Y 7 0 ƒX = +14 1

3
+ P3Y 7 0 ƒX = -14 2

3
= 0.386.

P3Y 7 0 ƒX = -14 = L
q

0
 

1

22p
e-1x+122/2 dx = L

q

1
 

1

22p
e-t

2/2 dt = Q112 = 0.159.

P3Y 7 0 ƒX = +14 = L
 q

0 

1

22p
e-1x-122/2 dx = L

q

-1 

1

22p
e-t

2/2 dt = 1 - Q112 = 0.841.

X = -1X = +1Y 7 0
-1

X = -1,
X = +1,Y = N + 1X = +1,

= P3N … y - 14 = L
y-1

-q  

1

22p
e-x

2/2 dx

FY1y ƒ +12 = P3Y … y ƒX = +14 = P3N + 1 … y4
X = +1

P3X = +1 ƒ Y 7 04.
X = -1.X = +1,

Y = X + N,
-1+1

P3Y in A ƒX = xk4 = Ly in A

fY1y ƒ xk2 dy.

X = xkfY1y ƒ x2 = fY1y2.FY1y2
FY1y ƒ x2 =P3Y … y,X = Xk4 = P3Y … y4P3X = Xk4
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In the first line, the events and are quite different. The
first involves the two random variables X and N, whereas the second only involves N
and consequently is much simpler. We can then apply an expression such as Eq. (5.38)
to obtain The step we made in the example, however, is even more interest-
ing. Since X and N are independent random variables, we can take the expression one
step further:

The independence of X and N allows us to dispense with the conditioning on x alto-
gether!

Case 2: X Is a Continuous Random Variable

If X is a continuous random variable, then so Eq. (5.33) is undefined
for all x. If X and Y have a joint pdf that is continuous and nonzero over some region
of the plane, we define the conditional cdf of Y given by the following limiting
procedure:

(5.42)

The conditional cdf on the right side of Eq. (5.42) is:

(5.43)

As we let h approach zero, Eqs. (5.42) and (5.43) imply that

(5.44)

The conditional pdf of Y given is then:

(5.45)fY1y ƒ x2 =
d

dy
FY1y ƒ x2 =

fX,Y1x, y2
fX1x2 .

X � x

FY1y ƒ x2 =
L
y

-q
fX,Y1x, y¿2 dy¿
fX1x2 .

=
L
y

-qL
x+h

x

fX,Y1x¿, y¿2 dx¿ dy¿

L
x+h

x

fX1x¿2 dx¿
=
L
y

-q
fX,Y1x, y¿2 dy¿h
fX1x2h .

FY1y ƒ x 6 X … x + h2 =
P3Y … y, x 6 X … x + h4
P3x 6 X … x + h4

FY1y ƒ x2 = lim
h:0
FY1y ƒ x 6 X … x + h2.

X � x

P3X = x4 = 0

P3Y … z ƒX = x4 = P3N … z - x ƒX = x4 = P3N … z - x4.

P3Y … z4.

5x + N … z65X + N … z6
= P3x + N … z ƒX = x4 = P3N … z - x ƒX = x4.

P3Y … z ƒX = x4 =
P35X + N … z6 ¨ 5X = x64

P3X = x4 =
P35x + N … z6 ¨ 5X = x64

P3X = x4
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It is easy to show that satisfies the properties of a pdf.We can interpret 
as the probability that Y is in the infinitesimal strip defined by given that X
is in the infinitesimal strip defined by as shown in Fig. 5.19.

The probability of event A given is obtained as follows:

(5.46)

There is a strong resemblance between Eq. (5.34) for the discrete case and Eq. (5.45)
for the continuous case. Indeed many of the same properties hold. For example, we
obtain the multiplication rule from Eq. (5.45):

(5.47)

If X and Y are independent, then and 

and
By combining Eqs. (5.46) and (5.47), we can show that:

(5.48)

You can think of Eq. (5.48) as the “continuous” version of the theorem on total probabili-
ty. The following examples show the usefulness of the above results in calculating the
probabilities of complicated events.

P3Y in A4 = L
q

-q 

P3Y in A ƒX = x4fX1x2 dx.

FX1x ƒ y2 = FX1x2.FY1y ƒ x2 = FY1y2,fX1x ƒ y2 = fX1x2,
fY1y ƒ x2 = fY1y2 ,fX,Y1x, y2 = fX1x2fY1y2

fX,Y1x, y2 = fY1y ƒ x2fX1x2 and fX,Y1x, y2 = fX1x ƒ y2fY1y2.

P3Y in A ƒX = x4 = Ly in A

fY1y ƒ x2 dy.

X = x
1x, x + dx2,

1y, y + dy2
fY1y ƒ x2 dyfY1y ƒ x2

fy(y	x)dy �
fx(x)dx

y

y � dy

y

x x � dx x

fXY(x,y)dxdy

fX,Y(x,y)

FIGURE 5.19
Interpretation of conditional pdf.
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Example 5.32

Let X and Y be the random variables in Example 5.8. Find and 
Using the marginal pdf’s obtained in Example 5.8, we have

The conditional pdf of X is an exponential pdf shifted by y to the right. The conditional pdf of Y
is an exponential pdf that has been truncated to the interval [0, x].

Example 5.33 Number of Arrivals During a Customer’s Service Time

The number N of customers that arrive at a service station during a time t is a Poisson random
variable with parameter The time T required to service each customer is an exponential ran-
dom variable with parameter Find the pmf for the number N that arrive during the service
time T of a specific customer. Assume that the customer arrivals are independent of the
customer service time.

Equation (5.48) holds even if Y is a discrete random variable, thus

Let then

where we have used the fact that the last integral is a gamma function and is equal to k!. Thus N
is a geometric random variable with probability of “success” Each time a customer
arrives we can imagine that a new Bernoulli trial begins where “success” occurs if the customer’s
service time is completed before the next arrival.

Example 5.34

X is selected at random from the unit interval; Y is then selected at random from the inter-
val(0, X). Find the cdf of Y.

a/1a + b2.

=
abk

1a + b2k+1
= a a

1a + b2 b a
b

1a + b2 b
k

,

P3N = k4 =
abk

k!1a + b2k+1L
q

0

rke-r dr

r = 1a + b2t,
=
abk

k! L
q

0

tke-1a+b2t dt.

= L
q

0

1bt2k
k!
e-btae-at dt

P3N = k4 = L
q

0

P3N = k ƒ T = t4fT1t2 dt

a.
bt.

fY1y ƒ x2 =
2e-xe-y

2e-x11 - e-x2 =
e-y

1 - e-x
for 0 6 y 6 x.

fX1y ƒ x2 =
2e-xe-y

2e-2y = e-1x-y2 for x Ú y

fY1y ƒ x2.fX1x ƒ y2
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When Y is uniformly distributed in (0, x) so the conditional cdf given is

Equation (5.48) and the above conditional cdf yield:

The corresponding pdf is obtained by taking the derivative of the cdf:

Example 5.35 Maximum A Posteriori Receiver

For the communications system in Example 5.31, find the probability that the input was 
given that the output of the channel is 

This is a tricky version of Bayes’ rule. Condition on the event instead
of

The above expression is equal to when For is more likely, and
for is more likely. A receiver that selects the input X that is more likely given

is called a maximum a posteriori receiver.

5.7.2 Conditional Expectation

The conditional expectation of Y given is defined by

(5.49a)E3Y ƒ x4 = L
q

-q
yfY1y ƒ x2 dy.

X � x

Y = y
y 6 yT ,X = -1

y 7 yT ,X = +1yT = 0.3466.1/2

=
e-1y-122/2

e-1y-122/2 + 2e-1y+122/2 =
1

1 + 2e-2y .

=

1

22p
e-1y-122/211/32

1

22p
e-1y-122/211/32 +

1

22p
e-1y+122/212/32

=
fY1y ƒ +12¢11/32

fY1y ƒ +12¢11/32 + fY1y ƒ -12¢12/32

P3X = +1 ƒ y 6 Y 6 y + ¢4 =
P3y 6 Y 6 y + ¢ ƒX = +14P3X = +14

P3y 6 Y 6 y + ¢4

5Y = y6:
5y 6 Y … y + ¢6

Y = y.
X = +1

fY1y2 = - ln y 0 … y … 1.

= L
y

0

1 dx¿ + L
1

y

y

x¿
dx¿ = y - y ln y.

FY1y2 = P3Y … y4 = L
1

0

P3Y … y ƒX = x4fX1x2 dx =

P3Y … y ƒX = k4 = by/x 0 … y … x

1 x 6 y.

X = xX = x,
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In the special case where X and Y are both discrete random variables we have:

(5.49b)

Clearly, is simply the center of mass associated with the conditional pdf or pmf.
The conditional expectation can be viewed as defining a function of x:

It therefore makes sense to talk about the random variable 
We can imagine that a random experiment is performed and a value for 

X is obtained, say and then the value is produced.We are in-

terested in In particular, we now show that

(5.50)

where the right-hand side is

(5.51a)

(5.51b)

We prove Eq. (5.50) for the case where X and Y are jointly continuous random
variables, then

The above result also holds for the expected value of a function of Y:

In particular, the kth moment of Y is given by

Example 5.36 Average Number of Defects in a Region

Find the mean of Y in Example 5.30 using conditional expectation.

E3Y4 = a
q

k=0

E3Y ƒX = k4P3X = k4 = a
q

k=0

kpP3X = k4 = pE3X4 = pa.

E3Yk4 = E3E3Yk ƒX44.

E3h1Y24 = E3E3h1Y2 ƒX44.

= L
q

-q
yfY1y2 dy = E3Y4.

= L
q

-q
yL

q

-q
fX,Y1x, y2 dx dy

= L
q

-qL
q

-q
yfY1y ƒ x2 dy fX1x2 dx

E3E3Y ƒX44 = L
q

-q
E3Y ƒ x4fX1x2 dx

E3E3Y ƒX44 = a
xk

E3Y ƒ xk4pX1xk2 X discrete.

E3E3Y ƒX44 = L
q

-q
E3Y ƒ x4fX1x2 dx X continuous

E3Y4 = E3E3Y ƒX44,
E3g1X24 = E3E3Y ƒX44.

g1x02 = E3Y ƒ x04X = x0 ,

E3Y ƒX4.
g1X2 =g1x2 = E3Y ƒ x4.

E3Y ƒ x4
E3Y ƒ x4

E3Y ƒ xk4 = a
yj

yjpY1yj ƒ xk2.
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The second equality uses the fact that since Y is binomial with para-
meters k and p. Note that the second to the last equality holds for any pmf of X. The fact that X
is Poisson with mean is not used until the last equality.

Example 5.37 Binary Communications Channel

Find the mean of the output Y in the communications channel in Example 5.31.
Since Y is a Gaussian random variable with mean when and when

the conditional expected values of Y given X are:

Equation (5.38b) implies

The mean is negative because the inputs occur twice as often as 

Example 5.38 Average Number of Arrivals in a Service Time

Find the mean and variance of the number of customer arrivals N during the service time T of a
specific customer in Example (5.33).

N is a Poisson random variable with parameter when is given, so the first two
conditional moments are:

The first two moments of N are obtained from Eq. (5.50):

The variance of N is then

Note that if T is not random (i.e., and ) then the mean and
variance of N are those of a Poisson random variable with parameter When T is random,
the mean of N remains the same but the variance of N increases by the term that is,
the variability of T causes greater variability in N. Up to this point, we have intentionally avoid-
ed using the fact that T has an exponential distribution to emphasize that the above results hold

b2 VAR3T4,
bE3T4.

VAR3T4 = 0E3T4 = constant

= b2 VAR3T4 + bE3T4.
= b2E3T24 + bE3T4 - b21E3T422

VAR3N4 = E3N24 - 1E3N422

= bE3T4 + b2E3T24.
E3N24 = L

q

0

E3N2 ƒ T = t4fT1t2 dt = L
q

0

5bt + b2t26fT1t2 dt

E3N4 = L
q

0

E3N ƒ T = t4fT1t2 dt = L
q

0

btfT1t2 dt = bE3T4

E3N ƒ T = t4 = bt E3N2 ƒ T = t4 = 1bt2 + 1bt22.

T = tbt

X = +1.X = -1

E3Y4 = a
q

k=0

E3Y ƒX = k4P3X = k4 = +111/32 - 112/32 = -1/3.

E3Y ƒ +14 = 1 and E3Y ƒ -14 = -1.

X = -1,
-1X = +1,+1

a

E3Y ƒX = k4 = kp
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for any service time distribution If T is exponential with parameter then and
so

5.8 FUNCTIONS OF TWO RANDOM VARIABLES

Quite often we are interested in one or more functions of the random variables associat-
ed with some experiment. For example, if we make repeated measurements of the same
random quantity, we might be interested in the maximum and minimum value in the set,
as well as the sample mean and sample variance. In this section we present methods of
determining the probabilities of events involving functions of two random variables.

5.8.1 One Function of Two Random Variables

Let the random variable Z be defined as a function of two random variables:

(5.52)

The cdf of Z is found by first finding the equivalent event of that is, the set
such that then

(5.53)

The pdf of Z is then found by taking the derivative of 

Example 5.39 Sum of Two Random Variables

Let Find and in terms of the joint pdf of X and Y.
The cdf of Z is found by integrating the joint pdf of X and Y over the region of the plane

corresponding to the event as shown in Fig. 5.20.5Z … z6,
fZ1z2FZ1z2Z = X + Y.

Fz1z2.

Fz1z2 = P3X in Rz4 = O1x, y2HRz 
fX,Y1x¿, y¿2 dx¿ dy¿.

g1x2 … z6,Rz = 5x = 1x, y2
5Z … z6,

Z = g1X, Y2.

E3N4 =
b

a
and VAR3N4 =

b2

a2 +
b

a
.

VAR3T4 = 1/a2,
E3T4 = 1/aa,fT1t2.

y

x

y � �x 
 z

FIGURE 5.20
P3Z … z4 = P3X + Y … z4.
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The pdf of Z is

(5.54)

Thus the pdf for the sum of two random variables is given by a superposition integral.
If X and Y are independent random variables, then by Eq. (5.23) the pdf is given by the

convolution integral of the marginal pdf’s of X and Y:

(5.55)

In Chapter 7 we show how transform methods are used to evaluate convolution integrals such as
Eq. (5.55).

Example 5.40 Sum of Nonindependent Gaussian Random Variables

Find the pdf of the sum of two zero-mean, unit-variance Gaussian random vari-
ables with correlation coefficient 

The joint pdf for this pair of random variables was given in Example 5.18. The pdf of Z is
obtained by substituting the pdf for the joint Gaussian random variables into the superposition
integral found in Example 5.39:

After completing the square of the argument in the exponent we obtain

Thus the sum of these two nonindependent Gaussian random variables is also a zero-mean, unit-
variance Gaussian random variable.

Example 5.41 A System with Standby Redundancy

A system with standby redundancy has a single key component in operation and a duplicate of
that component in standby mode. When the first component fails, the second component is put
into operation. Find the pdf of the lifetime of the standby system if the components have inde-
pendent exponentially distributed lifetimes with the same mean.

Let and be the lifetimes of the two components, then the system lifetime is
and the pdf of T is given by Eq. (5.55). The terms in the integrand areT = T1 + T2 ,

T2T1

fZ1z2 =
e-z

2/2

22p
.

=
1

2p13/421/2L
q

-q
e-1x¿2-x¿z+z22/213/42 dx¿.

=
1

2p11 - r221/2L
q

-q
e-3x¿2-2rx¿1z-x¿2+1z-x¿224/211-r22 dx¿

fZ1z2 = L
q

-q
fX,Y1x¿, z - x¿2 dx¿

r = -1/2.
Z = X + Y

fZ1z2 = L
q

-q
fX1x¿2fY1z - x¿2 dx¿.

fZ1z2 =
d

dz
FZ1z2 = L

q

-q
fX,Y1x¿, z - x¿2 dx¿.

FZ1z2 = L
q

-qL
z-x¿

-q
fX,Y1x¿, y¿2 dy¿ dx¿.
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Note that the first equation sets the lower limit of integration to 0 and the second equation sets
the upper limit to z. Equation (5.55) becomes

Thus T is an Erlang random variable with parameter 

The conditional pdf can be used to find the pdf of a function of several random
variables. Let and suppose we are given that then 
is a function of one random variable. Therefore we can use the methods developed in
Section 4.5 for single random variables to find the pdf of Z given

The pdf of Z is then found from

Example 5.42

Let Find the pdf of Z if X and Y are independent and both exponentially distributed
with mean one.

Assume then is simply a scaled version of X. Therefore from Example
4.31

The pdf of Z is therefore

We now use the fact that X and Y are independent and exponentially distributed with mean one:

=
1

11 + z22 z 7 0.

= L
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y¿e-y¿ze-y¿ dy¿

fZ1z2 = L
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0

y¿fX1y¿z2fY1y¿2 dy¿ z 7 0

fZ1z2 = L
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-q
ƒ y¿ ƒ fX1y¿z ƒ y¿2fY1y¿2 dy¿ = L

q

-q
ƒ y¿ ƒ fX,Y1y¿z, y¿2 dy¿.

fZ1z ƒ y2 = ƒ y ƒfX1yz ƒ y2.

Z = X/yY = y,

Z = X/Y.

fZ1z2 = L
q

-q
fZ1z ƒ y¿2fY1y¿2 dy¿.

Y = y: fZ1z ƒ Y = y2.
Z = g1X, y2Y = y,Z = g1X, Y2,

m = 2.

= l2e-lzL
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0

dx = l2ze-lz.

fT1z2 = L
z

0

le-lxle-l1z-x2 dx

fT2
1z - x2 = ble-l1z-x2 z - x Ú 0

0 x 7 z.

fT1
1x2 = ble-lx x Ú 0

0 x 6 0
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5.8.2 Transformations of Two Random Variables

Let X and Y be random variables associated with some experiment, and let the random
variables and be defined by two functions of 

We now consider the problem of finding the joint cdf and pdf of and 
The joint cdf of and at the point is equal to the probability of

the region of x where for 

(5.56a)

If X, Y have a joint pdf, then

(5.56b)

Example 5.43

Let the random variables W and Z be defined by

Find the joint cdf of W and Z in terms of the joint cdf of X and Y.
Equation (5.56a) implies that

The region corresponding to this event is shown in Fig. 5.21. From the figure it is clear that if
the above probability is the probability of the semi-infinite rectangle defined by thez 7 w,

FW, Z1w z2 = P35min1X, Y2 … w6 ¨ 5max1X, Y2 … z64.

W = min1X, Y2 and Z = max1X, Y2.

Fz1, z2
1z1 , z22 = O

x¿: gk1x¿2…zk

fX,Y1x¿, y¿2 dx¿ dy¿.

Fz1, z2
1z1 , z22 = P3g11X2 … z1 , g21X2 … z24.

k = 1, 2:gk1x2 … zk

z = 1z1 , z22Z2Z1

Z2 .Z1

Z1 = g11X2 and Z2 = g21X2.
X = 1X, Y2:Z2Z1

(z, z)

(w, w)
A

FIGURE 5.21

5max1X, Y2 … z = 5X … z6 ¨ 5Y … z6.
5min1X, Y2 … w = 5X … w6 ´ 5Y … w6 and 
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point (z, z) minus the square region denoted by A. Thus if 

If then

Example 5.44 Radius and Angle of Independent Gaussian Random Variables

Let X and Y be zero-mean, unit-variance independent Gaussian random variables. Find the joint
cdf and pdf of R and the radius and angle of the point (X, Y):

The joint cdf of R and is:

where

The region is the pie-shaped region in Fig. 5.22. We change variables from Cartesian to
polar coordinates to obtain:

(5.57)=
u0

2p
A1 - e-r0

2/2 B , 0 6 u0 6 2p 0 6 r0 6 q .

FR,® 1r0 , u02 = P3R … r0 , ® … u04 = L
r0

0 L
 u0

0 

e-r
2/2

2p
r dr du

Rr0,u0

R1r0, u02 = 51x, y2:2x2 + y2 … r0 , 0 6 tan-11Y/X2 … u06.

FR, ®1r0 , u02 = P3R … r0 , ® … u04 = O1x, y2HR1r0, u02

e-1x2+y22/2
2p

dx dy

®

R = 1X2 + Y221/2  ® = tan-1 1Y/X2.
®,

FW,Z1w, z2 = FX,Y1z, z2.
z 6 w

= FX,Y1w, z2 + FX,Y1z, w2 - FX,Y1w, w2.
- 5FX,Y1z, z2 - FX,Y1w, z2 - FX,Y1z, w2 + FX,Y1w, w26

= FX,Y1z, z2
FW, Z1w, z2 = FX,Y1z, z2 - P3A4

z 7 w,

y

x

r0

θ0

FIGURE 5.22
Region of integration in Example 5.44.Rr0, u0
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R and are independent random variables, where R has a Rayleigh distribution and is
uniformly distributed in The joint pdf is obtained by taking partial derivatives with
respect to r and

This transformation maps every point in the plane from Cartesian coordinates to polar
coordinates.We can also go backwards from polar to Cartesian coordinates. First we generate in-
dependent Rayleigh R and uniform random variables.We then transform R and into Carte-
sian coordinates to obtain an independent pair of zero-mean, unit-variance Gaussians. Neat!

5.8.3 pdf of Linear Transformations

The joint pdf of Z can be found directly in terms of the joint pdf of X by finding the
equivalent events of infinitesimal rectangles. We consider the linear transformation of
two random variables:

Denote the above matrix by A. We will assume that A has an inverse, that is, it has de-
terminant so each point (v, w) has a unique corresponding point (x, y)
obtained from

(5.58)

Consider the infinitesimal rectangle shown in Fig. 5.23. The points in this rectangle are
mapped into the parallelogram shown in the figure.The infinitesimal rectangle and the
parallelogram are equivalent events, so their probabilities must be equal. Thus

where dP is the area of the parallelogram. The joint pdf of V and W is thus given by

(5.59)

where x and y are related to by Eq. (5.58). Equation (5.59) states that the joint
pdf of V and W at is the pdf of X and Y at the corresponding point (x, y), but
rescaled by the “stretch factor” dP/dx dy. It can be shown that 
so the “stretch factor” is

` dP
dx dy

` = ƒae - bc ƒ 1dx dy2
1dx dy2 = ƒae - bc ƒ = ƒA ƒ ,

dx dy,dP = 1 ƒae - bc ƒ 2
1v, w2

1v, w2

fV,W1v, w2 =
fX,Y1x, y2
` dP
dx dy

`
,

fX,Y1x, y2dx dy M fV,W1v, w2 dP

Bx
y
R = A-1B v

w
R .
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W
R = Ba b

c e
R BX
Y
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fR,®1r, u2 =
02

0r0u
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2/22
u:

10, 2p2.
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where is the determinant of A.
The above result can be written compactly using matrix notation. Let the vector

Z be

where A is an invertible matrix. The joint pdf of Z is then

(5.60)

Example 5.45 Linear Transformation of Jointly Gaussian Random Variables

Let X and Y be the jointly Gaussian random variables introduced in Example 5.18. Let V and W

be obtained from (X, Y) by

Find the joint pdf of V and W.
The determinant of the matrix is and the inverse mapping is given by

so and Therefore the pdf of V and W is

fV,W1v, w2 = fX,Y¢v - w

22
,
v + w

22
≤ ,

Y = 1V + W2/22.X = 1V - W2/22

BX
Y
R =

1

22
B1 -1

1 1
R BV
W
R ,

ƒA ƒ = 1,

BV
W
R =

1

22
B 1 1

-1 1
R BX
Y
R = ABX

Y
R .

fz1z2 =
fx1A-1z2.

ƒA ƒ

n * n

Z = AX,

ƒA ƒ

y w

vx

(x, y 
 dy)

(x, y)

(x 
 dx, y 
 dy)

(v 
 adx 
 bdy, w 
 cdx 
 edy)

(v 
 bdy, w 
 edy)

(v 
 adx, w 
 cdx)

v � ax 
 by

w � cx 
 ey

(v, w)(x 
 dx, y)

FIGURE 5.23
Image of an infinitesimal rectangle under a linear transformation.
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where

By substituting for x and y, the argument of the exponent becomes

Thus

It can be seen that the transformed variables V and W are independent, zero-mean Gauss-
ian random variables with variance and respectively. Figure 5.24 shows contours of
equal value of the joint pdf of (X, Y). It can be seen that the pdf has elliptical symmetry about
the origin with principal axes at 45° with respect to the axes of the plane. In Section 5.9 we show
that the above linear transformation corresponds to a rotation of the coordinate system so that
the axes of the plane are aligned with the axes of the ellipse.

5.9 PAIRS OF JOINTLY GAUSSIAN RANDOM VARIABLES

The jointly Gaussian random variables appear in numerous applications in electrical
engineering.They are frequently used to model signals in signal processing applications,
and they are the most important model used in communication systems that involve
dealing with signals in the presence of noise. They also play a central role in many sta-
tistical methods.

The random variables X and Y are said to be jointly Gaussian if their joint pdf
has the form

(5.61a)
for and 

The pdf is centered at the point and it has a bell shape that depends on
the values of and as shown in Fig. 5.25. As shown in the figure, the pdf is
constant for values x and y for which the argument of the exponent is constant:

(5.61b)B ¢x - m1

s1
≤2

- 2rX,Y¢x - m1

s1
≤ ¢y - m2

s2
≤ + ¢y - m2

s2
≤2R = constant.

rX,Ys1 , s2 ,
1m1 ,m22,

-q 6 y 6 q .-q 6 x 6 q

fX, Y1x, y2 =

expb -1

211 - rX,Y
2 2 B¢x -m1

s1
≤2

- 2rX,Y¢x -m1

s1
≤ ¢y-m2

s2
≤ + ¢y-m2

s2
≤2R r

2ps1s221 - rX,Y
2

1 - r,1 + r

fV,W1v, w2 =
1

2p11 - r221/2 e
-53v2/211+r24+ 3w2/211-r246.

=
v2

211 + r2 +
w2

211 - r2 .

1v - w22/2 - 2r1v - w21v + w2/2 + 1v + w22/2
211 - r22

fX,Y1x, y2 =
1

2p21 - r2
e-1x2-2rxy+y22/211-r22.
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Figure 5.26 shows the orientation of these elliptical contours for various values of 
and When that is, when X and Y are independent, the equal-pdf contour
is an ellipse with principal axes aligned with the x- and y-axes.When the major
axis of the ellipse is oriented along the angle [Edwards and Penney, pp. 570–571]

(5.62)

Note that the angle is 45° when the variances are equal.

u = 1
2 arctan-1 tan¢2rX,Ys1s2

s1
2 - s2

2
≤ .

rX,Y Z 0,
rX,Y = 0,rX,Y .

s1 , s2 ,

y
v

w

x

FIGURE 5.24
Contours of equal value of joint Gaussian pdf
discussed in Example 5.45.

(a) (b)

FIGURE 5.25
Jointly Gaussian pdf (a) = 0 (b) = – 0.9.rr
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The marginal pdf of X is found by integrating over all y. The integra-
tion is carried out by completing the square in the exponent as was done in Example
5.18. The result is that the marginal pdf of X is

(5.63)

that is, X is a Gaussian random variable with mean and variance Similarly, the
marginal pdf for Y is found to be Gaussian with pdf mean and variance 

The conditional pdf’s and give us information about the inter-
relation between X and Y. The conditional pdf of X given is

(5.64)=

expb -1

211 - rX,Y
2 2s1

2
Bx - rX,Y

s1

s2
1y - m22 - m1R2 r

22ps1
211 - rX,Y

2 2 .

fX1x ƒ y2 =
fX,Y1x, y2
fY1y2

Y = y
fY1y ƒ x2fX1x ƒ y2

s2
2 .m2

s1
2 .m1

fX1x2 =
e-1x-m122/2s1

2

22ps1

,

fX,Y1x, y2

y

x
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π
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π

4
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4
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)

FIGURE 5.26
Orientation of contours of equal value of joint Gaussian pdf for rX,Y 7 0.
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Equation (5.64) shows that the conditional pdf of X given is also Gaussian but with
conditional mean and conditional variance 
Note that when the conditional pdf of X given equals the marginal pdf
of X.This is consistent with the fact that X and Y are independent when On the

other hand, as the variance of X about the conditional mean approaches zero,

so the conditional pdf approaches a delta function at the conditional mean. Thus when
the conditional variance is zero and X is equal to the conditional mean with

probability one.We note that similarly is Gaussian with conditional mean 

and conditional variance 
We now show that the in Eq. (5.61a) is indeed the correlation coefficient

between X and Y. The covariance between X and Y is defined by

Now the conditional expectation of given is

where we have used the fact that the conditional mean of X given is
Therefore

and

The above equation is consistent with the definition of the correlation coefficient,
Thus the in Eq. (5.61a) is indeed the correlation coeffi-

cient between X and Y.

Example 5.46

The amount of yearly rainfall in city 1 and in city 2 is modeled by a pair of jointly Gaussian random vari-
ables,X and Y,with pdf given by Eq.(5.61a).Find the most likely value of X given that we know 

The most likely value of X given is the value of x for which is maximum.The
conditional pdf of X given is given by Eq. (5.64), which is maximum at the conditional mean

Note that this “maximum likelihood” estimate is a linear function of the observation y.

E3X ƒ y4 = m1 + rX,Y

s1

s2
1y - m22.

Y = y
fX1x ƒ y2Y = y

Y = y.

rX,YrX,Y = COV1X, Y2/s1s2 .

= rX,Ys1s2 .

COV1X, Y2 = E3E31X - m121Y - m22 ƒ Y44 = rX,Y

s1

s2
E31Y - m2224

E31X - m121Y - m22 ƒ Y4 = rX,Y

s1

s2
1Y - m222

m1 + rX,Y1s1/s221y - m22.
Y = y

= 1y - m22¢rX,Y

s1

s2
1y - m22≤ ,

= 1y - m221E3X ƒ Y = y4 - m12
E31X - m121Y - m22 ƒ Y = y4 = 1y - m22E3X - m1 ƒ Y = y4

Y = y1X - m121Y - m22
= E3E31X - m121Y - m22 ƒ Y44.

COV1X, Y2 = E31X - m121Y - m224

rX,Y

s2
211-rX,Y

2 2.1s2/s121x - m12
m2 + rX,YfY1y ƒ x2

ƒrX,Y ƒ = 1,

ƒrX,Y ƒ : 1

rX,Y = 0.
Y = yrX,Y = 0,

s1
211 - rX,Y

2 2.m1 + rX,Y1s1/s221y - m22
Y = y
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Example 5.47 Estimation of Signal in Noise

Let where X (the “signal”) and N (the “noise’) are independent zero-mean Gaussian
random variables with different variances. Find the correlation coefficient between the observed
signal Y and the desired signal X. Find the value of x that maximizes 

The mean and variance of Y and the covariance of X and Y are:

Therefore, the correlation coefficient is:

Note that 
To find the joint pdf of X and Y consider the following linear transformation:

From Eq. (5.52) we have:

The conditional pdf of the signal X given the observation Y is then:

This pdf has its maximum value, when the argument of the exponent is zero, that is,

x = ¢ sX
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sX
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θ

y

v

w

x

FIGURE 5.27
A rotation of the coordinate system transforms a pair of
dependent Gaussian random variables into a pair of independent
Gaussian random variables.

The signal-to-noise ratio (SNR) is defined as the ratio of the variance of X and the variance of N.
At high SNRs this estimator gives and at very low signal-to-noise ratios, it gives 

Example 5.48 Rotation of Jointly Gaussian Random Variables

The ellipse corresponding to an arbitrary two-dimensional Gaussian vector forms an angle

relative to the x-axis. Suppose we define a new coordinate system whose axes are aligned with those
of the ellipse as shown in Fig. 5.27.This is accomplished by using the following rotation matrix:

To show that the new random variables are independent it suffices to show that they have
covariance zero:

=
cos 2u31s2

2 - s1
22 tan 2u + 2 COV1X, Y24

2
.

=
1s2

2 - s1
22sin 2u + 2 COV1X, Y2cos 2u

2

-COV1X, Y2sin2 u + s2
2 sin u cos u

= -s1
2 sin u cos u + COV1X, Y2cos2 u

* 5-1X - m12sin u + 1Y - m22 cos u64
= E351X - m12cos u + 1Y - m22sin u6

COV1V,W2 = E31V - E3V421W - E3W424

BV
W
R = B  cos u sin u

-sin u cos u
R BX
Y
R .

u =
1

2
 arctan¢ 2rs1s2

s1
2 - s2

2 ≤
x L 0.x L y,
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If we let the angle of rotation be such that

then the covariance of V and W is zero as required.

5.10 GENERATING INDEPENDENT GAUSSIAN RANDOM VARIABLES

We now present a method for generating unit-variance, uncorrelated (and hence inde-
pendent) jointly Gaussian random variables. Suppose that X and Y are two indepen-
dent zero-mean, unit-variance jointly Gaussian random variables with pdf:

In Example 5.44 we saw that the transformation

leads to the pair of independent random variables

where R is a Rayleigh random variable and is a uniform random variable.The above
transformation is invertible. Therefore we can also start with independent Rayleigh
and uniform random variables and produce zero-mean, unit-variance independent
Gaussian random variables through the transformation:

(5.65)

Consider where R is a Rayleigh random variable. From Example 5.41
we then have that: W has pdf

has an exponential distribution with 
Therefore we can generate by generating an exponential random variable

with parameter 1/2, and we can generate by generating a random variable that is
uniformly distributed in the interval If we substitute these random variables
into Eq. (5.65), we then obtain a pair of independent zero-mean, unit-variance Gauss-
ian random variables. The above discussion thus leads to the following algorithm:

1. Generate and two independent random variables uniformly distributed in
the unit interval.

2. Let

3. Let
sin 2pU2 .
X = R cos ® = 1-2 log U121/2 cos 2pU2 and Y = R sin ® = 1-2 log U121/2

R2 = -2 log U1 and ® = 2pU2 .

U2 ,U1

10, 2p2.®
R2

l = 1/2.W = R2

fW1w2 =
fR11w2

21w =
1we-1w2/2
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2
e-w/2.
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X = R cos ® and Y = R sin ®.

®
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2p
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2/2 = fR1r2f®1u2,

R = 2X2 + Y2 and ® = tan-1 Y/X

fX,Y1x, y2 =
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2p
e-1x2+y22/2.

*

tan 2u =
2 COV1X, Y2
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2 - s2
2 ,

u
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FIGURE 5.28
Histogram of 1000 observations of a Gaussian random variable.

Then X and Y are independent, zero-mean, unit-variance Gaussian random vari-
ables. By repeating the above procedure we can generate any number of such ran-
dom variables.

Example 5.49

Use Octave or MATLAB to generate 1000 independent zero-mean, unit-variance Gaussian ran-
dom variables. Compare a histogram of the observed values with the pdf of a zero-mean unit-
variance random variable.

The Octave commands below show the steps for generating the Gaussian random vari-
ables. A set of histogram range values K from to 4 is created and used to build a normalized
histogram Z. The points in Z are then plotted and compared to the value predicted to fall in
each interval by the Gaussian pdf. These plots are shown in Fig. 5.28, which shows excellent
agreement.

> U1=rand(1000,1); % Create a 1000-element vector U1 (step 1).

> U2=rand(1000,1); % Create a 1000-element vector U2 (step 1).

> R2=-2*log(U1); % Find (step 2).

> TH=2*pi*U2; % Find (step 2).

> X=sqrt(R2).*sin(TH); % Generate X (step 3).

u

R2

-4
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> Y=sqrt(R2).*cos(TH); % Generate Y (step 3).

> K=-4:.2:4; % Create histogram range values K.

> Z=hist(X,K)/1000 % Create normalized histogram Z based on K.

> bar(K,Z) % Plot Z.

> hold on

> stem(K,.2*normal_pdf(K,0,1)) % Compare to values predicted by pdf.

We also plotted the X values vs. the Y values for 5000 pairs of generated random variables
in a scattergram as shown in Fig. 5.29. Good agreement with the circular symmetry of the jointly
Gaussian pdf of zero-mean, unit-variance pairs is observed.

In the next chapter we will show how to generate a vector of jointly Gaussian random
variables with an arbitrary covariance matrix.

SUMMARY

• The joint statistical behavior of a pair of random variables X and Y is specified
by the joint cumulative distribution function, the joint probability mass func-
tion, or the joint probability density function. The probability of any event in-
volving the joint behavior of these random variables can be computed from
these functions.

4

3

2

1

0

–1

–2

–3

–4

–4 –3 –2 –1 0 2 3 41

FIGURE 5.29
Scattergram of 5000 pairs of jointly Gaussian random variables.
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• The statistical behavior of individual random variables from X is specified by the
marginal cdf, marginal pdf, or marginal pmf that can be obtained from the joint
cdf, joint pdf, or joint pmf of X.

• Two random variables are independent if the probability of a product-form event
is equal to the product of the probabilities of the component events. Equivalent
conditions for the independence of a set of random variables are that the joint
cdf, joint pdf, or joint pmf factors into the product of the corresponding marginal
functions.

• The covariance and the correlation coefficient of two random variables are mea-
sures of the linear dependence between the random variables.

• If X and Y are independent, then X and Y are uncorrelated, but not vice versa. If
X and Y are jointly Gaussian and uncorrelated, then they are independent.

• The statistical behavior of X, given the exact values of X or Y, is specified by the
conditional cdf, conditional pmf, or conditional pdf. Many problems lend them-
selves to a solution that involves conditioning on the value of one of the random
variables. In these problems, the expected value of random variables can be ob-
tained by conditional expectation.

• The joint pdf of a pair of jointly Gaussian random variables is determined by the
means, variances, and covariance. All marginal pdf’s and conditional pdf’s are
also Gaussian pdf’s.

• Independent Gaussian random variables can be generated by a transformation of
uniform random variables.

CHECKLIST OF IMPORTANT TERMS

Central moments of X and Y

Conditional cdf
Conditional expectation
Conditional pdf
Conditional pmf
Correlation of X and Y

Covariance X and Y

Independent random variables
Joint cdf
Joint moments of X and Y

Joint pdf

Joint pmf
Jointly continuous random variables
Jointly Gaussian random variables
Linear transformation
Marginal cdf
Marginal pdf
Marginal pmf
Orthogonal random variables
Product-form event
Uncorrelated random variables

ANNOTATED REFERENCES

Papoulis [1] is the standard reference for electrical engineers for the material on ran-
dom variables. References [2] and [3] present many interesting examples involving
multiple random variables. The book by Jayant and Noll [4] gives numerous applica-
tions of probability concepts to the digital coding of waveforms.

1. A. Papoulis and S. Pillai, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, New York, 2002.



288 Chapter 5 Pairs of Random Variables

2. L. Breiman, Probability and Stochastic Processes, Houghton Mifflin, Boston,
1969.

3. H. J. Larson and B. O. Shubert, Probabilistic Models in Engineering Sciences, vol. 1,
Wiley, New York, 1979.

4. N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice Hall, Englewood
Cliffs, N.J., 1984.

5. N. Johnson et al., Continuous Multivariate Distributions, Wiley, New York, 2000.
6. H. Stark and J. W. Woods, Probability, Random Processes, and Estimation Theory

for Engineers, Prentice Hall, Englewood Cliffs, N.J., 1986.
7. H. Anton, Elementary Linear Algebra, 9th ed., Wiley, New York, 2005.
8. C. H. Edwards, Jr., and D. E. Penney, Calculus and Analytic Geometry, 4th ed.,

Prentice Hall, Englewood Cliffs, N.J., 1994.

PROBLEMS

Section 5.1: Two Random Variables

5.1. Let X be the maximum and let Y be the minimum of the number of heads obtained when
Carlos and Michael each flip a fair coin twice.

(a) Describe the underlying space S of this random experiment and show the mapping
from S to the range of the pair (X, Y).

(b) Find the probabilities for all values of (X, Y).

(c) Find

(d) Repeat parts b and c if Carlos uses a biased coin with 

5.2. Let X be the difference and let Y be the sum of the number of heads obtained when Car-
los and Michael each flip a fair coin twice.

(a) Describe the underlying space S of this random experiment and show the mapping
from S to the range of the pair (X, Y).

(b) Find the probabilities for all values of (X, Y).

(c) Find

5.3. The input X to a communication channel is “ ”or “1”, with respective probabilities 
and The output of the channel Y is equal to: the corresponding input X with proba-
bility with probability p; 0 with probability 

(a) Describe the underlying space S of this random experiment and show the mapping
from S to the range of the pair (X, Y).

(b) Find the probabilities for all values of (X, Y).

(c) Find

5.4. (a) Specify the range of the pair in Example 5.2.

(b) Specify and sketch the event “more revenue comes from type 1 requests than type 2
requests.”

5.5. (a) Specify the range of the pair (Q, R) in Example 5.3.

(b) Specify and sketch the event “last packet is more than half full.”

5.6. Let the pair of random variables H and W be the height and weight in Example 5.1.
The body mass index is a measure of body fat and is defined by where
W is in kilograms and H is in meters. Determine and sketch on the plane the
following events:

and D = 5“underweight,” BMI 6 18.56.18.5 … BMI 6 256;C = 5“normal,”
A = 5“obese,” BMI Ú 306; B = 5“overweight,” 25 …  BMI 6 306;

BMI = W/H2

1N1 ,N22
P3X Z Y4, P3Y = 04.

SXY ,

pe .-X1 - p - pe ;
3/4.

1/4-1

P3X + Y = 14, P3X + Y = 24.
SXY ,

P3heads4 = 3/4.

P3X = Y4.
SXY ,
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(i) (ii) (iii)

X/Y -1 0 1 X/Y -1 0 1 X/Y -1 0 1

-1 1/6 1/6 0 -1 1/9 1/9 1/9 -1 1/3 0 0

0 0 0 1/3 0 1/9 1/9 1/9 0 0 1/3 0

1 1/6 1/6 0 1 1/9 1/9 1/9 1 0 0 1/3

5.7. Let (X, Y) be the two-dimensional noise signal in Example 5.4. Specify and sketch the
events:

(a) “Maximum noise magnitude is greater than 5.”

(b) “The noise power is greater than 4.”

(c) “The noise power is greater than 4 and less than 9.”

5.8. For the pair of random variables (X, Y) sketch the region of the plane corresponding to
the following events. Identify which events are of product form.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Section 5.2: Pairs of Discrete Random Variables

5.9. (a) Find and sketch in Problem 5.1 when using a fair coin.

(b) Find and 

(c) Repeat parts a and b if Carlos uses a biased coin with 

5.10. (a) Find and sketch in Problem 5.2 when using a fair coin.

(b) Find and 

(c) Repeat parts a and b if Carlos uses a biased coin with 

5.11. (a) Find the marginal pmf’s for the pairs of random variables with the indicated joint
pmf.

P3heads4 = 3/4.

pY1y2.pX1x2
pX,Y1x, y2

P3heads4 = 3/4.

pY1y2.pX1x2
pX,Y1x, y2

5max1 ƒX ƒ , Y2 6 36.
5XY 6 06.
5X3 7 Y6.
5X/Y 6 26.
5 ƒX/Y ƒ 7 26.
5 ƒX - Y ƒ Ú 16.
5min1X, Y2 7 06 ´ 5max5X, Y2 6 06.
5eX 7 Ye36.
5X + Y 7 36.

X2 + Y2

X2 + Y2

(b) Find the probability of the events and 
for the above joint pmf’s.

5.12. A modem transmits a two-dimensional signal (X, Y) given by:

where is a discrete uniform random variable in the set 

(a) Show the mapping from S to the range of the pair (X, Y).

(b) Find the joint pmf of X and Y.

(c) Find the marginal pmf of X and of Y.

(d) Find the probability of the following events:

C = 5X Ú r>22, Y Ú r>226, D = 5X 6 -r>226.
A = 5X = 06, B = 5Y … r>226,

SXY ,

50, 1, 2, Á , 76.®

X = r cos12p®/82 and Y = r sin 12p®/82

5X = -Y6
C =A = 5X 7 06, B = 5X Ú Y6,
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5.13. Let be the number of Web page requests arriving at a server in a 100-ms period and let
be the number of Web page requests arriving at a server in the next 100-ms period.

Assume that in a 1-ms interval either zero or one page request takes place with respec-
tive probabilities and and that the requests in different 1-ms in-
tervals are independent of each other.

(a) Describe the underlying space S of this random experiment and show the mapping
from S to the range of the pair (X, Y).

(b) Find the joint pmf of X and Y.

(c) Find the marginal pmf for X and for Y.

(d) Find the probability of the events 

(e) Find the probability of the event 

5.14. Let be the number of Web page requests arriving at a server in the period (0, 100) ms
and let be the total combined number of Web page requests arriving at a server in the
period (0, 200) ms. Assume arrivals occur as in Problem 5.13.

(a) Describe the underlying space S of this random experiment and show the mapping
from S to the range of the pair (X, Y).

(b) Find the joint pmf of and 

(c) Find the marginal pmf for and 

(d) Find the probability of the events 

5.15. At even time instants, a robot moves either cm or cm in the x-direction according
to the outcome of a coin flip; at odd time instants, a robot moves similarly according to
another coin flip in the y-direction. Assuming that the robot begins at the origin, let X
and Y be the coordinates of the location of the robot after 2n time instants.

(a) Describe the underlying space S of this random experiment and show the mapping
from S to the range of the pair (X, Y).

(b) Find the marginal pmf of the coordinates X and Y.

(c) Find the probability that the robot is within distance of the origin after 2n time
instants.

Section 5.3: The Joint cdf of x and y

5.16. (a) Sketch the joint cdf for the pair (X, Y) in Problem 5.1 and verify that the properties of
the joint cdf are satisfied. You may find it helpful to first divide the plane into regions
where the cdf is constant.

(b) Find the marginal cdf of X and of Y.

5.17. A point is selected at random inside a triangle defined by 
Assume the point is equally likely to fall anywhere in the triangle.

(a) Find the joint cdf of X and Y.

(b) Find the marginal cdf of X and of Y.

(c) Find the probabilities of the following events in terms of the joint cdf:

5.18. A dart is equally likely to land at any point inside a circular target of unit radius.
Let R and be the radius and angle of the point 

(a) Find the joint cdf of R and

(b) Find the marginal cdf of R and ®.

®.

1X1 ,X22.®
1X1 ,X22

A = 5X … 1/2, Y … 3/46; B = 51/4 6 X … 3/4 , 1/4 6 Y … 3/46.

51x, y2 : 0 … y … x … 16.1X , Y2

22

SXY ,

-¢+¢

N2 7 36, D = 5 ƒN2 - 2N1 ƒ 6 26.
A = 5N1 6 N26, B = 5N2 = 06, C = 5N1 7 5,

N2 .N1

N2 .N1

SXY ,

N2

N1

D = 5X + Y = 106.
Y 7 36.

= 5X 7 5,A = 5X Ú Y6, B = 5X = Y = 06, C

SXY ,

p = 0.05,1 - p = 0.95

N2

N1
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(c) Use the joint cdf to find the probability that the point is in the first quadrant of the
real plane and that the radius is greater than 0.5.

5.19. Find an expression for the probability of the events in Problem 5.8 parts c, h, and i in
terms of the joint cdf of X and Y.

5.20. The pair (X, Y) has joint cdf given by:

(a) Sketch the joint cdf.

(b) Find the marginal cdf of X and of Y.

(c) Find the probability of the following events:

5.21. Is the following a valid cdf? Why?

5.22. Let and be valid one-dimensional cdf’s. Show that 
satisfies the properties of a two-dimensional cdf.

5.23. The number of users logged onto a system N and the time T until the next user logs off
have joint probability given by:

(a) Sketch the above joint probability.

(b) Find the marginal pmf of N.

(c) Find the marginal cdf of X.

(d) Find

5.24. A factory has n machines of a certain type. Let p be the probability that a machine is
working on any given day, and let N be the total number of machines working on a cer-
tain day. The time T required to manufacture an item is an exponentially distributed ran-
dom variable with rate if k machines are working. Find and Find 
as and explain the result.

Section 5.4: The Joint pdf of Two Continuous Random Variables

5.25. The amplitudes of two signals X and Y have joint pdf:

(a) Find the joint cdf.

(b) Find

(c) Find the marginal pdfs.

5.26. Let X and Y have joint pdf:

(a) Find k.

(b) Find the joint cdf of (X, Y).

(c) Find the marginal pdf of X and of Y.

(d) Find P3X 6 Y4, P3Y 6 X24, P3X + Y 7 0.54.

fX,Y1x, y2 = k1x + y2 for 0 … x … 1, 0 … y … 1.

P3X1/2 7 Y4.

fX,Y1x, y2 = e-x/2ye-y
2

for x 7 0, y 7 0.

t: q
P3T … t4P3T … t4.ka

P3N … 3,X 7 3/l4.

P3N = n,X … t4 = 11 - r2rn-111 - e-nlt2 for n = 1, 2, Á  t 7 0.

FX,Y1x, y2 = FX1x2FY1y2FY1y2FX1x2
FX,Y1x, y2 = b 11 - 1/x2y22 for x 7 1, y 7 1

0 elsewhere.

5X 6 3, Y … 56, 5X 7 4, Y 7 36.

FX,Y1x, y2 = b 11 - 1/x2211 - 1/y22 for x 7 1, y 7 1

0 elsewhere.
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5.27. Let X and Y have joint pdf:

(a) Find k.

(b) Find the joint cdf of (X, Y).

(c) Find the marginal pdf of X and of Y.

(d) Find

5.28. The random vector (X, Y) is uniformly distributed (i.e., ) in the regions shown
in Fig. P5.1 and zero elsewhere.

f1x, y2 = k

P3Y 6 X1/24, P3X 6 Y4.

fX,Y1x, y2 = kx11 - x2y for 0 6 x 6 1, 0 6 y 6 1.

y

x

1

1

(i) y

x

1

1

(ii) y

x

1

1

(iii)

FIGURE P5.1

(a) Find the value of k in each case.

(b) Find the marginal pdf for X and for Y in each case.

(c) Find

5.29. (a) Find the joint cdf for the vector random variable introduced in Example 5.16.

(b) Use the result of part a to find the marginal cdf of X and of Y.

5.30. Let X and Y have the joint pdf:

Find the marginal pdf of X and of Y.

5.31. Let X and Y be the pair of random variables in Problem 5.17.

(a) Find the joint pdf of X and Y.

(b) Find the marginal pdf of X and of Y.

(c) Find

5.32. Let R and be the pair of random variables in Problem 5.18.

(a) Find the joint pdf of R and

(b) Find the marginal pdf of R and of 

5.33. Let (X, Y) be the jointly Gaussian random variables discussed in Example 5.18. Find
when Hint: Use polar coordinates to compute the integral.

5.34. The general form of the joint pdf for two jointly Gaussian random variables is given by
Eq. (5.61a). Show that X and Y have marginal pdfs that correspond to Gaussian random
variables with means and and variances and respectively.s2

2s1
2m2m1

r = 0.P3X2 + Y2 7 r24
®.

®.

®

P3Y 6 X24.

fX,Y1x, y2 = ye-y11+x2 for x 7 0, y 7 0.

P3X 7 0, Y 7 04.
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5.35. The input X to a communication channel is +1 or –1 with probability p and 1 – p, respec-
tively. The received signal Y is the sum of X and noise N which has a Gaussian distribu-
tion with zero mean and variance 

(a) Find the joint probability 

(b) Find the marginal pmf of X and the marginal pdf of Y.

(c) Suppose we are given that Which is more likely, or 

5.36. A modem sends a two-dimensional signal X from the set 
The channel adds a noise signal so the received signal is

Assume that have the jointly Gaussian
pdf in Example 5.18 with Let the distance between X and Y be

(a) Suppose that Find and sketch region for the event Y is closer to (1, 1)
than to the other possible values of X Evaluate the probability of this event.

(b) Suppose that Find and sketch region for the event Y is closer to
than to the other possible values of X Evaluate the probability of this

event.

(c) Suppose that Find and sketch region for the event 
Evaluate the probability of this event. Explain why this probability is an upper
bound on the probability that Y is closer to a signal other than 

Section 5.5: Independence of Two Random Variables

5.37. Let X be the number of full pairs and let Y be the remainder of the number of dots ob-
served in a toss of a fair die. Are X and Y independent random variables?

5.38. Let X and Y be the coordinates of the robot in Problem 5.15 after 2n time instants. Deter-
mine whether X and Y are independent random variables.

5.39. Let X and Y be the coordinates of the two-dimensional modem signal (X, Y) in
Problem 5.12.

(a) Determine if X and Y are independent random variables.

(b) Repeat part a if even values of are twice as likely as odd values.

5.40. Determine which of the joint pmfs in Problem 5.11 correspond to independent pairs of
random variables.

5.41. Michael takes the 7:30 bus every morning. The arrival time of the bus at the stop is uni-
formly distributed in the interval [7:27, 7:37]. Michael’s arrival time at the stop is also uni-
formly distributed in the interval [7:25, 7:40]. Assume that Michael’s and the bus’s arrival
times are independent random variables.

(a) What is the probability that Michael arrives more than 5 minutes before the bus?

(b) What is the probability that Michael misses the bus?

5.42. Are R and independent in Problem 5.18?

5.43. Are X and Y independent in Problem 5.20?

5.44. Are the signal amplitudes X and Y independent in Problem 5.25?

5.45. Are X and Y independent in Problem 5.26?

5.46. Are X and Y independent in Problem 5.27?

®

®

X = 11, 12.
5d1X, Y2 7 16.X = 11, 12.

6.11, -12
5X = 11, 12.

6.
5X = 11, 12.

d1X, Y2 = 51X1 - Y122 + 1X2 - Y22261/2.
r = 0.

1N1 ,N22Y = X + N = 1X1 + N1 ,X2 + N22.
1N1 ,N22,1-1, -126.

511, 12, 11, -12, 1-1, 12,
X = -1?X = 1Y 7 0.

P3X = j, Y … y4.
s2 = 0.25.
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5.47. Let X and Y be independent random variables. Find an expression for the probability of
the following events in terms of and 

(a)

(b)

(c)

5.48. Let X and Y be independent random variables that are uniformly distributed in 
Find the probability of the following events:

(a)

(b)

(c)

(d)

5.49. Let X and Y be random variables that take on values from the set 

(a) Find a joint pmf for which X and Y are independent.

(b) Are and independent random variables for the pmf in part a?

(c) Find a joint pmf for which X and Y are not independent, but for which and 
are independent.

5.50. Let X and Y be the jointly Gaussian random variables introduced in Problem 5.34.

(a) Show that X and Y are independent random variables if and only if 

(b) Suppose find 

5.51. Two fair dice are tossed repeatedly until a pair occurs. Let K be the number of tosses re-
quired and let X be the number showing up in the pair. Find the joint pmf of K and X and
determine whether K and X are independent.

5.52. The number of devices L produced in a day is geometric distributed with probability of
success p. Let N be the number of working devices and let M be the number of defective
devices produced in a day.

(a) Are N and M independent random variables?

(b) Find the joint pmf of N and M.

(c) Find the marginal pmfs of N and M. (See hint in Problem 5.87b.)

(d) Are L and M independent random variables?

5.53. Let be the number of Web page requests arriving at a server in a 100-ms period and let
be the number of Web page requests arriving at a server in the next 100-ms period.

Use the result of Problem 5.13 parts a and b to develop a model where and are
independent Poisson random variables.

5.54. (a) Show that Eq. (5.22) implies Eq. (5.21).

(b) Show that Eq. (5.21) implies Eq. (5.22).

5.55. Verify that Eqs. (5.22) and (5.23) can be obtained from each other.

Section 5.6: Joint Moments and Expected Values of a Function of Two Random

Variables

5.56. (a) Find

(b) Find the variance of 

(c) Under what condition is the variance of the sum equal to the sum of the individual
variances?

X + Y.

E31X + Y224.

N2N1

N2

N1

P3XY 6 04.r = 0,

r = 0.

Y2X2

Y2X2

5-1, 0, 16.
P3max1X, Y2 6 1/34.
P3XY 6 1/24.
P34X 6 1, Y 6 04.
P3X2 6 1/2, ƒY ƒ 6 1/24.

3-1, 14.
5 ƒX ƒ 6 a6 ¨ 5c … Y … d6.
5a 6 X … b6 ¨ 5c … Y 6 d6.
5a 6 X … b6 ¨ 5Y 7 d6.

FY1y2.FX1x2
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5.57. Find if X and Y are independent exponential random variables with para-
meters and respectively.

5.58. Find where X and Y are independent random variables, X is a zero-mean,
unit-variance Gaussian random variable, and Y is a uniform random variable in the
interval [0, 3].

5.59. For the discrete random variables X and Y in Problem 5.1, find the correlation and covariance,
and indicate whether the random variables are independent, orthogonal, or uncorrelated.

5.60. For the discrete random variables X and Y in Problem 5.2, find the correlation and
covariance, and indicate whether the random variables are independent, orthogonal,
or uncorrelated.

5.61. For the three pairs of discrete random variables in Problem 5.11, find the correlation and
covariance of X and Y, and indicate whether the random variables are independent, or-
thogonal, or uncorrelated.

5.62. Let and be the number of Web page requests in Problem 5.13. Find the correlation
and covariance of and and indicate whether the random variables are indepen-
dent, orthogonal, or uncorrelated.

5.63. Repeat Problem 5.62 for and the number of Web page requests in Problem 5.14.

5.64. Let N and T be the number of users logged on and the time till the next logoff in
Problem 5.23. Find the correlation and covariance of N and T, and indicate whether
the random variables are independent, orthogonal, or uncorrelated.

5.65. Find the correlation and covariance of X and Y in Problem 5.26. Determine whether X
and Y are independent, orthogonal, or uncorrelated.

5.66. Repeat Problem 5.65 for X and Y in Problem 5.27.

5.67. For the three pairs of continuous random variables X and Y in Problem 5.28, find the cor-
relation and covariance, and indicate whether the random variables are independent, or-
thogonal, or uncorrelated.

5.68. Find the correlation coefficient between X and Does the answer depend
on the sign of a?

5.69. Propose a method for estimating the covariance of two random variables.

5.70. (a) Complete the calculations for the correlation coefficient in Example 5.28.

(b) Repeat the calculations if X and Y have the pdf:

5.71. The output of a channel where the input X and the noise N are indepen-
dent, zero-mean random variables.

(a) Find the correlation coefficient between the input X and the output Y.

(b) Suppose we estimate the input X by a linear function Find the value of a
that minimizes the mean squared error 

(c) Express the resulting mean-square error in terms of 

5.72. In Example 5.27 let uncorrelated?

5.73. (a) Show that 

(b) Show that for all x, implies that X and Y are uncorrelated.

5.74. Use the fact that for all t to prove the Cauchy-Schwarz inequality:

Hint: Consider the discriminant of the quadratic equation in t that results from the above
inequality.

1E3XY422 … E3X24E3Y24.
E31tX + Y224 Ú 0

E3Y ƒX = x4 = E3Y4,
COV1X, E3Y ƒX42 = COV1X, Y2.
X = cos ®/4 and Y = sin ®/4. Are X and Y

sX/sN .

E31X - aY224.
g1Y2 = aY.

Y = X + N,

fX,Y1x, y2 = e-1x+ ƒy ƒ2 for x 7 0, -x 6 y 6 x.

Y = aX + b.

N2 ,N1

N2 ,N1

N2N1

E3X2eY4
l2 = 2,l1 = 1

E3 ƒX - Y ƒ 4
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Section 5.7: Conditional Probability and Conditional Expectation

5.75. (a) Find and in Problem 5.1 assuming fair coins are used.

(b) Find and in Problem 5.1 assuming Carlos uses a coin with

(c) What is the effect on of Carlos using a biased coin?

(d) Find and in part a; then find E[X] and E[Y].

(e) Find and in part b; then find E[X] and E[Y].

5.76. (a) Find for the communication channel in Problem 5.3.

(b) For each value of y, find the value of x that maximizes State any assump-
tions about p and

(c) Find the probability of error if a receiver uses the decision rule from part b.

5.77. (a) In Problem 5.11(i), which conditional pmf given X provides the most information
about or Explain why.

(b) Compare the conditional pmfs in Problems 5.11(ii) and (iii) and explain which of
these two cases is “more random.”

(c) Find and in Problems 5.11(i), (ii), (iii); then find E[X]
and E[Y].

(d) Find and in Problems 5.11(i), (ii), (iii); then find
VAR[X] and VAR[Y].

5.78. (a) Find the conditional pmf of given in Problem 5.14.

(b) Find for Hint: Use Stirling’s fromula.

(c) Find then find 

5.79. In Example 5.30, let Y be the number of defects inside the region R and let Z be the num-
ber of defects outside the region.

(a) Find the pmf of Z given Y.

(b) Find the joint pmf of Y and Z.

(c) Are Y and Z independent random variables? Is the result intuitive?

5.80. (a) Find in Problem 5.26.

(b) Find

(c) Find using part b.

(d) Find

5.81. (a) Find in Problem 5.28(i).

(b) Find

(c) Repeat parts a and b of Problem  5.28(ii).

(d) Repeat parts a and b of Problem  5.28(iii).

5.82. (a) Find in Example 5.27.

(b) Find

(c) Find

(d) Find

(e) Find

5.83. Find and for the jointly Gaussian pdf in Problem 5.34.

5.84. (a) Find in Problem 5.23.

(b) Find

(c) Find the value of n that maximizes P3N = n ƒ t 6 X 6 t + dt4.
E3Xt ƒ N = n4.
fX1t ƒ N = n2

fX1x ƒ y2fY1y ƒ x2
E3XY4.
E3XY ƒX = x4.
E3Y4.
E3Y ƒX = x4.
fY1y ƒ x2

E3Y ƒX = x4 and E 3Y4.
fY1y ƒ x2
E3Y ƒX = x4.
P3Y 7 X4
P3Y 7 X ƒ x4.
fY1y ƒ x2

E3N14.E3N1 ƒ N2 = k4,
k = 5, 10, 20.P3N1 = k ƒ N2 = 2k4

N2N1

E3X2 ƒ Y = y4E3Y2 ƒX = x4
E3X ƒ Y = y4E3Y ƒX = x4

pY1y ƒ +12?Y: pY1y ƒ -12, pY1y ƒ 02,

pe .
pX1x ƒ y2.

pX1x ƒ y2
E3X ƒ Y = y4E3Y ƒX = x4
E3X ƒ Y = y4E3Y ƒX = x4

pX1x ƒ y2
p = 3/4.

pX1x ƒ y2pY1y ƒ x2
pX1x ƒ y2pY1y ƒ x2
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5.85. (a) Find and in Problem 5.12.

(b) Find

(c) Find and 

5.86. A customer enters a store and is equally likely to be served by one of three clerks. The
time taken by clerk 1 is a constant random variable with mean two minutes; the time for
clerk 2 is exponentially distributed with mean two minutes; and the time for clerk 3 is
Pareto distributed with mean two minutes and 

(a) Find the pdf of T, the time taken to service a customer.

(b) Find E[T] and VAR[T].

5.87. A message requires N time units to be transmitted, where N is a geometric random
variable with pmf A single new message arrives dur-
ing a time unit with probability p, and no messages arrive with probability 
Let K be the number of new messages that arrive during the transmission of a
single message.

(a) Find E[K] and VAR[K] using conditional expectation.

(b) Find the pmf of K. Hint:

(c) Find the conditional pmf of N given

(d) Find the value of n that maximizes 

5.88. The number of defects in a VLSI chip is a Poisson random variable with rate r. However,
r is itself a gamma random variable with parameters and 

(a) Use conditional expectation to find E[N] and VAR[N].

(b) Find the pmf for N, the number of defects.

5.89. (a) In Problem 5.35, find the conditional pmf of the input X of the communication chan-
nel given that the output is in the interval 

(b) Find the value of X that is more probable given 

(c) Find an expression for the probability of error if we use the result of part b to decide
what the input to the channel was.

Section 5.8: Functions of Two Random Variables 

5.90. Two toys are started at the same time each with a different battery. The first battery has a
lifetime that is exponentially distributed with mean 100 minutes; the second battery has a
Rayleigh-distributed lifetime with mean 100 minutes.

(a) Find the cdf to the time T until the battery in a toy first runs out.

(b) Suppose that both toys are still operating after 100 minutes. Find the cdf of the time
that subsequently elapses until the battery in a toy first runs out.

(c) In part b, find the cdf of the total time that elapses until a battery first fails.

5.91. (a) Find the cdf of the time that elapses until both batteries run out in Problem 5.90a.

(b) Find the cdf of the remaining time until both batteries run out in Problem 5.90b.

5.92. Let K and N be independent random variables with nonnegative integer values.

(a) Find an expression for the pmf of 

(b) Find the pmf of M if K and N are binomial random variables with parameters (k, p)
and (n, p).

(c) Find the pmf of M if K and N are Poisson random variables with parameters and
respectively.a2 ,

a1

M = K + N.

T2

y 6 Y … y + dy.

y 6 Y … y + dy.

l.a

P3N = n ƒX = k4.
K = k.

11 - b2-1k+12 = a
q

n=k

¢n
k
≤bn-k.

1 - p.
pi = 11 - a2ai-1, i = 1, 2, Á .

a = 2.5.

E3XY4.E3XY ƒX = x4
E3Y ƒX = x4.

pX1x ƒ y2pY1y ƒ x2



298 Chapter 5 Pairs of Random Variables

5.93. The number X of goals the Bulldogs score against the Flames has a geometric distribu-
tion with mean 2; the number of goals Y that the Flames score against the Bulldogs is also
geometrically distributed but with mean 4.

(a) Find the pmf of the Assume X and Y are independent.

(b) What is the probability that the Bulldogs beat the Flames? Tie the Flames?

(c) Find E[Z].

5.94. Passengers arrive at an airport taxi stand every minute according to a Bernoulli random
variable. A taxi will not leave until it has two passengers.

(a) Find the pmf until the time T when the taxi has two passengers.

(b) Find the pmf for the time that the first customer waits.

5.95. Let X and Y be independent random variables that are uniformly distributed in the in-
terval [0, 1]. Find the pdf of 

5.96. Let and be independent and uniformly distributed in 

(a) Find the cdf and pdf of 

(b) Find the cdf of 

5.97. Let X and Y be independent random variables with gamma distributions and parameters
and , respectively. Show that is gamma-distributed with para-

meters Hint: See Eq. (4.59).

5.98. Signals X and Y are independent. X is exponentially distributed with mean 1 and Y is
exponentially distributed with mean 

(a) Find the cdf of 

(b) Use the result of part a to find E[Z].

5.99. The random variables X and Y have the joint pdf

Find the pdf of 

5.100. Let X and Y be independent Rayleigh random variables with parameters 
Find the pdf of 

5.101. Let X and Y be independent Gaussian random variables that are zero mean and unit
variance. Show that is a Cauchy random variable.

5.102. Find the joint cdf of and if X and Y are independent
and X is uniformly distributed in [0, 1] and Y is uniformly distributed in [0, 1].

5.103. Find the joint cdf of and if X and Y are independent
exponential random variables with the same mean.

5.104. Find the joint cdf of and if X and Y are the indepen-
dent Pareto random variables with the same distribution.

5.105. Let and 

(a) Find an expression for the joint pdf of W and Z.

(b) Find if X and Y are independent exponential random variables with
parameter

(c) Find if X and Y are independent Pareto random variables with the same
distribution.

5.106. The pair (X, Y) is uniformly distributed in a ring centered about the origin and inner and
outer radii Let R and be the radius and angle corresponding to (X, Y). Find the
joint pdf of R and ®.

®r1 6 r2 .

fW,Z1z, w2
l = 1.

fW,Z1z, w2
Z = X - Y.W = X + Y

Z = max1X, Y2W = min1X, Y2
Z = max1X, Y2W = min1X, Y2
Z = max1X, Y2W = min1X, Y2

Z = X/Y

Z = X/Y.
a = b = 1.

Z = X + Y.

fX,Y1x, y2 = e-1x+y2 for 0 6 y 6 x 6 1.

Z = ƒX - Y ƒ .

1.

1a1 + a2 , l2.
Z = X + Y1a2 , l21a1 , l2

Z = Y + X3 .

Y = X1 + X2 .

3-1, 14.X3X1 ,X2 ,

Z = XY.

Z = X - Y.
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5.107. Let X and Y be independent, zero-mean, unit-variance Gaussian random variables. Let
and

(a) Find the joint pdf of V and W, assuming the transformation matrix A is invertible.

(b) Suppose A is not invertible. What is the joint pdf of V and W?

5.108. Let X and Y be independent Gaussian random variables that are zero mean and unit
variance. Let and let Find the joint pdf of W and

5.109. Let X and Y be the random variables introduced in Example 5.4. Let 
and let 

(a) Find the joint pdf of R and

(b) What is the joint pdf of X and Y?

Section 5.9: Pairs of Jointly Gaussian Variables

5.110. Let X and Y be jointly Gaussian random variables with pdf

Find VAR[X], VAR[Y], and COV(X, Y).

5.111. Let X and Y be jointly Gaussian random variables with pdf

Find E[X], E[Y], VAR[X], VAR[Y], and COV(X, Y).

5.112. Let X and Y be jointly Gaussian random variables with and
Find the joint pdf of X and Y.

5.113. Let X and Y be zero-mean, independent Gaussian random variables with 

(a) Find the value of r for which the probability that (X, Y) falls inside a circle of radius
r is 1/2.

(b) Find the conditional pdf of (X, Y) given that (X, Y) is not inside a ring with inner ra-
dius and outer radius 

5.114. Use a plotting program (as provided by Octave or MATLAB) to show the pdf for jointly
Gaussian zero-mean random variables with the following parameters:

(a)

(b)

(c)

(d)

(e)

(f)

5.115. Let X and Y be zero-mean, jointly Gaussian random variables with and
correlation coefficient 

(a) Plot the principal axes of the constant-pdf ellipse of (X, Y).

(b) Plot the conditional expectation of Y given

(c) Are the plots in parts a and b the same or different? Why?

5.116. Let X and Y be zero-mean, unit-variance jointly Gaussian random variables for which
. Sketch the joint cdf of X and Y. Does a joint pdf exist?r = 1

X = x.

r.
s1 = 1, s2 = 2,

s1 = 1, s2 = 10, r = 0.8.

s1 = 1, s2 = 2, r = 0.8.

s1 = 1, s2 = 2, r = 0.

s1 = 1, s2 = 1, r = -0.8.

s1 = 1, s2 = 1, r = 0.8.

s1 = 1, s2 = 1, r = 0.

r2 .r1

s2 = 1.

E3X ƒ Y4 = Y/4 + 1.
E3Y4 = 0, s1 = 1, s2 = 2,

fX,Y1x, y2 =

expe -1

2
3x2 + 4y2 - 3xy + 3y - 2x + 14 f

2p
 for all x, y.

fX,Y1x, y2 =
exp5-2x2 - y2/26

2pc
 for all x, y.

®.

® = tan-11Y/X2.
R = 1X2 + Y221/2

®.® = tan-11Y/X2.W = X2 + Y2

W = cX + eY.V = aX + bY
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5.117. Let h(x, y) be a joint Gaussian pdf for zero-mean, unit-variance Gaussian random vari-
ables with correlation coefficient Let g(x, y) be a joint Gaussian pdf for zero-mean,
unit-variance Gaussian random variables with correlation coefficient Suppose
the random variables X and Y have joint pdf

(a) Find the marginal pdf for X and for Y.

(b) Explain why X and Y are not jointly Gaussian random variables.

5.118. Use conditional expectation to show that for X and Y zero-mean, jointly Gaussian random
variables,

5.119. Let be the zero-mean jointly Gaussian random variables in Problem 5.110.
Find a transformation A such that has components that are zero-mean, unit-
variance Gaussian random variables.

5.120. In Example 5. 47, suppose we estimate the value of the signal X from the noisy observa-
tion Y by:

(a) Evaluate the mean square estimation error:

(b) How does the estimation error in part a vary with signal-to-noise ratio 

Section 5.10: Generating Independent Gaussian Random Variables

5.121. Find the inverse of the cdf of the Rayleigh random variable to derive the transformation

method for generating Rayleigh random variables. Show that this method leads to the same

algorithm that was presented in Section 5.10.

5.122. Reproduce the results presented in Example 5.49.

5.123. Consider the two-dimensional modem in Problem 5.36.

(a) Generate 10,000 discrete random variables uniformly distributed in the set
Assign each outcome in this set to one of the signals

The sequence of discrete random variables
then produces a sequence of 10,000 signal points X.

(b) Generate 10,000 noise pairs N of independent zero-mean, unit-variance jointly
Gaussian random variables.

(c) Form the sequence of 10,000 received signals 

(d) Plot the scattergram of received signal vectors. Is the plot what you expected?

(e) Estimate the transmitted signal by the quadrant that Y falls in:

(f) Compare the estimates with the actually transmitted signals to estimate the proba-
bility of error.

5.124. Generate a sequence of 1000 pairs of independent zero-mean Gaussian random vari-
ables, where X has variance 2 and N has variance 1. Let be the noisy signal
from Example 5.47.

(a) Estimate X using the estimator in Problem 5.120, and calculate the sequence of esti-
mation errors.

(b) What is the pdf of the estimation error?

(c) Compare the mean, variance, and relative frequencies of the estimation error with
the result from part b.

Y = X + N

sgn1Y222.
XN = 1sgn1Y12,

Y = 1Y1 , Y22 = X + N.

511, 12, 11, -12, 1-1, 12, 1-1, -126.
51, 2, 3, 46.

sX/sN?

E31X - XN 224.
XN =

1

1 + sN
2 /sX

2 Y.

Z = AX

X = 1X, Y2
E3X2Y24 = E3X24E3Y24 + 2E3XY42.

fX,Y1x, y2 = 5h1x, y2 + g1x, y26/2.

r2 Z r1 .
r1 .



Problems 301

5.125. Let be a sequence of zero-mean, unit-variance independent Gaussian
random variables. Suppose that the sequence is “smoothed” as follows:

(a) Find the pdf of 

(b) Generate the sequence of and the corresponding sequence Plot the scatter-
gram of Does it agree with the result from part a?

(c) Repeat parts a and b for 

5.126. Let X and Y be independent, zero-mean, unit-variance Gaussian random variables. Find the
linear transformation to generate jointly Gaussian random variables with means vari-
ances and correlation coefficient Hint: Use the conditional pdf in Eq. (5.64).

5.127. (a) Use the method developed in Problem 5.126 to generate 1000 pairs of jointly Gauss-
ian random variables with variances and correla-
tion coefficient 

(b) Plot a two-dimensional scattergram of the 1000 pairs and compare to equal-pdf con-
tour lines for the theoretical pdf.

5.128. Let H and W be the height and weight of adult males. Studies have shown that H (in cm)
and (W in kg) are jointly Gaussian with parameters 

and

(a) Use the method in part a to generate 1000 pairs (H, V). Plot a scattergram to check
the joint pdf.

(b) Convert the (H, V) pairs into (H, W) pairs.

(c) Calculate the body mass index for each outcome, and estimate the proportion of the
population that is underweight, normal, overweight, or obese. (See Problem 5.6.)

Problems Requiring Cumulative Knowledge

5.129. The random variables X and Y have joint pdf:

.

(a) Find the value of the constant c.

(b) Find the joint cdf of X and Y.

(c) Find the marginal pdf’s of X and of Y.

(d) Find the mean, variance, and covariance of X and Y.

5.130. An inspector selects an item for inspection according to the outcome of a coin flip:The item is
inspected if the outcome is heads. Suppose that the time between item arrivals is an exponen-
tial random variable with mean one.Assume the time to inspect an item is a constant value t.

(a) Find the pmf for the number of item arrivals between consecutive inspections.

(b) Find the pdf for the time X between item inspections. Hint: Use conditional expectation.

(c) Find the value of p, so that with a probability of 90% an inspection is completed be-
fore the next item is selected for inspection.

5.131. The lifetime X of a device is an exponential random variable with Suppose
that due to irregularities in the production process, the parameter R is random and has a
gamma distribution.

(a) Find the joint pdf of X and R.

(b) Find the pdf of X.

(c) Find the mean and variance of X.

mean = 1/R.

fX,Y1x, y2 = c sin 1x + y2 0 … x … p/2, 0 … y … p/2

COV1H, V2 = 0.458.sH
2 = 42.36, sV

2 = 0.021,
mH = 174 cm, mV = 4.4,V = lnW

r = -1/2.
s1

2 = 1, s2
2 = 2,m1 = 1,m2 = -1,

r.s1
2 , s2

2 ,
m1 ,m2 ,

Zn = 1Xn - XN-12/2.

1Yn , Yn+12.
Yn .Xn

1Yn , Yn+12.
Yn = 1Xn + XN-12/2 where X0 = 0.

X1 ,X2 , Á ,X1000
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5.132. Let X and Y be samples of a random signal at two time instants. Suppose that X and Y are
independent zero-mean Gaussian random variables with the same variance. When signal
“0” is present the variance is and when signal “1” is present the variance is 
Suppose signals 0 and 1 occur with probabilities p and respectively. Let

be the total energy of the two observations.

(a) Find the pdf of when signal 0 is present; when signal 1 is present. Find the pdf of 

(b) Suppose we use the following “signal detection” rule: If then we decide sig-
nal 1 is present; otherwise, we decide signal 0 is present. Find an expression for the
probability of error in terms of T.

(c) Find the value of T that minimizes the probability of error.

5.133. Let be a sequence of independent zero-mean, unit-variance Gaussian ran-
dom variables. A “low-pass filter” takes the sequence and produces the output
sequence and a “high-pass filter” produces the output sequence

.

(a) Find the joint pdf of and of and 

(b) Repeat part a for 

(c) Find the joint pdf of and Ym .Xn

Yn .

Xn+m ,m 7 1.XnXn-1 ;Xn

Yn = 1Un - Un-12/2
Xn = 1Un + Un-12/2,

Ui

U0 , U1 , Á

R2 7 T,

R2.R2

R2 = X2 + Y2
1 - p,

s1
2 7 s0

2 .s0
2,



In the previous chapter we presented methods for dealing with two random variables.
In this chapter we extend these methods to the case of n random variables in the fol-
lowing ways:

• By representing n random variables as a vector, we obtain a compact notation for
the joint pmf, cdf, and pdf as well as marginal and conditional distributions.

• We present a general method for finding the pdf of transformations of vector ran-
dom variables.

• Summary information of the distribution of a vector random variable is provided
by an expected value vector and a covariance matrix.

• We use linear transformations and characteristic functions to find alternative
representations of random vectors and their probabilities.

• We develop optimum estimators for estimating the value of a random variable
based on observations of other random variables.

• We show how jointly Gaussian random vectors have a compact and easy-to-work-
with pdf and characteristic function.

6.1 VECTOR RANDOM VARIABLES

The notion of a random variable is easily generalized to the case where several quanti-
ties are of interest. A vector random variable X is a function that assigns a vector of
real numbers to each outcome in S, the sample space of the random experiment. We
use uppercase boldface notation for vector random variables. By convention X is a col-
umn vector (n rows by 1 column), so the vector random variable with components

corresponds to

X � DX1

X2
...
Xn

T = 3X1 ,X2 , Á ,Xn4T,

X1 ,X2 , Á ,Xn

z

303

Vector Random
Variables 6
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where denotes the transpose of a matrix or vector. We will sometimes write
to save space and omit the transpose unless dealing with matri-

ces. Possible values of the vector random variable are denoted by 
where corresponds to the value of 

Example 6.1 Arrivals at a Packet Switch

Packets arrive at each of three input ports of a packet switch according to independent Bernoulli
trials with Each arriving packet is equally likely to be destined to any of three output
ports. Let where is the total number of packets arriving for output port i.
X is a vector random variable whose values are determined by the pattern of arrivals at the
input ports.

Example 6.2 Joint Poisson Counts

A random experiment consists of finding the number of defects in a semiconductor chip and identi-
fying their locations. The outcome of this experiment consists of the vector 
where the first component specifies the total number of defects and the remaining components
specify the coordinates of their location. Suppose that the chip consists of M regions. Let

be the number of defects in each of these regions, that is, is the
number of y’s that fall in region k. The vector is then a vector random
variable.

Example 6.3 Samples of an Audio Signal

Let the outcome of a random experiment be an audio signal X(t). Let the random variable
be the sample of the signal taken at time kT.An MP3 codec processes the audio in

blocks of n samples X is a vector random variable.

6.1.1 Events and Probabilities

Each event A involving has a corresponding region in an n-
dimensional real space As before, we use “rectangular” product-form sets in 
as building blocks. For the n-dimensional random variable 
we are interested in events that have the product form

(6.1)

where each is a one-dimensional event (i.e., subset of the real line) that involves 
only. The event A occurs when all of the events occur jointly.

We are interested in obtaining the probabilities of these product-form events:

(6.2)! P3X1 in A1 ,X2 in A2 , Á ,Xn in An4.
P3A4 = P3X H A4 = P35X1 in A16 ¨ 5X2 in A26 ¨ Á ¨ 5Xn in An64

5Xk in Ak6
XkAk

A = 5X1 in A16 ¨ 5X2 in A26 ¨ Á ¨ 5Xn in An6,
X = 1X1 ,X2 , Á ,Xn2,

RnRn.
X = 1X1 ,X2 , Á ,Xn2

X = 1X1 ,X2 , Á ,Xn2.
Xk = X1kT2

z

N1z2 = 1N1 ,N2 , Á ,NM2
Nk1z2N11z2,N21z2, Á ,NM1z2

z = 1n, y1 , y2 , Á , yn2,

XiX = 1X1 ,X2 ,X32
p = 1/2.

Xi .xi

x = 1x1 , x2 , Á , xn2
X = 1X1 ,X2 , Á ,Xn2

“T”
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In principle, the probability in Eq. (6.2) is obtained by finding the probability of the
equivalent event in the underlying sample space, that is,

(6.3)

Equation (6.2) forms the basis for the definition of the n-dimensional joint probability
mass function, cumulative distribution function, and probability density function. The
probabilities of other events can be expressed in terms of these three functions.

6.1.2 Joint Distribution Functions

The joint cumulative distribution function of is defined as the probabil-
ity of an n-dimensional semi-infinite rectangle associated with the point 

(6.4)

The joint cdf is defined for discrete, continuous, and random variables of mixed type.
The probability of product-form events can be expressed in terms of the joint cdf.

The joint cdf generates a family of marginal cdf’s for subcollections of the ran-
dom variables These marginal cdf’s are obtained by setting the appropri-
ate entries to in the joint cdf in Eq. (6.4). For example:

Joint cdf for is given by and

Joint cdf for and is given by 

Example 6.4

A radio transmitter sends a signal to a receiver using three paths. Let and be the sig-
nals that arrive at the receiver along each path. Find 

The maximum of three numbers is less than 5 if and only if each of the three numbers is
less than 5; therefore

The joint probability mass function of n discrete random variables is defined by

(6.5)

The probability of any n-dimensional event A is found by summing the pmf over the
points in the event

(6.6)P3X in A4 = a
x in A

Á apX1,X2, Á ,Xn1x1 , x2 , Á , xn2.

pX1x2 ! pX1,X2 , Á ,Xn1x1 , x2 , Á , xn2 = P3X1 = x1 ,X2 = x2 , Á ,Xn = xn4.

= FX1,X2,X3
15, 5, 52.

P3A4 = P35X1 … 56 ¨ 5X2 … 56 ¨ 5X3 … 564

P3max1X1 ,X2 ,X32 … 54.
X3X1 ,X2 ,

FX1,X2, Á ,Xn1x1 , x2 , q, Á , q2.X2X1

FX1,X2, Á ,Xn1x1 , x2 , Á , xn-1 , q2X1 , Á ,Xn-1

+q
X1 , Á ,Xn .

FX1x2 ! FX1,X2, Á ,Xn1x1 , x2 , Á , xn2 = P3X1 … x1 ,X2 … x2 , Á ,Xn … xn4.
1x1 , Á , xn2:

X1 ,X2 , Á ,Xn

= P35z in S :X11z2 H A1 ,X21z2 H A2 , Á ,Xn1z2 H An64.
P3A4 = P35z in S : X1z2 in A64



306 Chapter 6 Vector Random Variables

The joint pmf generates a family of marginal pmf’s that specifies the joint proba-
bilities for subcollections of the n random variables. For example, the one-dimensional
pmf of is found by adding the joint pmf over all variables other than 

(6.7)

The two-dimensional joint pmf of any pair and is found by adding the joint pmf
over all other variables, and so on. Thus, the marginal pmf for is
given by

(6.8)

A family of conditional pmf’s is obtained from the joint pmf by conditioning
on different subcollections of the random variables. For example, if 

(6.9a)

Repeated applications of Eq. (6.9a) yield the following very useful expression:

(6.9b)

Example 6.5 Arrivals at a Packet Switch

Find the joint pmf of in Example 6.1. Find 
Let N be the total number of packets arriving in the three input ports. Each input port has

an arrival with probability so N is binomial with pmf:

Given the number of packets arriving for each output port has a multinomial distribution:

The joint pmf of X is then:

The explicit values of the joint pmf are:

pX10, 0, 02 =
0!

0! 0! 0!

1

30 ¢3

0
≤ 1

23 =
1

8

… 3.pX1i, j, k2 = pX1i, j, k ƒ n2¢3

n
≤ 1

23 for i Ú 0, j Ú 0, k Ú 0, i + j + k = n

pX1,X2,X3
1i, j, k ƒ i + j + k = n2 = c n!

i! j! k!

1

3n
 for i + j + k = n, i Ú 0, j Ú 0, k Ú 0

 0   otherwise.

N = n,

pN1n2 = ¢3

n
≤ 1

23 for 0 … n … 3.

p = 1/2,

P3X1 7 X34.X = 1X1 ,X2 ,X32

pXn1xn |x1 , Á , xn-12pXn - 1
1xn-1 |x1 , Á , xn-22Á pX2

1x2 |x12pX1
1x12.

pX1 , Á ,Xn1x1 , Á , xn2 =

pXn1xn ƒ x1 , Á , xn-12 =
pX1 , Á ,Xn1x1 , Á , xn2
pX1 , Á ,Xn - 11x1 , Á , xn-12.

1x1 , Á , xn-12 7 0:
pX1 , Á ,Xn - 1

pX1 , Á ,Xn - 1
1x1 , x2 , Á , xn-12 = a

xn

pX1 , Á ,Xn1x1 , x2 , Á , xn2.

X1 , Á ,Xn-1n - 2
XkXj

pXj1xj2 = P3Xj = xj4 = a
x1

Á a
xj - 1

a
xj + 1

Á a
xn

pX1,X2 , Á ,Xn1x1 , x2 , Á , xn2.
xj:Xj
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Finally:

We say that the random variables are jointly continuous random

variables if the probability of any n-dimensional event A is given by an n-dimensional
integral of a probability density function:

(6.10)

where is the joint probability density function.

The joint cdf of X is obtained from the joint pdf by integration:

(6.11)

The joint pdf (if the derivative exists) is given by

(6.12)

A family of marginal pdf’s is associated with the joint pdf in Eq. (6.12). The mar-
ginal pdf for a subset of the random variables is obtained by integrating the other
variables out. For example, the marginal pdf of is

(6.13)

As another example, the marginal pdf for is given by

(6.14)

A family of conditional pdf’s is also associated with the joint pdf. For example,
the pdf of given the values of is given by

(6.15a)fXn1xn |x1 , Á , xn-12 =
fX1, Á ,Xn1x1 , Á , xn2
fX1, Á ,Xn - 1

1x1 , Á , xn-12

X1 , Á ,Xn-1Xn

fX1, Á ,Xn - 1
1x1 , Á , xn-12 = L

q

-q
fX1, Á ,Xn1x1 , Á , xn-1 , xn

œ 2 dxnœ .

X1 , Á ,Xn-1

fX1
1x12 = L

q

-q

Á L
q

-q
fX1,X2, Á ,Xn1x1 , x2

œ , Á , xn
œ 2 dx2

œ Á dxn
œ .

X1

fX1x2 ! fX1,X2,Á ,Xn1x1 , x2 , Á , xn2 =
0n

0x1 Á 0xn
FX1,Á ,Xn1x1 , Á , xn2.

FX1x2 = FX1,X2 , Á ,Xn1x1 , x2 , Á , xn2 = L
x1

-q
ÁL

xn

-q
fX1, Á ,Xn1x1

œ , Á , xn
œ 2 dx1

œ Á dxn
œ .

fX1, Á ,Xn1x1 , Á , xn2
P3X in A4 =Lx in A

Á LfX1, Á ,Xn1x1
œ , Á , xn

œ 2 dx1
œ Á dxn

œ ,

X1 ,X2 , Á ,Xn

= 8/27.

+ pX12, 0, 12 + pX12, 1, 02 + pX13, 0, 02
P3X1 7 X34 = pX11, 0, 02 + pX11, 1, 02 + pX12, 0, 02 + pX11, 2, 02

pX13, 0, 02 = pX10, 3, 02 = pX10, 0, 32 = 1/216.

pX10, 1, 22 = pX10, 2, 12 = pX11, 0, 22 = pX11, 2, 02 = pX12, 0, 12 = pX12, 1, 02 = 3/216

pX11, 1, 12 = 6/216

pX12, 0, 02 = pX10, 2, 02 = pX10, 0, 22 = 3/72

pX11, 1, 02 = pX11, 0, 12 = pX10, 1, 12 =
2!

0! 1! 1!

1

32 ¢3

2
≤ 1

23 =
6

72

pX11, 0, 02 = pX10, 1, 02 = pX10, 0, 12 =
1!

0! 0! 1!

1

31 ¢3

1
≤ 1

23 =
3

24
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if

Repeated applications of Eq. (6.15a) yield an expression analogous to Eq. (6.9b):

(6.15b)

Example 6.6

The random variables and have the joint Gaussian pdf

Find the marginal pdf of and Find the conditional pdf of given and 
The marginal pdf for the pair and is found by integrating the joint pdf over 

The above integral was carried out in Example 5.18 with By substituting the result
of the integration above, we obtain

Therefore and are independent zero-mean, unit-variance Gaussian random variables.
The conditional pdf of given and is:

We conclude that given and is a Gaussian random variable with mean and 
variance 1/2.

Example 6.7 Multiplicative Sequence

Let be uniform in [0, 1], be uniform in and be uniform in (Note that 
is also the product of three uniform random variables.) Find the joint pdf of X and the marginal
pdf of 

For the joint pdf is nonzero and given by:

fX1,X2,X3
1x1 , x2 , x32 = fX3

1z |x, y2fX2
1y |x2fX1

1x2 =
1

y

1

x
1 =

1

xy
.

0 6 z 6 y 6 x 6 1,
X3 .

X330,X24.X330,X14,X2X1

x1/22X3X2

=
e-11�2x1

2+x2
2 -12x1x22
1p =

e-1x2-x1/12x122

1p .

fX2
1x2 ƒ x1 , x32 =

e-1x1
2+x2

2-12x1x2 + 1�2x3
22

2p1p
22p22p

e-x3
2 / 2e-x1

2 /2

X3X1X2

X3X1

fX1,X3
1x1 , x32 =

e-x3
2 / 2

22p

e-x1
2/2

22p
.

r = -1/22.

fX1,X3
1x1 , x32 =

e-x 3
2/ 2

22pL
q

-q

e-1x1
2+x2

2-12x1x22
2p/22

dx2 .

x2:X3X1

X3 .X1X2X3 .X1

fX1,X2,X3
1x1 , x2 , x32 =

e-1x1
2+x2

2-12 x1x2+
1�2x3

22
2p1p .

X3X1 ,X2 ,

fXn1xn ƒ x1 , Á , xn-12fXn - 1
1xn-1 ƒ x1 , Á , xn-22Á fX2

1x2 ƒ x12fX1
1x12.

fX1, Á ,Xn1x1 , Á , xn2 =

fX1, Á ,Xn - 1
1x1 , Á , xn-12 7 0.
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The joint pdf of and is nonzero for and is obtained by integrating x be-
tween y and 1:

We obtain the pdf of by integrating y between z and 1:

Note that the pdf of is concentrated at the values close to 

6.1.3 Independence

The collection of random variables is independent if

for any one-dimensional events It can be shown that are inde-

pendent if and only if

(6.16)

for all If the random variables are discrete, Eq. (6.16) is equivalent to

If the random variables are jointly continuous, Eq. (6.16) is equivalent to

for all 

Example 6.8

The n samples of a noise signal have joint pdf given by

It is clear that the above is the product of n one-dimensional Gaussian pdf’s.Thus are
independent Gaussian random variables.

6.2 FUNCTIONS OF SEVERAL RANDOM VARIABLES

Functions of vector random variables arise naturally in random experiments. For ex-
ample may correspond to observations from n repetitions of an
experiment that generates a given random variable.We are almost always interested in
the sample mean and the sample variance of the observations. In another example

X = 1X1 ,X2 , Á ,Xn2

X1 , Á ,Xn

fX1, Á , Xn1x1 , Á , xn2 =
e-1x1

2+Á+xn
22/2

12p2n/2 for all x1 , Á , xn .

X1 ,X2 , Á ,Xn

x1 , Á , xn .

fX1, Á , Xn1x1 , Á , xn2 = fX1
1x12Á fXn1xn2

pX1, Á , Xn1x1 , Á , xn2 = pX1
1x12Á pXn1xn2 for all x1 , Á , xn .

x1 , Á , xn .

FX1, Á , Xn1x1 , Á , xn2 = FX1
1x12Á FXn1xn2

X1 , Á ,XnA1 , Á ,An .

P3X1 in A1 ,X2 in A2 , Á ,Xn in An4 = P3X1 in A14P3X2 in A24Á P3Xn in An4
X1 , Á ,Xn

x = 0.X3

fX3
1x32 = -3

 
1

z
 

 1

y
 ln y dy = -

1

2
1ln y22 `

z

1

=
1

2
1ln z22.

X3

fX2,X3
1x2 , x32 = 3

 
1

y
 

1

xy
dx =

1

y
 ln x `

y

1

=
1

y
 ln

1

y
.

0 6 z 6 y 6 1X3X2
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may correspond to samples of a speech waveform and we may
be interested in extracting features that are defined as functions of X for use in a
speech recognition system.

6.2.1 One Function of Several Random Variables

Let the random variable Z be defined as a function of several random variables:

(6.17)

The cdf of Z is found by finding the equivalent event of that is, the set
then

(6.18)

The pdf of Z is then found by taking the derivative of 

Example 6.9 Maximum and Minimum of n Random Variables

Let and where the are independent
random variables with the same distribution. Find and 

The maximum of is less than x if and only if each is less than x, so:

The minimum of is greater than x if and only if each is greater than x, so:

and

Example 6.10 Merging of Independent Poisson Arrivals

Web page requests arrive at a server from n independent sources. Source j generates packets
with exponentially distributed interarrival times with rate Find the distribution of the inter-
arrival times between consecutive requests at the server.

Let the interarrival times for the different sources be given by Each 
satisfies the memoryless property, so the time that has elapsed since the last arrival from each
source is irrelevant. The time until the next arrival at the multiplexer is then:

Therefore the pdf of Z is:

= P3X1 7 z4P3X2 7 z4Á P3Xn 7 z4
 1 - FZ1z2 = P3min1X1 ,X2 , Á ,Xn2 7 z4

Z = min1X1 ,X2 , Á ,Xn2.

XjX1 ,X2 , Á ,Xn .

lj .

FZ1z2 = 1 - 11 - FX1z22n.
= P3X1 7 z4P3X2 7 z4Á P3Xn 7 z4 = 11 - FX1z22n

 1 - FZ1z2 = P3min1X1 ,X2 , Á ,Xn2 7 z4
XiX1 ,X2 , Á ,Xn

= P3X1 … w4P3X2 … w4Á P3Xn … w4 = 1FX1w22n.
FW1w2 = P3max1X1 ,X2 , Á ,Xn2 … w4

XiX1 ,X2 , Á ,Xn

FZ1z2.FW1w2
XiZ = min1X1 ,X2 , Á ,Xn2,W = max1X1 ,X2 , Á ,Xn2

FZ1z2.
FZ1z2 = P3X in Rz4 = Lx in Rz

Á LfX1, Á , Xn1x1
œ , Á , xn

œ 2 dx1
œ Á dxn

œ .

Rz = 5x: g1x2 … z6,
5Z … z6,

Z = g1X1 ,X2 , Á ,Xn2.

X = 1X1 ,X2 , Á ,Xn2
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The interarrival time is an exponential random variable with rate 

Example 6.11 Reliability of Redundant Systems

A computing cluster has n independent redundant subsystems. Each subsystem has an exponen-
tially distributed lifetime with parameter The cluster will operate as long as at least one sub-
system is functioning. Find the cdf of the time until the system fails.

Let the lifetime of each subsystem be given by The time until the last sub-
system fails is:

Therefore the cdf of W is:

6.2.2 Transformations of Random Vectors

Let be random variables in some experiment, and let the random vari-
ables be defined by a transformation that consists of n functions of

The joint cdf of at the point is equal to the probabil-
ity of the region of x where for 

(6.19a)

If have a joint pdf, then

(6.19b)

Example 6.12

Given a random vector X, find the joint pdf of the following transformation:

Zn = gn1Xn2 = anXn + bn .

o

Z2 = g21X22 = a2X2 + b2 ,

Z1 = g11X12 = a1X1 + b1 ,

FZ1, Á ,Zn1z1 , Á , zn2 = 1Á
x¿:gk1x¿2…zk1 fX1, Á ,Xn1x1

œ , Á , xn
œ 2 dx1

œ Á dx¿.

X1 , Á ,Xn

FZ1, Á ,Zn1z1 , Á , zn2 = P3g11X2 … z1 , Á , gn1X2 … zn4.
k = 1, Á , n:gk1x2 … zk

z = 1z1 , Á , zn2Z = 1Z1 , Á , Zn2
Z1 = g11X2 Z2 = g21X2 Á Zn = gn1X2.

X = 1X1 , Á ,Xn2:
Z1 , Á , Zn

X1 , Á ,Xn

FW1w2 = AFX1w2 Bn = 11 - e-lw2n = 1 - ¢n
1
≤e-lw + ¢n

2
≤e-2lw + Á .

W = max1X1 ,X2 , Á ,Xn2.
X1 ,X2 , Á ,Xn .

l.

l1 + l2 + Á + ln .

= e-l1ze-l2zÁ e-lnz = e-1l1+l2+Á+ln2z.
= A1 - FX1

1z2 B A1 - FX2
1z2 B Á A1 - FXn1z2 B
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Note that if and only if if so

6.2.3 pdf of General Transformations

We now introduce a general method for finding the pdf of a transformation of n jointly
continuous random variables. We first develop the two-dimensional case. Let the ran-
dom variables V and W be defined by two functions of X and Y:

(6.20)

Assume that the functions v(x, y) and w(x, y) are invertible in the sense that the equa-
tions and can be solved for x and y, that is,

The joint pdf of X and Y is found by finding the equivalent event of infinitesimal rec-
tangles.The image of the infinitesimal rectangle is shown in Fig. 6.1(a).The image can be
approximated by the parallelogram shown in Fig. 6.1(b) by making the approximation

and similarly for the y variable. The probabilities of the infinitesimal rectangle and the
parallelogram are approximately equal, therefore

and

(6.21)

where dP is the area of the parallelogram. By analogy with the case of a linear
transformation (see Eq. 5.59), we can match the derivatives in the above approxi-
mations with the coefficients in the linear transformations and conclude that the

fV,W1v, w2 =
fX,Y1h11v, w2, 1h21v, w22

` dP
dxdy

`
,

fX,Y1x, y2 dx dy = fV,W1v, w2 dP

gk1x + dx, y2 M gk1x, y2 +
0

0x
gk1x, y2 dx k = 1, 2

x = h11v, w2 and y = h21v, w2.
w = g21x, y2v = g11x, y2

V = g11X, Y2 and W = g21X, Y2.

*

=
1

a1 Á an
fX1,X2, Á , Xn¢ z1 - b1

a1
,
z2 - b2

a2
, Á ,

zn - bn

an
≤ .

fZ1,Z2, Á , Zn1z1 , z2 , Á , zn2 =
0n

0z1 Á 0zn
FZ1,Z2, Á , Zn1z1 , z2 , Á , zn2

= FX1,X2, Á , Xn¢ z1 - b1

a1
,
z2 - b2

a2
, Á ,

zn - bn

an
≤FZ1,Z2, Á , Zn1z1 , z2 , Á , zn2 = PBX1 …

z1 - b1

a1
,X2 …

z2 - b2

a2
, Á ,Xn …

zn - bn

an
Rak 7 0,Xk … 1zk - bk2/ak ,Zk = akXk + bk , … zk ,
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“stretch factor” at the point (v, w) is given by the determinant of a matrix of partial
derivatives:

J1x, y2 = detD 0v

0x

0v

0y

0w

0x

0w

0y

T .

y

x

(a)

(b)

w

(x, y � dy) (x � dx, y � dy)

(g1(x, y � dy),

(g1(x � dx, y � dy), g2(x � dx, y � dy))

(g1(x � dx, y), g2(x � dx, y))

(g1(x, y), g2(x, y))

g2(x, y � dy))

(x � dx, y)(x, y)

v

w

(v, w)

v � g1(x, y)

(v � dx, w �

w � g2(x, y)

v


g1 


x
dx)


g2  


x

(v � dy, w �

g1 


y
dy)


g2  


y

(v � dx �

g1 


x
dy, w �


g1 


y
dx �


g2 


x
dy)


g2 


y

FIGURE 6.1
(a) Image of an infinitesimal rectangle under general transformation. (b) Approximation of image by a parallelogram.
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The determinant J(x, y) is called the Jacobian of the transformation. The Jacobian of
the inverse transformation is given by

It can be shown that

We therefore conclude that the joint pdf of V and W can be found using either of the
following expressions:

(6.22a)

(6.22b)

It should be noted that Eq. (6.21) is applicable even if Eq. (6.20) has more than
one solution; the pdf is then equal to the sum of terms of the form given by Eqs. (6.22a)
and (6.22b), with each solution providing one such term.

Example 6.13

Server 1 receives m Web page requests and server 2 receives k Web page requests.Web page trans-
mission times are exponential random variables with mean Let X be the total time to transmit
files from server 1 and let Y be the total time for server 2. Find the joint pdf for T, the total trans-
mission time, and W, the proportion of the total transmission time contributed by server 1:

From Chapter 4, the sum of j independent exponential random variables is an Erlang ran-
dom variable with parameters j and Therefore X and Y are independent Erlang random vari-
ables with parameters m and and k and respectively:

We solve for X and Y in terms of T and W:

The Jacobian of the transformation is:

=
-x

1x + y22 -
y

1x + y22 =
-1

x + y
=

-1

t
.

J1x, y2 = detC 1 1

y

1x + y22
-x

1x + y22
S

X = TW and Y = T11 - W2.

fX1x2 =
me-mx1mx2m-1

1m - 12!  and fY1y2 =
me-my1my2k-1

1k - 12! .

m,m,
m.

T = X + Y and W =
X

X + Y
.

1/m.

= fX,Y1h11v, w2, 1h21v, w22 ƒJ1v, w2 ƒ .
fV,W1v, w2 =

fX,Y1h11v, w2, 1h21v, w22
ƒJ1x, y2 ƒ

ƒJ1v, w2 ƒ =
1

ƒJ1x, y2 ƒ .

J1v, w2 = detD 0x0v 0x

0w

0y

0v

0y

0w

T .
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The joint pdf of T and W is then:

We see that T and W are independent random variables. As expected, T is Erlang with parame-
ters and since it is the sum of independent Erlang random variables. W is the
beta random variable introduced in Chapter 3.

The method developed above can be used even if we are interested in only one
function of a random variable. By defining an “auxiliary” variable, we can use the
transformation method to find the joint pdf of both random variables, and then we can
find the marginal pdf involving the random variable of interest. The following example
demonstrates the method.

Example 6.14 Student’s t-distribution

Let X be a zero-mean, unit-variance Gaussian random variable and let Y be a chi-square random
variable with n degrees of freedom. Assume that X and Y are independent. Find the pdf of

Define the auxiliary function of The variables X and Y are then related to V and W by

The Jacobian of the inverse transformation is

Since the joint pdf of V and W is thus

The pdf of V is found by integrating the joint pdf over w:

If we let the integral becomes

fV1v2 =
11 + v2/n2-1n+12/2

2np≠1n/22 L
q

0

1w¿21n-12/2e-w¿ dw¿.

w¿ = 1w/221v2/n + 12,

fV1v2 =
1

22np≠1n/22L
q

0

1w/221n-12/2e-31w/2211+v2/n24 dw.

=
1w/221n-12/2e-31w/2211+v2/n24

22np≠1n/22 .

fV,W1v, w2 =
e-x

2/2

22p

1y/22n/2-1e-y/2

2≠1n/22 ƒJ1v, w2 ƒ `
x = v2w/n
y = w   

fX,Y1x, y2 = fX1x2fY1y2,
ƒJ1v, w2 ƒ = ` 1w/n 1v/221wn

0 1
` = 1w/n .

X = V2W/n and Y = W.

W = Y.
V = X/2Y/n .

m + km,m + k

=
me-mt1mt2m+k-1

1m + k - 12!
1m + k - 12!
1m - 12!1k - 12! 1w2m-111 - w2k-1.

= t
me-mtw1mtw2m-1

1m - 12!
me-mt11-w21mt11 - w22k-1

1k - 12!

x= tw
y= t(1-w)

fT,W1t, w2 =
1

ƒJ1x, y2 ƒ Bme-mx1mx2m-1

1m - 12!
me-my1my2k-1

1k - 12! R
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By noting that the above integral is the gamma function evaluated at we finally obtain
the Student’s t-distribution:

This pdf is used extensively in statistical calculations. (See Chapter 8.)

Next consider the problem of finding the joint pdf for n functions of n random
variables

We assume as before that the set of equations

(6.23)

has a unique solution given by

The joint pdf of Z is then given by

(6.24a)

(6.24b)

where and are the determinants of the transformation
and the inverse transformation, respectively,

and

J1z1 , Á , zn2 = detE 0h1

0z1

Á
0h1

0zn
o o

0hn
0z1

Á 0hn
0zn

U .

J1x1 , Á , xn2 = detE 0g1

0x1

Á
0g1

0xn
o o

0gn
0x1

Á
0gn
0xn

U
ƒJ1z1 , Á , zn2 ƒƒJ1x1 , Á , xn2 ƒ

= fX1, Á ,Xn1h11z2, h21z2, Á , hn1z22 ƒJ1z1 , z2 , Á , zn2 ƒ ,
fZ1, Á ,Zn1z1 , Á , zn2 =

fX1, Á ,Xn1h11z2, h21z2, Á , hn1z22
ƒJ1x1 , x2 , Á , xn2 ƒ

x1 = h11x2, x2 = h21x2, Á , xn = hn1x2.

z1 = g11x2, z2 = g21x2, Á , zn = gn1x2.

Z1 = g11X2, Z2 = g21X2, Á , Zn = gn1X2.
X = 1X1 , Á ,Xn2:

fV1v2 =
11 + v2/n2-1n+12/2≠11n + 12/22

2np≠1n/22 .

1n + 12/2,
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In the special case of a linear transformation we have:

The components of Z are:

Since the Jacobian is then simply:

Assuming that A is invertible,1 we then have that:

Example 6.15 Sum of Random Variables

Given a random vector find the joint pdf of the sum:

We will use the transformation by introducing auxiliary variables as follows:

The inverse transformation is given by:

The Jacobian matrix is:

Therefore the joint pdf of Z is

The pdf of is obtained by integrating with respect to and 

This expression can be simplified further if and are independent random variables.X3X1 ,X2 ,

fZ3
1z2 = 3

 q

-q 
3
 q

-q 

fX1z1 , z2 - z1 , z - z22 dz1dz2 .

z2:z1Z3

fZ1z1 , z2 , z32 = fX1z1 , z2 - z1 , z3 - z22.

J1x1 , x2 , x32 = detC1 0 0

1 1 0

1 1 1

S = 1.

X1 = Z1 ,X2 = Z2 - Z1 ,X3 = Z3 - Z2 .

Z1 = X1 , Z2 = X1 + X2 , Z3 = X1 + X2 + X3 .

Z = X1 + X2 + X3 .

X = 1X1 ,X2 ,X32,

fZ1z2 =
fX1x2
ƒdet A ƒ

`
x=A-1z

=
fX1A-1z2
ƒdet A ƒ

.

J1x1 , x2 , Á , xn2 = detDa11 a12 Á a1n

a21 a22 Á a2n

. . Á .

an1 an2 Á ann

T = det A.

dzj /dxi = aji ,

Zj = aj1X1 + aj2X2 + Á + ajnXn .

Z = AX = Da11 a12 Á a1n

a21 a22 Á a2n

. . Á .

an1 an2 Á ann

T DX1

X2

Á

Xn

T .

1Appendix C provides a summary of definitions and useful results from linear algebra.
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6.3 EXPECTED VALUES OF VECTOR RANDOM VARIABLES

In this section we are interested in the characterization of a vector random variable
through the expected values of its components and of functions of its components. We
focus on the characterization of a vector random variable through its mean vector and
its covariance matrix. We then introduce the joint characteristic function for a vector
random variable.

The expected value of a function of a vector random vari-
able is given by:

(6.25)

X = 1X1 ,X2 , Á ,Xn2
g1X2 = g1X1 , Á ,Xn2

E[Z] = d Lq

-q
Á L

q

-q
g1x1 , x2 , Á , xn2fX1x1 , x2 , Á , xn2 dx1 dx2 Á dxn X jointly

a
x1

Á a
xn

g1x1 , x2 , Á , xn2pX1x1 , x2 , Á , xn2 X discrete.

continuous

An important example is g(X) equal to the sum of functions of X. The procedure
leading to Eq. (5.26) and a simple induction argument show that:

(6.26)

Another important example is g(X) equal to the product of n individual functions of
the components. If are independent random variables, then

(6.27)

6.3.1 Mean Vector and Covariance Matrix

The mean, variance, and covariance provide useful information about the distribu-
tion of a random variable and are easy to estimate, so we are frequently interested
in characterizing multiple random variables in terms of their first and second mo-
ments. We now introduce the mean vector and the covariance matrix. We then in-
vestigate the mean vector and the covariance matrix of a linear transformation of a
random vector.

For the mean vector is defined as the column vector of
expected values of the components 

(6.28a)

Note that we define the vector of expected values as a column vector. In previous sec-
tions we have sometimes written X as a row vector, but in this section and wherever we
deal with matrix transformations, we will represent X and its expected value as a col-
umn vector.

mX = E[X] = EDX1

X2
...
Xn

T ! DE[X1]

E[X2]
...

E[Xn]

T .

Xk:
X = 1X1 ,X2 , Á ,Xn2,

E3g11X12g21X22Á gn1Xn24 = E3g11X124E3g21X224Á E3gn1Xn24.
X1 , Á ,Xn

E3g11X2 + g21X2 + Á + gn1X24 = E3g11X24 + Á + E3gn1X24.
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The correlation matrix has the second moments of X as its entries:

(6.28b)

The covariance matrix has the second-order central moments as its entries:

(6.28c)

Both and are symmetric matrices.The diagonal elements of are
given by the variances of the elements of X. If these ele-
ments are uncorrelated, then for and is a diagonal ma-
trix. If the random variables are independent, then they are uncorrelated
and is diagonal. Finally, if the vector of expected values is 0, that is,
for all k, then

Example 6.16

Let be the jointly Gaussian random vector from Example 6.6. Find E[X] and 
We rewrite the joint pdf as follows:

We see that is a Gaussian random variable with zero mean and unit variance, and that it is in-
dependent of and We also see that and are jointly Gaussian with zero mean and
unit variance, and with correlation coefficient

Therefore the vector of expected values is: and

KX = E 1 -
1

22
0

-
1

22
1 0

0 0 1

U .

mX = 0,

rX1X2
= -

1

22
=

COV1X1 ,X22
sX1
sX2

= COV1X1 ,X22.

X2X1X2 .X1

X3

fX1,X2,X3
1x1 , x2 , x32 =

e-1x1
2 +x2

2 -2 1

22
x1x22

2pB1 - ¢ -
1

22
≤2

e-x3
2 /2

22p
.

KX.X = 1X1 ,X2 ,X32

RX = KX.
mk = E3Xk4 = 0KX

X1 , Á ,Xn

KXj Z k,COV1Xj ,Xk2 = 0
VAR3Xk4 = E31Xk - mk224

KXn * nKXRX

KX = D E31X1 -m1224 E31X1 -m121X2 -m224 Á E31X1 - m121Xn - mn24
E31X2 -m221X1 -m124 E31X2 -m2224 Á E31X2 - m221Xn - mn24

. . Á .

E31Xn -mn21X1 -m124 E31Xn -mn21X2 -m224 Á E31Xn - mn224
T .

RX = D E3X1
24 E3X1X24 Á E3X1Xn4

E3X2X14 E3X2
24 Á E3X2Xn4

. . Á .

E3XnX14 E3XnX24 Á E3Xn24
T .
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We now develop compact expressions for and If we multiply X, an
matrix, and a matrix, we obtain the following matrix:

If we define the expected value of a matrix to be the matrix of expected values of the
matrix elements, then we can write the correlation matrix as:

(6.29a)

The covariance matrix is then:

(6.29b)

6.3.2 Linear Transformations of Random Vectors

Many engineering systems are linear in the sense that will be elaborated on in Chapter
10. Frequently these systems can be reduced to a linear transformation of a vector of
random variables where the “input” is X and the “output” is Y:

The expected value of the kth component of Y is the inner product (dot product) of the
kth row of A and X:

Each component of E[Y] is obtained in this manner, so:

(6.30a)= AE3X4 = AmX.

mY = E3Y4 = Ganj=1

a1jE3Xj4

a
n

j=1

a2jE3Xj4
..
.

a
n

j=1

anjE3Xj4

W = Da11 a12 Á an

a21 a22 Á a2n

. . Á .

an1 an2 Á ann

T DE3X14
E3X24

.

..

E3Xn4
T

E3Yk4 = EBan
j=1

akjXjR = a
n

j=1

akjE3Xj4.

Y = Da11 a12 Á an

a21 a22 Á a2n

. . Á .

an1 an2 Á ann

T DX1

X2
...

Xn

T = AX.

= RX - mXmX
 T.

= E3XXT4 - mX E3XT4 - E3X4mX
 T + mXmX

 T

KX = E31X - mX21X - mX2T4

RX = E3XXT4.

XXT = DX1

X2
...
Xn

T3X1 ,X2 , Á ,Xn4 = D X1
2 X1X2 Á X1Xn

X2X1 X2
2 Á X2Xn

. . Á .

XnX1 XnX2 Á Xn
2

T .

n * n1 * nXT,
n * 1KX.RX
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The covariance matrix of Y is then:

(6.30b)

where we used the fact that the transpose of a matrix multiplication is the product of
the transposed matrices in reverse order:

The cross-covariance matrix of two random vectors X and Y is defined as:

We are interested in the cross-covariance between X and

(6.30c)

Example 6.17 Transformation of Uncorrelated Random Vector

Suppose that the components of X are uncorrelated and have unit variance, then the
identity matrix. The covariance matrix for is

(6.31)

In general is not a diagonal matrix and so the components of Y are correlated. In
Section 6.6 we discuss how to find a matrix A so that Eq. (6.31) holds for a given We can
then generate a random vector Y with any desired covariance matrix 

Suppose that the components of X are correlated so is not a diagonal matrix.
In many situations we are interested in finding a transformation matrix A so that

has uncorrelated components. This requires finding A so that 
is a diagonal matrix. In the last part of this section we show how to find such a ma-
trix A.

Example 6.18 Transformation to Uncorrelated Random Vector

Suppose the random vector and in Example 6.16 is transformed using the matrix:

Find the E[Y] and KY.

A = E 1

22

1

22
0

1

22
-

1

22
0

0 0 1

U .

X3X1 ,X2 ,

KY = AKXATY = AX

KX

KY.
KY.

KY = AAT

KY = AKXAT = AIAT = AAT.

Y = AX

KX = I,

= KXAT.

KXY = E3X - mX21Y - mY2T4 = E31X - mX21X - mX2TAT4
Y = AX:

KXY = E31X - mX21Y - mY2T4 = E3XYT4 - mXmY
 T = RXY - mXmY

 T.

5A1X - mX26T = 1X - mX2TAT.

= AKXAT,

= E3A1X - mX21X - mX2TAT4 = AE31X - mX21X - mX2T4AT

KY = E31Y - mY21Y - mY2T4 = E31AX - AmX21AX - AmX2T4
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Since then The covariance matrix of Y is:

The linear transformation has produced a vector of random variables with
components that are uncorrelated.

6.3.3 Joint Characteristic Function

The joint characteristic function of n random variables is defined as

(6.32a)

In this section we develop the properties of the joint characteristic function of two ran-
dom variables. These properties generalize in straightforward fashion to the case of n
random variables. Therefore consider

(6.32b)

If X and Y are jointly continuous random variables, then

(6.32c)

Equation (6.32c) shows that the joint characteristic function is the two-dimensional
Fourier transform of the joint pdf of X and Y. The inversion formula for the Fourier
transform implies that the joint pdf is given by

(6.33)

Note in Eq. (6.32b) that the marginal characteristic functions can be obtained from
joint characteristic function:

(6.34)

If X and Y are independent random variables, then the joint characteristic function is
the product of the marginal characteristic functions since

(6.35)

where the third equality follows from Eq. (6.27).

= E3ejv1X4E3ejv2Y4 = ≥X1v12≥Y1v22,
≥X,Y1v1 , v22 = E3ej1v1X+v2Y24 = E3ejv1Xejv2Y4

≥X1v2 = ≥X,Y1v, 02 ≥Y1v2 = ≥X,Y10, v2.

fX,Y1x, y2 =
1

4p2
= L

q

-qL
q

-q
≥X,Y1v1 , v22e-j1v1x+v2y2 dv1 dv2 .

≥X,Y1v1 , v22 = L
q

-qL
q

-q
fX,Y1x, y2ej1v1x+v2y2 dx dy.

≥X,Y1v1 , v22 = E3ej1v1X+v2Y24.

≥X1,X2, Á , Xn1v1 , v2 , Á , vn2 = E3ej1v1X1+v2X2+Á+vnXn24.

*

Y = 1Y1 , Y2 , Y32

=
1

2
C1 1 0

1 -1 0

0 0 1

S E 1 -
1

22
1 +

1

22
0

1 -
1

22
- ¢1 +

1

22
≤ 0

0 0 1

U = E1 -
1

22
0 0

0 1 +
1

22
0

0 0 1

U .

KY = AKXAT =
1

2
C1 1 0

1 -1 0

0 0 1

S E 1 -
1

22
0

-
1

22
1 0

0 0 1

U C 1 1 0

1 -1 0

0 0 1

S
E3Y4 = AmX = 0.mX = 0,
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The characteristic function of the sum can be obtained from the
joint characteristic function of X and Y as follows:

(6.36a)

If X and Y are independent random variables, the characteristic function of 
is then

(6.36b)

In Section 8.1 we will use the above result in dealing with sums of random variables.
The joint moments of X and Y (if they exist) can be obtained by taking the de-

rivatives of the joint characteristic function. To show this we rewrite Eq. (6.32b) as the
expected value of a product of exponentials and we expand the exponentials in a
power series:

It then follows that the moments can be obtained by taking an appropriate set of de-
rivatives:

(6.37)

Example 6.19

Suppose U and V are independent zero-mean, unit-variance Gaussian random variables, and let

Find the joint characteristic function of X and Y, and find E[XY].
The joint characteristic function of X and Y is

Since U and V are independent random variables, the joint characteristic function of U and V is
equal to the product of the marginal characteristic functions:

= .

where marginal characteristic functions were obtained from Table 4.1.

e{-
1
212v1

2 +6v1v2+5v2
2 2}

= e-
1
21v1+2v222e- 1

21v1+v222
= ≥U1v1 + 2v22≥V1v1 + v22

≥X,Y1v1 , v22 = E3ej11v1+2v22U24E3ej11v1+v22V24

= E3ej11v1+2v22U+1v1+v22V24.
≥X,Y1v1 , v22 = E3ej1v1X+v2Y24 = E3ejv11U+V2ejv212U+V24

X = U + V Y = 2U + V.

E3XiYk4 =
1

ji+k
0i0k

0v1
i 0v2

k
≥X,Y1v1 , v22 |v1=0,v2=0 .

= a
q

i=0
a
q

k=0

E3XiYk4 1jv12i
i!

1jv22k
k!

.

= EBaq
i=0

1jv1X2i
i! a

q

k=0

1jv2Y2k
k!

R≥X,Y1v1 , v22 = E3ejv1Xejv2Y4

≥Z1v2 = ≥X,Y1av, bv2 = ≥X1av2≥Y1bv2.
Z = aX + bY

≥Z1v2 = E3ejv1aX+bY24 = E3ej1vaX+vbY24 = ≥X,Y1av, bv2.

Z = aX + bY
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The correlation E[XY] is found from Eq. (6.37) with and 

You should verify this answer by evaluating directly.

6.3.4 Diagonalization of Covariance Matrix

Let X be a random vector with covariance We are interested in finding an 
matrix A such that has a covariance matrix that is diagonal. The components
of Y are then uncorrelated.

We saw that is a real-valued symmetric matrix. In Appendix C we state results
from linear algebra that is then a diagonalizable matrix, that is, there is a matrix P
such that:

(6.38a)

where is a diagonal matrix and I is the identity matrix. Therefore if we let 
then from Eq. (6.30b) we obtain a diagonal 

We now show how P is obtained. First, we find the eigenvalues and eigenvectors
of from:

(6.38b)

where are column vectors.2 We can normalize each eigenvector so that
the sum of the square of its components, is 1. The normalized eigenvectors are

then orthonormal, that is,

(6.38c)

Let P be the matrix whose columns are the eigenvectors of and let be the diago-
nal matrix of eigenvalues:

From Eq. (6.38b) we have:

(6.39a)

where the second equality follows from the fact that each column of is obtained
by multiplying a column of P by By premultiplying both sides of the above equa-
tions by we obtain:

(6.39b)PTKXP = PTP∂ = ∂.
PT,

KX.
KXP

= 3l1e1 , l2e2 , Á , lnen4 = P∂

KXP = KX3e1 , e2 , Á , en4 = 3KXe1 , KXe2 , Á , KXen4

P = 3e1 , e2 , Á , en4 ∂ = diag3l14.
∂KX

ei
 Tej = di, j = b1 if i = j

0 if i Z j.

ei
 Tei ,

ein * 1ei

KXei = liei

KX

KY.
A = PT,∂

PTKXP = ∂ and PTP = I

KX

KX

Y = AX

n * nKX.

*

E3XY4 = E31U + V212U + V24
= 3.

+
1

2
exp{- 1

212v1
2 + 6v1v2 + 5v2

22}364 ƒ v1=0,v2=0

= -exp{- 1
212v1

2 + 6v1v2 + 5v2
22}36v1 + 10v24a 1

4
b34v1 + 6v24

E3XY4 =
1

j2
02

0v10v2

≥X,Y1v1 , v22 ƒ v1=0,v2=0

k = 1:i = 1

2See Appendix C.



Section 6.4 Jointly Gaussian Random Vectors 325

We conclude that if we let and

(6.40a)

then the random variables in Y are uncorrelated since

(6.40b)

In summary, any covariance matrix can be diagonalized by a linear transformation.
The matrix A in the transformation is obtained from the eigenvectors of 

Equation (6.40b) provides insight into the invertibility of and From lin-
ear algebra we know that the determinant of a product of matrices is the prod-
uct of the determinants, so:

where we used the fact that Recall that a matrix is invertible
if and only if its determinant is nonzero. Therefore is not invertible if and only if
one or more of the eigenvalues of is zero.

Now suppose that one of the eigenvalues is zero, say Since VAR
then But is defined as a linear combination, so

We conclude that the components of X are linearly dependent. Therefore, one or more
of the components in X are redundant and can be expressed as a linear combination of
the other components.

It is interesting to look at the vector X expressed in terms of Y. Multiply both
sides of Eq. (6.40a) by P and use the fact that 

(6.41)

This equation is called the Karhunen-Loeve expansion.The equation shows that a random
vector X can be expressed as a weighted sum of the eigenvectors of where the coeffi-
cients are uncorrelated random variables Furthermore, the eigenvectors form an ortho-
normal set. Note that if any of the eigenvalues are zero, VAR then =0,
and the corresponding term can be dropped from the expansion in Eq. (6.41). In Chapter
10, we will see that this expansion is very useful in the processing of random signals.

6.4 JOINTLY GAUSSIAN RANDOM VECTORS

The random variables are said to be jointly Gaussian if their joint pdf is
given by

(6.42a)fX1x2 ! fX1,X2,Á,Xn1x1 , Á , xn2 =
exp5-1

21x - m2TK-11x - m26
12p2n/2 ƒK ƒ 1/2

,

X1 ,X2 , Á ,Xn

Yk3Yk4 = lk = 0,
Yk .

KX,

X = PPTX = PY = 3e1 , e2 , Á , en4DY1

Y2
...
Yn

T = a
n

k=1

Ykek .

PPT = I:

0 = Yk = ak1X1 + ak2X2 + Á + aknXn.

YkYk = 0.lk = 0,
3Yk4 =lk = 0.

KX

KY

det PT det P = det I = 1.

det KY = det PT det KX det P = det ∂ = l1l2 Á ln ,

n * n
KY.KX

KX.
KX.

KY = PTKXP = ∂.

Y = AX = PTX,

A = PT,
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where x and m are column vectors defined by

and K is the covariance matrix that is defined by

(6.42b)

The in Eq. (6.42a) denotes the transpose of a matrix or vector. Note that the co-
variance matrix is a symmetric matrix since 

Equation (6.42a) shows that the pdf of jointly Gaussian random variables is com-

pletely specified by the individual means and variances and the pairwise covariances. It
can be shown using the joint characteristic function that all the marginal pdf’s associat-
ed with Eq. (6.42a) are also Gaussian and that these too are completely specified by
the same set of means, variances, and covariances.

Example 6.20

Verify that the two-dimensional Gaussian pdf given in Eq. (5.61a) has the form of Eq. (6.42a).
The covariance matrix for the two-dimensional case is given by

where we have used the fact the The determinant of K is

so the denominator of the pdf has the correct form. The inverse of the covariance
matrix is also a real symmetric matrix:

The term in the exponent is therefore

Thus the two-dimensional pdf has the form of Eq. (6.42a).

=
11x - m12/s122 - 2rX,Y11x - m12/s1211y - m22/s22 + 11y - m22/s222

11 - rX,Y
2 2 .

=
1

s1
2s2

211 - rX,Y
2 2 1x - m1 , y - m22B s2

21x - m12 - rX,Ys1s21y - m22
-rX,Ys1s21x - m12 + s1

21y - m22R
1

s1
2s2

211 - rX,Y
2 2 1x - m1 , y - m22B s2

2 -rX,Ys1s2

-rX,Ys1s2 s1
2 R Bx - m1

y - m2
R

K-1 =
1

s1
2s2

211 - rX,Y
2 2 B s2

2 -rX,Ys1s2

-rX,Ys1s2 s1
2 R .

s2
  211 - r2

X,Y2
s2

 1COV1X1 ,X22 = rX,Ys1s2 .

K = B s1
2 rX,Ys1s2

rX,Ys1s2 s2
2 R ,

COV1Xi ,Xj2 = COV1Xj ,Xi2.
1.2T

K = D VAR1X12 COV1X1 ,X22 Á COV1X1 ,Xn2
COV1X2 ,X12 VAR1X22 Á COV1X2 ,Xn2

o o o

COV1Xn ,X12 Á VAR1Xn2
T .

x = Dx1

x2

o

xn

T , m = Dm1

m2

o

mn

T = DE3X14
E3X24

o

E3Xn4
T
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Example 6.21

The vector of random variables (X, Y, Z) is jointly Gaussian with zero means and covariance matrix:

Find the marginal pdf of X and Z.
We can solve this problem two ways. The first involves integrating the pdf directly to obtain

the marginal pdf.The second involves using the fact that the marginal pdf for X and Z is also Gauss-
ian and has the same set of means, variances, and covariances.We will use the second approach.

The pair (X, Z) has zero-mean vector and covariance matrix:

The joint pdf of X and Z is found by substituting a zero-mean vector and this covariance matrix
into Eq. (6.42a).

Example 6.22 Independence of Uncorrelated Jointly Gaussian Random Variables

Suppose are jointly Gaussian random variables with for 
Show that are independent random variables.

From Eq. (6.42b) we see that the covariance matrix is a diagonal matrix:

Therefore

and

Thus from Eq. (6.42a)

Thus are independent Gaussian random variables.

Example 6.23 Conditional pdf of Gaussian Random Variable

Find the conditional pdf of given 
Let be the covariance matrix for and be the covariance ma-

trix for Let and then the latter matrices areQn -1
= Kn

-1
-1,Qn = Kn

-1Xn-1 = 1X1 ,X2 , Á ,Xn-12.
Kn-1Xn = 1X1 ,X2 , Á ,Xn2Kn

X1 ,X2 , Á ,Xn-1 .Xn

X1 ,X2 , Á ,Xn

fX1x2 =
expE -1

2a n

i=1
[1xi - mi2/si]2F

12p2n/2
ƒK ƒ

1/2

= q
n

i=1

expE - 1
2 [1xi - mi2/si]2F
22psi

2
= q

n

i=1

fXi1xi2.

1x - m2TK-11x - m2 = a
n

i=1
¢xi - mi
si

≤2

.

K-1 = diagB 1

si
2 RK = diag3VAR1Xi24 = diag3si24

X1 ,X2 , Á ,Xn

i Z j.COV1Xi ,Xj2 = 0X1 ,X2 , Á ,Xn

K¿ = B VAR1X2 COV1X, Z2
COV1Z,X2 VAR1Z2 R = B1.0 0.3

0.3 1.0
R .

K = C VAR1X2 COV1X, Y2 COV1X, Z2
COV1Y,X2 VAR1Y2 COV1Y, Z2
COV1Z,X2 COV1Z, Y2 VAR1Z2

S = C1.0 0.2 0.3

0.2 1.0 0.4

0.3 0.4 1.0

S .
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submatrices of the former matrices as shown below:

Below we will use the subscript n or to distinguish between the two random vectors and
their parameters. The marginal pdf of given is given by:

In Problem 6.60 we show that the terms in the above expression are given by:

(6.43)

where and

This implies that has mean and variance The term is part of the nor-
malization constant. We therefore conclude that:

We see that the conditional mean of is a linear function of the “observations”

6.4.1 Linear Transformation of Gaussian Random Variables

A very important property of jointly Gaussian random variables is that the linear trans-

formation of any n jointly Gaussian random variables results in n random variables that

are also jointly Gaussian. This is easy to show using the matrix notation in Eq. (6.42a).
Let be jointly Gaussian with covariance matrix and mean vector

and define by

Y = AX,

Y = 1Y1 , Á , Yn2mX

KXX = 1X1 , Á ,Xn2

*

x1 , x2 , Á , xn-1 .
Xn

fXn1xn ƒ x1 , Á , xn-12 =

expb - Qnn
2
¢x - mn +

1

Qnn
a
n-1

j=1

Qjn1xj - mj2≤2 r
22p /Qnn

QnnB
21/Qnn .mn - B,Xn

ƒKn ƒ / ƒKn-1 ƒ = 1/Qnn .B =
1

Qnn
a
n-1

j=1

Qjn1xj - mj2
= Qnn51xn - mn2 + B62 - QnnB

2

1
21xn - mn2TQn1xn - mn2 - 1

21xn-1 - mn-12TQn-11xn-1 - mn-12

=
exp5-1

21xn - mn2TQn1xn - mn2 + 1
21xn-1 - mn-12TQn-11xn-1 - mn-126

22p ƒKn ƒ
1/2/ ƒKn-1 ƒ

1/2
.

=
exp5-1

21xn - mn2TQn1xn - mn26
12p2n/2 ƒKn ƒ

1/2

12p21n-121/2 ƒKn-1 ƒ
1/2

exp5-1
21xn-1 - mn-12TQn-11xn-1 - mn-126

fXn1xn ƒ x1 , Á , xn-12 =
fXn1Xn2
fXn - 1
1Xn-12

X1 ,X2 , Á ,Xn-1Xn

n - 1

Kn = D K1n

Kn-1 K2n
...

K1n K2n Á Knn

T Qn = D Q1n

Qn-1 Q2n
...

Q1n Q2n Á Qnn

T
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where A is an invertible matrix. From Eq. (5.60) we know that the pdf of Y is
given by

(6.44)

From elementary properties of matrices we have that

and

The argument in the exponential is therefore equal to

since Letting and and noting that 

we finally
have that the pdf of Y is

(6.45)

Thus the pdf of Y has the form of Eq. (6.42a) and therefore are jointly
Gaussian random variables with mean vector and covariance matrix:

This result is consistent with the mean vector and covariance matrix we obtained be-
fore in Eqs. (6.30a) and (6.30b).

In many problems we wish to transform X to a vector Y of independent Gaussian
random variables. Since is a symmetric matrix, it is always possible to find a matrix
A such that is a diagonal matrix. (See Section 6.6.) For such a matrix A,
the pdf of Y will be

(6.46)

where are the diagonal components of We assume that these values are
all nonzero. The above pdf implies that are independent random variablesY1 , Á , Yn

¶.l1 , Á , ln

=

expb -1
2a
n

i=1

1yi - ni22/li r
312pl1212pl22Á 12pln241/2,

fY1y2 =
e-11/221y-n2T¶-11y-n2
12p2n/2

ƒ ¶ ƒ
1/2

AKXA
T = ¶

KX

mY = AmX and KY = AKXA
T.

Y1 , Á , Yn

fY1y2 =
e-11/221y-mY2TKY-1 1y-mY2
12p2n/2

ƒKY ƒ
1/2 .

det1KY2 = det1AKXAT2 = det1A2det1KX2det1AT2 = det1A22 det1KX2,
mY = AmXKY = AKXA

TA-1TK-1
 X = 1AKXAT2-1.

1y - AmX2TA-1TKX
-1A-11y - AmX2 = 1y - AmX2T1AKXAT2-11y - AmX2

1A-1y - mX2T = 1y - AmX2TA-1T.

1A-1y - mX2 = A-11y - AmX2

=
exp5-1

21A-1y - mX2TKX-11A-1y - mX26
12p2n/2

ƒA ƒ ƒKX ƒ
1/2 .

fY1y2 =
fX1A-1y2

ƒA ƒ

n * n
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with means and variance In conclusion, it is possible to linearly transform a vector

of jointly Gaussian random variables into a vector of independent Gaussian random

variables.
It is always possible to select the matrix A that diagonalizes K so that 

The transformation AX then corresponds to a rotation of the coordinate system so that
the principal axes of the ellipsoid corresponding to the pdf are aligned to the axes of the
system. Example 5.48 provides an example of rotation.

In computer simulation models we frequently need to generate jointly Gaussian
random vectors with specified covariance matrix and mean vector. Suppose that

has components that are zero-mean, unit-variance Gaussian
random variables, so its mean vector is 0 and its covariance matrix is the identity matrix
I. Let K denote the desired covariance matrix. Using the methods discussed in Section
6.3, it is possible to find a matrix A so that Therefore has zero
mean vector and covariance K. From Eq. (6.46) we have that Y is also a jointly Gauss-
ian random vector with zero mean vector and covariance K. If we require a nonzero
mean vector m, we use 

Example 6.24 Sum of Jointly Gaussian Random Variables

Let be jointly Gaussian random variables with joint pdf given by Eq. (6.42a). Let

We will show that Z is always a Gaussian random variable.
We find the pdf of Z by introducing auxiliary random variables. Let

If we define then

where

From Eq. (6.45) we have that Z is jointly Gaussian with mean and covariance matrix
Furthermore, it then follows that the marginal pdf of Z is a Gaussian pdf with mean

given by the first component of n and variance given by the 1-1 component of the covariance ma-
trix C. By carrying out the above matrix multiplications, we find that

(6.47a)

(6.47b)VAR3Z4 = a
n

i=1
a
n

j=1

aiaj COV1Xi ,Xj2.

E3Z4 = a
n

i=1

aiE3Xi4

C = AKAT.
n = Am,

A = Da1 a2 Á # an

0 1 Á # 0
# # Á # #
0 # Á 0 1

T .

Z = AX

Z = 1Z1 , Z2 , Á , Zn2,
Z2 = X2 ,  Z3 = X3 , Á ,  Zn = Xn .

Z = a1X1 + a2X2 + Á + anXn .

X1 ,X2 , Á ,Xn

Y + m.

Y = ATUATA = K.

X = 1X1 ,X2 , Á ,Xn2

n = 2

det1A2 = 1.

li .ni
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6.4.2 Joint Characteristic Function of a Gaussian Random Variable

The joint characteristic function is very useful in developing the properties of jointly
Gaussian random variables. We now show that the joint characteristic function of n
jointly Gaussian random variables is given by

(6.48a)

which can be written more compactly as follows:

(6.48b)

where m is the vector of means and K is the covariance matrix defined in Eq. (6.42b).
Equation (6.48) can be verified by direct integration (see Problem 6.65). We use

the approach in [Papoulis] to develop Eq. (6.48) by using the result from Example 6.24
that a linear combination of jointly Gaussian random variables is always Gaussian.
Consider the sum

The characteristic function of Z is given by

On the other hand, since Z is a Gaussian random variable with mean and variance
given Eq. (6.47), we have

(6.49)

By equating both expressions for with we finally obtain

(6.50)

By replacing the with we obtain Eq. (6.48).
The marginal characteristic function of any subset of the random variables

can be obtained by setting appropriate to zero. Thus, for example,
the marginal characteristic function of for is obtained by set-
ting Note that the resulting characteristic function
again corresponds to that of jointly Gaussian random variables with mean and covari-
ance terms corresponding the reduced set 

The derivation leading to Eq. (6.50) suggests an alternative definition for jointly
Gaussian random vectors:

Definition: X is a jointly Gaussian random vector if and only every linear com-
bination is a Gaussian random variable.Z = aTX

X1 ,X2 , Á ,Xm .

vm+1 = vm+2 = Á = vn = 0.
m 6 nX1 ,X2 , Á ,Xm

vi’sX1 ,X2 , Á ,Xn

vi’sai’s

= eja
Tm- 1

2 aTKa.

£X1,X2, Á  , Xn1a1 , a2 , Á , an2 = ejani = 1
aimi-

1
2ani = 1ank = 1

aiak COV1Xi,Xk2
v = 1,£Z1v2

= ejvani = 1
aimi-

1
2v

2ani = 1ank = 1
aiak COV1Xi,Xk2.

£Z1v2 = ejvE3Z4- 1
2 VAR3Z4v2

= £X1, Á , Xn1a1v, a2v, Á , anv2.
£Z1v2 = E3ejvZ4 = E3ej1va1X1+va2X2+Á+vanXn24

Z = a1X1 + a2X2 + Á + anXn .

£X1V2 ! £X1,X2, Á , Xn1v1 , v2 , Á ,vn2 = ejV
Tm- 1

2V
TKV,

£X1,X2, Á , Xn1v1 , v2 , Á ,vn2 = ejani = 1
vimi-

1
2ani = 1ank = 1

vivk COV1Xi,Xk2,

X1, X2, Á , Xn

*
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In Example 6.24 we showed that if X is a jointly Gaussian random vector then the lin-
ear combination is a Gaussian random variable. Suppose that we do not
know the joint pdf of X but we are given that is a Gaussian random variable
for any choice of coefficients This implies that Eqs. (6.48) and
(6.49) hold, which together imply Eq. (6.50) which states that X has the characteristic
function of a jointly Gaussian random vector.

The above definition is slightly broader than the definition using the pdf in Eq. (6.44).
The definition based on the pdf requires that the covariance in the exponent be invertible.
The above definition leads to the characteristic function of Eq. (6.50) which does not
require that the covariance be invertible. Thus the above definition allows for cases
where the covariance matrix is not invertible.

6.5 ESTIMATION OF RANDOM VARIABLES

In this book we will encounter two basic types of estimation problems. In the first type, we
are interested in estimating the parameters of one or more random variables, e.g., probabil-
ities, means, variances, or covariances. In Chapter 1, we stated that relative frequencies can
be used to estimate the probabilities of events, and that sample averages can be used to es-
timate the mean and other moments of a random variable. In Chapters 7 and 8 we will
consider this type of estimation further. In this section, we are concerned with the second
type of estimation problem, where we are interested in estimating the value of an inacces-

sible random variable X in terms of the observation of an accessible random variable Y. For
example, X could be the input to a communication channel and Y could be the observed
output. In a prediction application, X could be a future value of some quantity and Y its
present value.

6.5.1 MAP and ML Estimators

We have considered estimation problems informally earlier in the book. For example,
in estimating the output of a discrete communications channel we are interested in
finding the most probable input given the observation that is, the value of input
x that maximizes 

In general we refer to the above estimator for X in terms of Y as the maximum a pos-

teriori (MAP) estimator. The a posteriori probability is given by:

and so the MAP estimator requires that we know the a priori probabilities 

In some situations we know but we do not know the a priori proba-
bilities, so we select the estimator value x as the value that maximizes the likelihood of
the observed value 

max
x
P3Y = y ƒX = x4.

Y = y:

P3Y = y ƒX = x4
P3X = x4.

P3X = x ƒ Y = y4 =
P3Y = y ƒX = x4P3X = x4

P3Y = y4

max
x
P3X = x ƒ Y = y4.

P3X = x ƒ Y = y4:
Y = y,

aT = 1a1 , a2 , Á , an2.
Z = aTX

Z = aTX
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We refer to this estimator of X in terms of Y as the maximum likelihood (ML) estimator.
We can define MAP and ML estimators when X and Y are continuous random

variables by replacing events of the form by If X and Y

are continuous, the MAP estimator for X given the observation Y is given by:

and the ML estimator for X given the observation Y is given by:

Example 6.25 Comparison of ML and MAP Estimators

Let X and Y be the random pair in Example 5.16. Find the MAP and ML estimators for X in
terms of Y.

From Example 5.32, the conditional pdf of X given Y is given by:

which decreases as x increases beyond y. Therefore the MAP estimator is On the
other hand, the conditional pdf of Y given X is:

As x increases beyond y, the denominator becomes larger so the conditional pdf decreases.There-
fore the ML estimator is In this example the ML and MAP estimators agree.

Example 6.26 Jointly Gaussian Random Variables

Find the MAP and ML estimator of X in terms of Y when X and Y are jointly Gaussian random
variables.

The conditional pdf of X given Y is given by:

which is maximized by the value of x for which the exponent is zero. Therefore

The conditional pdf of Y given X is:

which is also maximized for the value of x for which the exponent is zero:

0 = y - r
sY

sX
1x - mX2 - mY .

fY1y |x2 =

expb - 1

211 - r22sY 2 ¢y - r
sY

sX
1x - mX2 - mY≤2 r

22psY
 2 11 - r22 .

Xn MAP = r
sX

sY
1y - mY2 + mX .

fX1x |y2 =

expb - 1

211 - r22sX 2 ¢x - r
sX

sY
1y - mY2 - mX≤2 r

22psX
 2 11 - r22

Xn ML = y.

fY1y ƒ x2 =
e-y

1 - e-x
   for   0 6 y … x.

Xn MAP = y.

fX1x ƒ y2 = e-1x-y2 for y … x

max
x
fX1Y = y ƒX = x2.

max
x
fX1X = x ƒ Y = y2,

5y 6 Y 6 y + dy6.5Y = y6



334 Chapter 6 Vector Random Variables

The ML estimator for X given is then:

Therefore we conclude that In other words, knowledge of the a priori probabili-
ties of X will affect the estimator.

6.5.2 Minimum MSE Linear Estimator

The estimate for X is given by a function of the observation In general, the 

estimation error, is nonzero, and there is a cost associated with
the error, We are usually interested in finding the function g(Y) that
minimizes the expected value of the cost, For example, if X and Y

are the discrete input and output of a communication channel, and c is zero when
and one otherwise, then the expected value of the cost corresponds to the

probability of error, that is, that When X and Y are continuous random
variables, we frequently use the mean square error (MSE) as the cost:

In the remainder of this section we focus on this particular cost function. We first con-
sider the case where g(Y) is constrained to be a linear function of Y, and then consider
the case where g(Y) can be any function, whether linear or nonlinear.

First, consider the problem of estimating a random variable X by a constant a so
that the mean square error is minimized:

(6.51)

The best a is found by taking the derivative with respect to a, setting the result to zero,
and solving for a. The result is

(6.52)

which makes sense since the expected value of X is the center of mass of the pdf. The
mean square error for this estimator is equal to 

Now consider estimating X by a linear function

(6.53a)

Equation (6.53a) can be viewed as the approximation of by the constant b.
This is the minimization posed in Eq. (6.51) and the best b is

(6.53b)

Substitution into Eq. (6.53a) implies that the best a is found by

We once again differentiate with respect to a, set the result to zero, and solve for a:

 0 =
d

da
E31X - E3X42 - a1Y - E3Y4224

min
a
E351X - E3X42 - a1Y - E3Y42624.

b* = E3X - aY4 = E3X4 - aE3Y4.

X - aY

min
a,b
E31X - aY - b224.

g1Y2 = aY + b:
E31X - a*224 = VAR1X2.

a* = E3X4,

min
a
E31X - a224 = E3X24 - 2aE3X4 + a2.

e = E31X - g1Y2224.

X Z g1Y2.X = g1Y2
E3c1X - g1Y224.c1X - g1Y22.

X - Xn = X - g1Y2,
Xn = g1Y2.

Xn ML Z Xn MAP .

Xn ML =
sX

rsY
1y - mY2 + mX .

Y = y
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(6.54)

The best coefficient a is found to be

where and Therefore, the minimum mean
square error (mmse) linear estimator for X in terms of Y is

(6.55)

The term is simply a zero-mean, unit-variance version of Y. Thus
is a rescaled version of Y that has the variance of the random variable 

that is being estimated, namely The term E[X] simply ensures that the estimator has
the correct mean. The key term in the above estimator is the correlation coefficient:

specifies the sign and extent of the estimate of Y relative to If X

and Y are uncorrelated (i.e., ) then the best estimate for X is its mean, E[X].
On the other hand, if then the best estimate is equal to 

We draw our attention to the second equality in Eq. (6.54):

(6.56)

This equation is called the orthogonality condition because it states that the error of
the best linear estimator, the quantity inside the braces, is orthogonal to the observa-
tion The orthogonality condition is a fundamental result in mean square
estimation.

The mean square error of the best linear estimator is

(6.57)

where the second equality follows from the orthogonality condition. Note that when
the mean square error is zero. This implies that 

so that X is essentially a linear function of Y.= P3X = a*Y + b*4 = 1,
P3|X - a*Y - b*| = 04|rX,Y| = 1,

= VAR1X211 - rX,Y
2 2

= VAR1X2 - a* COV1X, Y2
= E311X - E3X42 - a*1Y - E3Y4221X - E3X424

- a*E311X - E3X42 - a*1Y - E3Y4221Y - E3Y424
= E311X - E3X42 - a*1Y - E3Y4221X - E3X424

eL
* = E311X - E3X42 - a*1Y - E3Y42224

Y - E[Y].

E351X - E3X42 - a*1Y - E3Y4261Y - E3Y424 = 0.

sY + E3X4.
;sX1Y - E3Y42/rX,Y = ;1

rX,Y = 0
sX1Y - E3Y42/sY .rX,Y

s X
2 .

sX1Y - E3Y42/sY
1Y - E3Y42/sY

= rX,YsX
Y - E3Y4
sY

+ E3X4.
X

n = a*Y + b*

sX = 2VAR1X2 .sY = 2VAR1Y2

a* =
COV1X, Y2

VAR1Y2 = rX,Y

sX

sY
,

= -21COV1X, Y2 - aVAR1Y22.
= -2E351X - E3X42 - a1Y - E3Y4261Y - E3Y424
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6.5.3 Minimum MSE Estimator

In general the estimator for X that minimizes the mean square error is a nonlinear

function of Y. The estimator g(Y) that best approximates X in the sense of minimizing
mean square error must satisfy

The problem can be solved by using conditional expectation:

The integrand above is positive for all y; therefore, the integral is minimized by mini-
mizing for each y. But g(y) is a constant as far as the condi-
tional expectation is concerned, so the problem is equivalent to Eq. (6.51) and the
“constant” that minimizes is

(6.58)

The function is called the regression curve which simply traces
the conditional expected value of X given the observation 

The mean square error of the best estimator is:

Linear estimators in general are suboptimal and have larger mean square errors.

Example 6.27 Comparison of Linear and Minimum MSE Estimators

Let X and Y be the random pair in Example 5.16. Find the best linear and nonlinear estimators
for X in terms of Y, and of Y in terms of X.

Example 5.28 provides the parameters needed for the linear estimator:

and Example 5.32 provides the
conditional pdf’s needed to find the nonlinear estimator. The best linear and nonlinear estima-
tors for X in terms of Y are:

Thus the optimum linear and nonlinear estimators are the same.

E3X ƒ y4 = L
q

y

xe-1x-y2 dx = y + 1 and so E3X ƒ Y4 = Y + 1.

Xn =
1

25

25

2

Y - 1/2

1/2
+

3

2
= Y + 1

rX,Y = 1/25.VAR3Y4 = 1/4,VAR3X4 = 5/4,E3Y4 = 1/2,

E3X4 = 3/2,

= 3Rn
 

VAR3X ƒ Y = y4fY1y2 dy.

e* = E31X - g*1Y2224 = 3R
 

E31X - E3X ƒ y422 ƒ Y = y4fY1y2 dy

Y = y.
g*1y2 = E3X ƒ Y = y4

g*1y2 = E3X ƒ Y = y4.
E31X - g1y222 ƒ Y = y4

E31X - g1Y222 ƒ Y = y4

= L
q

-q
E31X - g1Y222 ƒ Y = y4fY1y2dy.

E31X - g1Y2224 = E3E31X - g1Y222 ƒ Y44

minimize
g1.2 E31X - g1Y2224.
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The best linear and nonlinear estimators for Y in terms of X are:

The optimum linear and nonlinear estimators are not the same in this case. Figure 6.2 compares
the two estimators. It can be seen that the linear estimator is close to for lower values of

x, where the joint pdf of X and Y are concentrated and that it diverges from for larger
values of x.

Example 6.28

Let X be uniformly distributed in the interval and let Find the best linear esti-
mator for Y in terms of X. Compare its performance to the best estimator.

The mean of X is zero, and its correlation with Y is

Therefore and the best linear estimator for Y is E[Y] by Eq. (6.55). The mean
square error of this estimator is the VAR(Y) by Eq. (6.57).

The best estimator is given by Eq. (6.58):

The mean square error of this estimator is

Thus in this problem, the best linear estimator performs poorly while the nonlinear estimator
gives the smallest possible mean square error, zero.

E31Y - g1X2224 = E31X2 - X2224 = 0.

E3Y ƒX = x4 = E3X2 ƒX = x4 = x2.

COV1X, Y2 = 0

E3XY4 = E3XX24 = L
1

- 1
2

x3/2 dx = 0.

Y = X2.1-1, 12

E3Y ƒ x4
E3Y ƒ x4

E3Y ƒ x4 = L
x

0

y
e-y

1 - e-x
dy =

1 - e-x - xe-x

1 - e-x
= 1 -

xe-x

1 - e-x
.

Yn =
1

25

1

2

X - 3/2

25/2
+

1

2
= 1X + 12/5.
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FIGURE 6.2
Comparison of linear and nonlinear estimators.
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Example 6.29 Jointly Gaussian Random Variables

Find the minimum mean square error estimator of X in terms of Y when X and Y are jointly
Gaussian random variables.

The minimum mean square error estimator is given by the conditional expectation of X
given Y. From Eq. (5.63), we see that the conditional expectation of X given is given by

This is identical to the best linear estimator. Thus for jointly Gaussian random variables the min-

imum mean square error estimator is linear.

6.5.4 Estimation Using a Vector of Observations

The MAP, ML, and mean square estimators can be extended to where a vector of ob-
servations is available. Here we focus on mean square estimation. We wish to estimate
X by a function g(Y) of a random vector of observations so that
the mean square error is minimized:

To simplify the discussion we will assume that X and the have zero means. The
same derivation that led to Eq. (6.58) leads to the optimum minimum mean square

estimator:

(6.59)

The minimum mean square error is then:

Now suppose the estimate is a linear function of the observations:

The mean square error is now:

We take derivatives with respect to and again obtain the orthogonality conditions:

EB ¢X - a
n

k=1

akYk≤YjR = 0 for j = 1, Á , n.

ak

E31X - g1Y2224 = EB ¢X - a
n

k=1

akYk≤2R .

g1Y2 = a
n

k=1

akYk = aTY.

= 3Rn
 

VAR3X ƒ Y = y4fY1y2dy.

E31X - g*1Y2224 = 3Rn E31X - E3X ƒ Y422 ƒ Y = y4fY1y2dy

g*1y2 = E3X ƒ Y = y4.

Yi

minimize
g1.2 E31X - g1Y2224.

Y = 1Y1 , Y2 , Á , Yn2T

E3X ƒ Y = y4 = E3X4 + rX, Y

sX
sY
1Y - E3Y42.

Y = y
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The orthogonality condition becomes:

We obtain a compact expression by introducing matrix notation:

(6.60)

where and is the correlation matrix.
Assuming is invertible, the optimum coefficients are:

(6.61a)

We can use the methods from Section 6.3 to invert The mean square error of the
optimum linear estimator is:

(6.61b)

Now suppose that X has mean and Y has mean vector so our estimator
now has the form:

(6.62)

The same argument that led to Eq. (6.53b) implies that the optimum choice for b is:

Therefore the optimum linear estimator has the form:

where is a random vector with zero mean vector. The mean square error
for this estimator is:

where has zero mean. We have reduced the general estimation prob-
lem to one with zero mean random variables, i.e., W and Z, which has solution given
by Eq. (6.61a). Therefore the optimum set of linear predictors is given by:

(6.63a)

The mean square error is:

(6.63b)

This result is of particular importance in the case where X and Y are jointly Gauss-
ian random variables. In Example 6.23 we saw that the conditional expected value

= VAR1X2 - aTE31X - mX21Y - mY24.
E31X - aTY - b224 = E31W - aTZW4 = VAR1W2 - aTE3WZ4

a = Rz
 -1E3WZ4 = KY

 -1E31X - mX21Y - mY24.

W = X - mX

E31X - g1Y2224 = E31X - aTZ - mX224 = E31W - aTZ224

Z = Y - mY

Xn = g1Y2 = aT1Y - mY2 + mX = aTZ + mX

b = E3X4 - aTmY .

Xn = g1Y2 = a
n

k=1

akYk + b = aTY + b.

mY ,mX

= E31X - aTY2X4 = VAR1X2 - aTE3YX4.
E31X - aTY224 = E31X - aTY2X4 - E31X - aTY2aTY4

RY .

a = RY
 -1E3XY4.

RY

RYE3XY4 = 3E3XY14, E3XY24 , Á , E3XYn4T
E3XY4 = RYa where a = 1a1 , a2 , Á , an2T.

E3XYj4 = EB ¢an
k=1

akYk≤YjR = a
n

k=1

akE3YkYj4 for j = 1, Á , n.
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of X given Y is a linear function of Y of the form in Eq. (6.62). Therefore in this case
the optimum minimum mean square estimator corresponds to the optimum linear
estimator.

Example 6.30 Diversity Receiver

A radio receiver has two antennas to receive noisy versions of a signal X. The desired signal X is
a Gaussian random variable with zero mean and variance 2. The signals received in the first
and second antennas are and where and are zero-mean,
unit-variance Gaussian random variables. In addition, and are independent random
variables. Find the optimum mean square error linear estimator for X based on a single antenna
signal and the corresponding mean square error. Compare the results to the optimum mean
square estimator for X based on both antenna signals 

Since all random variables have zero mean, we only need the correlation matrix and the
cross-correlation vector in Eq. (6.61):

and

The optimum estimator using a single antenna received signal involves solving the version
of the above system:

and the associated mean square error is:

The coefficients of the optimum estimator using two antenna signals are:

and the optimum estimator is:

The mean square error for the two antenna estimator is:

E31X - aTY224 = VAR1X2 - aTE3YX4 = 2 - 30.4, 0.44B2

2
R = 0.4.

XN = 0.4Y1 + 0.4Y2 .

a = RY
 -1E3XY4 = B3 2

2 3
R-1B2

2
R =

1

5
B 3 -2

-2 3
R B2

2
R = B0.4

0.4
RVAR1X2 - a* COV1Y1 ,X2 = 2 -

2

3
2 =

2

3
.

XN =
E3X24

E3X24 + E3N1
24Y1 =

2

3
Y1

1 * 1

E3XY4 = BE3XY14
E3XY24R = BE3X24

E3X24R = B2

2
R .

= BE3X24 + E3N1
24 E3X24

E3X24 E3X24 + E3N2
24R = B3 2

2 3
R= B E31X + N1224 E31X + N121X + N224

E31X + N121X + N224 E31X + N2224 RRY = B E3Y1
24 E3Y1Y24

E3Y1Y24 E3Y2
24 R

Y = 1Y1 , Y22.

N2X,N1 ,
N2N1Y2 = X + N2Y1 = X + N1
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As expected, the two antenna system has a smaller mean square error. Note that the re-
ceiver adds the two received signals and scales the result by 0.4. The sum of the signals is:

so combining the signals keeps the desired signal portion, X, constant while averaging the two
noise signals N1 and N2. The problems at the end of the chapter explore this topic further.

Example 6.31 Second-Order Prediction of Speech

Let be a sequence of samples of a speech voltage waveform, and suppose that the
samples are fed into the second-order predictor shown in Fig. 6.3. Find the set of predictor coef-
ficients a and b that minimize the mean square value of the predictor error when is estimat-
ed by 

We find the best predictor for and and assume that the situation is identical for
and and so on. It is common practice to model speech samples as having zero mean

and variance and a covariance that does not depend on the specific index of the samples, but
rather on the separation between them:

The equation for the optimum linear predictor coefficients becomes

Equation (6.61a) gives

a =
r2 - r1

2

1 - r1
2  and b =

r111 - r1
22

1 - r1
2 .

s2B 1 r1

r1 1
R Ba
b
R = s2Br2

r1
R .

COV1Xj ,Xk2 = r ƒj-k ƒs
2.

s2,
X4X2 ,X3,

X3X1 ,X2 ,
aXn-2 + bXn-1 .

Xn

X1 ,X2 , Á

XN = 0.4Y1 + 0.4Y2 = 0.412X + N1 + N22 = 0.8¢X +
N1 + N2

2
≤

b a�







�



�

Xn Xn � 2Xn � 1

Xn
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FIGURE 6.3
A two-tap linear predictor for processing
speech.
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In Problem 6.78, you are asked to show that the mean square error using the above values of a
and b is

(6.64)

Typical values for speech signals are and . The mean square value of the pre-
dictor output is then The lower variance of the output relative to the input vari-

ance shows that the linear predictor is effective in anticipating the next sample in terms of
the two previous samples. The order of the predictor can be increased by using more terms in the
linear predictor. Thus a third-order predictor has three terms and involves inverting a cor-
relation matrix, and an n-th order predictor will involve an matrix. Linear predictive tech-
niques are used extensively in speech, audio, image and video compression systems. We discuss
linear prediction methods in greater detail in Chapter 10.

6.6 GENERATING CORRELATED VECTOR RANDOM VARIABLES

Many applications involve vectors or sequences of correlated random variables. Com-
puter simulation models of such applications therefore require methods for generating
such random variables. In this section we present methods for generating vectors of
random variables with specified covariance matrices. We also discuss the generation of
jointly Gaussian vector random variables.

6.6.1 Generating Random Vectors with Specified Covariance Matrix

Suppose we wish to generate a random vector Y with an arbitrary valid covariance ma-
trix Let as in Example 6.17, where X is a vector random variable with
components that are uncorrelated, zero mean, and unit variance. X has covariance ma-
trix equal to the identity matrix and

Let P be the matrix whose columns are the eigenvectors of and let be the diago-
nal matrix of eigenvalues, then from Eq. (6.39b) we have:

If we premultiply the above equation by P and then postmultiply by we obtain ex-
pression for an arbitrary covariance matrix in terms of its eigenvalues and eigen-
vectors:

(6.65)

Define the matrix as the diagonal matrix of square roots of the eigenvalues:

∂1/2 ! D2l1 0 Á 0

0 2l2 Á 0
. . Á .

0 0 Á 2ln

T .

∂1/2

P∂PT = PPTKYPPT = KY .

KY

PT,

PTKYP = PTP∂ = ∂.

∂KY

KY = ATKXA = ATA.

KX = I, mY = AmX = 0,

Y = ATXKY .

*

n * n
3 * 3

1s22
1.281s22.281s2.

r2 = .562r1 = .825

s2b1 - r1
2 -
1r1

2 - r222
1 - r1

2 r .
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In Problem 6.53 we show that any covariance matrix is positive semi-definite,
which implies that it has nonnegative eigenvalues, and so taking the square root is al-
ways possible. If we now let

(6.66)

then

Therefore Y has the desired covariance matrix 

Example 6.32

Let consist of two zero-mean, unit-variance, uncorrelated random variables. Find
the matrix A such that has covariance matrix

First we need to find the eigenvalues of K which are determined from the following equation:

We find the eigenvalues to be and Next we need to find the eigenvectors corre-
sponding to each eigenvalue:

which implies that Thus any vector of the form is an eigenvector. We 

choose the normalized eigenvector corresponding to as We 

similarly find the eigenvector corresponding to as 
The method developed in Section 6.3 requires that we form the matrix P whose columns

consist of the eigenvectors of K:

Next it requires that we form the diagonal matrix with elements equal to the square root of the
eigenvalues:

The desired matrix is then

You should verify that K = AAT.

A = P∂1/2 = B 1 23

-1 23
R .

∂1/2 = B22 0

0 26
R .

P =
1

22
B 1 1

-1 1
R .

e2 = 31/22, 1/224T.l2 = 6

e1 = 31/22, -1/224T.l1 = 2

31, -14T2e1 + 2e2 = 0.

B4 2

2 4
R Be1
e2
R = l1Be1

e2
R = 2Be1

e2
Rl2 = 6.l1 = 2

= 1l - 621l - 22.

det1K - lI2 = 0 = detB4 - l 2

2 4 - l
R = 14 - l22 - 4 = l2 - 8l + 12

K = B4 2

2 4
R .

Y = AX

X = 1X1 ,X22

KY .

ATA = P∂1/2∂1/2PT = P∂PT = KY .

A = 1P∂1/22T

KY
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Example 6.33

Use Octave to find the eigenvalues and eigenvectors calculated in the previous example.
After entering the matrix K, we use the eig(K) function to find the matrix of eigenvectors

P and eigenvalues We then find A and its transpose Finally we confirm that gives the
desired covariance matrix.

> K=[4, 2; 2, 4];

> [P,D] =eig (K)

P =

-0.70711 0.70711

0.70711 0.70711

D =

2 0

0 6

> A=(P*sqrt(D))’

A =

-1.0000 1.0000

1.7321 1.7321

> A’

ans =

-1.0000 1.7321

1.0000 1.7321

> A’*A

ans =

4.0000 2.0000

2.0000 4.0000

The above steps can be used to find the transformation for any desired covariance
matrix K. The only check required is to ascertain that K is a valid covariance matrix:
(1) K is symmetric (trivial); (2) K has positive eigenvalues (easy to check numerically).

6.6.2 Generating Vectors of Jointly Gaussian Random Variables

In Section 6.4 we found that if X is a vector of jointly Gaussian random variables with
covariance then is also jointly Gaussian with covariance matrix

If we assume that X consists of unit-variance, uncorrelated random
variables, then the identity matrix, and therefore 

We can use the method from the first part of this section to find A for any desired
covariance matrix We generate jointly Gaussian random vectors Y with arbitrary
covariance matrix and mean vector as follows:

1. Find a matrix A such that 

2. Use the method from Section 5.10 to generate X consisting of n independent,
zero-mean, Gaussian random variables.

3. Let Y = AX + mY.

KY = AAT.

mYKY

KY .

KY = AAT.KX = I,
KY = AKXA

T.
Y = AXKX ,

AT

ATAAT.¶.
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Example 6.34

The Octave commands below show necessary steps for generating the Gaussian random vari-
ables with the covariance matrix from Example 6.30.

> U1=rand(1000, 1); %Create a 1000-element vector U1.

> U2=rand(1000, 1); %Create a 1000-element vector U2.

> R2=-2*log(U1); % Find

> TH=2*pi*U2; % Find

> X1=sqrt(R2).*sin(TH); %Generate X1.

> X2=sqrt(R2).*cos(TH); %Generate X2.

> Y1=X1+sqrt(3)*X2 %Generate Y1.

> Y2=-X1+sqrt(3)*X2 %Generate Y2.

> plot(Y1,Y2,’+’) % Plot scattergram.

We plotted the values vs. the values for 1000 pairs of generated random variables in
a scattergram as shown in Fig. 6.4. Good agreement with the elliptical symmetry of the desired
jointly Gaussian pdf is observed.

Y2Y1

®.

R2.

FIGURE 6.4
Scattergram of jointly Gaussian random variables.
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SUMMARY

• The joint statistical behavior of a vector of random variables X is specified by
the joint cumulative distribution function, the joint probability mass function,
or the joint probability density function. The probability of any event involv-
ing the joint behavior of these random variables can be computed from these
functions.

• The statistical behavior of subsets of random variables from a vector X is speci-
fied by the marginal cdf, marginal pdf, or marginal pmf that can be obtained from
the joint cdf, joint pdf, or joint pmf of X.

• A set of random variables is independent if the probability of a product-form
event is equal to the product of the probabilities of the component events. Equiv-
alent conditions for the independence of a set of random variables are that the
joint cdf, joint pdf, or joint pmf factors into the product of the corresponding mar-
ginal functions.

• The statistical behavior of a subset of random variables from a vector X, given
the exact values of the other random variables in the vector, is specified by the
conditional cdf, conditional pmf, or conditional pdf. Many problems naturally
lend themselves to a solution that involves conditioning on the values of some of
the random variables. In these problems, the expected value of random variables
can be obtained through the use of conditional expectation.

• The mean vector and the covariance matrix provide summary information about
a vector random variable. The joint characteristic function contains all of the in-
formation provided by the joint pdf.

• Transformations of vector random variables generate other vector random vari-
ables. Standard methods are available for finding the joint distributions of the
new random vectors.

• The orthogonality condition provides a set of linear equations for finding the
minimum mean square linear estimate. The best mean square estimator is given
by the conditional expected value.

• The joint pdf of a vector X of jointly Gaussian random variables is determined by
the vector of the means and by the covariance matrix.All marginal pdf’s and con-
ditional pdf’s of subsets of X have Gaussian pdf’s. Any linear function or linear
transformation of jointly Gaussian random variables will result in a set of jointly
Gaussian random variables.

• A vector of random variables with an arbitrary covariance matrix can be gener-
ated by taking a linear transformation of a vector of unit-variance, uncorrelated
random variables. A vector of Gaussian random variables with an arbitrary co-
variance matrix can be generated by taking a linear transformation of a vector of
independent, unit-variance jointly Gaussian random variables.
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CHECKLIST OF IMPORTANT TERMS

Conditional cdf
Conditional expectation
Conditional pdf
Conditional pmf
Correlation matrix
Covariance matrix
Independent random variables
Jacobian of a transformation
Joint cdf
Joint characteristic function
Joint pdf
Joint pmf
Jointly continuous random variables
Jointly Gaussian random variables

Karhunen-Loeve expansion
MAP estimator
Marginal cdf
Marginal pdf
Marginal pmf
Maximum likelihood estimator
Mean square error
Mean vector
MMSE linear estimator
Orthogonality condition
Product-form event
Regression curve
Vector random variables
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algebra.
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PROBLEMS

Section 6.1: Vector Random Variables

6.1. The point is uniformly distributed inside a sphere of radius 1 about the
origin. Find the probability of the following events:

(a) X is inside a sphere of radius 

(b) X is inside a cube of length centered about the origin.

(c) All components of X are positive.

(d) Z is negative.

6.2. A random sinusoid signal is given by where A is a uniform random vari-
able in the interval [0, 1]. Let be samples of the signal taken at
times and 

(a) Find the joint cdf of X in terms of the cdf of A if and Are
independent random variables?

(b) Find the joint cdf of X for and . Let 

6.3. Let the random variables X, Y, and Z be independent random variables. Find the follow-
ing probabilities in terms of and 

(a)

(b)

(c)

(d)

6.4. A radio transmitter sends a signal to a receiver using three paths. The signals that
arrive at the receiver along each path are:

where and are independent Gaussian random variables with zero mean and
unit variance.

(a) Find the joint pdf of Are and independent random
variables?

(b) Find the probability that the minimum of all three signals is positive.

(c) Find the probability that a majority of the signals are positive.

6.5. An urn contains one black ball and two white balls. Three balls are drawn from the urn.
Let if the outcome of the kth draw is the black ball and let otherwise. Define
the following three random variables:

(a) Specify the range of values of the triplet (X, Y, Z) if each ball is put back into the urn
after each draw; find the joint pmf for (X, Y, Z).

(b) In part a, are X, Y, and Z independent? Are X and Y independent?

(c) Repeat part a if each ball is not put back into the urn after each draw.

6.6. Consider the packet switch in Example 6.1. Suppose that each input has one packet with
probability p and no packets with probability Packets are equally likely to be1 - p.

Z = max5I1 , I2 , I36.
Y = min5I1 , I2 , I36,
X = I1 + I2 + I3 ,

Ik = 0Ik = 1

X3X1 ,X2 ,X = 1X1 ,X2 ,X32.
N3N1 ,N2 ,

X1 = s + N1 ,X2 = s + N2 , and X3 = s + N3 ,

s 7 0

P3max1X, Y, Z2 7 64.
P3min1X, Y, Z2 6 24.
P3X = 5, Y 6 0, Z 7 14.
P3 ƒX ƒ 6 5, Y 6 4, Z3 7 84.

FZ1z2.FX1x2, FY1y2,
t1 = p/6.t3 = t1 + pt1 , t2 = t1 + p/2,

X1t12,X1t22,X1t32
t3 = p.t1 = 0, t2 = p/2,

t3 .t1 , t2 ,
X = 1X1t12,X1t22,X1t322

X1t2 = A sin1t2

2/23

r, r 7 0.

X = 1X, Y, Z2
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destined to each of the outputs. Let be the number of packet arrivals des-
tined for output 1, 2, and 3, respectively.

(a) Find the joint pmf of and Hint: Imagine that every input has a packet go
to a fictional port 4 with probality 1 – p.

(b) Find the joint pmf of and 

(c) Find the pmf of 

(d) Are and independent random variables?

(e) Suppose that each output will accept at most one packet and discard all additional
packets destined to it. Find the average number of packets discarded by the module
in each T-second period.

6.7. Let X, Y, Z have joint pdf

(a) Find k.

(b) Find and 

(c) Find and 

6.8. A point is selected at random inside the unit sphere.

(a) Find the marginal joint pdf of Y and Z.

(b) Find the marginal pdf of Y.

(c) Find the conditional joint pdf of X and Y given Z.

(d) Are X, Y, and Z independent random variables?

(e) Find the joint pdf of X given that the distance from X to the origin is greater than 1/2
and all the components of X are positive.

6.9. Show that 

6.10. Let be binary random variables taking on values 0 or 1 to denote whether
a speaker is silent (0) or active (1).A silent speaker remains idle at the next time slot with
probability 3/4, and an active speaker remains active with probability 1/2. Find the joint
pmf for and the marginal pmf of Assume that the speaker begins in the
silent state.

6.11. Show that 

6.12. Let and be independent random variables and let and

(a) Use the result in Problem 6.11 to find the joint pdf of X, Y, and Z.

(b) Let the be independent uniform random variables in the interval [0, 1]. Find the
marginal joint pdf of Y and Z. Find the marginal pdf of Z.

(c) Let the be independent zero-mean, unit-variance Gaussian random variables.
Find the marginal pdf of Y and Z. Find the marginal pdf of Z.

6.13. Let and be the multiplicative sequence in Example 6.7.

(a) Find, plot, and compare the marginal pdfs of and 

(b) Find the conditional pdf of given 

(c) Find the conditional pdf of given 

6.14. Requests at an online music site are categorized as follows: Requests for most popular
title with second most popular title with third most popular title with

and other Suppose there are a total number ofp4 = 1 - p1 - p2 - p3 = 1/8.p3 = 1/8;
p2 = 1/4;p1 = 1/2;

X3 = z.X1

X1 = x.X3

X3 .X1 ,X2 ,

X3X1 ,X2 ,

Ui

Ui

Z = U1 + U2 + U3 .
X = U1 , Y = U1 + U2 ,U3U1 , U2 ,

fX,Y,Z1x, y, z2 = fZ1z ƒ x, y2fY1y ƒ x2fX1x2.
X3 .X1 ,X2 ,X3 ,

X1 ,X2 , Á ,Xn

pX1,X2,X3
1x1 , x2 , x32 = pX3

1x3 ƒ x1 , x22pX2
1x2 ƒ x12pX1

1x12.

X = 1X, Y, Z2
fZ1z2.fX1x2, fY1y2,

fZ1z ƒ x, y2.fX1x ƒ y, z2

fX,Y,Z1x, y, z2 = k1x + y + z2 for 0 … x … 1, 0 … y … 1, 0 … z … 1.

X3X1 ,X2 ,

X2 .

X2 .X1

X3X1 ,X2 ,

X1,X2 and X3
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n requests in T seconds. Let be the number of times category k occurs.

(a) Find the joint pmf of 

(b) Find the marginal pmf of Hint: Use the binomial theorem.

(c) Find the marginal pmf of 

(d) Find the conditional joint pmf of given where 

6.15. The number N of requests at the online music site in Problem 6.14 is a Poisson random
variable with mean customers per second. Let be the number of type k requests in
T seconds. Find the joint pmf of 

6.16. A random experiment has four possible outcomes. Suppose that the experiment is re-
peated n independent times and let be the number of times outcome k occurs. The
joint pmf of is given by

(a) Find the marginal pmf of 

(b) Find the marginal pmf of 

(c) Find the conditional joint pmf of given where 

6.17. The number of requests of types 1, 2, and 3, respectively, arriving at a service station in
t seconds are independent Poisson random variables with means and Let

and be the number of requests that arrive during an exponentially distributed
time T with mean 

(a) Find the joint pmf of and 

(b) Find the marginal pmf of 

(c) Find the conditional pmf of and given 

Section 6.2: Functions of Several Random Variables  

6.18. N devices are installed at the same time. Let Y be the time until the first device fails.

(a) Find the pdf of Y if the lifetimes of the devices are independent and have the same
Pareto distribution.

(b) Repeat part a if the device lifetimes have a Weibull distribution.

6.19. In Problem 6.18 let be the indicator function for the event “kth device is still work-
ing at time t.” Let N(t) be the number of devices still working at time t:

Find the pmf of N(t) as well as its mean and variance.

6.20. A diversity receiver receives N independent versions of a signal. Each signal version has
an amplitude that is Rayleigh distributed. The receiver selects that signal with the
largest amplitude . A signal is not useful if the squared amplitude falls below a thresh-
old Find the probability that all N signals are below the threshold.

6.21. (Haykin) A receiver in a multiuser communication system accepts K binary signals from
K independent transmitters: where is the received signal from
the kth transmitter. In an ideal system the received vector is given by:

where is a diagonal matrix of positive channel gains, is
the vector of bits from each of the transmitters where and N is a vector of Kbk = ;1,

b = 1b1 , b2 , Á , bK2A = 3ak4
Y = Ab + N

YkY = 1Y1 , Y2 , Á , YK2,
g.

Xk
 2

Xk

I21t2 + Á + IN1t2.
N1t2 = I11t2 +

Ik1t2

N3 .N2 ,N1

N1 .

N3 .N1 ,N2 ,

at.
N3N1 ,N2 ,

l3t.l1t, l2t,

0 … m … n.X1 = m,1X2 ,X32
X1 .

1X1 ,X22.

p1k1 , k2 , k32 =
n! 3!

1n + 32! = ¢n + 3

3
≤-1

 for 0 … ki and k1 + k2 + k3 … n.

1X1 ,X2 ,X32
Xk

1X1 ,X2 ,X3 ,X42.
Xka

0 … m … n.X1 = m,1X2 ,X32
X1 .

1X1 ,X22.
1X1 ,X2 ,X32.
Xk
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independent zero-mean, unit-variance Gaussian random variables.

(a) Find the joint pdf of Y.

(b) Suppose find the probability that all components of Y are positive.

6.22. (a) Find the joint pdf of and 

(b) Evaluate the joint pdf of (U, V, W) if the are independent zero-mean, unit vari-
ance Gaussian random variables.

(c) Find the marginal pdf of V and of W.

6.23. (a) Find the joint pdf of the sample mean and variance of two random variables:

in terms of the joint pdf of and 

(b) Evaluate the joint pdf if and are independent Gaussian random variables with
the same mean 1 and variance 1.

(c) Evaluate the joint pdf if and are independent exponential random variables
with the same parameter 1.

6.24. (a) Use the auxiliary variable method to find the pdf of

(b) Find the pdf of Z if X and Y are independent exponential random variables with the
parameter 1.

(c) Repeat part b if X and Y are independent Pareto random variables with parameters
and

6.25. Repeat Problem 6.24 parts a and b for 

6.26. Let X and Y be zero-mean, unit-variance Gaussian random variables with correlation co-
efficient 1/2. Find the joint pdf of and 

6.27. Use auxilliary variables to find the pdf of where the are independent
random variables that are uniformly distributed in [0, 1].

6.28. Let X, Y, and Z be independent zero-mean, unit-variance Gaussian random variables.

(a) Find the pdf of R

(b) Find the pdf of 

6.29. Let be processed as follows:

(a) Find an expression for the joint pdf of in terms of the joint pdf
of

(b) Find the joint pdf of Y if are independent zero-mean, unit-variance
Gaussian random variables.

Section 6.3: Expected Values of Vector Random Variables

6.30. Find E[M], E[V], and E[MV] in Problem 6.23c.

6.31. Compute E[Z] in Problem 6.27 in two ways:

(a) by integrating over 

(b) by integrating over the joint pdf of 1X1 ,X2 ,X32.
fZ1z2;

X1 ,X2 ,X3 ,X4

X = 1X1 ,X2 ,X3 ,X42.
Y = 1Y1 , Y2 , Y3 , Y42

Y1 = X1 , Y2 = X1 + X2 , Y3 = X2 + X3 , Y4 = X3 + X4 .

X1 ,X2 ,X3 ,X4

R2 = X2 + Y2 + Z2.

(X2 + Y2 + Z2)1/2.=

XiZ = X1X2X3

V = Y4.U = X2

Z = X/Y.

xm = 1.k = 2

Z =
X

X + Y
.

X2X1

X2X1

X2 .X1

M =
X1 + X2

2
V =

1X1 - M22 + 1X2 - M22
2

Xi

W = X1 + X2 + X3 .U = X1 , V = X1 + X2 ,

b = 11, 1, Á , 12,
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6.32. Find the mean vector and covariance matrix for three multipath signals 
in Problem 6.4.

6.33. Find the mean vector and covariance matrix for the samples of the sinusoidal signals
in Problem 6.2.

6.34. (a) Find the mean vector and covariance matrix for (X, Y, Z) in Problem 6.5a.

(b) Repeat part a for Problem 6.5c.

6.35. Find the mean vector and covariance matrix for (X, Y, Z) in Problem 6.7.

6.36. Find the mean vector and covariance matrix for the point (X, Y, Z) inside the unit sphere
in Problem 6.8.

6.37. (a) Use the results of Problem 6.6c to find the mean vector for the packet arrivals
and in Example 6.5.

(b) Use the results of Problem 6.6b to find the covariance matrix.

(c) Explain why and are correlated.

6.38. Find the mean vector and covariance matrix for the joint number of packet arrivals in a
random time and in Problem 6.17. Hint: Use conditional expectation.

6.39. (a) Find the mean vector and covariance matrix (U, V, W) in terms of in
Problem 6.22b.

(b) Find the cross-covariance matrix between (U, V, W) and 

6.40. (a) Find the mean vector and covariance matrix of in terms of
those of in Problem 6.29.

(b) Find the cross-covariance matrix between Y and X.

(c) Evaluate the mean vector, covariance, and cross-covariance matrices if 
are independent random variables.

(d) Generalize the results in part c to 

6.41. Let consist of equal mean, independent, unit-variance random
variables. Find the mean vector, covariance, and cross-covariance matrices of 

(a)

(b)

6.42. Let where X and Y are random variables.

(a) Find the characteristic function of W in terms of the joint characteristic function of
X and Y.

(b) Find the characteristic function of W if X and Y are the random variables discussed
in Example 6.19. Find the pdf of W.

W = aX + bY + c,

A = D1 1 1 1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

T .

A = D1 1/2 1/4 1/8

0 1 1/2 1/4

0 0 1 1/2

0 0 0 1

T Y = AX:
X = 1X1 ,X2 ,X3 ,X42

Y = 1Y1 , Y2 , Á , Yn-1 , Yn2.
X1 ,X2 ,X3 ,X4

X = 1X1 ,X2 ,X3 ,X42
Y = 1Y1 , Y2 , Y3 , Y42

1X1 ,X2 ,X32.
1X1 ,X2 ,X32

N3N1 ,N2 ,

X3X1 ,X2 ,

X3X1 ,X2 ,

X = 1X1t12,X1t22,X1t322

X = 1X1 ,X2 ,X32
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6.43. (a) Find the joint characteristic function of the jointly Gaussian random variables X and
Y introduced in Example 5.45. Hint: Consider X and Y as a transformation of the in-
dependent Gaussian random variables V and W.

(b) Find

(c) Find the joint characteristic function of and 

6.44. Let and where 

(a) Find the joint characteristic function of X and Y in terms of the joint characteristic
function of U and V.

(b) Find an expression for E[XY] in terms of joint moments of U and V.

6.45. Let X and Y be nonnegative, integer-valued random variables. The joint probability gen-
erating function is defined by

(a) Find the joint pgf for two independent Poisson random variables with parameters 
and

(b) Find the joint pgf for two independent binomial random variables with parameters
(n, p) and (m, p).

6.46. Suppose that X and Y have joint pgf

(a) Use the marginal pgf’s to show that X and Y are Poisson random variables.

(b) Find the pgf of Is Z a Poisson random variable?

6.47. Let X and Y be trinomial random variables with joint pmf

(a) Find the joint pgf of X and Y.

(b) Find the correlation and covariance of X and Y.

6.48. Find the mean vector and covariance matrix for (X, Y) in Problem 6.46.

6.49. Find the mean vector and covariance matrix for (X, Y) in Problem 6.47.

6.50. Let have covariance matrix:

(a) Find the eigenvalues and eigenvectors of 

(b) Find the orthogonal matrix P that diagonalizes Verify that P is orthogonal and
that

(c) Express X in terms of the eigenvectors of using the Karhunen-Loeve expansion.

6.51. Repeat Problem 6.50 for with covariance matrix:

KX = C 1 -1/2 -1/2

-1/2 1 -1/2

-1/2 -1/2 1

S .

X = 1X1 ,X2 ,X32
KX

PTKXP = ∂.
KX.

KX.

KX = B 1 1/4

1/4 1
R .

X = 1X1 ,X22

P3X = j, Y = k4 =
n! p1

jp2
k11 - p1 - p22n- j-k
j! k!1n - j - k2!  for 0 … j, k and j + k … n.

Z = X + Y.

GX,Y1z1 , z22 = ea11z1-12+a21z2-12+b1z1z2-12.

a2 .
a1

GX,Y1z1 , z22 = E3z1
 X z2

 Y 4 = a
q

j=0
a
q

k=0

z1
 j z2

 k P3X = j, Y = k4.

ƒad - bc ƒ Z 0.y = cU + dV,X = aU + bV

Y¿ = Y + b.X¿ = X + a

E3X2Y4.



354 Chapter 6 Vector Random Variables

6.52. A square matrix A is said to be nonnegative definite if for any vector 
Show that the covariance matrix is nonnegative definite. Hint: Use

the fact that 

6.53. A is positive definite if for any nonzero vector 

(a) Show that if all the eigenvalues are positive, then is positive definite. Hint: Let

(b) Show that if is positive definite, then all the eigenvalues are positive. Hint: Let a

be an eigenvector of 

Section 6.4: Jointly Gaussian Random Vectors

6.54. Let be the jointly Gaussian random variables with mean vector and covariance

matrix given by:

(a) Find the pdf of X in matrix notation.

(b) Find the pdf of X using the quadratic expression in the exponent.

(c) Find the marginal pdfs of and 

(d) Find a transformation A such that the vector consists of independent
Gaussian random variables.

(e) Find the joint pdf of Y.

6.55. Let be the jointly Gaussian random variables with mean vector and
covariance matrix given by:

(a) Find the pdf of X in matrix notation.

(b) Find the pdf of X using the quadratic expression in the exponent.

(c) Find the marginal pdfs of and 

(d) Find a transformation A such that the vector consists of independent
Gaussian random variables.

(e) Find the joint pdf of Y.

6.56. Let and be independent zero-mean, unit-variance Gaussian random variables
and let and 

(a) Find the covariance matrix of (X, Y, Z).

(b) Find the joint pdf of (X, Y, Z).

(c) Find the conditional pdf of Y and Z given X.

(d) Find the conditional pdf of Z given X and Y.

6.57. Let be independent zero-mean, unit-variance Gaussian random variables
that are processed as follows:

(a) Find the covariance matrix of 

(b) Find the joint pdf of Y.

(c) Find the joint pdf of and and 

(d) Find a transformation A such that the vector consists of independent
Gaussian random variables.

Z = AY

Y3 .Y1Y2 ;Y1

Y = 1Y1 , Y2 , Y32.
Y1 = X1 + X2 , Y2 = X2 + X3 , Y3 = X3 + X4 .

X1 ,X2 ,X3 ,X4

Z = U1 + U2 + U3 .X = U1 , Y = U1 + U2 ,
U3U1 , U2 ,

Y = AX

X3 .X1 ,X2 ,

mX = C1

0

2

S KX = C3/2 0 1/2

0 1 0

1/2 0 3/2

S .

X = 1X1 ,X2 ,X32

Y = AX

X2 .X1

mX = B1

0
R  KX = B 3/2 -1/2

-1/2 3/2
R .

X = 1X1 ,X22

KX.
KX

b = PTa.
KX

a = 1a1 , a2 , Á , an2T: aTA a 7 0.

E31aT1X - mX2224 Ú 0.
Á ,an)

T : a TA a Ú 0.
a = (a1,a2,
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6.58. A more realistic model of the receiver in the multiuser communication system in Prob-
lem 6.21 has the K received signals given by:

where is a diagonal matrix of positive channel gains, R is a symmetric matrix
that accounts for the interference between users, and is the vector of
bits from each of the transmitters. N is the vector of K independent zero-mean, unit-variance
Gaussian noise random variables.

(a) Find the joint pdf of Y.

(b) Suppose that in order to recover b, the receiver computes Find the
joint pdf of Z.

6.59. (a) Let be the covariance matrix in Problem 6.55. Find the corresponding and 
in Example 6.23.

(b) Find the conditional pdf of given and 

6.60. In Example 6.23, show that:

6.61. Find the pdf of the sum of Gaussian random variables in the following cases:

(a) in Problem 6.55.

(b) in Problem 6.56.

(c) in Problem 6.57.

6.62. Find the joint characteristic function of the jointly Gaussian random vector X in Problem 6.54.

6.63. Suppose that a jointly Gaussian random vector X has zero mean vector and the covari-
ance matrix given in Problem 6.51.

(a) Find the joint characteristic function.

(b) Can you obtain an expression for the joint pdf? Explain your answer.

6.64. Let X and Y be jointly Gaussian random variables. Derive the joint characteristic func-
tion for X and Y using conditional expectation.

6.65. Let be jointly Gaussian random variables. Derive the characteris-
tic function for X by carrying out the integral in Eq. (6.32). Hint: You will need to com-
plete the square as follows:

6.66. Find for jointly Gaussian random variables from the characteristic function.

6.67. Let be zero-mean jointly Gaussian random variables. Show that

Section 6.5: Mean Square Estimation 

6.68. Let X and Y be discrete random variables with three possible joint pmf’s:

E3X1X2X3X44 = E3X1X24E3X3X44 + E3X1X34E3X2X44 + E3X1X44E3X2X34.
X = 1X1 ,X2 ,X3 ,X42
E[X2Y2]

1x - jKv2TK-11x - jKv2 = xTK-1x - 2jxTv + j2vTKv.

X = 1X1 ,X2 , Á ,Xn2

Z = Y1 + Y2 + Y3

Z = X + Y + Z

Z = X1 + X2 + X3

where B =
1

Qnn
a
n-1

j=1

Qjk1xj - mj2 and ƒKn ƒ / ƒKn-1 ƒ = Qnn .

= Qnn51xn - mn2 + B62 - QnnB
2

1
21xn - mn2TQn1xn - mn2 - 1

21xn-1 - mn-12TQn-11xn-1 - mn-12

X2 .X1X3

Q3Q2K3

Z = 1AR2-1Y.

b = 1b1 , b2 , Á , bK2
A = 3ak4

Y = ARb + N

Y = 1Y1 , Y2 , Á , YK2

(i) (ii) (iii)

X/Y -1 0 1 X/Y -1 0 1 X/Y -1 0 1

-1 1/6 1/6 0 -1 1/9 1/9 1/9 -1 1/3 0 0

0 0 0 1/3 0 1/9 1/9 1/9 0 0 1/3 0

1 1/6 1/6 0 1 1/9 1/9 1/9 1 0 0 1/3
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(a) Find the minimum mean square error linear estimator for Y given X.

(b) Find the minimum mean square error estimator for Y given X.

(c) Find the MAP and ML estimators for Y given X.

(d) Compare the mean square error of the estimators in parts a, b, and c.

6.69. Repeat Problem 6.68 for the continuous random variables X and Y in Problem 5.26.

6.70. Find the ML estimator for the signal s in Problem 6.4.

6.71. Let be the number of Web page requests arriving at a server in the period (0, 100) ms
and let be the total combined number of Web page requests arriving at a server in the
period (0, 200) ms. Assume page requests occur every 1-ms interval according to inde-
pendent Bernoulli trials with probability of success p.

(a) Find the minimum linear mean square estimator for given and the associated
mean square error.

(b) Find the minimum mean square error estimator for given and the associated
mean square error.

(c) Find the maximum a posteriori estimator for given 

(d) Repeat parts a, b, and c for the estimation of given 

6.72. Let where X and N are independent Gaussian random variables with dif-
ferent variances and N is zero mean.

(a) Plot the correlation coefficient between the “observed signal” Y and the “desired
signal” X as a function of the signal-to-noise ratio 

(b) Find the minimum mean square error estimator for X given Y.

(c) Find the MAP and ML estimators for X given Y.

(d) Compare the mean square error of the estimators in parts a, b and c.

6.73. Let X, Y, Z be the random variables in Problem 6.7.

(a) Find the minimum mean square error linear estimator for Y given X and Z.

(b) Find the minimum mean square error estimator for Y given X and Z.

(c) Find the MAP and ML estimators for Y given X and Z.

(d) Compare the mean square error of the estimators in parts b and c.

6.74. (a) Repeat Problem 6.73 for the estimator of given and in Problem 6.13.

(b) Repeat Problem 6.73 for the estimator of given and 

6.75. Consider the ideal multiuser communication system in Problem 6.21. Assume the trans-
mitted bits are independent and equally likely to be or 

(a) Find the ML and MAP estimators for b given the observation Y.

(b) Find the minimum mean square linear estimator for b given the observation Y. How
can this estimator be used in deciding what were the transmitted bits?

6.76. Repeat Problem 6.75 for the multiuser system in Problem 6.58.

6.77. A second-order predictor for samples of an image predicts the sample E as a linear func-
tion of sample D to its left and sample B in the previous line, as shown below:

line j A B C

line D E

Estimate for E =

(a) Find a and b if all samples have variance and if the correlation coefficient be-
tween D and E is between B and E is and between D and B is

(b) Find the mean square error of the predictor found in part a, and determine the reduc-
tion in the variance of the signal in going from the input to the output of the predictor.

r2.r,r,
s2

aD + bB.

ÁÁj + 1

ÁÁ

-1.+1bk

X2 .X1X3

X3X1X2 ,

sX/sN .

Y = X + N

N2 .N1

N1 .N2

N1N2

N1N2

N2

N1
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6.78. Show that the mean square error of the two-tap linear predictor is given by Eq. (6.64).

6.79. In “hexagonal sampling” of an image, the samples in consecutive lines are offset relative
to each other as shown below:

line j A B

line C D

The covariance between two samples a and b is given by where d(a, b) is the Eu-
clidean distance between the points. In the above samples, the distance between A and B,

A and C, A and D, C and D, and B and D is 1. Suppose we wish to use a two-tap linear
predictor to predict the sample D. Which two samples from the set should we
use in the predictor? What is the resulting mean square error?

Section 6.6: Generating Correlated Vector Random Variables

6.80. Find a linear transformation that diagonalizes K.

(a)

(b)

6.81. Generate and plot the scattergram of 1000 pairs of random variables Y with the covari-
ance matrices in Problem 6.80 if:

(a) and are independent random variables that are each uniform in the unit
interval;

(b) and are independent zero-mean, unit-variance Gaussian random variables.

6.82. Let be the jointly Gaussian random variables in Problem 6.55.

(a) Find a linear transformation that diagonalizes the covariance matrix.

(b) Generate 1000 triplets of and plot the scattergrams for and and
and and Confirm that the scattergrams are what is expected.

6.83. Let X be a jointly Gaussian random vector with mean and covariance matrix and
let A be a matrix that diagonalizes What is the joint pdf of 

6.84. Let be independent zero-mean, unit-variance Gaussian random variables.
Let that is, is the moving average of pairs of values of X.Assume

(a) Find the covariance matrix of the 

(b) Use Octave to generate a sequence of 1000 samples How would you
check whether the have the correct covariances?

6.85. Repeat Problem 6.84 with 

6.86. Let U be an orthogonal matrix. Show that if A diagonalizes the covariance matrix K, then
also diagonalizes K.

6.87. The transformation in Problem 6.56 is said to be “causal” because each output depends
only on “past” inputs.

(a) Find the covariance matrix of X, Y, Z in Problem 6.56.

(b) Find a noncausal transformation that diagonalizes the covariance matrix in part a.

6.88. (a) Find a causal transformation that diagonalizes the covariance matrix in Problem 6.54.

(b) Repeat for the covariance matrix in Problem 6.55.

B = UA

Yk = Xk - Xk-1 .

Yk’s
Y1 , Á , Yn .

Yk’s.

X-1 = 0 = Xn+1 .
YkYk = 1Xk + Xk-12/2,

X1 ,X2 , Á ,Xn

A-11X - mX2?KX .
KXmX

Y3 .Y2Y3 ,
Y2 , Y1Y1Y = AX

X = 1X1 ,X2 ,X32
X2X1

X2X1

K = B4 1

1 4
R .

K = B2 1

1 4
R .

*

5A, B, C6

rd1a,b2
Áj + 1

Á
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Problems Requiring Cumulative Knowledge

6.89. Let be a sequence of independent zero-mean, unit-variance Gaussian ran-
dom variables. A “low-pass filter” takes the sequence and produces the output se-
quence and a “high-pass filter” produces the output sequence

(a) Find the joint pdf of , and of ,

(b) Repeat part a for 

(c) Find the joint pdf of , and 

(d) Find the corresponding joint characteristic functions in parts a, b, and c.

6.90. Let be the samples of a speech waveform in Example 6.31. Suppose we
want to interpolate for the value of a sample in terms of the previous and the next sam-
ples, that is, we wish to find the best linear estimate for in terms of and 

(a) Find the coefficients of the best linear estimator (interpolator).

(b) Find the mean square error of the best linear interpolator and compare it to the
mean square error of the two-tap predictor in Example 6.31.

(c) Suppose that the samples are jointly Gaussian. Find the pdf of the interpolation error.

6.91. Let be samples from some signal. Suppose that the samples are jointly
Gaussian random variables with covariance

Suppose we take blocks of two consecutive samples to form a vector X, which is then lin-
early transformed to form 

(a) Find the matrix A so that the components of Y are independent random variables.

(b) Let and be two consecutive blocks and let and be the corresponding
transformed variables. Are the components of and independent?

6.92. A multiplexer combines N digital television signals into a common communications line.
TV signal n generates bits every 33 milliseconds, where is a Gaussian random vari-
able with mean m and variance Suppose that the multiplexer accepts a maximum
total of T bits from the combined sources every 33 ms, and that any bits in excess of T are
discarded. Assume that the N signals are independent.

(a) Find the probability that bits are discarded in a given 33-ms period, if we let
where is the mean total bits generated by the combined sources,and 

is the standard deviation of the total number of bits produced by the combined sources.

(b) Find the average number of bits discarded per period.

(c) Find the long-term fraction of bits lost by the multiplexer.

(d) Find the average number of bits per source allocated in part a, and find the average
number of bits lost per source. What happens as N becomes large?

(e) Suppose we require that t be adjusted with N so that the fraction of bits lost per
source is kept constant. Find an equation whose solution yields the desired value of t.

(f) Do the above results change if the signals have pairwise covariance 

6.93. Consider the estimation of T given and arrivals in Problem 6.17.

(a) Find the ML and MAP estimators for T.

(b) Find the linear mean square estimator for T.

(c) Repeat parts a and b if and are given.N2N1

N1

r?

smaT = ma + ts,

s2.
XnXn

Yi+1Yi

Yi+1YiXi+1Xi

Y = AX.

COV1Xi ,Xj2 = c s2 for i = j

rs2 for ƒ i - j ƒ = 1

0 otherwise.

X1 ,X2 , Á ,Xn

X3 .X1X2

X1 ,X2 , Á ,Xn

Ym .Xm, Yn,Xn

Yn .

Xn+2m ,m 7 1.Xn+m,andXnXn-1 ;XnXn+1,

Yn = 1Un - Un-12/2.
Xn = 1Un + Un-12/2,

Ui

U0 , U1 , Á



In certain random experiments, the outcome is a function of time or space. For exam-
ple, in speech recognition systems, decisions are made on the basis of a voltage wave-
form corresponding to a speech utterance. In an image processing system, the intensity
and color of the image varies over a rectangular region. In a peer-to-peer network, the
number of peers in the system varies with time. In some situations, two or more func-
tions of time may be of interest. For example, the temperature in a certain city and the
demand placed on the local electric power utility vary together in time.

The random time functions in the above examples can be viewed as numerical
quantities that evolve randomly in time or space. Thus what we really have is a family
of random variables indexed by the time or space variable. In this chapter we begin the
study of random processes. We will proceed as follows:

• In Section 9.1 we introduce the notion of a random process (or stochastic

process), which is defined as an indexed family of random variables.

• We are interested in specifying the joint behavior of the random variables within
a family (i.e., the temperature at two time instants). In Section 9.2 we see that this
is done by specifying joint distribution functions, as well as mean and covariance
functions.

• In Sections 9.3 to 9.5 we present examples of stochastic processes and show how
models of complex processes can be developed from a few simple models.

• In Section 9.6 we introduce the class of stationary random processes that can be
viewed as random processes in “steady state.”

• In Section 9.7 we investigate the continuity properties of random processes and
define their derivatives and integrals.

• In Section 9.8 we examine the properties of time averages of random processes
and the problem of estimating the parameters of a random process.

• In Section 9.9 we describe methods for representing random processes by Fouri-
er series and by the Karhunen-Loeve expansion.

• Finally, in Section 9.10 we present methods for generating random processes.

487
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X(t, z1)

t
tkt3t2t1

X(t, z2)

t
tkt2 t3t1

X(t, z3)

t
tkt2 t3

t1

FIGURE 9.1
Several realizations of a random process.

9.1 DEFINITION OF A RANDOM PROCESS

Consider a random experiment specified by the outcomes from some sample space S,
by the events defined on S, and by the probabilities on these events. Suppose that to
every outcome we assign a function of time according to some rule:

The graph of the function versus t, for fixed, is called a realization, sample

path, or sample function of the random process. Thus we can view the outcome of the
random experiment as producing an entire function of time as shown in Fig. 9.1. On the
other hand, if we fix a time from the index set I, then is a random variable
(see Fig. 9.1) since we are mapping onto a real number. Thus we have created a fam-
ily (or ensemble) of random variables indexed by the parameter 
This family is called a random process. We also refer to random processes as stochastic

processes. We usually suppress the and use X(t) to denote a random process.
A stochastic process is said to be discrete-time if the index set I is a countable set

(i.e., the set of integers or the set of nonnegative integers). When dealing with discrete-
time processes, we usually use n to denote the time index and to denote the random
process. A continuous-time stochastic process is one in which I is continuous (i.e., the
real line or the nonnegative real line).

The following example shows how we can imagine a stochastic process as result-
ing from nature selecting at the beginning of time and gradually revealing it in time
throughX1t, z2. z

Xn

z

t, 5X1t, z2, t H I6.z

X1tk , z2tk

zX1t, z2
X1t, z2 t H I.

z H S,

z



Section 9.1 Definition of a Random Process 489

Example 9.1 Random Binary Sequence

Let be a number selected at random from the interval and let be the binary
expansion of 

Define the discrete-time random process by

The resulting process is sequence of binary numbers, with equal to the nth number in
the binary expansion of 

Example 9.2 Random Sinusoids

Let be selected at random from the interval Define the continuous-time random
process by

The realizations of this random process are sinusoids with amplitude as shown in Fig. 9.2(a).
Let be selected at random from the interval and let 

The realizations of are phase-shifted versions of as shown in Fig 9.2(b).cos 2ptY1t, z2
Y1t, z2 = cos12pt + z2.1-p, p2z

z,

X1t, z2 = z cos12pt2 -q 6 t 6 q.

X1t, z2
3-1, 14.z

z.
X1n, z2

X1n, z2 = bn n = 1, 2, Á .

X1n, z2

z = a
q

i=1

bi2
-i where bi H 50, 16.

z:
b1b2 ÁS = 30, 14,z

(a)

z � 0.6 z� 0.9

z � �0.2

t

t

(b)

z � p/4 z � 0

FIGURE 9.2
(a) Sinusoid with random amplitude, (b) Sinusoid with random
phase.
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The randomness in induces randomness in the observed function In
principle, one can deduce the probability of events involving a stochastic process at
various instants of time from probabilities involving by using the equivalent-event
method introduced in Chapter 4.

Example 9.3

Find the following probabilities for the random process introduced in Example 9.1:
and

The probabilities are obtained by finding the equivalent events in terms of 

since all points in the interval begin with and all points in begin
with and Clearly, any sequence of k bits has a corresponding subinterval of length
(and hence probability) 

Example 9.4

Find the pdf of and in Example 9.2.
If is such that then for all and the pdf of is a delta

function of unit weight at Otherwise, is uniformly distributed in the interval
since is uniformly distributed in (see Fig. 9.3a). Note that the pdf

of depends on 
The approach used in Example 4.36 can be used to show that has an arcsine dis-

tribution:

(see Fig. 9.3b). Note that the pdf of does not depend on 
Figure 9.3(c) shows a histogram of 1000 samples of the amplitudes at 

which can be seen to be approximately uniformly distributed in Figure 9.3(d) shows the
histogram for the samples of the sinusoid with random phase. Clearly there is agreement with
the arcsine pdf.

In general, the sample paths of a stochastic process can be quite complicated
and cannot be described by simple formulas. In addition, it is usually not possible to
identify an underlying probability space for the family of observed functions of time.
Thus the equivalent-event approach for computing the probability of events involving

in terms of the probabilities of events involving does not prove useful inzX1t, z2

3-1, 14.
t0 = 0,X1t0 , z2

t0 .Y1t0 , z2

fY1y2 =
1

p21 - y2
, ƒy ƒ 6 1

Y1t0 , z2
t0 .X1t0 , z2

3-1, 14z1-cos 2pt0 , cos 2pt02
X1t0 , z2x = 0.

X1t02zX1t0 , z2 = 0cos12pt02 = 0,t0

Y1t0 , z2X0 = X1t0 , z2

2-k.
b2 = 1.b1 = 0

31/4, 1/22b1 = 030 … z … 14

P3X11, z2 = 0 and X12, z2 = 14 = P c1
4

… z 6
1

2
d =

1

4
,
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1

2
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1
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FIGURE 9.3
(a) pdf of sinusoid with random amplitude. (b) pdf of sinusoid with random phase. (c) Histogram of samples from
uniform amplitude sinusoid at (d) Histogram of samples from random phase sinusoid at t = 0.t = 0.

practice. In the next section we show an alternative method for specifying the proba-
bilities of events involving a stochastic process.

9.2 SPECIFYING A RANDOM PROCESS

There are many questions regarding random processes that cannot be answered with
just knowledge of the distribution at a single time instant. For example, we may be in-
terested in the temperature at a given locale at two different times. This requires the
following information:

In another example, the speech compression system in a cellular phone predicts the
value of the speech signal at the next sampling time based on the previous k samples.
Thus we may be interested in the following probability:

P3a 6 X1tk+12 … b ƒX1t12 = x1 ,X1t22 = x2 , Á ,X1tk2 = xk4.

P3x1 6 X1t12 … x1 , x2 6 X1t22 … x24.

fY(t0)(x)

y

fX(t0)(x)

1/2 cos 2πt0
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x
0 0 1�1
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(c)

(b)

(d)
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It is clear that a general description of a random process should provide probabilities
for vectors of samples of the process.

9.2.1 Joint Distributions of Time Samples

Let be the k random variables obtained by sampling the random
process at the times 

as shown in Fig. 9.1. The joint behavior of the random process at these k time instants
is specified by the joint cumulative distribution of the vector random variable

The probabilities of any event involving the random process at all or
some of these time instants can be computed from this cdf using the methods devel-
oped for vector random variables in Chapter 6.Thus, a stochastic process is specified by

the collection of kth-order joint cumulative distribution functions:

(9.1)

for any k and any choice of sampling instants Note that the collection of cdf’s
must be consistent in the sense that lower-order cdf’s are obtained as marginals of
higher-order cdf’s. If the stochastic process is continuous-valued, then a collection of
probability density functions can be used instead:

(9.2)

If the stochastic process is discrete-valued, then a collection of probability mass
functions can be used to specify the stochastic process:

(9.3)

for any k and any choice of sampling instants

At first glance it does not appear that we have made much progress in specifying
random processes because we are now confronted with the task of specifying a vast
collection of joint cdf’s! However, this approach works because most useful models of
stochastic processes are obtained by elaborating on a few simple models, so the meth-
ods developed in Chapters 5 and 6 of this book can be used to derive the required cdf’s.
The following examples give a preview of how we construct complex models from sim-
ple models. We develop these important examples more fully in Sections 9.3 to 9.5.

Example 9.5 iid Bernoulli Random Variables

Let be a sequence of independent, identically distributed Bernoulli random variables with
The joint pmf for any k time samples is then

P3X1 = x1 ,X2 = x2 , Á ,Xk = xk4 = P3X1 = x14Á P3Xk = xk4 = a 1

2
bk

p = 1/2.
Xn

n1 , Á , nk .

pX1,Á ,Xk1x1 , x2 , Á , xk2 = P3X1t12 = x1 ,X1t22 = x2 , Á ,X1tk2 = xk4

= P5x1 6 X1t12 … x1 + dx1 , Á , xk 6 X1tk2 … xk + dxk4.
fX1,Á ,Xk1x1 , x2 , Á , xk2 dx1 Á dxn

t1 , Á , tk .

FX1,Á ,Xk1x1 , x2 , Á , xk2 = P3X1t12 … x1 ,X1t22 … x2 , Á ,X1tk2 … xk4,

X1 ,X2 , Á ,Xk .

X1 = X1t1 , z2,X2 = X1t2 , z,2, Á ,Xk = X1tk , z2,
t1 , t2 , Á , tk:X1t, z2

X1 ,X2 , Á ,Xk
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where for all i. This binary random process is equivalent to the one discussed in
Example 9.1.

Example 9.6 iid Gaussian Random Variables

Let be a sequence of independent, identically distributed Gaussian random variables with
zero mean and variance The joint pdf for any k time samples is then

The following two examples show how more complex and interesting processes
can be built from iid sequences.

Example 9.7 Binomial Counting Process

Let be a sequence of independent, identically distributed Bernoulli random variables with
Let be the number of 1’s in the first n trials:

is an integer-valued nondecreasing function of n that grows by unit steps after a random num-
ber of time instants. From previous chapters we know that is a binomial random variable with
parameters n and In the next section we show how to find the joint pmf’s of using
conditional probabilities.

Example 9.8 Filtered Noisy Signal

Let be a sequence of independent, identically distributed observations of a signal voltage 

corrupted by zero-mean Gaussian noise with variance 

Consider the signal that results from averaging the sequence of observations:

From previous chapters we know that is the sample mean of an iid sequence of Gaussian ran-
dom variables. We know that itself is a Gaussian random variable with mean and variance

and so it tends towards the value as n increases. In a later section, we show that is an
example from the class of Gaussian random processes.

9.2.2 The Mean, Autocorrelation, and Autocovariance Functions

The moments of time samples of a random process can be used to partially specify the
random process because they summarize the information contained in the joint cdf’s.

Snms2/n,
mSn

Sn
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Snp = 1/2.
Sn

Sn
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Xn
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The mean function and the variance function VAR[X(t)] of a continuous-time
random process X(t) are defined by

(9.4)

and

(9.5)

where is the pdf of X(t). Note that and VAR[X(t)] are deterministic

functions of time. Trends in the behavior of X(t) are reflected in the variation of 

with time. The variance gives an indication of the spread in the values taken on by X(t)

at different time instants.
The autocorrelation of a random process X(t) is defined as the joint

moment of and 

(9.6)

where is the second-order pdf of X(t). In general, the autocorrelation

is a function of and Note that 
The autocovariance of a random process X(t) is defined as the covari-

ance of and 

(9.7)

From Eq. (5.30), the autocovariance can be expressed in terms of the autocorrelation
and the means:

(9.8)

Note that the variance of X(t) can be obtained from 

(9.9)

The correlation coefficient of X(t) is defined as the correlation coefficient of
and (see Eq. 5.31):

(9.10)

From Eq. (5.32) we have that Recall that the correlation coefficient is
a measure of the extent to which a random variable can be predicted as a linear func-
tion of another. In Chapter 10, we will see that the autocovariance function and the au-
tocorrelation function play a critical role in the design of linear methods for analyzing
and processing random signals.
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The mean, variance, autocorrelation, and autocovariance functions for discrete-
time random processes are defined in the same manner as above. We use a slightly dif-
ferent notation for the time index. The mean and variance of a discrete-time random
process are defined as:

(9.11)

The autocorrelation and autocovariance functions of a discrete-time random process
are defined as follows:

(9.12)

and

(9.13)

Before proceeding to examples, we reiterate that the mean, autocorrelation,
and autocovariance functions are only partial descriptions of a random process. Thus
we will see later in the chapter that it is possible for two quite different random
processes to have the same mean, autocorrelation, and autocovariance functions.

Example 9.9 Sinusoid with Random Amplitude

Let where A is some random variable (see Fig. 9.2a). The mean of X(t) is
found using Eq. (4.30):

Note that the mean varies with t. In particular, note that the process is always zero for values of t
where

The autocorrelation is

and the autocovariance is then

Example 9.10 Sinusoid with Random Phase

Let where is uniformly distributed in the interval (see Fig.
9.2b). The mean of X(t) is found using Eq. (4.30):

1-p, p2®X1t2 = cos1vt + ®2,

= VAR3A4 cos 2pt1 cos 2pt2 .

= 5E3A24 - E3A426 cos 2pt1 cos 2pt2

CX1t1 , t22 = RX1t1 , t22 - mX1t12mX1t22

= E3A24 cos 2pt1 cos 2pt2 ,

RX1t1 , t22 = E3A cos 2pt1 A cos 2pt24

cos 2pt = 0.

mX1t2 = E3A cos 2pt4 = E3A4 cos 2pt.

X1t2 = A cos 2pt,

= RX1n1 , n22 - mX1n12mX1n22.
CX1n1 , n22 = E35X1n12 - mX1n1265X1n22 - mX1n2264

RX1n1 , n22 = E3X1n12X1n224
Xn

mX1n2 = E3Xn4 and VAR3Xn4 = E31Xn - mX1n2224.
Xn
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The autocorrelation and autocovariance are then

where we used the identity cos(a) Note that 

is a constant and that depends only on Note as well that the samples at time

and are uncorrelated if where k is any integer.

9.2.3 Multiple Random Processes

In most situations we deal with more than one random process at a time. For example,
we may be interested in the temperatures at city a, X(t), and city b, Y(t). Another very
common example involves a random process X(t) that is the “input” to a system and
another random process Y(t) that is the “output” of the system. Naturally, we are inter-
ested in the interplay between X(t) and Y(t).

The joint behavior of two or more random processes is specified by the collec-
tion of joint distributions for all possible choices of time samples of the processes.
Thus for a pair of continuous-valued random processes X(t) and Y(t) we must speci-
fy all possible joint density functions of and for all
k, j, and all choices of and For example, the simplest joint pdf
would be:

.

Note that the time indices of X(t) and Y(t) need not be the same. For example, we may
be interested in the input at time and the output at a later time 

The random processes X(t) and Y(t) are said to be independent random processes

if the vector random variables and are
independent for all k, j, and all choices of and 

.

The cross-correlation of X(t) and Y(t) is defined by

(9.14)

The processes X(t) and Y(t) are said to be orthogonal random processes if

(9.15)RX,Y1t1 , t22 = 0 for all t1 and t2 .

RX,Y1t1 , t22 = E3X1t12Y1t224.
RX,Y(t1 , t2)

FX,Y (x1, Á ,xk, y1, Á ,yj) = FX (X1, Á ,Xk)FY (y1, Á ,yj)

t¿1 , Á , t¿j:t1 , Á , tk

Y = 1Y1t¿12, Á , Y1t¿j22X = 1X1t12, Á ,X1tk22
t2 .t1

fX1t12,Y1t221x, y2 dxdy = P5x 6 X1t12 … x + dx, y 6 Y1t22 … y + dy4

t¿1 , Á , t¿j .t1 , Á , tk

Y1t¿12, Á , Y1t¿j2X1t12, Á ,X1tk2

v1t1 - t22 = kpt2t1

ƒ t1 - t2 ƒ .CX1t1 , t22
mX1t2cos1b2 = 1/2 cos1a + b2 + 1/2 cos1a - b2.

=
1

2
cos1v1t1 - t222,

=
1

2pL
p

-p

1

2
5cos1v1t1 - t22 + cos1v1t1 + t22 + 2u26 du

CX1t1 , t22 = RX1t1 , t22 = E3cos1vt1 + ®2 cos1vt2 + ®24

mX1t2 = E3cos1vt + ®24 =
1

2pL
p

-p

 cos1vt + u2 du = 0.
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The cross-covariance of X(t) and Y(t) is defined by

(9.16)

The processes X(t) and Y(t) are said to be uncorrelated random processes if

(9.17)

Example 9.11

Let and where is a random variable uniformly
distributed in Find the cross-covariance of X(t) and Y(t).

From Example 9.10 we know that X(t) and Y(t) are zero mean. From Eq. (9.16), the cross-
covariance is then equal to the cross-correlation:

since X(t) and Y(t) are not uncorrelated random processes be-
cause the cross-covariance is not equal to zero for all choices of time samples. Note, however,
that and are uncorrelated random variables for and such that 
where k is any integer.

Example 9.12 Signal Plus Noise

Suppose process Y(t) consists of a desired signal X(t) plus noise N(t):

Find the cross-correlation between the observed signal and the desired signal assuming that X(t)
and N(t) are independent random processes.

From Eq. (8.14), we have

where the third equality followed from the fact that X(t) and N(t) are independent.

= RX1t1 , t22 + mX1tl2mN1t22,
= RX1t1 , t22 + E3X1t124E3N1t224
= E3X1t125X1t22 + N1t2264

RXY1t1 , t22 = E3X1t12Y1t224

Y1t2 = X1t2 + N1t2.

v1t1 - t22 = kpt2t1Y1t22X1t12
E3sin1v1t1 + t22 + 2®24 = 0.

= -
1

2
sin1v1t1 - t222,

= E c - 1

2
sin1v1t1 - t222 +

1

2
sin1v1t1 + t22 + 2®2 d

CX,Y1t1 , t22 = RX,Y1t1 , t22 = E3cos1vt1 + ®2 sin1vt2 + ®24

3-p, p4.
®Y1t2 = sin1vt + ®2,X1t2 = cos1vt + ®2

CX,Y1t1 , t22 = 0 for all t1 and t2 .

= RX,Y1t1 , t22 - mX1t12mX1t22.
CX,Y1t1 , t22 = E35X1t12 - mX1t1265Y1t22 - mX1t2264

CX,Y(t1 , t2)
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9.3 DISCRETE-TIME PROCESSES: SUM PROCESS, BINOMIAL COUNTING 
PROCESS, AND RANDOM WALK

In this section we introduce several important discrete-time random processes. We
begin with the simplest class of random processes—independent, identically distrib-
uted sequences—and then consider the sum process that results from adding an iid se-
quence.We show that the sum process satisfies the independent increments property as
well as the Markov property. Both of these properties greatly facilitate the calculation
of joint probabilities. We also introduce the binomial counting process and the random
walk process as special cases of sum processes.

9.3.1 iid Random Process

Let be a discrete-time random process consisting of a sequence of independent,
identically distributed (iid) random variables with common cdf mean m, and
variance The sequence is called the iid random process.

The joint cdf for any time instants is given by

(9.18)

where, for simplicity, denotes Equation (9.18) implies that if is discrete-
valued, the joint pmf factors into the product of individual pmf’s, and if is continu-
ous-valued, the joint pdf factors into the product of the individual pdf’s.

The mean of an iid process is obtained from Eq. (9.4):

(9.19)

Thus, the mean is constant.
The autocovariance function is obtained from Eq. (9.6) as follows. If then

since and are independent random variables. If then

We can express the autocovariance of the iid process in compact form as follows:

(9.20)

where if and 0 otherwise. Therefore the autocovariance function is
zero everywhere except for The autocorrelation function of the iid process is
found from Eq. (9.7):

(9.21)RX1n1 , n22 = CX1n1 , n22 + m2.

n1 = n2 .
n1 = n2 ,dn1n2

= 1

CX1n1 , n22 = s2dn1n2
,

CX1n1 , n22 = E31Xn - m224 = s2.

n1 = n2 = n,Xn2
Xn1

= E31Xn1
- m24E31Xn2

- m24 = 0,

CX1n1 , n22 = E31Xn1
- m21Xn2

- m24
n1 Z n2 ,

mX1n2 = E3Xn4 = m for all n.

Xn

XnXnk .Xk

= FX1x12FX1x22Á FX1xk2,
FX1, Á ,Xk1x1 , x2 , Á , xk2 = P3X1 … x1 ,X2 … x2 , Á ,Xk … xk4

n1 , Á , nk

Xns2.
FX1x2,

Xn
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Example 9.13 Bernoulli Random Process

Let be a sequence of independent Bernoulli random variables. is then an iid random
process taking on values from the set A realization of such a process is shown in Fig.
9.4(a). For example, could be an indicator function for the event “a light bulb fails and is re-
placed on day n.”

Since is a Bernoulli random variable, it has mean and variance

The independence of the makes probabilities easy to compute. For example, the prob-
ability that the first four bits in the sequence are 1001 is

Similarly, the probability that the second bit is 0 and the seventh is 1 is

Example 9.14 Random Step Process

An up-down counter is driven by or pulses. Let the input to the counter be given by
where is the Bernoulli random process, then

For example, might represent the change in position of a particle that moves along a straight
line in jumps of every time unit. A realization of is shown in Fig. 9.5(a).Dn;1

Dn

Dn = b +1 if In = 1

-1 if In = 0.

InDn = 2In - 1,
-1+1

P3I2 = 0, I7 = 14 = P3I2 = 04P3I7 = 14 = p11 - p2.

= p211 - p22.
= P3I1 = 14P3I2 = 04P3I3 = 04P3I4 = 14
P3I1 = 1, I2 = 0, I3 = 0, I4 = 14

In’s

mI1n2 = p VAR3In4 = p11 - p2.
In

In

50, 16.
InIn

0

1

0 1 2 3 4 5 6 7 8
n

In

(a)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8
n

Sn

(b)

FIGURE 9.4
(a) Realization of a Bernoulli process. indicates that a light bulb fails and is replaced on day n. (b) Realization of a binomial
process. denotes the number of light bulbs that have failed up to time n.Sn

In = 1
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The mean of is

The variance of is found from Eqs. (4.37) and (4.38):

The probabilities of events involving are computed as in Example 9.13.

9.3.2 Independent Increments and Markov Properties of Random Processes

Before proceeding to build random processes from iid processes, we present two very
useful properties of random processes. Let X(t) be a random process and consider two
time instants, The increment of the random process in the interval is
defined as A random process X(t) is said to have independent increments
if the increments in disjoint intervals are independent random variables, that is, for any k
and any choice of sampling instants the associated increments

are independent random variables. In the next subsection, we show that the joint pdf
(pmf) of is given by the product of the pdf (pmf) of and
the marginal pdf’s (pmf’s) of the individual increments.

Another useful property of random processes that allows us to readily obtain the
joint probabilities is the Markov property. A random process X(t) is said to be Markov
if the future of the process given the present is independent of the past; that is, for any k
and any choice of sampling instants and for any 

(9.22)= fX1tk21xk ƒX1tk-12 = xk-12
fX1tk21xk ƒX1tk-12 = xk-1 , Á ,X1t12 = x12

x1 , x2 , Á ,xk ,t1 6 t2 6 Á 6 tk

X1t12X1t12,X1t22, Á ,X1tk2

X1t22 - X1t12,X1t32 - X1t22, Á ,X1tk2 - X1tk-12
t1 6 t2 6 Á 6 tk ,

X1t22 - X1t12.
t1 6 t … t2t1 6 t2 .

Dn

VAR3Dn4 = VAR32In - 14 = 22 VAR3In4 = 4p11 - p2.
Dn

mD1n2 = E3Dn4 = E32In - 14 = 2E3In4 - 1 = 2p - 1.

Dn

1 2 3 4 5 6 7 8 9 10 1112

1

0

�1

n

Dn

(a)

1

2

3

0

�1

n

Sn

(b)

FIGURE 9.5
(a) Realization of a random step process. implies that the particle moves one step to the right at time n. (b) Realization
of a random walk process. denotes the position of a particle at time n.Sn

Dn � 1
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if X(t) is continuous-valued, and

(9.23)

if X(t) is discrete-valued. The expressions on the right-hand side of the above two
equations are called the transition pdf and transition pmf, respectively. In the next sec-
tions we encounter several processes that satisfy the Markov property. Chapter 11 is
entirely devoted to random processes that satisfy this property.

It is easy to show that a random process that has independent increments is also
a Markov process.The converse is not true; that is, the Markov property does not imply
independent increments.

9.3.3 Sum Processes: The Binomial Counting and Random Walk Processes

Many interesting random processes are obtained as the sum of a sequence of iid ran-
dom variables,

(9.24)

where We call the sum process. The pdf or pmf of is found using the convo-
lution or characteristic-equation methods presented in Section 7.1. Note that depends
on the “past,” only through that is, is independent of the past
when is known.This can be seen clearly from Fig. 9.6, which shows a recursive pro-
cedure for computing in terms of and the increment Thus is a Markov

process.

Example 9.15 Binomial Counting Process

Let the be the sequence of independent Bernoulli random variables in Example 9.13, and let
be the corresponding sum process. is then the counting process that gives the number of

successes in the first n Bernoulli trials. The sample function for corresponding to a particular
sequence of is shown in Fig. 9.4(b). Note that the counting process can only increase over
time. Note as well that the binomial process can increase by at most one unit at a time. If indi-
cates that a light bulb fails and is replaced on day n, then denotes the number of light bulbs
that have failed up to day n.

Sn

In

Ii’s
Sn

SnSn

Ii

SnXn .Sn-1Sn

Sn-1

SnSn-1 ,S1 , Á , Sn-1 ,
Sn

SnSnS0 = 0.

= Sn-1 + Xn ,

Sn = X1 + X2 + Á + Xn n = 1, 2, Á

X1 ,X2 , Á :

= P3X1tk2 = xk ƒX1tk-12 = xk-14
P3X1tk2 = xk ƒX1tk-12 = xk-1 , Á ,X1t12 = x14

Xn

Sn�1

Sn � Sn�1 
 Xn


Unit

delay

FIGURE 9.6
The sum process can be
generated in this way.

Sn � X1 � Á � Xn , S0 � 0,
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Since is the sum of n independent Bernoulli random variables, is a binomial random
variable with parameters n and

and zero otherwise. Thus has mean np and variance Note that the mean and vari-
ance of this process grow linearly with time. This reflects the fact that as time progresses, that is,
as n grows, the range of values that can be assumed by the process increases. If then we
also know that has a tendency to grow steadily without bound over time.

The Markov property of the binomial counting process is easy to deduce. Given that the
current value of the process at time is the process at the next time instant will
be k with probability or with probability p. Once we know the value of the process
at time the values of the random process prior to time are irrelevant.

Example 9.16 One-Dimensional Random Walk

Let be the iid process of random variables in Example 9.14, and let be the correspond-
ing sum process. can represent the position of a particle at time n. The random process is an
example of a one-dimensional random walk. A sample function of is shown in Fig. 9.5(b). Un-
like the binomial process, the random walk can increase or decrease over time.The random walk
process changes by one unit at a time.

The pmf of is found as follows. If there are k in the first n trials, then there are
and Conversely, if the number of is
If is not an integer, then cannot equal j. Thus

Since k is the number of successes in n Bernoulli trials, the mean of the random walk is:

As time progresses, the random walk can fluctuate over an increasingly broader range of posi-

tive and negative values. has a tendency to either grow if or to decrease if 

The case provides a precarious balance, and we will see later, in Chapter 12, very inter-

esting dynamics. Figure 9.7(a) shows the first 100 steps from a sample function of the random

walk with Figure 9.7(b) shows four sample functions of the random walk process with

for 1000 steps. Figure 9.7(c) shows four sample functions in the asymmetric case where

Note the strong linear growth trend in the process.

The sum process has independent increments in nonoverlapping time inter-
vals. To see this consider two time intervals: and where

The increments of in these disjoint time intervals are given by

(9.25)Sn3
- Sn2

= Xn2+1 + Á + Xn3
.

Sn1
- Sn0

= Xn0+1 + Á + Xn1

Snn1 … n2 .
n2 6 n … n3 ,n0 6 n … n1

Sn

p = 3/4.

p = 1/2

p = 1/2.

p = 1/2

p 6 1/2.p 7 1/2,Sn

E3Sn4 = 2np - n = n12p - 12.

P3Sn = 2k - n4 = ¢n
k
≤pk11 - p2n-k for k H 50, 1, Á , n6.

Sn1j + n2/2k = 1j + n2/2.
+1’sSn = jSn = k - 1n - k2 = 2k - n.“-1”s,n - k

“+1”sSn

Sn

SnSn

Sn;1Dn

n - 1n - 1,
k + 11 - p

Sn-1 = k,n - 1

Sn

p 7 0

np11 - p2.Sn

P3Sn = j4 = ¢n
j
≤p j11 - p2n- j for 0 … j … n,

p = P3I = 14:
SnSn
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FIGURE 9.7

(a) Random walk process with (b) Four sample functions of

symmetric random walk process with (c) Four sample functions

of asymmetric random walk with p � 3/4.

p � 1/2.
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The above increments do not have any of the in common, so the independence of
the implies that the increments and are independent ran-
dom variables.

For the increment is the sum of iid random variables, so
it has the same distribution as the sum of the first that is,

(9.26)

Thus increments in intervals of the same length have the same distribution regardless of
when the interval begins. For this reason, we also say that has stationary increments.

Example 9.17 Independent and Stationary Increments of Binomial Process 
and Random Walk

The independent and stationary increments property is particularly easy to see for the binomial
process since the increments in an interval are the number of successes in the corresponding
Bernoulli trials. The independent increment property follows from the fact that the numbers of
successes in disjoint time intervals are independent. The stationary increments property follows
from the fact that the pmf for the increment in a time interval is the binomial pmf with the cor-
responding number of trials.

The increment in a random walk process is determined by the same number of successes
as a binomial process. It then follows that the random walk also has independent and stationary
increments.

The independent and stationary increments property of the sum process 
makes it easy to compute the joint pmf/pdf for any number of time instants. For sim-
plicity, suppose that the are integer-valued, so is also integer-valued.We compute
the joint pmf of at times and 

(9.27)

since the process is equal to and at times and if and only if it is
equal to at time and the subsequent increments are and The
independent increments property then implies that

(9.28)

Finally, the stationary increments property implies that the joint pmf of is given by:

Clearly, we can use this procedure to write the joint pmf of at any time instants
in terms of the pmf at the initial time instant and the pmf’s of the

subsequent increments:
n1 6 n2 6 Á 6 nk

Sn

= P3Sn1
= y14P3Sn2-n1

= y2 - y14P3Sn3-n2
= y3 - y24.

P3Sn1
= y1 , Sn2

= y2 , Sn3
= y34

Sn

= P3Sn1
= y14P3Sn2

- Sn1
= y2 - y14P3Sn3

- Sn2
= y3 - y24.

P3Sn1
= y1 , Sn2

= y2 , Sn3
= y34

y3 - y2 .y2 - y1 ,n1 ,y1

n3 ,n1 , n2 ,y3y1 , y2 ,

= P3Sn1
= y1 , Sn2

- Sn1
= y2 - y1 , Sn3

- Sn2
= y3 - y24,

P3Sn1
= y1 , Sn2

= y2 , Sn3
= y34

n3:n1 , n2 ,Sn

SnXn

Sn

Sn

P3Sn¿ - Sn = y4 = P3Sn¿ -n = y4.
n¿ - nX’s,Sn¿ -n ,
n¿ - nSn¿ - Snn¿ 7 n,

1Sn3
- Sn2

21Sn1
- Sn0

2Xn’s
Xn’s
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(9.29)

If the are continuous-valued random variables, then it can be shown that the joint

density of at times is:

(9.30)

Example 9.18 Joint pmf of Binomial Counting Process

Find the joint pmf for the binomial counting process at times and Find the probability that
that is, the first trials are failures and the remaining trials are all

successes.
Following the above approach we have

The requested probability is then:

which is what we would obtain from a direct calculation for Bernoulli trials.

Example 9.19 Joint pdf of Sum of iid Gaussian Sequence

Let be a sequence of iid Gaussian random variables with zero mean and variance Find
the joint pdf of the corresponding sum process at times and 

From Example 7.3, we know that is a Gaussian random variable with mean zero and
variance The joint pdf of at times and is given by

Since the sum process is the sum of n iid random variables, it has mean and
variance:

(9.31)

(9.32) VAR3Sn4 = n VAR3X4 = ns2.

mS1n2 = E3Sn4 = nE3X4 = nm

Sn

=
1

2 2p1n2 - n12s2
e-1y2-y122/321n2-n12s24 1

2 2pn1s
2
e-y1

2/2n1s
2

.

fSn1
, Sn2
1y1 , y22 = fSn2 - n1

1y2 - y12fSn1
1y12
n2njSnns2.

Sn

n2 .n1

s2.Xn

P3Sn1
= 0, Sn2

= n2 - n14 = ¢n2 - n1

n2 - n1
≤ ¢n1

0
≤pn2-n111 - p2n1 = pn2-n111 - p2n1

= ¢n2 - n1

y2 - y1
≤ ¢n1

y1
≤py211 - p2n2-y2.

= ¢n2 - n1

y2 - y1
≤py2-y111 - p2n2-n1-y2+y1 ¢n1

y1
≤py111 - p2n1-y1

P3Sn1
= y1 , Sn2

= y24 = P3Sn1
= y14P3Sn2

- Sn1
= y2 - y14

n1P3Sn1
= 0, Sn2

= n2 - n14,
n2 .n1

fSn1
,Sn 2

, Á ,Snk
1y1 , y2 , Á , yk2 = fSn1

1y12fSn2 - n1
1y2 - y12Á fSnk - nk - 1

1yk - yk-12.
n1 , n2 , Á , nkSn

Xn

= P3Sn1
= y14P3Sn2-n1

= y2 - y14Á P3Snk-nk - 1
= yk - yk-14.

P3Sn1
= y1 , Sn2

= y2 , Á , Snk = yk4
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The property of independent increments allows us to compute the autocovariance in
an interesting way. Suppose so then

Since and the increment are independent,

since Similarly, if we would have obtained 
Therefore the autocovariance of the sum process is

(9.33)

Example 9.20 Autocovariance of Random Walk

Find the autocovariance of the one-dimensional random walk.
From Example 9.14 and Eqs. (9.32) and (9.33), has mean and variance

Thus its autocovariance is given by

Cs1n, k2 = min1n, k24p11 - p2.
4np11 - p2.

n12p - 12Sn

CS1n, k2 = min1n, k2s2.

ks2.k = min1n, k2,E3Sn - nm4 = 0.

= VAR3Sn4 = ns2,

= E31Sn - nm224
CS1n, k2 = E31Sn - nm224 + E31Sn - nm24E31Sk - Sn - 1k - n2m24

Sk - SnSn

= E31Sn - nm224 + E31Sn - nm21Sk - Sn - 1k - n2m24.
= E31Sn - nm251Sn - nm2 + 1Sk - km2 - 1Sn - nm264

CS1n, k2 = E31Sn - nm21Sk - km24
n = min1n, k2,n … k

Xn
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FIGURE 9.8
(a) First-order autoregressive process; (b) Moving average process.
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The sum process can be generalized in a number of ways. For example, the recur-
sive structure in Fig. 9.6 can be modified as shown in Fig. 9.8(a). We then obtain first-
order autoregressive random processes, which are of interest in time series analysis and in
digital signal processing. If instead we use the structure shown in Fig. 9.8(b), we obtain an
example of a moving average process. We investigate these processes in Chapter 10.

9.4 POISSON AND ASSOCIATED RANDOM PROCESSES

In this section we develop the Poisson random process, which plays an important
role in models that involve counting of events and that find application in areas
such as queueing systems and reliability analysis. We show how the continuous-
time Poisson random process can be obtained as the limit of a discrete-time
process. We also introduce several random processes that are derived from the
Poisson process.

9.4.1 Poisson Process

Consider a situation in which events occur at random instants of time at an average
rate of events per second. For example, an event could represent the arrival of a cus-
tomer to a service station or the breakdown of a component in some system. Let N(t)
be the number of event occurrences in the time interval [0, t]. N(t) is then a nonde-
creasing, integer-valued, continuous-time random process as shown in Fig. 9.9.
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FIGURE 9.9
A sample path of the Poisson counting process. The event occurrence times are denoted
by . The jth interevent time is denoted by Xj = Sj - Sj�1 .S1 , S2 , Á
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Suppose that the interval [0, t] is divided into n subintervals of very short dura-
tion Assume that the following two conditions hold:

1. The probability of more than one event occurrence in a subinterval is negligible
compared to the probability of observing one or zero events.

2. Whether or not an event occurs in a subinterval is independent of the outcomes
in other subintervals.

The first assumption implies that the outcome in each subinterval can be viewed as a
Bernoulli trial. The second assumption implies that these Bernoulli trials are indepen-
dent. The two assumptions together imply that the counting process N(t) can be ap-

proximated by the binomial counting process discussed in the previous section.
If the probability of an event occurrence in each subinterval is p, then the expect-

ed number of event occurrences in the interval [0, t] is np. Since events occur at a rate
of events per second, the average number of events in the interval [0, t] is Thus we
must have that

If we now let (i.e., ) and while remains fixed, then
from Eq. (3.40) the binomial distribution approaches a Poisson distribution with para-
meter We therefore conclude that the number of event occurrences N(t) in the in-
terval [0, t] has a Poisson distribution with mean 

(9.34a)

For this reason N(t) is called the Poisson process. The mean function and the variance
function of the Poisson process are given by:

(9.34b)

In Section 11.3 we rederive the Poisson process using results from Markov chain
theory.

The process N(t) inherits the property of independent and stationary increments
from the underlying binomial process. First, the distribution for the number of event oc-

currences in any interval of length t is given by Eq. (9.34a). Next, the independent and
stationary increments property allows us to write the joint pmf for N(t) at any number
of points. For example, for 

(9.35a)

The independent increments property also allows us to calculate the autocovariance of
N(t). For t1 … t2:

=
1lt12ie-lt1
i!

1l1t2 - t122je-l1t2- t12
1j - i2! .

= P3N1t12 = i4P3N1t2 - t12 = j - i4
P3N1t12 = i,N1t22 = j4 = P3N1t12 = i4P3N1t22 - N1t12 = j - i4

t1 6 t2 ,

mN1t2 = E3N1t2 = k4 = lt and VAR3N1t24 = lt.

P3N1t2 = k4 =
1lt2k
k!
e-lt for k = 0, 1, Á .

lt:
lt.

np = ltp: 0d = t/n: 0n: q

lt = np.

lt.l

d = t>n.
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(9.35b)

Example 9.21

Inquiries arrive at a recorded message device according to a Poisson process of rate 15 inquiries
per minute. Find the probability that in a 1-minute period, 3 inquiries arrive during the first 10
seconds and 2 inquiries arrive during the last 15 seconds.

The arrival rate in seconds is inquiries per second. Writing time in sec-
onds, the probability of interest is

By applying first the independent increments property, and then the stationary increments prop-
erty, we obtain

Consider the time T between event occurrences in a Poisson process. Again sup-
pose that the time interval [0, t] is divided into n subintervals of length The
probability that the interevent time T exceeds t seconds is equivalent to no event oc-
curring in t seconds (or in n Bernoulli trials):

(9.36)

Equation (9.36) implies that T is an exponential random variable with parameter 
Since the times between event occurrences in the underlying binomial process are in-
dependent geometric random variables, it follows that the sequence of interevent times
in a Poisson process is composed of independent random variables. We therefore con-
clude that the interevent times in a Poisson process form an iid sequence of exponential

random variables with mean 1/l.

l.

: e-lt as n: q .

= a1 -
lt

n
bn

= 11 - p2n
P3T 7 t4 = P3no events in t seconds4

d = t/n.

=
110/423e-10/4

3!

115/422e-15/4

2!
.

= P3N1102 = 34P3N160 - 452 = 24
= P3N1102 = 34P3N1602 - N1452 = 24

P3N1102 = 3 and N1602 - N1452 = 24

P3N1102 = 3 and N1602 - N1452 = 24.

l = 15/60 = 1/4

= VAR3N1t124 = lt1 .

= E31N1t12 - lt124E31N1t22 - N1t12 - l1t2 - t124 + VAR3N1t124
= E31N1t12 - lt125N1t22 - N1t12 - lt2 + lt1 + 1N1t12 - lt1264

CN1t1 , t22 = E31N1t12 - lt121N1t22 - lt224
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Another quantity of interest is the time at which the nth event occurs in a Pois-
son process. Let denote the iid exponential interarrival times, then

In Example 7.5, we saw that the sum of n iid exponential random variables has an Er-
lang distribution. Thus the pdf of is an Erlang random variable:

(9.37)

Example 9.22

Find the mean and variance of the time until the tenth inquiry in Example 9.20.
The arrival rate is inquiries per second, so the interarrival times are exponential

random variables with parameter From Table 4.1, the mean and variance of exponential inter-
arrival times then and respectively. The time of the tenth arrival is the sum of ten such
iid random variables, thus

In applications where the Poisson process models customer interarrival times, it is
customary to say that arrivals occur “at random.” We now explain what is meant by this
statement. Suppose that we are given that only one arrival occurred in an interval [0, t]
and we let X be the arrival time of the single customer. For N(x) is the num-
ber of events up to time x, and is the increment in the interval (x, t], then:

(9.38)

Equation (9.38) implies that given that one arrival has occurred in the interval [0, t],
then the customer arrival time is uniformly distributed in the interval [0, t]. It is in this
sense that customer arrival times occur “at random.” It can be shown that if the number
of amvals in the interval [0, t] is k, then the individual arrival times are distributed inde-
pendently and uniformly in the interval.

=
x

t
.

=
lxe-lxe-l1t-x2
lte-lt

=
P3N1x2 = 14P3N1t2 - N1x2 = 04

P3N1t2 = 14

=
P3N1x2 = 1 and N1t2 - N1x2 = 04

P3N1t2 = 14

=
P3N1x2 = 1 and N1t2 = 14

P3N1t2 = 14
P3X … x4 = P3N1x2 = 1 ƒ N1t2 = 14

N1t2 - N1x2 0 6 x 6 t,

VAR3S104 = 10 VAR3T4 =
10

l2 = 160 sec2.

E3S104 = 10E3T4 =
10

l
= 40 sec

1/l2,1/l
l.

l = 1/4

fSn1y2 =
1ly2n-1

1n - 12! le-ly for y Ú 0.

Sn

Sn = T1 + T2 + Á + Tn .

Tj

Sn
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FIGURE 9.10
Sample path of a random telegraph signal. The times between transitions are iid
exponential random variables.

Xj

Example 9.23

Suppose two customers arrive at a shop during a two-minute period. Find the probability that
both customers arrived during the first minute.

The arrival times of the customers are independent and uniformly distributed in the two-
minute interval. Each customer arrives during the first minute with probability 1/2. Thus the
probability that both arrive during the first minute is This answer can be verified by
showing that 

9.4.2 Random Telegraph Signal and Other Processes Derived from the Poisson Process

Many processes are derived from the Poisson process. In this section, we present two
examples of such random processes.

Example 9.24 Random Telegraph Signal

Consider a random process X(t) that assumes the values Suppose that or 
with probability 1/2, and suppose that X(t) changes polarity with each occurrence of an event in
a Poisson process of rate Figure 9.10 shows a sample function of X(t).

The pmf of X(t) is given by

(9.39)

The conditional pmf’s are found by noting that X(t) will have the same polarity as X(0) only
when an even number of events occur in the interval (0, t]. Thus

(9.40)=
1

2
11 + e-2at2.

= e-at
1

2
5eat + e-at6

= a
q

j=0

1at22j
12j2! e-at

P3X1t2 = ;1 |X102 = ;14 = P3N1t2 = even integer4

+ P3X1t2 = ;1 |X102 = -14P3X102 = -14.
P3X1t2 = ;14 = P3X1t2 = ;1 |X102 = 14P3X102 = 14

a.

-1X102 = +1;1.

P3N112 = 2 ƒ N122 = 24 = 1/4.
11/222 = 1/4.
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X(t) and X(0) will differ in sign if the number of events in t is odd:

(9.41)

We obtain the pmf for X(t) by substituting into Eq. (9.40):

(9.42)

Thus the random telegraph signal is equally likely to be at any time 
The mean and variance of X(t) are

(9.43)

The autocovariance of X(t) is found as follows:

(9.44)

Thus time samples of X(t) become less and less correlated as the time between them increases.

The Poisson process and the random telegraph processes are examples of the
continuous-time Markov chain processes that are discussed in Chapter 11.

Example 9.25 Filtered Poisson Impulse Train

The Poisson process is zero at and increases by one unit at the random arrival times
Thus the Poisson process can be expressed as the sum of randomly shifted step

functions:

where the are the arrival times.
Since the integral of a delta function is a step function we can view N(t)

as the result of integrating a train of delta functions that occur at times as shown in Fig. 9.11(a):Sn ,
u1t - S2,d1t - S2

Si

N1t2 = a
q

i=1

u1t - Si2 N102 = 0,

Sj , j = 1, 2, Á .
t = 0

= e-2a ƒt2- t1 ƒ.

=
1

2
51 + e-2a ƒt2- t1 ƒ6 -

1

2
51 - e-2a ƒt2- t1 ƒ6

= 1P3X1t12 = X1t224 + 1-12P3X1t12 Z X1t224
CX1t1 , t22 = E3X1t12X1t224

VAR3X1t24 = E3X1t224 = 1122P3X1t2 = 14 + 1-122P3X1t2 = -14 = 1.

mX1t2 = 1P3X1t2 = 14 + 1-12P3X1t2 = -14 = 0

t 7 0.;1

P3X1t2 = -14 = 1 - P3X1t2 = 14 =
1

2
.

P3X1t2 = 14 =
1

2

1

2
51 + e-2at6 +

1

2

1

2
51 - e-2at6 =

1

2

=
1

2
11 - e-2at2.

= e-at
1

2
5eat - e-at6
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q
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FIGURE 9.11
(a) Poisson process as integral of train of delta functions. (b) Filtered
train of delta functions.

1This is equivalent to passing Z(t) through a linear system whose response to a delta function is h(t).

We can obtain other continuous-time processes by replacing the step function by another
function h(t),1 as shown in Fig. 9.11(b):

(9.45)

For example, h(t) could represent the current pulse that results when a photoelectron hits a de-
tector. X(t) is then the total current flowing at time t. X(t) is called a shot noise process.

X1t2 = a
q

i=1

h1t - Si2.

Z1t2 = a
q

i=1

d1t - Si2.
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The following example shows how the properties of the Poisson process can be
used to evaluate averages involving the filtered process.

Example 9.26 Mean of Shot Noise Process

Find the expected value of the shot noise process X(t).
We condition on N(t), the number of impulses that have occurred up to time t:

Suppose then

Since the arrival times, when the impulses occurred are independent, uniformly dis-
tributed in the interval [0, t],

Thus

and

Finally, we obtain

(9.46)

where we used the fact that Note that E[X(t)] approaches a constant value as t
becomes large if the above integral is finite.

9.5 GAUSSIAN RANDOM PROCESSES, WIENER PROCESS, AND BROWNIAN MOTION

In this section we continue the introduction of important random processes. First, we
introduce the class of Gaussian random processes which find many important applica-
tions in electrical engineering. We then develop an example of a Gaussian random
process: the Wiener random process which is used to model Brownian motion.

E3N1t24 = lt.

= lL
t

0

h1u2 du,

=
E3N1t24
t L
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0

h1u2 du
E3X1t24 = E3E3X1t2 |N1t244

E3X1t2 |N1t24 =
N1t2
t L

t

0

h1u2 du.

E3X1t2 |N1t2 = k4 =
k

t L
t

0

h1u2 du,

E3h1t - Sj24 = L
t

0

h1t - s2ds
t

=
1

tL
t

0

h1u2 du.

S1 , Á , Sk ,

= a
k

j=1

E3h1t - Sj24.

E3X1t2 |N1t2 = k4 = EBak
j=1

h1t - Sj2RN1t2 = k,

E3X1t24 = E3E3X1t2 |N1t244.
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9.5.1 Gaussian Random Processes

A random process X(t) is a Gaussian random process if the samples 
are jointly Gaussian random variables for all k, and all

choices of This definition applies to both discrete-time and continuous-
time processes. Recall from Eq. (6.42) that the joint pdf of jointly Gaussian random
variables is determined by the vector of means and by the covariance matrix:

(9.47a)

In the case of Gaussian random processes, the mean vector and the covariance matrix
are the values of the mean function and covariance function at the corresponding time
instants:

(9.47b)

Gaussian random processes therefore have the very special property that their joint pdf’s

are completely specified by the mean function of the process and by the covariance

function In Chapter 6 we saw that the linear transformations of jointly
Gaussian random vectors result in jointly Gaussian random vectors as well. We will see
in Chapter 10 that Gaussian random processes also have the property that the linear
operations on a Gaussian process (e.g., a sum, derivative, or integral) results in another
Gaussian random process. These two properties, combined with the fact that many sig-
nal and noise processes are accurately modeled as Gaussian, make Gaussian random
processes the most useful model in signal processing.

Example 9.27 iid Discrete-Time Gaussian Random Process

Let the discrete-time random process be a sequence of independent Gaussian random vari-
ables with mean m and variance The covariance matrix for the times is

where when and 0 otherwise, and I is the identity matrix. Thus the joint pdf for the
vector is

The Gaussian iid random process has the property that the value at every time instant is inde-
pendent of the value at all other time instants.

fXn1x1 , x2 , Á , xk2 =
1

12ps22k/2
 expb -ak

i=1

1xi - m22/2s2 r .

Xn = 1Xn1
, Á ,Xnk2
i = jdij = 1

5CX1n1 , n226 = 5s2 dij6 = s2I,

n1 , Á , nks2.
Xn

CX1t1 , t22.
mX1t2

m = CmX1t12o

mX1tk2
S K = DCX1t1 , t12 CX1t1 , t22 Á CX1t1 , tk2

CX1t2 , t12 CX1t2 , t22 Á CX1t2 , tk2
o o o

CX1tk , t12 Á CX1tk , tk2
T .

fX1,X2, Á ,Xk1x1 , x2 , Á ,xk2 =
e-1/21x�m2TK-11x�m2
12p2k/2|K|1/2

.

t1 , Á , tk .
X2 = X1t22, Á ,Xk = X1tk2

X1 = X1t12,
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Example 9.28 Continuous-Time Gaussian Random Process

Let X(t) be a continuous-time Gaussian random process with mean function and covariance
function given by:

Find and 
The sample X(3) has a Gaussian pdf with mean and variance 

To calculate we put X(3) in standard form:

From Example 6.24 we know that the sum of two Gaussian random variables is also a Gaussian
random variable with mean and variance given by Eq. (6.47). Therefore the mean and variance
of are given by:

To calculate we put in standard form:

.

9.5.2 Wiener Process and Brownian Motion

We now construct a continuous-time Gaussian random process as a limit of a discrete-
time process. Suppose that the symmetric random walk process (i.e., ) of
Example 9.16 takes steps of magnitude every seconds.We obtain a continuous-time
process by letting be the accumulated sum of the random step process up to time
t. is a staircase function of time that takes jumps of every seconds. At time t,
the process will have taken jumps, so it is equal to

(9.48)

The mean and variance of are

where we used the fact that since p = 1/2.VAR3Dn4 = 4p11 - p2 = 1

VAR3Xd1t24 = h2n VAR3Dn4 = h2n,

E3Xd1t24 = hE3Sn4 = 0

Xd1t2
Xd1t2 = h1D1 + D2 + Á + D3t/d42 = hSn .

n = 3t/d4 d;hXd1t2
Xd1t2

d;h
p = 1/2

P3X112 + X122 7 154 = PBX112 + X122 - 9

220.43
7

15 - 9

220.43
R = Q11.3272 = 0.0922

X112 + X122P3X112 + X122 7 24
= 952 + 2e-26 = 20.43.

= 95e-2 ƒ1-1 ƒ + e-2 ƒ2-1 ƒ + e-2 ƒ1-2 ƒ + e-2 ƒ2-2 ƒ6
 VAR3X112 + X1224 = CX11, 12 + CX11, 22 + CX12, 12 + CX12, 22
E3X112 + X1224 = mX112 + mX122 = 3 + 6 = 9

X112 + X122

P3X132 6 64 = PBX132 - 9

29
6

6 - 9

29
R = 1 - Q1-12 = Q112 = 0.16.

P3X132 6 64CX13, 32 = 9e-2 ƒ3-3 ƒ = 9.

sX
2 132 =mX132 = 3132 = 9

P3X112 + X122 7 24.P3X132 6 64
mX1t2 = 3t CX1t1 , t22 = 9e-2 ƒ t1- t2 ƒ.
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FIGURE 9.12
Four sample functions of the Wiener process.

Suppose that we take a limit where we simultaneously shrink the size of the
jumps and the time between jumps. In particular let and with 
and let X(t) denote the resulting process.

X(t) then has mean and variance given by

(9.49a)

(9.49b)

Thus we obtain a continuous-time process X(t) that begins at the origin, has zero mean
for all time, but has a variance that increases linearly with time. Figure 9.12 shows four
sample functions of the process. Note the similarities in fluctuations to the realizations
of a symmetric random walk in Fig. 9.7(b). X(t) is called the Wiener random process. It
is used to model Brownian motion, the motion of particles suspended in a fluid that
move under the rapid and random impact of neighboring particles.

As Eq. (9.48) implies that X(t) approaches the sum of an infinite number
of random variables since 

(9.50)

By the central limit theorem the pdf of X(t) therefore approaches that of a Gaussian
random variable with mean zero and variance 

(9.51)

X(t) inherits the property of independent and stationary increments from the
random walk process from which it is derived. As a result, the joint pdf of X(t) at

fX1t21x2 =
1

22pat
e-x

2/2at.

at:

X1t2 = lim
d:0
hSn = lim

n:q
1at Sn1n .

n = 3t/d4:q:
d: 0,

VAR3X1t24 = 11ad221t/d2 = at.

E3X1t24 = 0

h = 1adh: 0d: 0
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several times can be obtained by using Eq. (9.30):

(9.52)

The independent increments property and the same sequence of steps that led to
Eq. (9.33) can be used to show that the autocovariance of X(t) is given by

(9.53)

By comparing Eq. (9.53) and Eq. (9.35b), we see that the Wiener process and the Pois-
son process have the same covariance function despite the fact that the two processes
have very different sample functions. This underscores the fact that the mean and au-
tocovariance functions are only partial descriptions of a random process.

Example 9.29

Show that the Wiener process is a Gaussian random process.
Equation (9.52) shows that the random variables 

are independent Gaussian random variables.The random variables
can be obtained from the and the increments by a linear

transformation:

(9.54)

It then follows (from Eq. 6.45) that are jointly Gaussian random

variables, and that X(t) is a Gaussian random process.

9.6 STATIONARY RANDOM PROCESSES

Many random processes have the property that the nature of the randomness in the
process does not change with time. An observation of the process in the time interval

exhibits the same type of random behavior as an observation in some other
time interval This leads us to postulate that the probabilities of sam-
ples of the process do not depend on the instant when we begin taking observations,
that is, probabilities involving samples taken at times will not differ from
those taken at 

Example 9.30 Stationarity and Transience

An urn has 6 white balls each with the label “0” and 5 white balls with the label “1”. The following
sequence of experiments is performed: A ball is selected and the number noted; the first time a
white ball is selected it is not put back in the urn, but otherwise balls are always put back in the urn.

t1 + t, Á , tk + t.
t1 , Á , tk

1t0 + t, t1 + t2.1t0 , t12

X1t12,X1t22,X1t32, Á ,X1tk2
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o
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X1t12 = X1t12

X1t12X1t22,X1t32, Á ,X1tk2,X1t12,
X1tk2 - X1tk-12,X1t22, Á ,

X1t12,X1t22 - X1t12,X1t32 -

CX1t1 , t22 = a min1t1 , t22 = a t1 for t1 6 t2 .

=

expb - 1

2
B x1

2

at1
+
1x2 - x122
a1t2 - t12 + Á +

1xk - xk-122
a1tk - tk-12 R r

212pa2kt11t2 - t12Á 1tk - tk-12 .

fX1t12, Á ,X1tk21x1 , Á , xk2 = fX1t121x12fX1t2- t121x2 - x12Á fX1tk- tk - 121xk - xk-12
t1 , t2 , Á , tk
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The random process that results from this sequence of experiments clearly has a transient
phase and a stationary phase. The transient phase consists of a string of n consecutive 1’s and it
ends with the first occurrence of a “0”. During the transient phase and the
mean duration of the transient phase is geometrically distributed with mean 11/6. After the first
occurrence of a “0”, the process enters a “stationary” phase where the process is a binary
equiprobable iid sequence. The statistical behavior of the process does not change once the sta-
tionary phase is reached.

If we are dealing with random processes that began at then the above con-
dition can be stated precisely as follows. A discrete-time or continuous-time random process

X(t) is stationary if the joint distribution of any set of samples does not depend on the place-

ment of the time origin. This means that the joint cdf of is the
same as that of 

(9.55)

for all time shifts all k, and all choices of sample times If a process begins
at some definite time (i.e., or ), then we say it is stationary if its joint distri-
butions do not change under time shifts to the right.

Two processes X(t) and Y(t) are said to be jointly stationary if the joint cdf’s of
and do not depend on the placement of the time ori-

gin for all k and j and all choices of sampling times and 
The first-order cdf of a stationary random process must be independent of time,

since by Eq. (9.55),

(9.56)

This implies that the mean and variance of X(t) are constant and independent of time:

(9.57)

(9.58)

The second-order cdf of a stationary random process can depend only on the time

difference between the samples and not on the particular time of the samples, since by
Eq. (9.55),

(9.59)

This implies that the autocorrelation and the autocovariance of X(t) can depend only
on

(9.60)

(9.61)

Example 9.31 iid Random Process

Show that the iid random process is stationary.
The joint cdf for the samples at any k time instants, ist1 , Á , tk ,

CX1t1 , t22 = CX1t2 - t12 for all t1 , t2 .

RX1t1 , t22 = RX1t2 - t12 for all t1 , t2

t2 - t1:

FX1t12,X1t221x1 , x22 = FX102,X1t2- t121x1 , x22 for all t1 , t2 .

VAR3X1t24 = E31X1t2 - m224 = s2 for all t.

mX1t2 = E3X1t24 = m for all t

FX1t21x2 = FX1t+t21x2 = FX1x2 all t, t.

t¿1 , Á , t¿j .t1 , Á , tk

Y1tœ12 , Á , Y1tœj2X1t12, Á ,X1tk2

t = 0n = 0
t1 , Á , tk .t,

FX1t12, Á ,X1tk21x1 , Á , xk2 = FX1t1+t2, Á ,X1tk+t21x1 , Á , xk2,
X1t1 + t2,X1t2 + t2, Á ,X1tk + t2:

X1t12,X1t22, Á ,X1tk2

t = -q ,

P3In = 04 = 6/11,
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for all k, Thus Eq. (9.55) is satisfied, and so the iid random process is stationary.

Example 9.32

Is the sum process a discrete-time stationary process?
The sum process is defined by where the are an iid se-

quence. The process has mean and variance

where m and are the mean and variance of the It can be seen that the mean and variance
are not constant but grow linearly with the time index n. Therefore the sum process cannot be a
stationary process.

Example 9.33 Random Telegraph Signal

Show that the random telegraph signal discussed in Example 9.24 is a stationary random process
when Show that X(t) settles into stationary behavior as even if

We need to show that the following two joint pmf’s are equal:

for any k, any and any The independent increments property of the Pois-
son process implies that

since the values of the random telegraph at the times are determined by the number of
occurrences of events of the Poisson process in the time intervals Similarly,

The corresponding transition probabilities in the previous two equations are equal since

= P3X1tj+1 + t2 = aj+1 ƒX1tj + t2 = aj4.

P3X1tj+12 = aj+1 ƒX1tj2 = aj4 = d 1

2
51 + e-2a1tj + 1- tj26 if aj = aj+1

1

2
51 - e-2a1tj + 1- tj26 if aj Z aj+1

* P3X1tk + t2 = ak ƒX1tk-1 + t2 = ak-14.
= P3X1t1 + t2 = a14P3X1t2 + t2 = a2 ƒX1t1 + t2 = a14Á
P3X1t1 + t2 = a1 , Á ,X1tk + t2 = ak4

1tj , tj+12.
t1 , Á , tk

* P3X1t22 = a2 ƒX1t12 = a14Á P3X1tk2 = ak ƒX1tk-12 = ak-14,
P3X1t12 = a1 , Á ,X1tk2 = ak4 = P3X1t12 = a14

aj = ;1.t1 6 Á 6 tk ,

= P3X1t1 + t2 = a1 , Á ,X1tk + t2 = ak4,P3X1t12 = a1 , Á ,X1tk2 = ak4

P3X102 = ;14 Z 1/2.
t: qP3X102 = ;14 = 1/2.

Xn .s2

mS1n2 = nm VAR3Sn4 = ns2,

XiSn = X1 + X2 + Á + Xn ,

t1 , Á , tk .

= FX1t1+t2, Á ,X1tk+t21x1 , Á , xk2,
FX1t12, Á ,X1tk21x1 , x2 , Á , xk2 = FX1x12FX1x22Á FX1xk2



Section 9.6 Stationary Random Processes 521

Thus the two joint probabilities differ only in the first term, namely, and

From Example 9.24 we know that if then for
all t. Thus and

Thus we conclude that the process is stationary when 
If then the two joint pmf’s are not equal because 

Let’s see what happens if we know that the process started at a spe-
cific value, say that is, The pmf for X(t) is obtained from Eqs.
(9.39) through (9.41):

For very small t, the probability that is close to 1; but as t increases, the probability that
becomes 1/2. Therefore as becomes large, and 
and the two joint pmf’s become equal. In other words, the process “forgets” the initial

condition and settles down into “steady state,” that is, stationary behavior.

9.6.1 Wide-Sense Stationary Random Processes

In many situations we cannot determine whether a random process is stationary, but
we can determine whether the mean is a constant:

(9.62)

and whether the autocovariance (or equivalently the autocorrelation) is a function of
only:

(9.63)

A discrete-time or continuous-time random process X(t) is wide-sense stationary (WSS)
if it satisfies Eqs. (9.62) and (9.63). Similarly, we say that the processes X(t) and Y(t) are
jointly wide-sense stationary if they are both wide-sense stationary and if their cross-
covariance depends only on When X(t) is wide-sense stationary, we write

where
All stationary random processes are wide-sense stationary since they satisfy Eqs.

(9.62) and (9.63). The following example shows that some wide-sense stationary
processes are not stationary.

Example 9.34

Let consist of two interleaved sequences of independent random variables. For n even,
assumes the values with probability 1/2; for n odd, assumes the values 1/3 and with-3Xn;1

XnXn

t = t1 - t2 .

CX1t1 , t22 = CX1t2 and RX1t1 , t22 = RX1t2,
t1 - t2 .

CX1t1 , t22 = CX1t1 - t22 for all t1 , t2 .
t1 - t2

mX1t2 = m for all t,

a14: 1/2
P3X1t1 + t2 =P3X1t12 = a14: 1/2t1X1t2 = 1

X1t2 = 1

= d 1

2
51 + e-2at6 if a = 1

1

2
51 - e-2at6 if a = -1.

P3X1t2 = a4 = P3X1t2 = a ƒX102 = 141

P3X102 = 14 = 1.X102 = 1,
a14 Z P3X1t1 + t2 = a14.

P3X1t12 =P3X102 = ;14 Z 1/2,
P3X102 = ;14 = 1/2.

P3X1t12 = a1 , Á ,X1tk2 = ak4 = P3X1t1 + t2 = a1 , Á ,X1tk + t2 = ak4.
P3X1t12 = a14 = 1/2, P3X1t1 + t2 = a14 = 1/2,

P3X1t2 = ;14 = 1/2,P3X102 = ;14 = 1/2
P3X1t1 + t2 = a14.

P3X1t12 = a14



522 Chapter 9 Random Processes

2See Problem 5.74 and Appendix C.

probabilities 9/10 and 1/10, respectively. is not stationary since its pmf varies with n. It is easy
to show that has mean

and covariance function

is therefore wide-sense stationary.

We will see in Chapter 10 that the autocorrelation function of wide-sense station-
ary processes plays a crucial role in the design of linear signal processing algorithms.
We now develop several results that enable us to deduce properties of a WSS process
from properties of its autocorrelation function.

First, the autocorrelation function at gives the average power (second mo-
ment) of the process:

(9.64)

Second, the autocorrelation function is an even function of since

(9.65)

Third, the autocorrelation function is a measure of the rate of change of a random

process in the following sense. Consider the change in the process from time t to

(9.66)

where we used the Markov inequality, Eq. (4.75), to obtain the upper bound. Equation
(9.66) states that if is small, that is, drops off slowly, then the
probability of a large change in X(t) in seconds is small.

Fourth, the autocorrelation function is maximum at We use the Cauchy-
Schwarz inequality:2

(9.67)

for any two random variables X and Y. If we apply this equation to and X(t),
we obtain

Thus
(9.68)ƒRX1t2 ƒ … RX102.

RX1t22 = E3X1t + t2X1t242 … E3X21t + t24E3X21t24 = RX1022.

X1t + t2
E3XY42 … E3X24E3Y24,

t = 0.
t

RX1t2RX102 - RX1t2

=
25RX102 - RX1t26

e2
,

…
E31X1t + t2 - X1t2224

e2

P3|X1t + t2 - X1t2| 7 e4 = P31X1t + t2 - X1t222 7 e24
t + t:

RX1t2 = E3X1t + t2X1t24 = E3X1t2X1t + t24 = RX1-t2.
t

RX102 = E3X1t224 for all t.

t = 0

Xn

CX1i, j2 = bE3Xi4E3Xj4 = 0 for i Z j

E3Xi24 = 1 for i = j.

mX1n2 = 0 for all n

Xn

Xn
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Fifth, if then is periodic with period d and X(t) is mean

square periodic, that is, If we apply Eq. (9.67) to
and X(t), we obtain

which implies that

Thus implies that the right-hand side of the equation is zero, and thus
that for all Repeated applications of this result imply that

is periodic with period d.The fact that X(t) is mean square periodic follows from

Sixth, let where N(t) is a zero-mean process for which
as then

In other words, approaches the square of the mean of X(t) as

In summary, the autocorrelation function can have three types of components:
(1) a component that approaches zero as (2) a periodic component; and (3) a
component due to a nonzero mean.

Example 9.35

Figure 9.13 shows several typical autocorrelation functions. Figure 9.13(a) shows the autocorre-
lation function for the random telegraph signal X(t) (see Eq. (9.44)):

X(t) is zero mean and as 
Figure 9.13(b) shows the autocorrelation function for a sinusoid Y(t) with amplitude a and

random phase (see Example 9.10):

Y(t) is zero mean and is periodic with period 
Figure 9.13(c) shows the autocorrelation function for the process 

where X(t) is the random telegraph process, Y(t) is a sinusoid with random phase, and m is a con-
stant. If we assume that X(t) and Y(t) are independent processes, then

= RX1t2 + RY1t2 + m2.

RZ1t2 = E35X1t + t2 + Y1t + t2 + m65X1t2 + Y1t2 + m64

Z1t2 = X1t2 + Y1t2 + m,
1/f0 .RY1t2

RY1t2 =
a2

2
cos12pf0t2 for all t.

ƒ t ƒ :q.RX1t2: 0

RX1t2 = e-2a ƒt ƒ for all t.

t:q;

t:q.RX1t2
= m2 + RN1t2:m2 as t:q.

RX1t2 = E31m + N1t + t221m + N1t224 = m2 + 2mE3N1t24 + RN1t2
t: q ,RN1t2: 0
X1t2 = m + N1t2,
E31X1t + d2 - X1t2224 = 25RX102 - RX1d26 = 0.

RX1t2
t.RX1t + d2 = RX1t2

RX1d2 = RX102
5RX1t + d2 - RX1t262 … 25RX102 - RX1d26RX102.

… E31X1t + t + d2 - X1t + t2224E3X21t24,
E31X1t + t + d2 - X1t + t22X1t242

X1t + t + d2 - X1t + t2
E31X1t + d2 - X1t2224 = 0.

RX1t2RX102 = RX1d2,
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RX(t) � e�2α t

0

(a)

t

0

(b)

(c)

t

RY(t) �
a2

2
cos 2pf0t

RZ(t)

0
t

m2

FIGURE 9.13
(a) Autocorrelation function of a random telegraph signal. (b) Autocorrelation
function of a sinusoid with random phase. (c) Autocorrelation function of a random
process that has nonzero mean, a periodic component, and a “random” component.

9.6.2 Wide-Sense Stationary Gaussian Random Processes

If a Gaussian random process is wide-sense stationary, then it is also stationary. Recall
from Section 9.5, Eq. (9.47), that the joint pdf of a Gaussian random process is com-
pletely determined by the mean and the autocovariance If X(t) is
wide-sense stationary, then its mean is a constant m and its autocovariance depends
only on the difference of the sampling times, It then follows that the joint pdf of
X(t) depends only on this set of differences, and hence it is invariant with respect to
time shifts. Thus the process is also stationary.

The above result makes WSS Gaussian random processes particularly easy to work
with since all the information required to specify the joint pdf is contained in m and

Example 9.36 A Gaussian Moving Average Process

Let be an iid sequence of Gaussian random variables with zero mean and variance and let
be the average of two consecutive values of Xn:Yn

s2,Xn

CX1t2.

ti - tj .

CX1t1 , t22.mX1t2
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The mean of is zero since for all i. The covariance is

We see that has a constant mean and a covariance function that depends only on thus
is a wide-sense stationary process. is a Gaussian random variable since it is defined by a

linear function of Gaussian random variables (see Section 6.4, Eq. 6.45). Thus the joint pdf of 
is given by Eq. (9.47) with zero-mean vector and with entries of the covariance matrix specified
by above.

9.6.3 Cyclostationary Random Processes

Many random processes arise from the repetition of a given procedure every T seconds.
For example, a data modulator (“modem”) produces a waveform every T seconds ac-
cording to some input data sequence. In another example, a “time multiplexer” inter-
leaves n separate sequences of information symbols into a single sequence of symbols. It
should not be surprising that the periodic nature of such processes is evident in their prob-
abilistic descriptions.A discrete-time or continuous-time random process X(t) is said to be
cyclostationary if the joint cumulative distribution function of any set of samples is invari-
ant with respect to shifts of the origin by integer multiples of some period T. In other words,

and have the
same joint cdf for all k, m, and all choices of sampling times 

(9.69)

We say that X(t) is wide-sense cyclostationary if the mean and autocovariance func-
tions are invariant with respect to shifts in the time origin by integer multiples of T,
that is, for every integer m,

(9.70a)

(9.70b)

Note that if X(t) is cyclostationary, then it follows that X(t) is also wide-sense cyclosta-
tionary.

CX1t1 + mT, t2 + mT2 = CX1t1 , t22.
mX1t + mT2 = mX1t2

= FX1t1+mT2,X1t2+mT2, Á ,X1tk+mT21x1 , x2 , Á , xk2.
FX1t12,X1t22, Á ,X1tk21x1 , x2 , Á , xk2

t1 , Á , tk:
X1t2 + mT2, Á ,X1tk + mT2X1t1 + mT2,X1t12,X1t22, Á ,X1tk2

CY1i, j2
Yn

YnYn

ƒ i - j ƒ ,Yn

= e 1

2
s2 if i = j

1

4
s2 if ƒ i - j ƒ = 1

0 otherwise.

=
1

4
5E3XiXj4 + E3XiXj-14 + E3Xi-1Xj4 + E3Xi-1Xj-146

CY1i, j2 = E3YiYj4 =
1

4
E31Xi + Xi-121Xj + Xj-124
E3Xi4 = 0Yn

Yn =
Xn + Xn-1

2
.
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Example 9.37

Consider a random amplitude sinusoid with period T:

Is X(t) cyclostationary? wide-sense cyclostationary?
Consider the joint cdf for the time samples 

Thus X(t) is a cyclostationary random process and hence also a wide-sense cyclostationary
process.

In the above example, the sample functions of the random process are always pe-
riodic. The following example shows that, in general, the sample functions of a cyclo-
stationary random process need not be periodic.

Example 9.38 Pulse Amplitude Modulation

A modem transmits a binary iid equiprobable data sequence as follows: To transmit a binary 1,
the modem transmits a rectangular pulse of duration T seconds and amplitude 1; to transmit a bi-
nary 0, it transmits a rectangular pulse of duration T seconds and amplitude Let X(t) be the
random process that results. Is X(t) wide-sense cyclostationary?

Figure 9.14(a) shows a rectangular pulse of duration T seconds, and Fig. 9.14(b) shows the
waveform that results for a particular data sequence. Let be the sequence of amplitudes 1;12Ai

-1.

= P3X1t1 + mT2 … x1 ,X1t2 + mT2 … x2 , Á ,X1tk + mT2 … xk4.
= P3A cos12p1t1 + mT2/T2 … x1 , Á , A cos12p1tk + mT2/T2 … xk4
= P3A cos12pt1/T2 … x1 , Á , A cos12ptk/T2 … xk4

P3X1t12 … x1 ,X1t22 … x2 , Á ,X1tk2 … xk24
t1 , Á , tk:

X1t2 = A cos12pt/T2.

t

t

p(t)
1

1 1

�1 �1

0

0 2T 4T

T

(a) Individual signal pulse

(b) Waveform corresponding to data sequence 1001

T 3T

FIGURE 9.14
Pulse amplitude modulation.
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0

0

1

1

1

1

1

1

0

T
t1

t2

T

2T

3T

4T

5T

2T 3T 4T 5T

FIGURE 9.15
Autocovariance function of pulse amplitude-modulated
random process.

corresponding to the binary sequence, then X(t) can be represented as the sum of amplitude-
modulated time-shifted rectangular pulses:

(9.71)

The mean of X(t) is

since The autocovariance function is

Figure 9.15 shows the autocovariance function in terms of and It is clear that
for all integers m. Therefore the process is wide-sense cy-

clostationary.

We will now show how a stationary random process can be obtained from a cyclo-
stationary process. Let X(t) be a cyclostationary process with period T. We “stationarize”
X(t) by observing a randomly phase-shifted version of X(t):

(9.72)Xs1t2 = X1t + ®2 ® uniform in 30, T4,

CX1t1 + mT, t2 + mT2 = CX1t1 , t22
t2 .t1

= bE3X1t1224 = 1 if nT … t1 , t2 6 1n + 12T
E3X1t124E3X1t224 = 0                               otherwise.

CX1t1 , t22 = E3X1t12X1t224 - 0

E3An4 = 0.

mX1t2 = EB aq
n=-q

Anp1t - nT2R = a
q

n=-q
E3An4p1t - nT2 = 0

X1t2 = a
q

n=-q
Anp1t - nT2.
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where is independent of can arise when the phase of X(t) is either un-
known or not of interest. If X(t) is a cyclostationary random process, then is a sta-

tionary random process. To show this, we first use conditional expectation to find the
joint cdf of 

(9.73)

Equation (9.73) shows that the joint cdf of is obtained by integrating the joint cdf
of X(t) over one time period. It is easy to then show that a time-shifted version of 
say will have the same joint cdf as 

(see Problem 9.80). Therefore is a stationary random process.
By using conditional expectation (see Problem 9.81), it is easy to show that if X(t)

is a wide-sense cyclostationary random process, then is a wide-sense stationary

random process, with mean and autocorrelation given by

(9.74a)

(9.74b)

Example 9.39 Pulse Amplitude Modulation with Random Phase Shift

Let be the phase-shifted version of the pulse amplitude–modulated waveform X(t) intro-
duced in Example 9.38. Find the mean and autocorrelation function of 

has zero mean since X(t) is zero-mean. The autocorrelation of is obtained
from Eq. (9.74b). From Fig. 9.15, we can see that for and

otherwise. Therefore:

Thus has a triangular autocorrelation function:

RXs1t2 = c 1 -
ƒ t ƒ

T
ƒ t ƒ … T

0 ƒ t ƒ 7 T.

Xs1t2
for - T 6 t 6 0: RXs1t2 =

1

TL
T

- t

dt =
T + t

T
.

 for 0 6 t 6 T: RXs1t2 =
1

TL
T-t

0

dt =
T - t

T
;

RX1t + t, t2 = 0
0 6 t + t 6 T, RX1t + t, t2 = 1

Xs1t2Xs1t2
Xs1t2.

Xs1t2

RXs1t2 =
1

TL
T

0

RX1t + t, t2 dt.

E3Xs1t24 =
1

TL
T

0

mx1t2 dt

Xs1t2
Xs1t2Xs1t22, Á ,Xs1tk2

Xs1t12,Xs1t1 + t2,Xs1t2 + t2, Á ,Xs1tk + t2,
Xs1t2,

Xs1t2
=

1

TL
T

0

P3X1t1 + u2 … x1 , Á ,X1tk + u2 … xk4 du.

= L
T

0

P3X1t1 + ®2 … x1 , Á ,X1tk + ®2 … xk | ® = u4f®1u2 du
= P3X1t1 + ®2 … x1 ,X1t2 + ®2 … x2 , Á ,X1tk + ®2 … xk4
P3Xs1t12 … x1 ,Xs1t22 … x2 , Á ,Xs1tk2 … xk4
Xs1t2:

Xs1t2
X1t2.Xs1t2®
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The variance is then

Example 9.45 Integral of White Gaussian Noise

Let Z(t) be the white Gaussian noise process introduced in Example 9.43. Find the autocorrela-
tion function of X(t), the integral of Z(t) over the interval (0, t).

From Example 9.43, the white Gaussian noise process has autocorrelation function

The autocorrelation function of X(t) is then given by

We thus find that X(t) has the same autocorrelation as the Wiener process. In addition we have
that X(t) must be a Gaussian random process since Z(t) is Gaussian. It then follows that X(t)
must be the Wiener process because it has the joint pdf given by Eq. (9.52).

9.7.4 Response of a Linear System to Random Input

We now apply the results developed in this section to develop the solution of a linear
system described by a first-order differential equation. The method can be generalized
to higher-order equations. In the next chapter we develop transform methods to solve
the general problem.

Consider a linear system described by the first-order differential equation:

(9.93)

For example, X(t) may represent the voltage across the capacitor of an RC circuit with
current input Z(t). We now show how to obtain and If the input
process Z(t) is Gaussian, then the output process will also be Gaussian. Therefore, in
the case of Gaussian input processes, we can then characterize the joint pdf of the out-
put process.

RX1t1 , t22.mX1t2

X¿1t2 + aX1t2 = Z1t2 t Ú 0,X102 = 0.

= aL
min1t1,t22

0

dv = a min1t1 , t22.

RX1t1 , t22 = L
t1

0 L
t2

0

ad1w - v2 dw dv = aL
t2

0

u1t1 - v2 dv

RZ1t1 , t22 = ad1t1 - t22.

= VAR3A4 4

p2 sin2 2pt

T
.

VAR3M1t24 = E3A24 4

p2 sin2 2pt

T
- E3A42 4

p2 sin2 2pt

T
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We obtain a differential equation for by taking the expected value of
Eq. (9.93):

(9.94)

with initial condition 
As an intermediate step we next find a differential equation for If we

multiply Eq. (9.93) by and take the expected value, we obtain

with initial condition since The same derivation that led
to the cross-correlation between X(t) and (see Eq. 9.83) can be used to show that

Thus we obtain the following differential equation:

(9.95)

with initial condition 

Finally we obtain a differential equation for Multiply Eq. (9.93) by
and take the expected value:

with initial condition This leads to the differential equation

(9.96)

with initial condition Note that the solution to Eq. (9.95) appears as
the forcing function in Eq. (9.96). Thus we conclude that by solving the differential
equations in Eqs. (9.94), (9.95), and (9.96) we obtain the mean and autocorrelation
function for X(t).

Example 9.46 Ornstein-Uhlenbeck Process

Equation (9.93) with the input given by a zero-mean, white Gaussian noise process is called the
Langevin equation, after the scientist who formulated it in 1908 to describe the Brownian motion
of a free particle. In this formulation X(t) represents the velocity of the particle, so that Eq. (9.93)
results from equating the acceleration of the particle to the force on the particle due to
friction and the force due to random collisions Z(t). We present the solution developed
by Uhlenbeck and Ornstein in 1930.

First, we note that since the input process Z(t) is Gaussian, the output process X(t) will
also be a Gaussian random process. Next we recall that the first-order differential equation

x¿1t2 + ax1t2 = g1t2 t Ú 0, x102 = 0

-aX1t2
X¿1t2

RZ,X10, t22 = 0.

0

0t1
RX1t1 , t22 + aRX1t1 , t22 = RZ,X1t1 , t22 t1 Ú 0

E3X102X1t224 = 0.

E3X¿1t12X1t224 + aE3X1t12X1t224 = E3Z1t12X1t224 t1 Ú 0

X1t22
RZ1t1 , t22.

RZ,X1t1 , 02 = 0.
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has solution

Therefore the solution to Eq. (9.94) is

The autocorrelation of the white Gaussian noise process is

Equation (9.95) is also a first-order differential equation, and it has solution

where u(x) is the unit step function.
The autocorrelation function of the output process X(t) is the solution to the first-order

differential equation Eq. (9.96). The solution is given by

(9.97a)

A Gaussian random process with this autocorrelation function is called an Ornstein-Uhlen-

beck process. Thus we conclude that the output process X(t) is an Ornstein-Uhlenbeck
process.

If we let and then as t approaches infinity,

(9.97b)

This shows that the effect of the zero initial condition dies out as time progresses, and the process
becomes wide-sense stationary. Since the process is Gaussian, this also implies that the process
becomes strict-sense stationary.
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9.8 TIME AVERAGES OF RANDOM PROCESSES AND ERGODIC THEOREMS

At some point, the parameters of a random process must be obtained through mea-
surement. The results from Chapter 7 and the statistical methods of Chapter 8 suggest
that we repeat the random experiment that gives rise to the random process a large
number of times and take the arithmetic average of the quantities of interest. For ex-
ample, to estimate the mean of a random process we repeat the random
experiment and take the following average:

(9.98)

where N is the number of repetitions of the experiment, and is the realization
observed in the ith repetition.

In some situations, we are interested in estimating the mean or autocorrelation
functions from the time average of a single realization, that is,

(9.99)

An ergodic theorem states conditions under which a time average converges as the ob-
servation interval becomes large. In this section, we are interested in ergodic theorems
that state when time averages converge to the ensemble average (expected value).

The strong law of large numbers, presented in Chapter 7, is one of the most im-
portant ergodic theorems. It states that if is an iid discrete-time random process
with finite mean then the time average of the samples converges to the
ensemble average with probability one:

(9.100)

This result allows us to estimate m by taking the time average of a single realization of
the process. We are interested in obtaining results of this type for a larger class of ran-
dom processes, that is, for non-iid, discrete-time random processes, and for continuous-
time random processes.

The following example shows that, in general, time averages do not converge to
ensemble averages.

Example 9.47

Let for all t, where A is a zero-mean, unit-variance random variable. Find the limiting
value of the time average.

The mean of the process is However, Eq. (9.99) gives

Thus the time-average mean does not always converge to Note that this process is
stationary. Thus this example shows that stationary processes need not be ergodic.
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FIGURE 9.17
Region of integration for integral in Eq. (9.102).

Consider the estimate given by Eq. (9.99) for The estimate
yields a single number, so obviously it only makes sense to consider processes for
which a constant. We now develop an ergodic theorem for the time aver-
age of wide-sense stationary processes.

Let X(t) be a WSS process. The expected value of is

(9.101)

Equation (9.101) states that is an unbiased estimator for m.
Consider the variance of 

(9.102)

Since the process X(t) is WSS, Eq. (9.102) becomes

. (9.103)

Figure 9.17 shows the region of integration for this integral. The integrand is constant

along the line for so we can evaluate the integral as the-2T 6 u 6 2T,u = t - t¿
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sums of infinitesimal strips as shown in the figure. It can be shown that each strip has area

so the contribution of each strip to the integral is 

Thus

(9.104)

Therefore, will approach m in the mean square sense, that is,
if the expression in Eq. (9.104) approaches zero with increasing T. We have

just proved the following ergodic theorem.

Theorem 

Let X(t) be a WSS process with then

in the mean square sense, if and only if

In keeping with engineering usage, we say that a WSS process is mean ergodic if it sat-
isfies the conditions of the above theorem.

The above theorem can be used to obtain ergodic theorems for the time average
of other quantities. For example, if we replace X(t) with in Eq. (9.99), we
obtain a time-average estimate for the autocorrelation function of the process Y(t):

(9.105)

It is easily shown that if Y(t) is WSS.The above ergodic the-
orem then implies that the time-average autocorrelation converges to in the mean
square sense if the term in Eq.(9.104) with X(t) replaced by converges to zero.

Example 9.48

Is the random telegraph process mean ergodic?
The covariance function for the random telegraph process is so the vari-

ance of is

.

The bound approaches zero as so Therefore the process is mean
ergodic.

VAR38X1t29T4: 0.T: q ,

6
1

TL
2T

0

e-2au du =
1 - e-4aT

2aT

VAR38X1t29T4 =
2

2TL
2T

0

a1 -
u

2T
be-2au du

8X1t29T
CX1t2 = e-2a ƒt ƒ,

Y1t2Y1t + t2RY1t2
E38Y1t + t2Y1t29T4 = RY1t2
8Y1t + t2Y1t29T =

1

2TL
T

-T

Y1t + t2Y1t2 dt.

Y1t + t2Y1t2

lim
T:q

1

2TL
2T

-2T

a1 -
ƒu ƒ

2T
bCX1u2 du = 0.

lim
T:q

8X1t29T = m

mX1t2 = m,

m224: 0,
E318X1t29T -8X1t29T

=
1

2TL
2T

-2T

a1 -
ƒu ƒ

2T
bCX1u2 du.

VAR38X1t29T4 =
1

4T2L
2T

-2T

12T - ƒu ƒ 2CX1u2 du

12T - ƒu ƒ 2CX1u2 du.12T - ƒu ƒ 2 du,



Section 9.8 Time Averages of Random Processes and Ergodic Theorems 543

If the random process under consideration is discrete-time, then the time-average
estimate for the mean and the autocorrelation functions of are given by

(9.106)

(9.107)

If is a WSS random process, then and so is an unbiased esti-
mate for m. It is easy to show that the variance of is

(9.108)

Therefore, approaches m in the mean square sense and is mean ergodic if the ex-
pression in Eq. (9.108) approaches zero with increasing T.

Example 9.49 Ergodicity and Exponential Correlation

Let be a wide-sense stationary discrete-time process with mean m and covariance function
for and Show that is mean ergodic.

The variance of the sample mean (Eq. 9.106) is:

The bound on the right-hand side approaches zero as T increases and so is mean ergodic.

Example 9.50 Ergodicity of Self-Similar Process and Long-Range Dependence

Let be a wide-sense stationary discrete-time process with mean m and covariance function

(9.109)

for and is said to be second-order self-similar. We will inves-
tigate the ergodicity of 

We rewrite the variance of the sample mean in (Eq. 9.106) as follows:
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It is easy to show (See Problem 9.132) that the sum inside the braces is Therefore
the variance becomes:

(9.110)

The value of H, which is called the Hurst parameter, affects the convergence behavior of the sam-

ple mean. Note that if the covariance function becomes which corre-

sponds to an iid sequence. In this case, the variance becomes which is the convergence

rate of the sample mean for iid samples. However, for the variance becomes:

(9.111)

so the convergence of the sample mean is slower by a factor of than for iid
samples.

The slower convergence of the sample mean when results from the long-range de-
pendence of It can be shown that for large k, the covariance function is approximately given by:

(9.112)

For decays as where which is a very slow decay rate. Thus
the dependence between values of decreases slowly and the process is said to have a long
memory or long-range dependence.

9.9 FOURIER SERIES AND KARHUNEN-LOEVE EXPANSION

Let X(t) be a wide-sense stationary, mean square periodic random process with period
T, that is, In order to simplify the development, we
assume that X(t) is zero mean. We show that X(t) can be represented in a mean square
sense by a Fourier series:

(9.113)

where the coefficients are random variables defined by

(9.114)

Equation (9.114) implies that, in general, the coefficients are complex-valued random
variables. For complex-valued random variables, the correlation between two random

variables X and Y is defined by We also show that the coefficients are orthog-

onal random variables, that is, for 
Recall that if X(t) is mean square periodic, then is a periodic function in 

with period T. Therefore, it can be expanded in a Fourier series:

(9.115)

where the coefficients are given by
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The coefficients appear in the following derivation.
First, we show that the coefficients in Eq. (9.113) are orthogonal random vari-

ables, that is,

The integrand of the above equation has

where we have used the fact that the Fourier coefficients can be calculated over any
full period. Therefore

(9.117)

where is the Kronecker delta function. Thus and are orthogonal random 

variables. Note that the above equation implies that that is, the are
real-valued.

To show that the Fourier series equals X(t) in the mean square sense, we take

The above equation equals zero, since the are real and since from Eq.
(9.115).

If X(t) is a wide-sense stationary random process that is not mean square periodic,
we can still expand X(t) in the Fourier series in an arbitrary interval [0, T]. Mean square
equality will hold only inside the interval. Outside the interval, the expansion repeats
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itself with period T. The Fourier coefficients will no longer be orthogonal; instead they
are given by

(9.118)

It is easy to show that if X(t) is mean square periodic, then this equation reduces to Eq.
(9.117).

9.9.1 Karhunen-Loeve Expansion

In this section we present the Karhunen-Loeve expansion, which allows us to expand a
(possibly nonstationary) random process X(t) in a series:

(9.119a)

where

(9.119b)

where the equality in Eq. (9.119a) is in the mean square sense, where the coefficients 
are orthogonal random variables, and where the functions are orthonormal:

In other words, the Karhunen-Loeve expansion provides us with many of the nice prop-

erties of the Fourier series for the case where X(t) is not mean square periodic. For sim-
plicity, we again assume that X(t) is zero mean.

In order to motivate the Karhunen-Loeve expansion, we review the Karhunen-
Loeve transform for vector random variables as introduced in Section 6.3. Let X be a
zero-mean, vector random variable with covariance matrix The eigenvalues and
eigenvectors of are obtained from

(9.120)
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(9.121a)

Therefore we find that the covariance matrix can be expanded as a weighted sum of
matrices, In addition, if we let then the random variables in Y are or-
thogonal. Furthermore, since then

(9.121b)

Thus we see that the arbitrary vector random variable X can be expanded as a weighted
sum of the eigenvectors of where the coefficients are orthogonal random variables.
Furthermore the eigenvectors form an orthonormal set. These are exactly the proper-
ties we seek in the Karhunen-Loeve expansion for X(t). If the vector random variable
X is jointly Gaussian, then the components of Y are independent random variables.
This results in tremendous simplification in a wide variety of problems.

In analogy to Eq. (9.120), we begin by considering the following eigenvalue equation:

(9.122)

The values and the corresponding functions for which the above equation
holds are called the eigenvalues and eigenfunctions of the covariance function

Note that it is possible for the eigenfunctions to be complex-valued, e.g.,
complex exponentials. It can be shown that if is continuous, then the nor-
malized eigenfunctions form an orthonormal set and satisfy Mercer’s theorem:

(9.123)

Note the correspondence between Eq. (9.121) and Eq. (9.123). Equation (9.123) in
turn implies that

(9.124)

We are now ready to show that the equality in Eq. (9.119a) holds in the mean
square sense and that the coefficients are orthogonal random variables. First con-
sider
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The integrand of the above equation has

Therefore

where is the Kronecker delta function. Thus and are orthogonal random

variables. Note that the above equation implies that that is, the eigen-
values are real-valued.

To show that the Karhunen-Loeve expansion equals X(t) in the mean square
sense, we take

The above equation equals zero from Eq. (9.124) and from the fact that the are real.
Thus we have shown that Eq. (9.119a) holds in the mean square sense.

Finally, we note that in the important case where X(t) is a Gaussian random process,
then the components will be independent Gaussian random variables.This result is ex-
tremely useful in solving certain signal detection and estimation problems. [Van Trees.]

Example 9.51 Wiener Process

Find the Karhunen-Loeve expansion for the Wiener process.
Equation (9.122) for the Wiener process gives, for 
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We differentiate the above integral equation once with respect to to obtain an integral equa-
tion and again to obtain a differential equation:

This second-order differential equation has a sinusoidal solution:

In order to solve the above equation for a, b, and we need boundary conditions for the
differential equation. We obtain these by substituting the general solution for into the inte-
gral equation:

As approaches zero, the right-hand side approaches zero. This implies that in the left-
hand side of the equation. A second boundary condition is obtained by letting approach T in
the equation obtained after the first differentiation of the integral equation:

This implies that

Therefore the eigenvalues are given by

The normalization requirement implies that

which implies that Thus the eigenfunctions are given by

and the Karhunen-Loeve expansion for the Wiener process is

where the are zero-mean, independent Gaussian random variables with variance given by ln .Xn
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Example 9.52 White Gaussian Noise Process

Find the Karhunen-Loeve expansion of the white Gaussian noise process.
The white Gaussian noise process is the derivative of the Wiener process. If we take the

derivative of the Karhunen-Loeve expansion of the Wiener process, we obtain

where the are independent Gaussian random variables with the same variance This im-
plies that the process has infinite power, a fact we had already found about the white Gaussian
noise process. In the Problems we will see that any orthonormal set of eigenfunctions can be
used in the Karhunen-Loeve expansion for white Gaussian noise.

9.10 GENERATING RANDOM PROCESSES

Many engineering systems involve random processes that interact in complex ways. It
is not always possible to model these systems precisely using analytical methods. In
such situations computer simulation methods are used to investigate the system dy-
namics and to measure the performance parameters of interest. In this section we con-
sider two basic methods to generating random processes. The first approach involves
generating the sum process of iid sequences of random variables. We saw that this ap-
proach can be used to generate the binomial and random walk processes, and, through
limiting procedures, the Wiener and Poisson processes. The second approach involves
taking the linear combination of deterministic functions of time where the coefficients
are given by random variables. The Fourier series and Karhunen-Loeve expansion use
this approach. Real systems, e.g., digital modulation systems, also generate random
processes in this manner.

9.10.1 Generating Sum Random Processes

The generation of sample functions of the sum random process involves two steps:

1. Generate a sequence of iid random variables that drive the sum process.

2. Generate the cumulative sum of the iid sequence.

Let D be an array of samples of the desired iid random variables. The function
cumsum(D) in Octave and MATLAB then provides the cumulative sum, that is, the sum
process, that results from the sequence in D.

The code below generates m realizations of an n-step random walk process.

>p=1/2

>n=1000

>m=4

s2.Wn

= a
q

n=1

WnA
2

T
 cosan -

1

2
b p
T
t 0 … t 6 T,

X¿1t2 = a
q

n=1

s

2lXnA
2

T
 cosan -

1

2
b p
T
t
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FIGURE 9.18
(a) Ten sample functions of a Poisson random process with (b) Sample mean and variance of ten sample
functions of a Poisson random process with l = 0.4.

l = 0.4.

> V=-1:2:1;

> P=[1-p,p];

> D=discrete_rnd(V, P, m, n);

> X=cumsum (D);

> plot (X)

Figures 9.7(a) and 9.7(b) in Section 9.3 show four sample functions of the symmetric ran-

dom walk process for The sample functions vary over a wide range of positive

and negative values. Figure 9.7(c) shows four sample functions for The sample

functions now have a strong linear trend consistent with the mean The vari-

ability about this trend is somewhat less than in the symmetric case since the variance

function is now 
We can generate an approximation to a Poisson process by summing iid

Bernoulli random variables. Figure 9.18(a) shows ten realizations of Poisson processes
with arrivals per second. The sample functions for seconds were gen-
erated using a 1000-step binomial process with The linear increas-
ing trend of the Poisson process is evident in the figure. Figure 9.18(b) shows the
estimate of the mean and variance functions obtained by averaging across the 10 real-
izations. The linear trend in the sample mean function is very clear; the sample vari-
ance function is also linear but is much more variable. The mean and variance
functions of the realizations are obtained using the commands mean(transpose(X))
and var(transpose(X)).

We can generate sample functions of the random telegraph signal by taking the
Poisson process N(t) and calculating Figure 9.19(a)
shows a realization of the random telegraph signal. Figure 9.19(b) shows an estimate of
the covariance function of the random telegraph signal. The exponential decay in the
covariance function can be seen in the figure. See Eq. (9.44).

X1t2 = 21N1t2 modulo 22 - 1.

p = lT/n = 0.02.
T = 50l = 0.4

n4p11 - p2 = 3n/4.

n12p - 12.
p = 3/4.

p = 1/2.
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The covariance function is computed using the function CX_est below.

function [CXall]=CX_est (X, L, M_est)

N=length(X); %N is number of samples

CX=zeros (1,L+1); %L is maximum lag

M_est=mean(X) % Sample mean

for m=1:L+1, %Add product terms

for n=1:N-m+1,

CX(m)=CX(m) + (X(n) - M_est) * (X(n+m-1)- M_est);

end;

CX (m)=CX(m) / (N-m+1); %Normalize by number of terms

end;

for i=1:L,

CXall(i)=CX(L+2-i); % Lags 1 to L

end

CXall(L+1:2*L+1)=CX(1:L+1); % Lags to

The Wiener random process can also be generated as a sum process. One ap-
proach is to generate a properly scaled random walk process, as in Eq. (9.50). A better
approach is to note that the Wiener process has independent Gaussian increments, as
in Eq. (9.52), and therefore, to generate the sequence D of increments for the time
subintervals, and to then find the corresponding sum process. The code below gener-
ates a sample of the Wiener process:

> a=2

> delta=0.001

> n=1000

> D=normal_rnd(0,a*delta,1,n)

> X=cumsum(D);

> plot(X)
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FIGURE 9.19
(a) Sample function of a random telegraph process with (b) Estimate of covariance function of a random
telegraph process.

l � 0.4.
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Figure 9.12 in Section 9.5 shows four sample functions of a Brownian motion process
with Figure 9.20 shows the sample mean and sample variance of 50 sample
functions of the Wiener process with It can be seen that the mean across the 50
realizations is close to zero which is the actual mean function for the process. The sam-
ple variance across the 50 realizations increases steadily and is close to the actual vari-
ance function which is 

9.10.2 Generating Linear Combinations of Deterministic Functions

In some situations a random process can be represented as a linear combination
of deterministic functions where the coefficients are random variables. The Fouri-
er series and the Karhunen-Loeve expansions are examples of this type of repre-
sentation.

In Example 9.51 let the parameters in the Karhunen-Loeve expansion for a
Wiener process in the interval be 

where the are zero-mean, independent Gaussian random variables with variance

The following code generates the 100 Gaussian coefficients for the Karhunen-Loeve
expansion for the Wiener process.

ln =
s2T2

1n - 1/222p2
=

1

1n - 1/222p2
.

Xn

X1t2 = a
q

n=1

XnA
2

T
 sinan -

1

2
b pt
T

= a
q

n=1

Xn22 sinan -
1

2
bpt

T = 1, s2 = 1:0 … t … T

at = 2t.

a = 2.
a = 2.
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FIGURE 9.20
Sample mean and variance functions from 50 realizations of
Wiener process.
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FIGURE 9.21
Sample functions for Wiener process using 100 terms in Karhunen-
Loeve expansion.

> M=zeros(100,1);

> n=1:1:100; %Number of coefficients

> N=transpose(n);

> v=1./((N-0.5).^2 *pi ^2); %Variances of coefficients

> t=0.01:0.01:1;

> p=(N-0.5)*t; %Argument of sinusoid

> x=normal_rnd(M,v,100,1); %Gaussian coefficients

> y=sqrt(2)*sin(pi *p); % sin terms

> z=transpose(x)*y

> plot(z)

Figure 9.21 shows the Karhunen-Loeve expansion for the Wiener process using 100
terms.The sample functions generally exhibit the same type behavior as in the previous
figures. The sample functions, however, do not exhibit the jaggedness of the other ex-
amples, which are based on the generation of many more random variables.

SUMMARY

• A random process or stochastic process is an indexed family of random variables
that is specified by the set of joint distributions of any number and choice of ran-
dom variables in the family. The mean, autocovariance, and autocorrelation func-
tions summarize some of the information contained in the joint distributions of
pairs of time samples.

• The sum process of an iid sequence has the property of stationary and indepen-
dent increments, which facilitates the evaluation of the joint pdf/pmf of the
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process at any set of time instants. The binomial and random processes are sum
processes. The Poisson and Wiener processes are obtained as limiting forms of
these sum processes.

• The Poisson process has independent, stationary increments that are Poisson dis-
tributed. The interarrival times in a Poisson process are iid exponential random
variables.

• The mean and covariance functions completely specify all joint distributions of a
Gaussian random process.

• The Wiener process has independent, stationary increments that are Gaussian
distributed. The Wiener process is a Gaussian random process.

• A random process is stationary if its joint distributions are independent of the
choice of time origin. If a random process is stationary, then is constant,
and depends only on 

• A random process is wide-sense stationary (WSS) if its mean is constant and if its
autocorrelation and autocovariance depend only on A WSS process need
not be stationary.

• A wide-sense stationary Gaussian random process is also stationary.

• A random process is cyclostationary if its joint distributions are invariant with re-
spect to shifts of the time origin by integer multiples of some period T.

• The white Gaussian noise process results from taking the derivative of the
Wiener process.

• The derivative and integral of a random process are defined as limits of random
variables. We investigated the existence of these limits in the mean square sense.

• The mean and autocorrelation functions of the output of systems described by a
linear differential equation and subject to random process inputs can be obtained
by solving a set of differential equations. If the input process is a Gaussian ran-
dom process, then the output process is also Gaussian.

• Ergodic theorems state when time-average estimates of a parameter of a random
process converge to the expected value of the parameter. The decay rate of the
covariance function determines the convergence rate of the sample mean.

CHECKLIST OF IMPORTANT TERMS

t1 - t2 .

t1 - t2 .RX1t1 , t22
mX1t2

Autocorrelation function
Autocovariance function
Average power
Bernoulli random process
Binomial counting process
Continuous-time process
Cross-correlation function
Cross-covariance function
Cyclostationary random process
Discrete-time process

Ergodic theorem
Fourier series
Gaussian random process
Hurst parameter
iid random process
Independent increments
Independent random processes
Karhunen-Loeve expansion
Markov random process
Mean ergodic random process
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Mean function
Mean square continuity
Mean square derivative
Mean square integral
Mean square periodic process
Ornstein-Uhlenbeck process
Orthogonal random processes
Poisson process
Random process
Random telegraph signal
Random walk process
Realization, sample path, or sample 

function

Shot noise
Stationary increments
Stationary random process
Stochastic process
Sum random process
Time average
Uncorrelated random processes
Variance of X(t)
White Gaussian noise
Wide-sense cyclostationary process
Wiener process
WSS random process
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PROBLEMS

Sections 9.1 and 9.2: Definition and Specification of a Stochastic Process

9.1. In Example 9.1, find the joint pmf for and Why are and independent?

9.2. A discrete-time random process is defined as follows.A fair die is tossed and the out-
come k is observed. The process is then given by for all n.

(a) Sketch some sample paths of the process.

(b) Find the pmf for 

(c) Find the joint pmf for and 

(d) Find the mean and autocovariance functions of 

9.3. A discrete-time random process is defined as follows. A fair coin is tossed. If the out-
come is heads, for all n; if the outcome is tails, for all n.

(a) Sketch some sample paths of the process.

(b) Find the pmf for 

(c) Find the joint pmf for and 

(d) Find the mean and autocovariance functions of 

9.4. A discrete-time random process is defined by for where s is selected at
random from the interval (0, 1).

(a) Sketch some sample paths of the process.

(b) Find the cdf of 

(c) Find the joint cdf for and 

(d) Find the mean and autocovariance functions of 

(e) Repeat parts a, b, c, and d if s is uniform in (1, 2).

9.5. Let g(t) be the rectangular pulse shown in Fig. P9.1.The random process X(t) is defined as

where A assumes the values with equal probability.;1

X1t2 = Ag1t2,

Xn .

Xn+1 .Xn

Xn .

n Ú 0,Xn = sn,

Xn .

Xn+k .Xn

Xn .

Xn = 1-12n+1Xn = 1-12n
Xn

Xn .

Xn+k .Xn

Xn .

Xn = k

Xn

X2X1X2 .X1

(a) Find the pmf of X(t).

(b) Find

(c) Find the joint pmf of X(t) and 

(d) Find

9.6. A random process is defined by

where g(t) is the rectangular pulse of Fig. P9.1, and T is a uniformly distributed random
variable in the interval (0, 1).

Y1t2 = g1t - T2,

CX1t, t + d2, d 7 0.

X1t + d2.
mX1t2.
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(a) Find the pmf of Y(t).

(b) Find and 

9.7. A random process is defined by

where T is a uniform random variable in the interval (0, 1) and g(t) is the periodic trian-
gular waveform shown in Fig. P9.2.

X1t2 = g1t - T2,

CY1t1 , t22.mY1t2

t
0 2 31

1

FIGURE P9.2

(a) Find the cdf of X(t) for 

(b) Find mX(t) and 

9.8. Let as in Problem 9.6, but let T be an exponentially distributed random
variable with parameter 

(a) Find the pmf of Y(t).

(b) Find the joint pmf of Y(t) and Consider two cases: and 

(c) Find and for and 

9.9. Let where A and B are independent random variables.

(a) Find the pdf of Z(t).

(b) Find and 

9.10. Find an expression for in terms of autocorrelation function.

9.11. The random process H(t) is defined as the “hard-limited” version of X(t):

(a) Find the pdf, mean, and autocovariance of H(t) if X(t) is the sinusoid with a random
amplitude presented in Example 9.2.

(b) Find the pdf, mean, and autocovariance of H(t) if X(t) is the sinusoid with random
phase presented in Example 9.9.

(c) Find a general expression for the mean of H(t) in terms of the cdf of X(t).

9.12. (a) Are independent random processes orthogonal? Explain.

(b) Are orthogonal random processes uncorrelated? Explain.

(c) Are uncorrelated processes independent?

(d) Are uncorrelated processes orthogonal?

9.13. The random process Z(t) is defined by

Z1t2 = 2Xt - Y,

H1t2 = b +1 if X1t2 Ú 0

-1 if X1t2 6 0.

E3 ƒXt2 - Xt1 ƒ
24

CZ1t1 , t22.mZ1t2
Z1t2 = At3 + B,

0 6 d 6 1.d 7 1CY1t, t + d2mY1t2
0 6 d 6 1.d 7 1,Y1t + d2.

a.
Y1t2 = g1t - T2

CX1t1 , t22.
0 6 t 6 1.
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where X and Y are a pair of random variables with means variances 
and correlation coefficient Find the mean and autocovariance of Z(t).

9.14. Let H(t) be the output of the hard limiter in Problem 9.11.

(a) Find the cross-correlation and cross-covariance between H(t) and X(t) when the
input is a sinusoid with random amplitude as in Problem 9.11a.

(b) Repeat if the input is a sinusoid with random phase as in Problem 9.11b.

(c) Are the input and output processes uncorrelated? Orthogonal?

9.15. Let where is a zero-mean discrete-time random process and g(n) is
a deterministic function of n.

(a) Find the mean and variance of 

(b) Find the joint cdf of and 

(c) Find the autocovariance function of 

(d) Plot typical sample functions for and if:

9.16. Let where is a zero-mean, unit-variance, discrete-time random process
and c(n) is a deterministic function of n.

(a) Find the mean and variance of 

(b) Find the joint cdf of and 

(c) Find the autocovariance function of 

(d) Plot typical sample functions for and if:

9.17. (a) Find the cross-correlation and cross-covariance for and in Problem 9.15.

(b) Find the joint pdf of and 

(c) Determine whether and are uncorrelated, independent, or orthogonal ran-
dom processes.

9.18. (a) Find the cross-correlation and cross-covariance for and in Problem 9.16.

(b) Find the joint pdf of and 

(c) Determine whether and are uncorrelated, independent, or orthogonal ran-
dom processes.

9.19. Suppose that X(t) and Y(t) are independent random processes and let

.

(a) Find , and 

(b) Find the and Hint: Use auxiliary variables.

9.20. Repeat Problem 9.19 if X(t) and Y(t) are independent discrete-time processes and X(t)
and Y(t) have different iid random processes.

Section 9.3: Sum Process, Binomial Counting Process, and Random Walk

9.21. (a) Let be the process that results when individual 1’s in a Bernoulli process are
erased with probability Find the pmf of the counting process for Does 
have independent and stationary increments?

(b) Repeat part a if in addition to the erasures, individual 0’s in the Bernoulli process
are changed to 1’s with probability 

9.22. Let denote a binomial counting process.Sn

b.

YnYn .S¿n ,a.
Yn

fU1t12V1t221u, v2.fU1t12X1t221u, x2,
CUV1t1 , t22.CUX1t1 , t22, CUY1t1 , t22

V1t2 = X1t2 + Y1t2
U1t2 = X1t2 - Y1t2

YnXn

Yn+1 .Xn

YnXn

YnXn

Yn+1 .Xn

YnXn

c1n2 = n; c1n2 = 1/n2; c1n2 = 1/n.YnXn

Yn .

Yn+1 .Yn

Yn .

XnYn = c1n2Xn
g1n2 = n; g1n2 = 1/n2; g1n2 = 1/n.YnXn

Yn .

Yn+1 .Yn

Yn .

XnYn = Xn + g1n2

rX,Y .
sX

2 , sY
2 ,mX ,mY ,
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(a) Show that 

(b) Find where 

(c) Show that where 

9.23. (a) Find for the random walk process.

(b) What is the answer in part a if 

9.24. Consider the following moving average processes:

(a) Find the mean, variance, and covariance of and if is a Bernoulli random
process.

(b) Repeat part a if is the random step process.

(c) Generate 100 outcomes of a Bernoulli random process and find the resulting 
and Are the sample means of and in part a close to their respective
means?

(d) Repeat part c with given by the random step process.

9.25. Consider the following autoregressive processes:

(a) Suppose that is a Bernoulli process. What trends do the processes exhibit?

(b) Express and in terms of and then find and 
Do these results agree with the trends you expect?

(c) Do or have independent increments? stationary increments?

(d) Generate 100 outcomes of a Bernoulli process. Find the resulting realizations of 
and Is the sample mean meaningful for either of these processes?

(e) Repeat part d if is the random step process.

9.26. Let be the discrete-time process defined as the sequence of sample means of an iid
sequence:

(a) Find the mean, variance, and covariance of 

(b) Does have independent increments? stationary increments?

9.27. Find the pdf of the processes defined in Problem 9.24 if the are an iid sequence of
zero-mean, unit-variance Gaussian random variables.

9.28. Let consist of an iid sequence of Cauchy random variables.

(a) Find the pdf of the sum process Hint: Use the characteristic function method.

(b) Find the joint pdf of and 

9.29. Let consist of an iid sequence of Poisson random variables with mean 

(a) Find the pmf of the sum process 

(b) Find the joint pmf of and Sn+k .Sn

Sn .

a.Xn

Sn+k .Sn

Sn .

Xn

Xn

Mn

Mn .

Mn =
X1 + X2 + Á + Xn

n
.

Mn

Xn

Zn .
Wn

ZnWn

E3Zn4.E3Wn4Xn ,Xn-1 , Á ,X1ZnWn

Xn

Zn = 3/4Zn-1 + Xn Z0 = 0.

Wn = 2Wn-1 + Xn W0 = 0

Xn

ZnYnZn .
YnXn ,

Xn

XnZnYn

Zn = 2/3Xn + 1/3Xn-1 X0 = 0

Yn = 1/21Xn + Xn-12 X0 = 0

p = 1/2?

P3Sn = 04
n2 7 n1 7 n0 .P3Sn2

= j ƒ Sn1
= i, Sn0

= k4 = P3Sn2
= j ƒ Sn1

= i4,
n2 7 n1 .P3Sn2

= j ƒ Sn1
= i4,

P3Sn = j, Sn¿ = i4 Z P3Sn = j4P3Sn¿ = i4.
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9.30. Let be an iid sequence of zero-mean, unit-variance Gaussian random variables.

(a) Find the pdf of defined in Problem 9.26.

(b) Find the joint pdf of and Hint: Use the independent increments property
of

9.31. Repeat Problem 9.26 with where is an iid random process.
What happens to the variance of as n increases?

9.32. Repeat Problem 9.26 with where is an iid random process. What
happens to the variance of Mn as n increases?

9.33. Suppose that an experiment has three possible outcomes, say 0, 1, and 2, and suppose that
these occur with probabilities and respectively. Consider a sequence of inde-
pendent repetitions of the experiment, and let be the indicator function for out-
come j. The vector

then constitutes a vector-valued Bernoulli random process. Consider the counting
process for X(n):

(a) Show that S(n) has a multinomial distribution.

(b) Show that S(n) has independent increments, then find the joint pmf of S(n) and

(c) Show that components of the vector process are binomial counting
processes.

Section 9.4: Poisson and Associated Random Processes

9.34. A server handles queries that arrive according to a Poisson process with a rate of 10
queries per minute. What is the probability that no queries go unanswered if the server is
unavailable for 20 seconds?

9.35. Customers deposit $1 in a vending machine according to a Poisson process with rate 
The machine issues an item with probability p. Find the pmf for the number of items dis-
pensed in time t.

9.36. Noise impulses occur in a radio transmission according to a Poisson process of rate 

(a) Find the probability that no impulses occur during the transmission of a message
that is t seconds long.

(b) Suppose that the message is encoded so that the errors caused by up to 2 impulses can
be corrected.What is the probability that a t-second message cannot be corrected?

9.37. Packets arrive at a multiplexer at two ports according to independent Poisson processes
of rates and packets/second, respectively.

(a) Find the probability that a message arrives first on line 2.

(b) Find the pdf for the time until a message arrives on either line.

(c) Find the pmf for N(t), the total number of messages that arrive in an interval of
length t.

(d) Generalize the result of part c for the “merging” of k independent Poisson processes
of rates respectively:

N1t2 = N11t2 + Á + Nk1t2.
ll , Á , lk ,

l2 = 2l1 = 1

l.

l.

Sj1n2
S1n + k2.

S1n2 = X1n2 + X1n - 12 + Á + X112 S102 = 0.

X1n2 = 1X01n2,X11n2,X21n22
Xj1n2

p2 ,p0 , p1 ,

YnXn = 3/4Xn - 1
+ Yn

Mn

YnXn = 1/21Yn + Yn-12,
Sn .

Mn+k .Mn

Mn

Xn
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9.38. (a) Find with where N(t) is a Poisson process with
rate

(b) Compare your answer to Explain the difference, if
any.

9.39. Let be a Poisson process with arrival rate that is started at Let be
another Poisson process that is independent of that has arrival rate and that is
started at 

(a) Show that the pmf of the process is given by:

where

(b) Now consider a Poisson process in which the arrival rate is a piecewise constant
function of time. Explain why the pmf of the process is given by the above pmf
where

(c) For what other arrival functions does the pmf in part a hold?

9.40. (a) Suppose that the time required to service a customer in a queueing system is a ran-
dom variable T. If customers arrive at the system according to a Poisson process
with parameter find the pmf for the number of customers that arrive during one
customer’s service time. Hint: Condition on the service time.

(b) Evaluate the pmf in part a if T is an exponential random variable with parameter 

9.41. (a) Is the difference of two independent Poisson random processes also a Poisson
process?

(b) Let be the number of complete pairs generated by a Poisson process up to

time t. Explain why is or is not a Poisson process.

9.42. Let N(t) be a Poisson random process with parameter Suppose that each time an event
occurs, a coin is flipped and the outcome (heads or tails) is recorded. Let and 
denote the number of heads and tails recorded up to time t, respectively.Assume that p is
the probability of heads.

(a) Find

(b) Use part a to show that and are independent Poisson random variables
of rates and respectively:

9.43. Customers play a $1 game machine according to a Poisson process with rate Suppose
the machine dispenses a random reward X each time it is played. Let X(t) be the total
reward issued up to time t.

(a) Find expressions for if is Bernoulli.

(b) Repeat part a if X assumes the values with probabilities (5/6, 1/6).50, 56
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(c) Repeat part a if X is Poisson with mean 1.

(d) Repeat  part a if with probability p the machine returns all the coins.

9.44. Let X(t) denote the random telegraph signal, and let Y(t) be a process derived from X(t)
as follows: Each time X(t) changes polarity, Y(t) changes polarity with probability p.

(a) Find the 

(b) Find the autocovariance function of Y(t). Compare it to that of X(t).

9.45. Let Y(t) be the random signal obtained by switching between the values 0 and 1 accord-
ing to the events in a Poisson process of rate Compare the pmf and autocovariance of
Y(t) with that of the random telegraph signal.

9.46. Let Z(t) be the random signal obtained by switching between the values 0 and 1 accord-
ing to the events in a counting process N(t). Let

(a) Find the pmf of Z(t).

(b) Find

9.47. In the filtered Poisson process (Eq. (9.45)), let h(t) be a pulse of unit amplitude and dura-
tion T seconds.

(a) Show that X(t) is then the increment in the Poisson process in the interval 

(b) Find the mean and autocorrelation functions of X(t).

9.48. (a) Find the second moment and variance of the shot noise process discussed in
Example 9.25.

(b) Find the variance of the shot noise process if for 

9.49. Messages arrive at a message center according to a Poisson process of rate Every
hour the messages that have arrived during the previous hour are forwarded to their
destination. Find the mean of the total time waited by all the messages that arrive
during the hour. Hint: Condition on the number of arrivals and consider the arrival
instants.

Section 9.5: Gaussian Random Process, Wiener Process and Brownian Motion

9.50. Let X(t) and Y(t) be jointly Gaussian random processes. Explain the relation be-
tween the conditions of independence, uncorrelatedness, and orthogonality of X(t)
and Y(t).

9.51. Let X(t) be a zero-mean Gaussian random process with autocovariance function given by

Find the joint pdf of X(t) and 

9.52. Find the pdf of Z(t) in Problem 9.13 if X and Y are jointly Gaussian random variables.

9.53. Let where X(t) is a Gaussian random process.

(a) Find the mean and autocovariance of Y(t).

(b) Find the pdf of Y(t).

(c) Find the joint pdf of Y(t) and 

(d) Show that Y(t) is a Gaussian random process.

Y1t + s2.

Y1t2 = X1t + d2 - X1t2,
X1t + s2.
CX1t1 , t22 = 4e-2 ƒt1- t2 ƒ.

l.

t Ú 0.h1t2 = e-bt

1t - T, t2.

mZ1t2.

P3N1t2 = k4 =
1

1 + lt
a lt

1 + lt
bk k = 0, 1, 2, Á .

l.

P3Y1t2 = ;14.
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9.54. Let where A and B are iid Gaussian random variables with
zero mean and variance 

(a) Find the mean and autocovariance of X(t).

(b) Find the joint pdf of X(t) and 

9.55. Let X(t) and Y(t) be independent Gaussian random processes with zero means and the
same covariance function Define the “amplitude-modulated signal” by

(a) Find the mean and autocovariance of Z(t).

(b) Find the pdf of Z(t).

9.56. Let X(t) be a zero-mean Gaussian random process with autocovariance function given by
If X(t) is the input to a “square law detector,” then the output is

Find the mean and autocovariance of the output Y(t).

9.57. Let where X(t) is the Wiener process.

(a) Find the pdf of Y(t).

(b) Find the joint pdf of Y(t) and 

9.58. Let where X(t) is the Wiener process.

(a) Find the pdf of Y(t).

(b) Find the conditional pdf of given 

9.59. Let where X(t) is the Wiener process.

(a) Find the pdf of Z(t).

(b) Find and 

9.60. (a) For X(t) the Wiener process with and show that the joint pdf of
X(t) and X(1) is given by:

(b) Use part a to show that for the conditional pdf of X(t) given
is:

(c) Use part b to find the conditional pdf of X(t) given and for
Hint: Find the equivalent process in the interval 10, t2 - t12.t1 6 t 6 t2 .

X1t22 = bX1t12 = a

fX1t21x ƒX102 = X112 = 02 =

expb - 1

2
B x2

t11 - t2R r
2p2t11 - t2 .

X102 = X112 = 0
0 6 t 6 1,

fX1t2,X1121x1 , x22 =

expb - 1

2
Bx1

2

t
+
1x2 - x122
11 - t2 R r

2p2t11 - t2 .

0 6 t 6 1,a = 1

CZ1t1 , t22.mZ1t2
Z1t2 = X1t2 - aX1t - s2,

Y1t12.Y1t22
Y1t2 = X21t2,

Y1t + s2.
Y1t2 = X1t2 + mt,

Y1t2 = X1t22.
CX1t1 , t22.

Z1t2 = X1t2 cos vt + Y1t2 sin vt.

C1t1 , t22.
X1t + s2.

s2.
X1t2 = A cos vt + B sin vt,
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Section 9.6: Stationary Random Processes

9.61. (a) Is the random amplitude sinusoid in Example 9.9 a stationary random process? Is it
stationary?

(b) Repeat part a for the random phase sinusoid in Example 9.10.

9.62. A discrete-time random process is defined as follows. A fair coin is tossed; if the out-
come is heads then for all n, and for all n, otherwise.

(a) Is a WSS random process?

(b) Is a stationary random process?

(c) Do the answers in parts a and b change if p is a biased coin?

9.63. Let be the random process in Problem 9.3.

(a) Is a WSS random process?

(b) Is a stationary random process?

(c) Is a cyclostationary random process?

9.64. Let where g(t) is the periodic waveform introduced in Problem 9.7,
and T is a uniformly distributed random variable in the interval (0, 1). Is X(t) a stationary
random process? Is X(t) wide-sense stationary?

9.65. Let X(t) be defined by

where A and B are iid random variables.

(a) Under what conditions is X(t) wide-sense stationary?

(b) Show that X(t) is not stationary. Hint: Consider

9.66. Consider the following moving average process:

(a) Is a stationary random process if is an iid integer-valued process?

(b) Is a stationary random process if is a stationary process?

(c) Are and jointly stationary random processes if is an iid process? a sta-
tionary process?

9.67. Let be a zero-mean iid process, and let be an autoregressive random process

(a) Find the autocovariance of and determine whether is wide-sense stationary.
Hint: Express in terms of 

(b) Does eventually settle down into stationary behavior?

(c) Find the pdf of if is an iid sequence of zero-mean, unit-variance Gaussian ran-
dom variables. What is the pdf of as 

9.68. Let where X(t) is a wide-sense stationary random process.

(a) Determine whether Y(t) is also a wide-sense stationary random process.

(b) Find the cross-covariance function of Y(t) and X(t). Are the processes jointly wide-
sense stationary?

Y1t2 = X1t + s2 - bX1t2,
n: q?Zn

XnZn

Zn

Xn ,Xn-1 , Á ,X1 .Zn

ZnZn

Zn = 3/4Zn-1 + Xn Z0 = 0.

ZnXn

XnXnYn

XnYn

XnYn

Yn = 1/21Xn + Xn-12 X0 = 0.

E3X31t24.

X1t2 = A cos vt + B sin vt,

X1t2 = g1t - T2,
Xn

Xn

Xn

Xn

Xn

Xn

Xn = -1Xn = 1
Xn

wide-sense
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(c) Find the pdf of Y(t) if X(t) is a Gaussian random process.

(d) Find the joint pdf of and in part c.

(e) Find the joint pdf of and in part c.

9.69. Let X(t) and Y(t) be independent, wide-sense stationary random processes with zero
means and the same covariance function Let Z(t) be defined by

(a) Determine whether Z(t) is also wide-sense stationary.

(b) Determine the pdf of Z(t) if X(t) and Y(t) are also jointly Gaussian zero-mean ran-
dom processes with 

(c) Find the joint pdf of and in part b.

(d) Find the cross-covariance between Z(t) and X(t). Are Z(t) and X(t) jointly station-
ary random processes?

(e) Find the joint pdf of and in part b. Hint: Use auxilliary variables.

9.70. Let X(t) and Y(t) be independent, wide-sense stationary random processes with zero
means and the same covariance function Let Z(t) be defined by

(a) Determine whether Z(t) is a wide-sense stationary random process.

(b) Determine the pdf of Z(t) if X(t) and Y(t) are also jointly Gaussian zero-mean ran-
dom processes with 

(c) Find the joint pdf of and in part b.

(d) Find the cross-covariance between Z(t) and X(t). Are Z(t) and X(t) jointly station-
ary random processes?

(e) Find the joint pdf of and in part b.

9.71. Let X(t) be a zero-mean, wide-sense stationary Gaussian random process with autocorre-
lation function The output of a “square law detector” is

Show that Hint: For zero-mean, jointly Gaussian random

variables

9.72. A WSS process X(t) has mean 1 and autocorrelation function given in Fig. P9.3.

E3X2Z24 = E3X24E3Z24 + 2E3XZ42.
RY1t2 = RX1022 + 2R 2

X1t2.
Y1t2 = X1t22.

RX1t2.
X1t22Z1t12

Z1t22Z1t12
CX1t2 = 4e-ƒt ƒ.

Z1t2 = X1t2 cos vt + Y1t2 sin vt.

CX1t2.
X1t22Z1t12

Z1t22Z1t12
CX1t2 = 4e-ƒt ƒ.

Z1t2 = 3X1t2 - 5Y1t2.
CX1t2.

X1t22Y1t12
Y1t22Y1t12

2
2 2

RX(t)

4

t
�9 �8 �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7

FIGURE P9.3

(a) Find the mean component of 

(b) Find the periodic component of 

(c) Find the remaining component of RX1t2.
RX1t2.

RX1t2.
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9.73. Let and be independent random processes. A multiplexer combines these two se-
quences into a combined sequence that is,

(a) Suppose that and are independent Bernoulli random processes. Under
what conditions is a stationary random process? a cyclostationary random
process?

(b) Repeat part a if and are independent stationary random processes.

(c) Suppose that and are wide-sense stationary random processes. Is a wide-
sense stationary random process? a wide-sense cyclostationary random process?
Find the mean and autocovariance functions of 

(d) If is wide-sense cyclostationary, find the mean and correlation function of the
randomly phase-shifted version of as defined by Eq. (9.72).

9.74. A ternary information source produces an iid, equiprobable sequence of symbols from
the alphabet Suppose that these three symbols are encoded into the respective
binary codewords 00, 01, 10. Let be the sequence of binary symbols that result from
encoding the ternary symbols.

(a) Find the joint pmf of and for n even; n odd. Is stationary? cyclostationary?

(b) Find the mean and covariance functions of Is wide-sense stationary? wide-
sense cyclostationary?

(c) If is cyclostationary, find the joint pmf, mean, and autocorrelation functions of the
randomly phase-shifted version of as defined by Eq. (9.72).

9.75. Let s(t) be a periodic square wave with period which is equal to 1 for the first half
of a period and for the remainder of the period. Let where A is a ran-
dom variable.

(a) Find the mean and autocovariance functions of X(t).

(b) Is X(t) a mean-square periodic process?

(c) Find the mean and autocovariance of the randomly phase-shifted version of
X(t) given by Eq. (9.72).

9.76. Let and where A and B are independent random variables
that assume values or with equal probabilities, where s(t) is the periodic square
wave in Problem 9.75.

(a) Find the joint pmf of and 

(b) Find the cross-covariance of X(t1) and Y(t2).

(c) Are X(t) and Y(t) jointly wide-sense cyclostationary? Jointly cyclostationary?

9.77. Let X(t) be a mean square periodic random process. Is X(t) a wide-sense cyclostationary
process?

9.78. Is the pulse amplitude modulation random process in Example 9.38 cyclostationary?

9.79. Let X(t) be the random amplitude sinusoid in Example 9.37. Find the mean and autocor-
relation functions of the randomly phase-shifted version of X(t) given by Eq. (9.72).

9.80. Complete the proof that if X(t) is a cyclostationary random process, then defined
by Eq. (9.72), is a stationary random process.

9.81. Show that if X(t) is a wide-sense cyclostationary random process, then defined by
Eq. (9.72), is a wide-sense stationary random process with mean and autocorrelation
functions given by Eqs. (9.74a) and (9.74b).
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Xs1t2,
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Y1t2 = Bs1t2,X1t2 = As1t2
Xs1t2

X1t2 = As1t2,-1
T = 1

Bn

Bn

BnBn .

BnBn+1Bn

Bn

5a, b, c6.
Uk

Uk

Uk .

UkYnXn

YnXn
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YnXn

U2n = Xn , U2n+1 = Yn .
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Section 9.7: Continuity, Derivatives, and Integrals of Random Processes

9.82. Let the random process be a unit step function delayed by an exponen-
tial random variable S, that is, for and for 

(a) Find the autocorrelation function of X(t).

(b) Is X(t) mean square continuous?

(c) Does X(t) have a mean square derivative? If so, find its mean and autocorrelation
functions.

(d) Does X(t) have a mean square integral? If so, find its mean and autocovariance
functions.

9.83. Let X(t) be the random telegraph signal introduced in Example 9.24.

(a) Is X(t) mean square continuous?

(b) Show that X(t) does not have a mean square derivative, and show that the second
mixed partial derivative of its autocorrelation function has a delta function. What
gives rise to this delta function?

(c) Does X(t) have a mean square integral? If so, find its mean and autocovariance
functions.

9.84. Let X(t) have autocorrelation function

(a) Is X(t) mean square continuous?

(b) Does X(t) have a mean square derivative? If so, find its mean and autocorrelation
functions.

(c) Does X(t) have a mean square integral? If so, find its mean and autocorrelation
functions.

(d) Is X(t) a Gaussian random process?

9.85. Let N(t) be the Poisson process. Find and use the result to show that
N(t) is mean square continuous.

9.86. Does the pulse amplitude modulation random process discussed in Example 9.38 have a
mean square integral? If so, find its mean and autocovariance functions.

9.87. Show that if X(t) is a mean square continuous random process, then X(t) has a mean
square integral. Hint: Show that

and then apply the Schwarz inequality to the two terms on the right-hand side.

9.88. Let Y(t) be the mean square integral of X(t) in the interval (0, t). Show that is equal
to X(t) in the mean square sense.

9.89. Let X(t) be a wide-sense stationary random process. Show that 

9.90. A linear system with input Z(t) is described by

Find the output X(t) if the input is a zero-mean Gaussian random process with autocor-
relation function given by

RX1t2 = s2e-b ƒt ƒ.

X¿1t2 + aX1t2 = Z1t2 t Ú 0,X102 = 0.

E3X1t2X¿1t24 = 0.

Y¿1t2

RX1t1 , t22 - RX1t0 , t02 = E31X1t12 - X1t022X1t224 + E3X1t021X1t22 - X1t0224,

E31N1t2 - N1t02224

RX1t2 = s2e-at
2

.

t 6 S.X1t2 = 0t Ú S,X1t2 = 1
X1t2 = u1t - S2
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Section 9.8: Time Averages of Random Processes and Ergodic Theorems

9.91. Find the variance of the time average given in Example 9.47.

9.92. Are the following processes WSS and mean ergodic?

(a) Discrete-time dice process in Problem 9.2.

(b) Alternating sign process in Problem 9.3.

(c) for in Problem 9.4.

9.93. Is the following WSS random process X(t) mean ergodic?

9.94. Let where A is a random variable with mean m and variance 

(a) Evaluate find its limit as and compare to 

(b) Evaluate find its limit as and compare to 

9.95. Repeat Problem 9.94 with where A is as in Problem 9.94, is
a random variable uniformly distributed in and A and are independent ran-
dom variables.

9.96. Find an exact expression for in Example 9.48. Find the limit as 

9.97. The WSS random process has mean m and autocovariance Is 
mean ergodic?

9.98. (a) Are the moving average processes in Problem 9.24 mean ergodic?

(b) Are the autoregressive processes in Problem 9.25a mean ergodic?

9.99. (a) Show that a WSS random process is mean ergodic if

(b) Show that a discrete-time WSS random process is mean ergodic if

9.100. Let denote a time-average estimate for the mean power of a WSS random
process.

(a) Under what conditions is this time average a valid estimate for 

(b) Apply your result in part a for the random phase sinusoid in Example 9.2.

9.101. (a) Under what conditions is the time average a valid estimate for
the autocorrelation of a WSS random process X(t)?

(b) Apply your result in part a for the random phase sinusoid in Example 9.2.

9.102. Let Y(t) be the indicator function for the event that is,

(a) Show that is the proportion of time in the time interval that
X1t2 H 1a, b4.

1-T, T26Y1t27T

Y1t2 = b1 ifX1t2 H 1a, b4
0 otherwise.

5a 6 X1t2 … b6,
RX1t2

6X1t + t2X1t27T

E3X21t24?
6X21t27T

a
q
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ƒC1k2 ƒ 6 q .

L
q

-q
ƒC1u2 ƒ 6 q .

Zn

Yn

XnCX1k2 = 11/22 ƒk ƒ.Xn

T: q .VAR36X1t27T4
®10, 2p2,

®X1t2 = A cos12pft + ®2,
RX1t + t, t2.T: q ,6X1t + t2X1t27 ,

mX1t2.T: q ,6X1t27T ,

s2.X1t2 = A cos12pft2,
RX1t2 = b0 ƒ t ƒ 7 1

511 - ƒ t ƒ 2 ƒ t ƒ … 1.

n Ú 0Xn = sn,
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(b) Find

(c) Under what conditions does 

(d) How can be used to estimate 

(e) Apply the result in part d to the random telegraph signal.

9.103. (a) Repeat Problem 9.102 for the time average of the discrete-time which is defined
as the indicator for the event 

(b) Apply your result in part a to an iid discrete-valued random process.

(c) Apply your result in part a to an iid continuous-valued random process.

9.104. For define where u(x) is the unit step function, that is, if
and only if 

(a) Show that the time average is the proportion of that are less than a in
the first N samples.

(b) Show that if the process is ergodic (in some sense), then this time average is equal to

9.105. In Example 9.50 show that 

9.106. Plot the covariance function vs. k for the self-similar process in Example 9.50 with 
for: Does the long-range dependence of the
process increase or decrease with H?

9.107. (a) Plot the variance of the sample mean given by Eq. (9.110) vs. T with for:

(b) For the parameters in part a, plot vs. T, which is the ratio of the vari-
ance of the sample mean of a long-range dependent process relative to the variance
of the sample mean of an iid process. How does the long-range dependence manifest
itself, especially for H approaching 1?

(c) Comment on the width of confidence intervals for estimates of the mean of long-
range dependent processes relative to those of iid processes.

9.108. Plot the variance of the sample mean for a long-range dependent process (Eq. 9.110) vs.
the sample size T in a log-log plot.

(a) What role does H play in the plot?

(b) One of the remarkable indicators of long-range dependence in nature comes from a
set of observations of the minimal water levels in the Nile river for the years
622–1281 [Beran, p. 22] where the log-log plot for part a gives a slope of What
value of H corresponds to this slope?

9.109. Problem 9.99b gives a sufficient condition for mean ergodicity for discrete-time random
processes. Use the expression in Eq. (9.112) for a long-range dependent process to deter-
mine whether the sufficient condition is satisfied. Comment on your findings.

Section 9.9: Fourier Series and Karhunen-Loeve Expansion

9.110. Let where X is a random variable.

(a) Find the correlation function for X(t), which for complex-valued random processes
is defined by where denotes the complex conjugate.

(b) Under what conditions is X(t) a wide-sense stationary random process?

*RX1t1 , t22 = E3X1t12X*1t224,
X1t2 = Xejvt

*

-0.27.

12T + 122H-1

H = 0.5,H = 0.6,H = 0.75,H = 0.99.
s2 = 1

H = 0.5,H = 0.6,H = 0.75,H = 0.99.
s2 = 1

VAR38Xn9T4 = 1s2212T + 122H-2.

FX1a2 = P3X … a4.

Xn’s6Zn7N

Xn … a.
Xn = 1Zn = u1a - Xn2,n Ú 1,

5a 6 Xn … b46.
Yn ,

P3X1t2 … x4?6Y1t27T
6Y1t27T: P3a 6 X1t2 … b4?

E36Y1t27T4.
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9.111. Consider the sum of two complex exponentials with random coefficients:

(a) Find the covariance function of X(t).

(b) Find conditions on the complex-valued random variables and for X(t) to be
a wide-sense stationary random process.

(c) Show that if we let and where U
and V are real-valued random variables, then X(t) is a real-valued random process.
Find an expression for X(t) and for the autocorrelation function.

(d) Restate the conditions on and from part b in terms of U and V.

(e) Suppose that in part c, U and V are jointly Gaussian random variables. Show that
X(t) is a Gaussian random process.

9.112. (a) Derive Eq. (9.118) for the correlation of the Fourier coefficients for a non-mean
square periodic process X(t).

(b) Show that Eq. (9.118) reduces to Eq. (9.117) when X(t) is WSS and mean square periodic.

9.113. Let X(t) be a WSS Gaussian random process with 

(a) Find the Fourier series expansion for X(t) in the interval [0, T].

(b) What is the distribution of the coefficients in the Fourier series?

9.114. Show that the Karhunen-Loeve expansion of a WSS mean-square periodic process X(t)
yields its Fourier series. Specify the orthonormal set of eigenfunctions and the corre-
sponding eigenvalues.

9.115. Let X(t) be the white Gaussian noise process introduced in Example 9.43. Show that any
set of orthonormal functions can be used as the eigenfunctions for X(t) in its Karhunen-
Loeve expansion. What are the eigenvalues?

9.116. Let where X(t) and W(t) are orthogonal random processes and
W(t) is a white Gaussian noise process. Let be the eigenfunctions corresponding to

Show that are also the eigenfunctions for What is the relation
between the eigenvalues of and those of 

9.117. Let X(t) be a zero-mean random process with autocovariance

(a) Write the eigenvalue integral equation for the Karhunen-Loeve expansion of X(t)
on the interval 

(b) Differentiate the above integral equation to obtain the differential equation

(c) Show that the solutions to the above differential equation are of the form
and Find an expression for b.f1t2 = B sin bt.f1t2 = A cos bt

d2

dt2
f1t2 =

a2¢l - 2
s2

a
≤

l
f1t2.

3-T, T4.

RX1t2 = s2e-a ƒt ƒ.

KY1t1 , t22?KX1t1 , t22
KY1t1 , t22.fn1t2KX1t1 , t22.

fn1t2
Y1t2 = X1t2 + W1t2,

RX1t2 = e-ƒt ƒ.

X2X1

X2 = 1U + jV2/2,v1 = -v2 ,X1 = 1U - jV2/2
X2X1,

X1t2 = X1e
jv1t + X2e

jv2t where v1 Z v2 .
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(d) Substitute the from part c into the integral equation of part a to show that if
then b is the root of tan and if then b is

the root of tan 

(e) Find the values of A and B that normalize the eigenfunctions.

(f ) In order to show that the frequencies of the eigenfunctions are not harmonically re-
lated, plot the following three functions versus The in-
tersections of these functions yield the eigenvalues. Note that there are two roots per
interval of length 

Section 9.10: Generating Random Processes

9.118. (a) Generate 10 realizations of the binomial counting process with 
and For each value of p, plot the sample functions for 

(b) Generate 50 realizations of the binomial counting process with Find the
sample mean and sample variance of the realizations for the first 200 trials.

(c) In part b, find the histogram of increments in the process for the interval [1, 50],
[51, 100], [101, 150], and [151, 200]. Compare these histograms to the theoretical
pmf. How would you check to see if the increments in the four intervals are 
stationary?

(d) Plot a scattergram of the pairs consisting of the increments in the interval [1, 50] and
[51, 100] in a given realization. Devise a test to check whether the increments in the
two intervals are independent random variables.

9.119. Repeat Problem 9.118 for the random walk process with the same parameters.

9.120. Repeat Problem 9.118 for the sum process in Eq. (9.24) where the are iid unit-variance
Gaussian random variables with mean:

9.121. Repeat Problem 9.118 for the sum process in Eq. (9.24) where the are iid Poisson ran-
dom variables with 

9.122. Repeat Problem 9.118 for the sum process in Eq. (9.24) where the are iid Cauchy ran-
dom variables with 

9.123. Let where 

(a) Generate five realizations of the process for 9/10 and with given by
the and random step process. Plot the sample functions for the first
200 steps. Find the sample mean and sample variance for the outcomes in each real-
ization. Plot the histogram for outcomes in each realization.

(b) Generate 50 realizations of the process with and Find
the sample mean and sample variance of the realizations for the first 200 trials. Find
the histogram of across the realizations at times and 

(c) In part b, find the histogram of increments in the process for the interval [1, 50], [51,
100], [101, 150], and [151, 200]. To what theoretical pmf should these histograms be
compared? Should the increments in the process be stationary? Should the incre-
ments be independent?

9.124. Repeat Problem 9.123 for the sum process in Eq. (9.24) where the are iid unit-variance
Gaussian random variables with mean:m = 0;m = 0.5.

Xn

n = 200.n = 5, n = 50,Yn

p = 1/2.a = 1/2, p = 1/4,Yn

p = 1/4p = 1/2
Xna = 1/4, 1/2,

Y0 = 0.Yn = aYn-1 + Xn

a = 1.
Xn

a = 1.
Xn

m = 0;m = 0.5.
Xn

p = 1/2.

n = 200 trials.p = 3/4.
p = 1/4, p = 1/2,

*

p.

bT: tan bT, bT/aT, -aT/bT.
*

bT = -b/a.
f1t2 = B sin bt,bT = a/b,f1t2 = A cos bt,

f1t2
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9.125. (a) Propose a method for estimating the covariance function of the sum process in
Problem 9.118. Do not assume that the process is wide-sense stationary.

(b) How would you check to see if the process is wide-sense stationary?

(c) Apply the methods in parts a and b to the experiment in Problem 9.118b.

(d) Repeat part c for Problem 9.123b.

9.126. Use the binomial process to approximate a Poisson random process with arrival rate
customer per second in the time interval (0, 100]. Try different values of n and

come up with a recommendation on how n should be selected.

9.127. Generate 100 repetitions of the experiment in Example 9.21.

(a) Find the relative frequency of the event 
and compare it to the theoretical probability.

(b) Find the histogram of the time that elapses until the second arrival and compare it to
the theoretical pdf. Plot the empirical cdf and compare it to the theoretical cdf.

9.128. Generate 100 realizations of the Poisson random process N(t) with arrival rate 
customer per second in the time interval (0, 10]. Generate the pair by as-
signing arrivals in N(t) to with probability and to with probability
0.75.

(a) Find the histograms for and and compare them to the theoretical pmf
by performing a chi-square goodness-of-fit test at a 5% significance level.

(b) Perform a chi-square goodness-of-fit test to test whether and are in-
dependent random variables. How would you check whether and are
independent random processes?

9.129. Subscribers log on to a system according to a Poisson process with arrival rate cus-
tomer per second. The ith customer remains logged on for a random duration of sec-
onds, where the are iid random variables and are also independent of the arrival times.

(a) Generate the sequence of customer arrival times and the corresponding
departure times given by where the connections times are all equal
to 1.

(b) Plot: A(t), the number of arrivals up to time t; D(t), the number of departures up to
time t; and the number in the system at time t.

(c) Perform 100 simulations of the system operation for a duration of 200 seconds. As-
sume that customer connection times are an exponential random variables with mean
5 seconds. Find the customer departure time instants and the associated departure
counting process D(t). How would you check whether D(t) is a Poisson process? Find
the histograms for D(t) and the number in the system N(t) at Try
to fit a pmf to each histogram.

(d) Repeat part c if customer connection times are exactly 5 seconds long.

9.130. Generate 100 realizations of the Wiener process with for the interval (0, 3.5) using
the random walk limiting procedure.

(a) Find the histograms for increments in the intervals (0, 0.5], (0.5, 1.5], and (1.5, 3.5]
and compare these to the theoretical pdf.

(b) Perform a test at a 5% significance level to determine whether the increments in the
first two intervals are independent random variables.

a = 1

t = 50, 100, 150, 200.

N1t2 = A1t2 - D1t2,

Dn = Sn + Tn ,
Sn

Ti

Ti

l = 1

N21t2N11t2
N21102N11102

N21102N11102
N21t2p = 0.25N11t2
1N11t2,N21t22

l = 1

P3N1102 = 3 and N1602 - N1452 = 24

l = 1



574 Chapter 9 Random Processes

9.131. Repeat Problem 9.130 using Gaussian-distributed increments to generate the Wiener
process. Discuss how the increment interval in the simulation should be selected.

Problems Requiring Cumulative Knowledge

9.132. Let X(t) be a random process with independent increments. Assume that the increments
are gamma random variables with parameters and 

(a) Find the joint density function of and 

(b) Find the autocorrelation function of X(t).

(c) Is X(t) mean square continuous?

(d) Does X(t) have a mean square derivative?

9.133. Let X(t) be the pulse amplitude modulation process introduced in Example 9.38 with
A phase-modulated process is defined by

(a) Plot the sample function of Y(t) corresponding to the binary sequence 0010110.

(b) Find the joint pdf of and 

(c) Find the mean and autocorrelation functions of Y(t).

(d) Is Y(t) a stationary, wide-sense stationary, or cyclostationary random process?

(e) Is Y(t) mean square continuous?

(f) Does Y(t) have a mean square derivative? If so, find its mean and autocorrelation
functions.

9.134. Let N(t) be the Poisson process, and suppose we form the phase-modulated process

(a) Plot a sample function of Y(t) corresponding to a typical sample function of N(t).

(b) Find the joint density function of and Hint: Use the independent incre-
ments property of N(t).

(c) Find the mean and autocorrelation functions of Y(t).

(d) Is Y(t) a stationary, wide-sense stationary, or cyclostationary random process?

(e) Is Y(t) mean square continuous?

(f) Does Y(t) have a mean square derivative? If so, find its mean and autocorrelation
functions.

9.135. Let X(t) be a train of amplitude-modulated pulses with occurrences according to a Pois-
son process:

where the are iid random variables, the are the event occurrence times in a Poisson
process, and h(t) is a function of time. Assume the amplitudes and occurrence times are
independent.

(a) Find the mean and autocorrelation functions of X(t).

(b) Evaluate part a when a unit step function.

(c) Evaluate part a when a rectangular pulse of duration T seconds.h1t2 = p1t2,
h1t2 = u1t2,

SkAk

X1t2 = a
q

k=1

Akh1t - Sk2,

Y1t22.Y1t12

Y1t2 = a cos12pft + pN1t22.

Y1t22.Y1t12

Y1t2 = a cosa2pt +
p

2
X1t2b .

T = 1.

X1t22.X1t12
a = t2 - t1 .l 7 0X1t22 - X1t12
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9.136. Consider a linear combination of two sinusoids:

where and are independent uniform random variables in the interval and
and are jointly Gaussian random variables. Assume that the amplitudes are inde-

pendent of the phase random variables.

(a) Find the mean and autocorrelation functions of X(t).

(b) Is X(t) mean square periodic? If so, what is the period?

(c) Find the joint pdf of and 

9.137. (a) A Gauss-Markov random process is a Gaussian random process that is also a Markov
process. Show that the autocovariance function of such a process must satisfy

where

(b) It can be shown that if the autocovariance of a Gaussian random process satisfies
the above equation, then the process is Gauss-Markov. Is the Wiener process Gauss-
Markov? Is the Ornstein-Uhlenbeck process Gauss-Markov?

9.138. Let and be two independent stationary random processes. Suppose that and 
are zero-mean, Gaussian random processes with autocorrelation functions

A block multiplexer takes blocks of two from the above processes and interleaves them
to form the random process 

(a) Find the autocorrelation function of 

(b) Is cyclostationary? wide-sense stationary?

(c) Find the joint pdf of and 

(d) Let where T is selected uniformly from the set Repeat
parts a, b, and c for 

9.139. Let be the Gaussian random process in Problem 9.138.A decimator takes every other
sample to form the random process 

(a) Find the autocorrelation function of 

(b) Find the joint pdf of and 

(c) An interpolator takes the sequence and inserts zeros between samples to form
the sequence 

Find the autocorrelation function of Is a Gaussian random process?WkWk .

A10A30A50A70A90A11 Á .

Wk:
Vm

Vm+k.Vm

Vm .

A1A3A5A7A9A11

Vm:
An

Zm .
50, 1, 2, 36.Zm = Ym+T ,

Ym+1 .Ym

Ym

Ym .

A1A2B1B2A3A4B3B4A5A6B5B6 Á .

Ym:

RA1k2 = s1
2r1

ƒk ƒ RB1k2 = s2
2r2

ƒk ƒ.

BnAnBnAn

t1 … t2 … t3 .

CX1t3 , t12 =
CX1t3 , t22CX1t2 , t12

CX1t2 , t22 ,

X1t22.X1t12

A2A1

10, 2p2,®2®1

X1t2 = A1 cos1v0t + ®12 + A2 cos122v0t + ®22,
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9.140. Let be a sequence of zero-mean, unit-variance independent Gaussian random variables.
A block coder takes pairs of A’s and linearly transforms them to form the sequence 

(a) Find the autocorrelation function of 

(b) Is stationary in any sense?

(c) Find the joint pdf of and 

9.141. Suppose customer orders arrive according to a Bernoulli random process with parameter p.
When an order arrives, its size is an exponential random variable with parameter Let 
be the total size of all orders up to time n.

(a) Find the mean and autocorrelation functions of 

(b) Is a stationary random process?

(c) Is a Markov process?

(d) Find the joint pdf of and Sn+k .Sn

Sn

Sn

Sn .

Snl.

Yn+2 .Yn+1 ,Yn ,

Yn

Yn .

BY2n

Y2n+1
R =

1

22
B1 1

1 -1
R B A2n

A2n+1
R .

Yn:
An



In this chapter we introduce methods for analyzing and processing random signals. We
cover the following topics:

• Section 10.1 introduces the notion of power spectral density, which allows us to
view random processes in the frequency domain.

• Section 10.2 discusses the response of linear systems to random process inputs
and introduce methods for filtering random processes.

• Section 10.3 considers two important applications of signal processing: sampling
and modulation.

• Sections 10.4 and 10.5 discuss the design of optimum linear systems and intro-
duce the Wiener and Kalman filters.

• Section 10.6 addresses the problem of estimating the power spectral density of a
random process.

• Finally, Section 10.7 introduces methods for implementing and simulating the
processing of random signals.

10.1 POWER SPECTRAL DENSITY

The Fourier series and the Fourier transform allow us to view deterministic time func-
tions as the weighted sum or integral of sinusoidal functions. A time function that
varies slowly has the weighting concentrated at the low-frequency sinusoidal compo-
nents. A time function that varies rapidly has the weighting concentrated at higher-fre-
quency components. Thus the rate at which a deterministic time function varies is
related to the weighting function of the Fourier series or transform. This weighting
function is called the “spectrum” of the time function.

The notion of a time function as being composed of sinusoidal components is also
very useful for random processes. However, since a sample function of a random
process can be viewed as being selected from an ensemble of allowable time functions,
the weighting function or “spectrum” for a random process must refer in some way to
the average rate of change of the ensemble of allowable time functions. Equation
(9.66) shows that, for wide-sense stationary processes, the autocorrelation function

577
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1This result is usually called the Wiener-Khinchin theorem, after Norbert Wiener and A. Ya. Khinchin, who
proved the result in the early 1930s. Later it was discovered that this result was stated by Albert Einstein in a
1914 paper (see Einstein).

is an appropriate measure for the average rate of change of a random process.
Indeed if a random process changes slowly with time, then it remains correlated with it-
self for a long period of time, and decreases slowly as a function of On the
other hand, a rapidly varying random process quickly becomes uncorrelated with itself,
and decreases rapidly with 

We now present the Einstein-Wiener-Khinchin theorem, which states that the
power spectral density of a wide-sense stationary random process is given by the Fouri-
er transform of the autocorrelation function.1

10.1.1 Continuous-Time Random Processes

Let X(t) be a continuous-time WSS random process with mean and autocorrela-
tion function Suppose we take the Fourier transform of a sample of X(t) in the
interval as follows

(10.1)

We then approximate the power density as a function of frequency by the function:

(10.2)

where * denotes the complex conjugate. X(t) is a random process, so is also a
random process but over a different index set. is called the periodogram esti-

mate and we are interested in the power spectral density of X(t) which is defined by:

(10.3)

We show at the end of this section that the power spectral density of X(t) is given by the

Fourier transform of the autocorrelation function:

(10.4)

A table of Fourier transforms and its properties is given in Appendix B.
For real-valued random processes, the autocorrelation function is an even

function of 

(10.5)RX1t2 = RX1-t2.
t:

= L
q

-q
RX1t2e-j2pft dt.SX1f2 = f5RX1t26

SX1f2 = lim
T:q

E3p'T1f24 = lim
T:q

1

T
E3 ƒ x'1f2 ƒ 24.

p
'
T1f2

p
'
T1f2

p
'
T1f2 =

1

T
ƒ x
'1f2 ƒ 2 =

1

T
x
'1f2x'…1f2 =

1

T
bLT0 

X1t¿2e-j2pft¿ dt¿ r bLT0 

X1t¿2ej2pft¿ dt¿r ,

x
'1f2 = L

T

0 

X1t¿2e-j2pft¿ dt¿.

0 6 t 6 T
RX1t2.

mX

t.RX1t2
t.RX1t2

RX1t2
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2If X(t) is a voltage or current developed across a 1-ohm resistor, then is the instantaneous power ab-
sorbed by the resistor.

X21t2

Substitution into Eq. (10.4) implies that

(10.6)

since the integral of the product of an even function and an odd function
is zero. Equation (10.6) implies that is real-valued and an even func-

tion of f. From Eq. (10.2) we have that is nonnegative:

(10.7)

The autocorrelation function can be recovered from the power spectral density
by applying the inverse Fourier transform formula to Eq. (10.4):

(10.8)

Equation (10.8) is identical to Eq. (4.80), which relates the pdf to its corresponding
characteristic function. The last section in this chapter discusses how the FFT can be
used to perform numerical calculations for and 

In electrical engineering it is customary to refer to the second moment of X(t) as
the average power of X(t).2 Equation (10.8) together with Eq. (9.64) gives

(10.9)

Equation (10.9) states that the average power of X(t) is obtained by integrating 
over all frequencies.This is consistent with the fact that is the “density of power”
of X(t) at the frequency f.

Since the autocorrelation and autocovariance functions are related by 
the power spectral density is also given by

(10.10)

where we have used the fact that the Fourier transform of a constant is a delta func-
tion. We say the is the “dc” component of X(t).

The notion of power spectral density can be generalized to two jointly wide-sense
stationary processes. The cross-power spectral density is defined by

(10.11)SX,Y1f2 = f5RX,Y1t26,
SX,Y1 f2

mX

= f5CX1t26 + mX
2 d1f2,

SX1f2 = f5CX1t2 + mX
2 6

CX1t2 + mX
2 ,

RX1t2 =

SX1f2
SX1f2

E3X21t24 = RX102 = L
q

-q
SX1f2 df.

RX1t2.SX1f2

= L
q

-q
SX1f2ej2pft df.

RX1t2 = f-15SX1f26

SX1f2 Ú 0 for all f.

SX1f2
SX1f21sin 2pft2

1RX1t22
= L

q

-q
RX1t2 cos 2pft dt,

SX1f2 = L
q

-q
RX1t25cos 2pft - j sin 2pft6 dt



580 Chapter 10 Analysis and Processing of Random Signals

0�1
p

1

1

p
2

a � 1

a � 2

p
3
p

4
p

5
f

p
�2
p

�3
p

�4
p

�5
p

SX( f )

FIGURE 10.1
Power spectral density of a random telegraph signal with and

transitions per second.a = 2
a = 1

where is the cross-correlation between X(t) and Y(t):

(10.12)

In general, is a complex function of f even if X(t) and Y(t) are both real-valued.

Example 10.1 Random Telegraph Signal

Find the power spectral density of the random telegraph signal.
In Example 9.24, the autocorrelation function of the random telegraph process was

found to be

where is the average transition rate of the signal. Therefore, the power spectral density of the
process is

(10.13)

Figure 10.1 shows the power spectral density for and transitions per second. The
process changes two times more quickly when it can be seen from the figure that the
power spectral density for has greater high-frequency content.

Example 10.2 Sinusoid with Random Phase

Let where is uniformly distributed in the interval Find
SX1f2.

10, 2p2.®X1t2 = a cos12pf0t + ®2,

a = 2
a = 2;

a = 2a = 1

=
4a

4a2 + 4p2f2 .

=
1

2a - j2pf
+

1

2a + j2pf

SX1f2 = L
0

-q
e2ate-j2pft dt + L

q

0

e-2ate-j2pft dt

a

RX1t2 = e-2a ƒt ƒ,

SX,Y1f2
RX,Y1t2 = E3X1t + t2Y1t24.

RX,Y1t2
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From Example 9.10, the autocorrelation for X(t) is

Thus, the power spectral density is

(10.14)

where we have used the table of Fourier transforms in Appendix B.The signal has average power
All of this power is concentrated at the frequencies so the power density at

these frequencies is infinite.

Example 10.3 White Noise

The power spectral density of a WSS white noise process whose frequency components are lim-
ited to the range is shown in Fig. 10.2(a).The process is said to be “white” in anal-
ogy to white light, which contains all frequencies in equal amounts. The average power in this

-W … f … W

;f0 ,RX102 = a2>2.

=
a2

4
d1f - f02 +

a2

4
d1f + f02,

SX1f2 =
a2

2
f5cos 2pf0t6

RX1t2 =
a2

2
cos 2pf0t.

(b)

0

N0W

RX(t)

N0/2

SX( f )
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FIGURE 10.2
Bandlimited white noise: (a) power spectral density, (b) autocorrelation
function.
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process is obtained from Eq. (10.9):

(10.15)

The autocorrelation for this process is obtained from Eq. (10.8):

(10.16)

is shown in Fig. 10.2(b). Note that X(t) and are uncorrelated at 

The term white noise usually refers to a random process W(t) whose power spectral densi-
ty is for all frequencies:

(10.17)

Equation (10.15) with shows that such a process must have infinite average power. By tak-
ing the limit in Eq. (10.16), we find that the autocorrelation of such a process approaches

(10.18)

If W(t) is a Gaussian random process, we then see that W(t) is the white Gaussian noise process
introduced in Example 9.43 with 

Example 10.4 Sum of Two Processes

Find the power spectral density of where X(t) and Y(t) are jointly WSS
processes.

The autocorrelation of Z(t) is

The power spectral density is then

(10.19)

Example 10.5

Let where d is a constant delay and where X(t) is WSS. Find 
and SY1f2.SYX1f2, RY1t2,

RYX1t2,Y1t2 = X1t - d2,

= SX1f2 + SYX1f2 + SXY1f2 + SY1f2.
SZ1f2 = f5RX1t2 + RYX1t2 + RXY1t2 + RY1t26

= RX1t2 + RYX1t2 + RXY1t2 + RY1t2.
RZ1t2 = E3Z1t + t2Z1t24 = E31X1t + t2 + Y1t + t221X1t2 + Y1t224

Z1t2 = X1t2 + Y1t2,

a = N0>2.

RW1t2 =
N0

2
d1t2.

W: q
W = q

SW1f2 =
N0

2
for all f.

N0>2
k = 1, 2, Á .

t = ;k>2W,X1t + t2RX1t2
=
N0 sin12pWt2

2pt
.

=
1

2
N0

e-j2pWt - ej2pWt

-j2pt

RX1t2 =
1

2
N0L

W

-W

ej2pft df

E3X21t24 = L
W

-W

N0

2
df = N0W.
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3You can view as the coefficients of the Fourier series of the periodic function SX1f2.RX1k2

The definitions of and give

(10.20)

The time-shifting property of the Fourier transform gives

(10.21)

Finally,

(10.22)

Equation (10.22) implies that

(10.23)

Note from Eq. (10.21) that the cross-power spectral density is complex. Note from Eq. (10.23)
that despite the fact that Thus, does not imply that

10.1.2 Discrete-Time Random Processes

Let be a discrete-time WSS random process with mean and autocorrelation
function The power spectral density of is defined as the Fourier transform of
the autocorrelation sequence

(10.24)

Note that we need only consider frequencies in the range since 
is periodic in f with period 1. As in the case of continuous random processes, can
be shown to be a real-valued, nonnegative, even function of f.

The inverse Fourier transform formula applied to Eq. (10.23) implies that3

(10.25)

Equations (10.24) and (10.25) are similar to the discrete Fourier transform. In the last
section we show how to use the FFT to calculate and 

The cross-power spectral density of two jointly WSS discrete-time
processes and is defined by

(10.26)

where is the cross-correlation between and 

(10.27)RX,Y1k2 = E3Xn+kYn4.
Yn:XnRX,Y1k2

SX,Y1f2 = f5RX,Y1k26,
YnXn

SX, Y1f2
RX1k2.SX1f2

RX1k2 = L
1>2

-1>2
SX1f2ej2pfk df.

SX1f2
SX1f2-1>2 6 f … 1>2,

= a
q

k=-q
RX1k2e-j2pfk.

SX1f2 = f5RX1k26
XnRX1k2.

mXXn

X1t2 = Y1t2.
SX1f2 = SY1f2X1t2 Z Y1t2.SX1f2 = SY1f2

SY1f2 = f5RY1T26 = f5RX1T26 = SX1f2.

RY1t2 = E3Y1t + t2Y1t24 = E3X1t + t - d2X1t - d24 = RX1t2.

= SX1f2 cos12pfd2 - jSX1f2 sin12pfd2.
SYX1f2 = f5RX1t - d26 = SX1f2e-j2pfd

RYX1t2 = E3Y1t + t2X1t24 = E3X1t + t - d2X1t24 = RX1t - d2.
RY1t2RYX1t2, SYX1f2,
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Example 10.6 White Noise

Let the process be a sequence of uncorrelated random variables with zero mean and variance
Find

The autocorrelation of this process is

The power spectral density of the process is found by substituting into Eq. (10.24):

(10.28)

Thus the process contains all possible frequencies in equal measure.

Example 10.7 Moving Average Process

Let the process be defined by

(10.29)

where is the white noise process of Example 10.6. Find 
It is easily shown that the mean and autocorrelation of are given by

and

(10.30)

The power spectral density is then

(10.31)

is shown in Fig. 10.3 for 

Example 10.8 Signal Plus Noise

Let the observation be given by

where is the signal we wish to observe, is a white noise process with power and and
are independent random processes. Suppose further that for all n, where A is a ran-

dom variable with zero mean and variance Thus represents a sequence of noisy measure-
ments of the random variable A. Find the power spectral density of 

The mean and autocorrelation of are

E3Zn4 = E3A4 + E3Yn4 = 0

Zn

Zn .
ZnsA

2 .
Xn = AYn

XnsY
2 ,YnXn

Zn = Xn + Yn ,

Zn

a = 1.SY1f2
= sX

2 511 + a22 + 2a cos 2pf6.
SY1f2 = 11 + a22sX2 + asX

2 5ej2pf + e-j2pf6

E3YnYn+k4 = c 11 + a22sX2 k = 0

asX
2 k = ;1

0 otherwise.

E3Yn4 = 0,

Yn

SY1f2.Xn

Yn = Xn + aXn-1 ,

Yn

Xn

SX1f2 = sX
2 -

1

2
6 f 6

1

2
.

RX1k2
RX1k2 = bsX2 k = 0

0 k Z 0.

SX1f2.sX
2 .

Xn
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and

Thus is also a WSS process.
The power spectral density of is then

where we have used the fact that the Fourier transform of a constant is a delta function.

10.1.3 Power Spectral Density as a Time Average

In the above discussion, we simply stated that the power spectral density is given as the
Fourier transform of the autocorrelation without supplying a proof. We now show how
the power spectral density arises naturally when we take Fourier transforms of realiza-
tions of random processes.

Let be k observations from the discrete-time, WSS process Let
denote the discrete Fourier transform of this sequence:

(10.32)

Note that is a complex-valued random variable.The magnitude squared of is
a measure of the “energy” at the frequency f. If we divide this energy by the total “time” k,
we obtain an estimate for the “power” at the frequency f :

(10.33)

is called the periodogram estimate for the power spectral density.p
'
k1f2

p
'
k1f2 =

1

k
ƒ x
'
k1f2 ƒ 2.

x
'
k1f2x

'
k1f2

x
'
k1f2 = a

k-1

m=0

Xme
-j2pfm.

x
'
k1f2

Xn .X0 , Á ,Xk-1

SZ1f2 = E3A24d1f2 + SY1f2,
Zn

Zn

= E3A24 + RY1k2.
+ E3Xn+k4E3Yn4 + E3YnYn+k4

= E3XnXn+k4 + E3Xn4E3Yn+k4
E3ZnZn+k4 = E31Xn + Yn21Xn+k + Yn+k24

0

4σX
2

f

SY( f )

�1 11

2
�

1

2

FIGURE 10.3
Power spectral density of moving average process discussed in Example 10.7.
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FIGURE 10.4
Range of summation in Eq. (10.34).

Consider the expected value of the periodogram estimate:

(10.34)

Figure 10.4 shows the range of the double summation in Eq. (10.34). Note that all the terms
along the diagonal are equal, that ranges from to 
and that .here are terms along the diagonal Thus Eq. (10.34) be-
comes

(10.35)

Comparison of Eq. (10.35) with Eq. (10.24) shows that the mean of the periodogram
estimate is not equal to for two reasons. First, Eq. (10.34) does not have the term
in brackets in Eq. (10.25). Second, the limits of the summation in Eq. (10.35) are not

We say that is a “biased” estimator for However, as we seek: q ,SX1f2.p
'
k1f2;q .

SX1f2

= a
k-1

m¿ = -1k-12
e1 -

ƒm¿ ƒ

k
fRX1m¿2e-j2pfm¿.

E3p'k1f24 =
1

k a
k-1

m¿ = -1k-12
5k - ƒm¿ ƒ6RX1m¿2e-j2pfm¿

m¿ = m - i.k - ƒm¿ ƒ
k - 1,-1k - 12m¿m¿ = m - i

=
1

k a
k-1

m=0
a
k-1

i=0

RX1m - i2e-j2pf1m- i2.

=
1

k a
k-1

m=0
a
k-1

i=0

E3XmXi4e-j2pf1m- i2

=
1

k
EB ak-1

m=0

Xme
-j2pfma

k-1

i=0

Xie
j2pfiRE3p'k1f24 =

1

k
E3x'k1f2x'k*1f24
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that the term in brackets approaches one, and that the limits of the summation approach
Thus

(10.36)

that is, the mean of the periodogram estimate does indeed approach Note
that Eq. (10.36) shows that is nonnegative for all f, since is nonnegative
for all f.

In order to be useful, the variance of the periodogram estimate should also ap-
proach zero. The answer to this question involves looking more closely at the problem
of power spectral density estimation. We defer this topic to Section 10.6.

All of the above results hold for a continuous-time WSS random process X(t)
after appropriate changes are made from summations to integrals. The periodogram
estimate for for an observation in the interval was defined in Eq.
10.2. The same derivation that led to Eq. (10.35) can be used to show that the mean of
the periodogram estimate is given by

(10.37a)

It then follows that

(10.37b)

10.2 RESPONSE OF LINEAR SYSTEMS TO RANDOM SIGNALS

Many applications involve the processing of random signals (i.e., random processes)
in order to achieve certain ends. For example, in prediction, we are interested in pre-
dicting future values of a signal in terms of past values. In filtering and smoothing, we
are interested in recovering signals that have been corrupted by noise. In modulation,
we are interested in converting low-frequency information signals into high-frequen-
cy transmission signals that propagate more readily through various transmission
media.

Signal processing involves converting a signal from one form into another.Thus a
signal processing method is simply a transformation or mapping from one time func-
tion into another function. If the input to the transformation is a random process, then
the output will also be a random process. In the next two sections, we are interested in
determining the statistical properties of the output process when the input is a wide-
sense stationary random process.

10.2.1 Continuous-Time Systems

Consider a system in which an input signal x(t) is mapped into the output signal y(t) by
the transformation

The system is linear if superposition holds, that is,

T3ax11t2 + bx21t24 = aT3x11t24 + bT3x21t24,

y1t2 = T3x1t24.

E3p'T1f24: SX1f2 as T: q .

E3p'T1f24 = L
T

-T

e1 -
ƒ t ƒ

T
fRX1t2e-j2pft dt.

0 6 t 6 T,SX1 f2,

p
'
k1f2SX1f2

SX1f2.
E3p'k1f24: SX1f2 as k: q ,

;q .



X(t) Y(t)h(t)

FIGURE 10.5
A linear system with a random input
signal.
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4For examples of nonlinear systems see Problems 9.11 and 9.56.
5Equation (10.40) supposes that the input was applied at an infinite time in the past. If the input is applied at

then Y(t) is not wide-sense stationary. However, it becomes wide-sense stationary as the response
reaches “steady state” (see Example 9.46 and Problem 10.29).
t = 0,

where and are arbitrary input signals, and and are arbitrary constants.4

Let y(t) be the response to input x(t), then the system is said to be time-invariant if the
response to is The impulse response h(t) of a linear, time-invariant
system is defined by

where is a unit delta function input applied at The response of the system to
an arbitrary input x(t) is then

(10.38)

Therefore a linear, time-invariant system is completely specified by its impulse re-
sponse. The impulse response h(t) can also be specified by giving its Fourier transform,
the transfer function of the system:

(10.39)

A system is said to be causal if the response at time t depends only on past values of the
input, that is, if for 

If the input to a linear, time-invariant system is a random process X(t) as shown
in Fig. 10.5, then the output of the system is the random process given by

(10.40)

We assume that the integrals exist in the mean square sense as discussed in Section 9.7.
We now show that if X(t) is a wide-sense stationary process, then Y(t) is also wide-
sense stationary.5

The mean of Y(t) is given by

E3Y1t24 = EBLq

-q
h1s2X1t - s2 dsR = L

q

-q
h1s2E3X1t - s24 ds.

Y1t2 = L
q

-q
h1s2X1t - s2 ds = L

q

-q
h1t - s2X1s2 ds.

t 6 0.h1t2 = 0

H1f2 = f5h1t26 = L
q

-q
h1t2e-j2pft dt.

y1t2 = h1t2 * x1t2 = L
q

-q
h1s2x1t - s2 ds = L

q

-q
h1t - s2x1s2 ds.

t = 0.d1t2
h1t2 = T3d1t24

y1t - t2.x1t - t2
bax21t2x11t2
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Now since X(t) is wide-sense stationary, so

(10.41)

where H( f ) is the transfer function of the system. Thus the mean of the output Y(t) is
the constant 

The autocorrelation of Y(t) is given by

(10.42)

where we have used the fact that X(t) is wide-sense stationary. The expression on the
right-hand side of Eq. (10.42) depends only on Thus the autocorrelation of Y(t) de-
pends only on and since the E[Y(t)] is a constant, we conclude that Y(t) is a wide-
sense stationary process.

We are now ready to compute the power spectral density of the output of a linear,
time-invariant system. Taking the transform of as given in Eq. (10.42), we obtain

Change variables, letting 

(10.43)

where we have used the definition of the transfer function. Equation (10.43) relates the

input and output power spectral densities to the system transfer function. Note that
can also be found by computing Eq. (10.43) and then taking the inverse Fourier

transform.
Equations (10.41) through (10.43) only enable us to determine the mean and au-

tocorrelation function of the output process Y(t). In general this is not enough to de-
termine probabilities of events involving Y(t). However, if the input process is a

RY1t2

= ƒH1f2 ƒ 2 SX1f2,
= H…1f2H1f2SX1f2
= L

q

-q
h1s2ej2pfs dsL

q

-q
h1r2e-j2pfr drL

q

-q
RX1u2e-j2pfu du

SY1f2 = L
q

-qL
q

-qL
q

-q
h1s2h1r2RX1u2e-j2pf1u- s+ r2 ds dr du

u = t + s - r:

= L
q

-qL
q

-qL
q

-q
h1s2h1r2RX1t + s - r2e-j2pft ds dr dt.

SY1f2 = L
q

-q
RY1t2e-j2pft dt

RY1t2

t,
t.

= L
q

-qL
q

-q
h1s2h1r2RX1t + s - r2 ds dr,

= L
q

-qL
q

-q
h1s2h1r2E3X1t - s2X1t + t - r24 ds dr

E3Y1t2Y1t + t24 = EBLq

-q
h1s2X1t - s2 dsL

q

-q
h1r2X1t + t - r2 drRmY = H102mX .

E3Y1t24 = mXL
q

-q
h1t2 dt = mXH102,

mX = E3X1t - t24
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Gaussian WSS random process, then as discussed in Section 9.7 the output process will
also be a Gaussian WSS random process. Thus the mean and autocorrelation function
provided by Eqs. (10.41) through (10.43) are enough to determine all joint pdf’s in-
volving the Gaussian random process Y(t).

The cross-correlation between the input and output processes is also of interest:

(10.44)

By taking the Fourier transform, we obtain the cross-power spectral density:

(10.45a)

Since we have that

(10.45b)

Example 10.9 Filtered White Noise

Find the power spectral density of the output of a linear, time-invariant system whose input is a
white noise process.

Let X(t) be the input process with power spectral density

The power spectral density of the output Y(t) is then

(10.46)

Thus the transfer function completely determines the shape of the power spectral density of the
output process.

Example 10.9 provides us with a method for generating WSS processes with arbi-
trary power spectral density We simply need to filter white noise through a filter 

with transfer function In general this filter will be noncausal.We can
usually, but not always, obtain a causal filter with transfer function H( f) such that

For example, if is a rational function, that is, if it consists of
the ratio of two polynomials, then it is easy to factor into the above form, asSX1f2

SY1f2SY1f2 = H1f2H…1f2.
H1f2 = 2SY1f2 .

SY1f2.

SY1f2 = ƒH1f2 ƒ 2N0

2
.

SX1f2 =
N0

2
for all f.

SX,Y1f2 = SY,X
… 1f2 = H…1f2SX1f2.

RX,Y1t2 = RY,X1-t2,
SY,X1f2 = H1f2SX1f2.

= RX1t2*h1t2.
= L

q

-q
RX1t - r2h1r2 dr

= L
q

-q
E3X1t2X1t + t - r24h1r2 dr

= EBX1t2Lq

-q
X1t + t - r2h1r2 drRRY,X1t2 = E3Y1t + t2X1t24
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shown in the next example. Furthermore any power spectral density can be approxi-
mated by a rational function. Thus filtered white noise can be used to synthesize WSS
random processes with arbitrary power spectral densities, and hence arbitrary autocor-
relation functions.

Example 10.10 Ornstein-Uhlenbeck Process

Find the impulse response of a causal filter that can be used to generate a Gaussian random
process with output power spectral density and autocorrelation function

This power spectral density factors as follows:

If we let the filter transfer function be then the impulse response is

which is the response of a causal system. Thus if we filter white Gaussian noise with power spec-
tral density using the above filter, we obtain a process with the desired power spectral density.

In Example 9.46, we found the autocorrelation function of the transient response of this
filter for a white Gaussian noise input (see Eq. (9.97a)). As was already indicated, when dealing
with power spectral densities we assume that the processes are in steady state. Thus as 
Eq. (9.97a) approaches Eq. (9.97b).

Example 10.11 Ideal Filters

Let where X(t) and Y(t) are independent random processes with power
spectral densities shown in Fig. 10.6(a). Find the output if Z(t) is input into an ideal lowpass filter
with transfer function shown in Fig. 10.6(b). Find the output if Z(t) is input into an ideal band-
pass filter with transfer function shown in Fig. 10.6(c).

The power spectral density of the output W(t) of the lowpass filter is

since for the frequencies where is nonzero, and where is
nonzero. Thus W(t) has the same power spectral density as X(t). As indicated in Example 10.5,
this does not imply that 

To show that in the mean square sense, consider It is
easily shown that

The corresponding power spectral density is

= 0.

= ƒHLP1f2 ƒ 2SX1f2 - HLP1f2SX1f2 - HLP
… 1f2SX1f2 + SX1f2

SD1f2 = SW1f2 - SWX1f2 - SXW1f2 + SX1f2

RD1t2 = RW1t2 - RWX1t2 - RXW1t2 + RX1t2.
D1t2 = W1t2 - X1t2.W1t2 = X1t2,

W1t2 = X1t2.
SY1f2HLP1f2 = 0SX1f2HLP1f2 = 1

SW1f2 = ƒHLP1f2 ƒ 2SX1f2 + ƒHLP1f2 ƒ 2SY1f2 = SX1f2,

Z1t2 = X1t2 + Y1t2,

t: q

s2

h1t2 = e-at for t Ú 0,

H1f2 = 1>1a + j2pf2,
SY1f2 =

1

1a - j2pf2
1

1a + j2pf2s2.

SY1f2 =
s2

a2 + 4p2f2 and RY1t2 =
s2

2a
e-a ƒt ƒ
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FIGURE 10.6
(a) Input signal to filters is (b) lowpass filter, (c) bandpass filter.X1t2 + Y1t2,

Therefore for all and in the mean square sense since

Thus we have shown that the lowpass filter removes Y(t) and passes X(t). Similarly, the bandpass
filter removes X(t) and passes Y(t).

Example 10.12

A random telegraph signal is passed through an RC lowpass filter which has transfer function

where is the time constant of the filter. Find the power spectral density and autocor-
relation of the output.

b = 1>RC

H1f2 =
b

b + j2pf
,

E31W1t2 - X1t2224 = E3D21t24 = RD102 = 0.

W1t2 = X1t2t,RD1t2 = 0
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In Example 10.1, the power spectral density of the random telegraph signal with transition
rate was found to be

From Eq. (10.43) we have

is found by inverting the above expression:

10.2.2 Discrete-Time Systems

The results obtained above for continuous-time signals also hold for discrete-time sig-
nals after appropriate changes are made from integrals to summations.

Let the unit-sample response be the response of a discrete-time, linear, time-
invariant system to a unit-sample input 

(10.47)

The response of the system to an arbitrary input random process is then given by

(10.48)

Thus discrete-time, linear, time-invariant systems are determined by the unit-sample
response The transfer function of such a system is defined by

(10.49)

The derivation from the previous section can be used to show that if is a wide-
sense stationary process, then is also wide-sense stationary.The mean of is given by

(10.50)

The autocorrelation of is given by

(10.51)RY1k2 = a
q

j=-q
a
q

i=-q
hjhiRX1k + j - i2.

Yn

mY = mX a
q

j=-q
hj = mXH102.

YnYn

Xn

H1f2 = a
q

i=-q
hie

-j2pfi.

hn .

Yn = hn*Xn = a
q

j=-q
hjXn- j = a

q

j=-q
hn- jXj .

Xn

dn = b1 n = 0

0 n Z 0.

dn:
hn

RY1t2 =
1

b2 - 4a2 5b2e-2a ƒt ƒ - 2abe-b ƒt ƒ6.
RY1t2

=
4ab2

b2 - 4a2 b 1

4a2 + 4p2f2 -
1

b2 + 4p2f2 r .

SY1f2 = ¢ b2

b2 + 4p2f2 ≤ ¢ 4a

4a2 + 4p2f2 ≤
SX1f2 =

4a

4a2 + 4p2f2 .

a
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By taking the Fourier transform of it is readily shown that the power spectral
density of is

(10.52)

This is the same equation that was found for continuous-time systems.
Finally, we note that if the input process is a Gaussian WSS random process,

then the output process is also a Gaussian WSS random whose statistics are com-
pletely determined by the mean and autocorrelation function provided by Eqs. (10.50)
through (10.52).

Example 10.13 Filtered White Noise

Let be a white noise sequence with zero mean and average power If is the input to a
linear, time-invariant system with transfer function H( f ), then the output process has power
spectral density:

(10.53)

Equation (10.53) provides us with a method for generating discrete-time ran-
dom processes with arbitrary power spectral densities or autocorrelation func-
tions. If the power spectral density can be written as a rational function of 
in Eq. (10.24), then a causal filter can be found to generate a process with the
power spectral density. Note that this is a generalization of the methods presented
in Section 6.6 for generating vector random variables with arbitrary covariance
matrix.

Example 10.14 First-Order Autoregressive Process

A first-order autoregressive (AR) process with zero mean is defined by

(10.54)

where is a zero-mean white noise input random process with average power Note that 
can be viewed as the output of the system in Fig. 10.7(a) for an iid input Find the power spec-
tral density and autocorrelation of 

The unit-sample response can be determined from Eq. (10.54):

Note that we require for the system to be stable.6 Therefore the transfer function is

H1f2 = a
q

n=0

ane-j2pfn =
1

1 - ae-j2pf
.

ƒa ƒ 6 1

hn = c 0 n 6 0

1 n = 0

an n 7 0.

Yn .
Xn .

YnsX
2 .Xn

Yn = aYn-1 + Xn ,

Yn

z = ej2pf

SY1f2 = ƒH1f2 ƒ 2sX2 .

Yn

XnsX
2 .Xn

Yn

Xn

SY1f2 = ƒH1f2 ƒ 2SX1f2.
Yn

RY1k2

6A system is said to be stable if The response of a stable system to any bounded input is also 
bounded.

a n ƒhn ƒ 6 q .
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FIGURE 10.7
(a) Generation of AR process; (b) Generation of ARMA process.

Equation (10.52) then gives

Equation (10.51) gives

Example 10.15 ARMA Random Process

An autoregressive moving average (ARMA) process is defined by

(10.55)

where is a WSS, white noise input process. can be viewed as the output of the recursive sys-
tem in Fig. 10.7(b) to the input It can be shown that the transfer function of the linear systemXn .

YnWn

Yn = -a
q

i=1

aiYn- i + a
p

i¿ =0

bi¿Wn- i¿ ,

RY1k2 = a
q

j=0
a
q

i=0

hjhisX
2 dk+ j- i = sX

2 a
q

j=0

ajaj+k =
sX

2 ak

1 - a2
.

=
sX

2

1 + a2 - 2a cos 2pf
.

=
sX

2

1 + a2 - 1ae-j2pf + aej2pf2

SY1f2 =
sX

2

11 - ae-j2pf211 - aej2pf2
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FIGURE 10.8
Moving average process showing iid Gaussian sequence and corresponding

moving average processes.N = 10N = 3,

defined by the above equation is

The power spectral density of the ARMA process is

ARMA models are used extensively in random time series analysis and in signal processing.The gen-
eral autoregressive process is the special case of the ARMA process with 

The general moving average process is the special case of the ARMA process with 
Octave has a function filter(b, a, x) which takes a set of coefficients 

and as coefficient for a filter as in Eq. (10.55) and produces the output
corresponding to the input sequence x.The choice of a and b can lead to a broad range of discrete-
time filters.

For example, if we let we obtain a moving average filter:

Figure 10.8 shows a zero-mean, unit-variance Gaussian iid sequence and the outputs from an
and an moving average filter. It can be seen that the filter moderates the

extreme variations but generally tracks the fluctuations in The filter on the other
hand severely limits the variations and only tracks slower longer-lasting trends.

Figures 10.9(a) and (b) show the result of passing an iid Gaussian sequence 
through first-order autoregressive filters as in Eq. (10.54). The AR sequence with 
has low correlation between adjacent samples and so the sequence remains similar to the
underlying iid random process.The AR sequence with has higher correlation be-
tween adjacent samples which tends to cause longer lasting trends as evident in Fig.10.9(b).

a = 0.75

a = 0.1
Xn

N = 10Xn .
N = 3N = 10N = 3
Wn

Yn = 1Wn + Wn-1 + Á + Wn-N+12>N.

a = 11>N, 1>N, Á , 1>N2

a = 1a1 , a2 , Á , aq2bp+12
b = 1b1 , b2 , Á ,aq = 0.
a1 = a2 = Á =

b1 = b2 = Á = bp = 0.

SY1f2 = ƒH1f2 ƒ 2sW2 .

H1f2 =
a
p

i¿ =0

bi¿e
-j2pfi¿

1 + a
q

i=1

aie
-j2pfi

.
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FIGURE 10.9
(a) First-order autoregressive process with (b) with a = 0.75.a = 0.1;

10.3 BANDLIMITED RANDOM PROCESSES

In this section we consider two important applications that involve random
processes with power spectral densities that are nonzero over a finite range of fre-
quencies. The first application involves the sampling theorem, which states that
bandlimited random processes can be represented in terms of a sequence of their
time samples. This theorem forms the basis for modern digital signal processing
systems. The second application involves the modulation of sinusoidal signals by
random information signals. Modulation is a key element of all modern communi-
cation systems.

10.3.1 Sampling of Bandlimited Random Processes

One of the major technology advances in the twentieth century was the development
of digital signal processing technology. All modern multimedia systems depend in
some way on the processing of digital signals. Many information signals, e.g., voice,
music, imagery, occur naturally as analog signals that are continuous-valued and that
vary continuously in time or space or both. The two key steps in making these signals
amenable to digital signal processing are: (1). Convert the continuous-time signals into
discrete-time signals by sampling the amplitudes; (2) Representing the samples using a
fixed number of bits. In this section we introduce the sampling theorem for wide-sense
stationary bandlimited random processes, which addresses the conversion of signals
into discrete-time sequences.

Let x(t) be a deterministic, finite-energy time signal that has Fourier transform
that is nonzero only in the frequency range Suppose we sam-

ple x(t) every T seconds to obtain the sequence of sample values:
The sampling theorem for deterministic signals states that x(t) can

be recovered exactly from the sequence of samples if or equivalently

that is, the sampling rate is at least twice the bandwidth of the signal.
The minimum sampling rate 1/2W is called the Nyquist sampling rate. The sampling
1>T Ú 2W,

T … 1>2W
x102, x1T2, Á 6.

5Á , x1-2T2, x1-T2,
ƒf ƒ … W.X

' 1f2 = f5x1t26
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FIGURE 10.10
(a) Sampling and interpolation; (b) Fourier transform of sampled
deterministic signal; (c) Sampling, digital filtering, and interpolation.

theorem provides the following interpolation formula for recovering x(t) from the
samples:

(10.56)

Eq. (10.56) provides us with the interesting interpretation depicted in Fig. 10.10(a).
The process of sampling x(t) can be viewed as the multiplication of x(t) by a train of delta
functions spaced T seconds apart.The sampled function is then represented by:

(10.57)

Eq. (10.56) can be viewed as the response of a linear system with impulse response p(t)
to the signal It is easy to show that the p(t) in Eq. (10.56) corresponds to the ideal
lowpass filter in Fig. 10.6:

P1f2 = f5p1t26 = b1 -W … f … W

0 ƒf ƒ 7 W.

xs1t2.

xs1t2 = a
q

n=-q
x1nT2d1t - nT2.

x1t2 = a
q

n=-q
x1nT2p1t - nT2 where p1t2 =

sin1pt>T2
pt>T .



Section 10.3 Bandlimited Random Processes 599

The proof of the sampling theorem involves the following steps. We show that

(10.58)

which consists of the sum of translated versions of as shown in
Fig. 10.10(b). We then observe that as long as then P( f ) in the above ex-
pressions selects the term in the summation, which corresponds to X( f ). See
Problem 10.45 for details.

Example 10.16 Sampling a WSS Random Process

Let X(t) be a WSS process with autocorrelation function Find the mean and covariance
functions of the discrete-time sampled process for 

Since X(t) is WSS, the mean and covariance functions are:

This shows is a WSS discrete-time process.

Let X(t) be a WSS process with autocorrelation function and power spec-
tral density Suppose that is bandlimited, that is,

We now show that the sampling theorem can be extended to X(t). Let

(10.59)

then in the mean square sense. Recall that equality in the mean square
sense does not imply equality for all sample functions, so this version of the sampling
theorem is weaker than the version in Eq. (10.56) for finite energy signals.

To show Eq. (10.59) we first note that since we can apply
the sampling theorem for deterministic signals to 

(10.60)

Next we consider the mean square error associated with Eq. (10.59):

It is easy to show that Eq. (10.60) implies that each of the terms in braces is equal to zero.
(See Problem 10.48.) We then conclude that in the mean square sense.Xn 1t2 = X1t2

EE3X1t2Xn 1t24 - E3Xn 1t2Xn 1t24F .
= EE3X1t2X1t24 - E3Xn 1t2X1t24F -

E35X1t2 - Xn 1t2624 = E35X1t2 - Xn 1t26X1t24 - E35X1t2 - Xn 1t26Xn 1t24

RX1t2 = a
q

n=-q
RX1nT2p1t - nT2.

RX1t2:
SX1f2 = f5RX1t26,

Xn 1t2 = X1t2
Xn 1t2 = a

q

n=-q
X1nT2p1t - nT2 where p1t2 =

sin1pt>T2
pt>T ,

SX1f2 = 0 ƒf ƒ 7 W.

SX1f2SX1f2.
RX1t2

Xn

E3Xn1
Xn2
4 = E3X1n1T2X1n2T24 = RX1n1T - n2T2 = RX11n1 - n22T2.

mX1n2 = E3X1nT24 = m

n = 0, ;1, ;2, Á .Xn = X1nT2
RX1t2.

k = 0
1>T Ú 2W,

X
' 1f2 = f5x1t26,

f b aq
n=-q

x1nT2p1t - nT2 r =
1

T
P1f2 a

q

k=-q
X
' 1f -

k

T
2,
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Example 10.17 Digital Filtering of a Sampled WSS Random Process

Let X(t) be a WSS process with power spectral density that is nonzero only for 
Consider the sequence of operations shown in Fig. 10.10(c): (1) X(t) is sampled at the Nyquist rate;
(2) the samples X(nT) are input into a digital filter in Fig. 10.7(b) with 
and (3) the resulting output sequence is fed into the interpolation filter. Find the power spectral
density of the output Y(t).

The output of the digital filter is given by:

and the corresponding autocorrelation from Eq. (10.51) is:

The autocorrelation of Y(t) is found from the interpolation formula (Eq. 10.60):

The output power spectral density is then:

(10.61)

where H( f) is the transfer function of the digital filter as per Eq. (10.49).The key finding here is the
appearance of H( f) evaluated at fT.We have obtained a very nice result that characterizes the over-
all system response in Fig. 10.8 to the continuous-time input X(t).This result is true for more general
digital filters, see [Oppenheim and Schafer].

The sampling theorem provides an important bridge between continuous-time
and discrete-time signal processing. It gives us a means for implementing the real as well
as the simulated processing of random signals. First, we must sample the random
process above its Nyquist sampling rate. We can then perform whatever digital process-
ing is necessary. We can finally recover the continuous-time signal by interpolation. The
only difference between real signal processing and simulated signal processing is that
the former usually has real-time requirements, whereas the latter allows us to perform
our processing at whatever rate is possible using the available computing power.
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FIGURE 10.11
(a) A lowpass information signal; (b) an amplitude-modulated signal.

10.3.2 Amplitude Modulation by Random Signals

Many of the transmission media used in communication systems can be modeled as
linear systems and their behavior can be specified by a transfer function H(f ), which
passes certain frequencies and rejects others. Quite often the information signal A(t)
(i.e., a speech or music signal) is not at the frequencies that propagate well. The pur-
pose of a modulator is to map the information signal A(t) into a transmission signal
X(t) that is in a frequency range that propagates well over the desired medium. At the
receiver, we need to perform an inverse mapping to recover A(t) from X(t). In this sec-
tion, we discuss two of the amplitude modulation methods.

Let A(t) be a WSS random process that represents an information signal. In gen-
eral A(t) will be “lowpass” in character, that is, its power spectral density will be con-
centrated at low frequencies, as shown in Fig. 10.11(a). An amplitude modulation

(AM) system produces a transmission signal by multiplying A(t) by a “carrier” signal

(10.62)

where we assume is a random variable that is uniformly distributed in the interval
and and A(t) are independent.

The autocorrelation of X(t) is

= E3A1t + t2A1t24E3cos12pfc1t + t2 + ®2 cos12pfct + ®24
= E3A1t + t2 cos12pfc1t + t2 + ®2A1t2 cos12pfct + ®24

E3X1t + t2X1t24

®10, 2p2,
®

X1t2 = A1t2 cos12pfct + ®2,
cos12pfct + ®2:
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LPF

 2 cos (2pfct 
 �)

Y(t)X(t) �

FIGURE 10.12
AM demodulator.

(10.63)

where we used the fact that (see Example 9.10).Thus
X(t) is also a wide-sense stationary random process.

The power spectral density of X(t) is

(10.64)

where we used the table of Fourier transforms in Appendix B. Figure 10.11(b) shows
It can be seen that the power spectral density of the information signal has been

shifted to the regions around X(t) is an example of a bandpass signal. Bandpass
signals are characterized as having their power spectral density concentrated about
some frequency much greater than zero.

The transmission signal is demodulated by multiplying it by the carrier signal and
lowpass filtering, as shown in Fig. 10.12. Let

(10.65)

Proceeding as above, we find that

The ideal lowpass filter passes and blocks which is centered about
, so the output of the lowpass filter has power spectral density

In fact, from Example 10.11 we know the output is the original information signal, A(t).

SY1f2 = SA1f2.
; f

SA1f ; 2fc2,SA1f2
=

1

2
5SA1f + 2fc2 + SA1f26 +

1

2
5SA1f2 + SA1f - 2fc26.

SY1f2 =
1

2
SX1f + fc2 +

1

2
SX1f - fc2

Y1t2 = X1t22 cos12pfct + ®2.

;fc .
SX1f2.

=
1

4
SA1f + fc2 +

1

4
SA1f - fc2,

SX1f2 = fe 1

2
RA1t2 cos12pfct2 f

E3cos12pfc12t + t2 + 2®24 = 0

=
1

2
RA1t2 cos12pfct2,

= RA1t2E c12 cos12pfct2 +
1

2
cos12pfc12t + t2 + 2®2 d
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FIGURE 10.13
(a) A general bandpass signal. (b) a real-valued even function
of . (c) an imaginary odd function of f.f

The modulation method in Eq. (10.56) can only produce bandpass signals for
which is locally symmetric about for 
as in Fig. 10.11(b). The method cannot yield real-valued transmission signals whose
power spectral density lack this symmetry, such as shown in Fig. 10.13(a). The following
quadrature amplitude modulation (QAM) method can be used to produce such signals:

(10.66)

where A(t) and B(t) are real-valued, jointly wide-sense stationary random processes,
and we require that

(10.67a)

(10.67b)

Note that Eq. (10.67a) implies that a real-valued, even function of f, as
shown in Fig. 10.13(b). Note also that Eq. (10.67b) implies that is a purely
imaginary, odd function of f, as also shown in Fig. 10.13(c) (see Problem 10.57).

SB,A1f2
SA1f2 = SB1f2,

RB,A1t2 = -RA,B1t2.
RA1t2 = RB1t2

X1t2 = A1t2 cos12pfct + ®2 + B1t2 sin12pfct + ®2,

ƒdf ƒ 6 W,fc , SX1fc + df2 = SX1fc - df2SX1f2
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Proceeding as before, we can show that X(t) is a wide-sense stationary random
process with autocorrelation function

(10.68)

and power spectral density

(10.69)

The resulting power spectral density is as shown in Fig. 10.13(a). Thus QAM can be
used to generate real-valued bandpass signals with arbitrary power spectral density.

Bandpass random signals, such as those in Fig. 10.13(a), arise in communication
systems when wide-sense stationary white noise is filtered by bandpass filters. Let N(t)
be such a process with power spectral density It can be shown that N(t) can be
represented by

(10.70)

where and are jointly wide-sense stationary processes with

(10.71)

and

(10.72)

where the subscript L denotes the lowpass portion of the expression in brackets. In
words, every real-valued bandpass process can be treated as if it had been generated by
a QAM modulator.

Example 10.18 Demodulation of Noisy Signal

The received signal in an AM system is

where N(t) is a bandlimited white noise process with spectral density

Find the signal-to-noise ratio of the recovered signal.
Equation (10.70) allows us to represent the received signal by

The demodulator in Fig. 10.12 is used to recover A(t). After multiplication by 
we have

- Ns1t2 sin14pfct + 2®2.
= 5A1t2 + Nc1t2611 + cos14pfct + 2®22

- Ns1t22 cos12pfct + ®2 sin12pfct + ®2
 2Y1t2 cos12pfct + ®2 = 5A1t2 + Nc1t262 cos212pfct + ®2

2 cos12pfct + ®2,
Y1t2 = 5A1t2 + Nc1t26 cos12pfct + ®2 - Ns1t2 sin12pfct + ®2.

SN1f2 = c N0

2
ƒf ; fc ƒ 6 W

0 elsewhere.

Y1t2 = A1t2 cos12pfct + ®2 + N1t2,

SNc,Ns1f2 = j5SN1f - fc2 - SN1f + fc26L ,

SNc1f2 = SNs1f2 = 5SN1f - fc2 + SN1f + fc26L
Ns1t2Nc1t2
N1t2 = Nc1t2 cos12pfct + ®2 - Ns1t2 sin12pfct + ®2,

SN1f2.

SX1f2 =
1

2
5SA1f - fc2 + SA1f + fc26 +

1

2j
5SBA1f - fc2 - SBA1f + fc26.

RX1t2 = RA1t2 cos12pfct2 + RB,A1t2 sin12pfct2
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After lowpass filtering, the recovered signal is

The power in the signal and noise components, respectively, are

The output signal-to-noise ratio is then

10.4 OPTIMUM LINEAR SYSTEMS

Many problems can be posed in the following way. We observe a discrete-time, zero-
mean process over a certain time interval and we are re-
quired to use the resulting observations to obtain
an estimate for some other (presumably related) zero-mean process The esti-
mate is required to be linear, as shown in Fig. 10.14:

(10.73)

The figure of merit for the estimator is the mean square error

(10.74)E3et24 = E31Zt - Yt224,

Yt = a
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5Xt-a , Á ,Xt , Á ,Xt+b6a + b + 1
I = 5t - a, Á , t + b6,Xa
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2WN0

.
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¢N0
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2
≤ df = 2WN0 .
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FIGURE 10.14
A linear system for producing an estimate Yt .
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and we seek to find the optimum filter, which is characterized by the impulse response
that minimizes the mean square error.

Examples 10.19 and 10.20 show that different choices of and and of obser-
vation interval correspond to different estimation problems.

Example 10.19 Filtering and Smoothing Problems

Let the observations be the sum of a “desired signal” plus unwanted “noise”

We are interested in estimating the desired signal at time t. The relation between t and the ob-
servation interval I gives rise to a variety of estimation problems.

If that is, and then we have a filtering problem where we esti-
mate in terms of noisy observations of the past and present. If then we have a
filtering problem in which we estimate in terms of the most recent noisy observations.

If that is, then we have a smoothing problem where we are at-
tempting to recover the signal from its entire noisy version. There are applications where this
makes sense, for example, if the entire realization has been recorded and the estimate is
obtained by “playing back”

Example 10.20 Prediction

Suppose we want to predict in terms of its recent past: The general estima-
tion problem becomes this prediction problem if we let the observation be the past a values
of the signal that is,

The estimate is then a linear prediction of in terms of its most recent values.

10.4.1 The Orthogonality Condition

It is easy to show that the optimum filter must satisfy the orthogonality condition (see
Eq. 6.56), which states that the error must be orthogonal to all the observations that is,

(10.75)

or equivalently,

(10.76)

If we substitute Eq. (10.73) into Eq. (10.76) we find

(10.77)= a
a

b=-b

hbRX1t - a - b2 for all a H I.

= a
a

b=-b

hbE3Xt-bXa4

E3ZtXa4 = EB aa
b=-b

hbXt-bXaR for all a H I

E3ZtXa4 = E3YtXa4 for all a H I.

= E31Zt - Yt2Xa4 = 0,

 0 = E3etXa4 for all a H I

Xa ,et

ZtYt

Xa = Za t - a … a … t - 1.
Za ,

Xa

5Zt-a , Á , Zt-16.Zt

Xa .
ZtXa

a = b = q ,I = 1-q , q2,
a + 1Zt

I = 1t - a, t2,Zt

b = 0,a = qI = 1-q , t2,

Xa = Za + Na a H I.

Na:Za

XaZt

hb
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7Equation (10.79) can also be solved by using the Karhunen-Loeve expansion.

Equation (10.77) shows that depends only on and thus and 
are jointly wide-sense stationary processes. Therefore, we can rewrite Eq. (10.77) as
follows:

Finally, letting we obtain the following key equation:

(10.78)

The optimum linear filter must satisfy the set of linear equations given by

Eq. (10.78). Note that Eq. (10.78) is identical to Eq. (6.60) for estimating a random
variable by a linear combination of several random variables. The wide-sense station-
arity of the processes reduces this estimation problem to the one considered in
Section 6.5.

In the above derivation we deliberately used the notation instead of to sug-
gest that the same development holds for continuous-time estimation. In particular,
suppose we seek a linear estimate Y(t) for the continuous-time random process Z(t) in
terms of observations of the continuous-time random process in the time inter-
val

It can then be shown that the filter that minimizes the mean square error is spec-
ified by

(10.79)

Thus in the time-continuous case we obtain an integral equation instead of a set of
linear equations. The analytic solution of this integral equation can be quite diffi-
cult, but the equation can be solved numerically by approximating the integral by a
summation.7

We now determine the mean square error of the optimum filter. First we note
that for the optimum filter, the error and the estimate are orthogonal since

where the terms inside the last summation are 0 because of Eq. (10.75).Since 
the mean square error is then

= E3etZt4,
E3et24 = E3et1Zt - Yt24

et = Zt - Yt ,

E3etYt4 = E cetaht-bXb d = aht-bE3etXb4 = 0,

Ytet

RZ,X1t2 = L
a

-b

h1b2RX1t - b2 db -b … t … a.

h1b2
Y1t2 = L

t+b

t-a

h1t - b2X1b2 db = L
a

-b

h1b2X1t - b2 db.

t - a … a … t + b:
X1a2

ZnZt

a + b + 1

RZ,X1m2 = a
a

b=-b

hbRX1m - b2 -b … m … a.

m = t - a,

RZ,X1t - a2 = a
a

b=-b

hbRX1t - b - a2 t - a … a … t + b.

ZtXat - a,E3ZtXa4
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since and are orthogonal. Substituting for yields

(10.80)

Similarly, it can be shown that the mean square error of the optimum filter in the
continuous-time case is

(10.81)

The following theorems summarize the above results.

Theorem 

Let and be discrete-time, zero-mean, jointly wide-sense stationary processes, and let be
an estimate for of the form

The filter that minimizes satisfies the equation

and has mean square error given by

Theorem 

Let X(t) and Z(t) be continuous-time, zero-mean, jointly wide-sense stationary processes, and let
Y(t) be an estimate for Z(t) of the form

The filter that minimizes satisfies the equation

RZ,X1t2 = L
a

-b

h1b2RX1t - b2 db -b … t … a

E31Z1t2 - Y1t2224h1b2
Y1t2 = L

t+b
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h1t - b2X1b2 db = L
a

-b

h1b2X1t - b2 db.

E31Zt - Yt224 = RZ102 - a
a

b=-b

hbRZ,X1b2.

RZ,X1m2 = a
a

b=-b

hbRX1m - b2 -b … m … a

E31Zt - Yt224

Yt = a
t+b

b= t-a

ht-bXb = a
a

b=-b

hbXt-b .

Zt

YtZtXt

E3e21t24 = RZ102 = L
a

-b

h1b2RZ,X1b2 db.

= RZ102 - a
a

b=-b

hbRZ,X1b2.

= RZ102 - EBZt aa
b=-b

hbXt-bR= RZ102 - E3ZtYt4
E3et24 = E31Zt - Yt2Zt4 = E3ZtZt4 - E3YtZt4

etYtet
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and has mean square error given by

Example 10.21 Filtering of Signal Plus Noise

Suppose we are interested in estimating the signal from the most recent noisy obser-
vations:

Find the set of linear equations for the optimum filter if and are independent random
processes.

For this choice of observation interval, Eq. (10.78) becomes

(10.82)

The cross-correlation terms in Eq. (10.82) are given by

The autocorrelation terms are given by

since and are independent random processes. Thus Eq. (10.82) for the optimum filter be-
comes

(10.83)

This set of linear equations in unknowns is solved by matrix inversion.

Example 10.22 Filtering of AR Signal Plus Noise

Find the set of equations for the optimum filter in Example 10.21 if is a first-order autore-
gressive process with average power and parameter r, and is a white noise process
with average power 

The autocorrelation for a first-order autoregressive process is given by

(See Problem 10.42.) The autocorrelation for the white noise process is

Substituting and into Eq. (10.83) yields the following set of linear equations:

(10.84)sZ
2 r ƒm ƒ = a

p

b=0

hb1sZ2 r ƒm-b ƒ + sN
2 d1m - b22 m H 50, Á , p6.

RN1m2RZ1m2
RN1m2 = sN

2 d1m2.

RZ1m2 = sZ
2 r ƒm ƒ m = 0, ;1, ;2, Á .

sN
2 .

Naƒ r ƒ 6 1,sZ
2

Za

hbp + 1p + 1

RZ1m2 = a
p

b=0

hb5RZ1m - b2 + RN1m - b26 m H 50, 1, Á , p6.

NaZa

= RZ1m - b2 + RN1m - b2,
+ RN,Z1m - b2 + RN1m - b2

= RZ1m - b2 + RZ,N1m - b2
RX1m - b2 = E3Xn-bXn-m4 = E31Zn-b + Nn-b21Zn-m + Nn-m24

RZ,X1m2 = E3ZnXn-m4 = E3Zn1Zn-m + Nn-m24 = RZ1m2.

RZ,X1m2 = a
p

b=0

hbRX1m - b2 m H 50, 1, Á , p6.

NaZa

Xa = Za + Na a H I = 5n - p, Á , n - 1, n6.
p + 1Zn

E31Z1t2 - Y1t2224 = RZ102 - L
a

-b

h1b2RZ,X1b2 db.
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If we divide both sides of Eq. (10.84) by and let we obtain the following matrix
equation:

(10.85)

Note that when the noise power is zero, i.e., then the solution is 
that is, no filtering is required to obtain 

Equation (10.85) can be readily solved using Octave. The following function will compute
the optimum linear coefficients and the mean square error of the optimum predictor:

function [mse]= Lin_Est_AR (order,rho,varsig,varnoise)

n=[0:1:order-1]

r=varsig*rho.^n;

R=varnoise*eye(order)+toeplitz(r);

H=inv(R)*transpose(r)

mse=varsig-transpose(H)*transpose(r);

endfunction

Table 10.1 gives the values of the optimal predictor coefficients and the mean square error as
the order of the estimator is increased for the first-order autoregressive process with 
and noise variance It can be seen that the predictor places heavier weight on more recent
samples, which is consistent with the higher correlation of such samples with the current sample. For
smaller values of r, the correlation for distant samples drops off more quickly and the coefficients
place even lower weighting on them. The mean square error can also be seen to decrease with in-
creasing order of the estimator. Increasing the first few orders provides significant improve-
ments, but a point of diminishing returns is reached around 

10.4.2 Prediction

The linear prediction problem arises in many signal processing applications. In
Example 6.31 in Chapter 6, we already discussed the linear prediction of speech sig-
nals. In general, we wish to predict in terms of 

Yn = a
p

b=1

hbZn-b .

Zn-1 , Zn-2 , Á , Zn-p:Zn

p + 1 = 3.
p + 1

sN
2 = 4.

sZ
2 = 4, r = 0.9,

Zn .j = 1, Á , p,
h0 = 1, hj = 0,≠ = 0,

E1 + ≠ r r2 Á rp

r 1 + ≠ r Á rp-1

r2 r 1 + ≠ Á rp-2

# # # Á #
rp rp-1 rp-2 Á 1 + ≠

U E h0

h1

#
#
hp

U = E 1

r
#
#
rp

U .

≠ = sN
2 >sZ2 ,sZ

2

TABLE 10.1 Effect of predictor order on MSE performance.

p � 1 MSE Coefficients

1 2.0000 0.5

2 1.4922 0.37304 0.28213

3 1.3193 0.32983 0.22500 0.17017

4 1.2549 0.31374 0.20372 0.13897 0.10510

5 1.2302 0.30754 0.19552 0.12696 0.08661 0.065501



Section 10.4 Optimum Linear Systems 611

For this problem, so Eq. (10.79) becomes

(10.86a)

In matrix form this equation becomes

(10.86b)

Equations (10.86a) and (10.86b) are called the Yule-Walker equations.

Equation (10.80) for the mean square error becomes

(10.87)

By inverting the matrix we can solve for the vector of filter coefficients h.

Example 10.23 Prediction for Long-Range and Short-Range Dependent Processes

Let be a discrete-time first-order autoregressive process with and and
let be a discrete-time long-range dependent process with autocovariance given by Eq.
(9.109), and Both processes have but the autocovariance of

decreases exponentially while that of has long-range dependence. Compare the per-
formance of the optimal linear predictor for these processes for short-term as well as long-term
predictions.

The optimum linear coefficients and the associated mean square error for the long-range
dependent process can be calculated using the following code. The function can be modified for
the autoregressive case.

function mse= Lin_Pred_LR(order,Hurst,varsig)

n=[0:1:order-1]

H2=2*Hurst

r=varsig*((1+n).^H2-2*(n.^H2)+abs(n-1).^H2)/2

rz=varsig*((2+n).^H2-2*((n+1).^H2)+(n).^H2)/2

R=toeplitz(r);

H=transpose(inv(R)*transpose(rz))

mse=varsig-H*transpose(rz)

endfunction

Table 10.2 below compares the mean square errors and the coefficients of the two process-
es in the case of short-term prediction. The predictor for attains all of the benefit of pre-
diction with a system. The optimum predictors for higher-order systems set the other
coefficients to zero, and the mean square error remains at 0.4577. The predictor for X21t2

p = 1
X11t2

X21t2X11t2
CX112 = 0.7411,H = 0.9.sX

2 = 1,
X21t2

r = 0.7411,sX
2 = 1X11t2

RZ,p * p

E3en24 = RZ102 - a
p

b=1

hbRZ1b2.

= RZh.

ERZ112RZ122
.

.

RZ1p2
U = E RZ102 RZ112 RZ122 Á RZ1p - 12

RZ112 RZ102 RZ112 Á RZ1p - 22
. . . . .

. . . . RZ112
RZ1p - 12 . . RZ112 RZ102

U E h1

h2

.

.

hp

U
RZ1m2 = a

p

b=1

hbRZ1m - b2 m H 51, Á , p6.
Xa = Za ,
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TABLE 10.2(a) Short-term prediction: autoregressive,
r = 0.7411, sX

2 = 1, CX(1) = 0.7411.

p MSE Coefficients

1 0.45077 0.74110

2 0.45077 0.74110 0

TABLE 10.2(b) Short-term prediction: long-range dependent process,
Hurst = 0.9, sX

2 = 1, CX(1) = 0.7411.

p MSE Coefficients

1 0.45077 0.74110

2 0.43625 0.60809 0.17948

3 0.42712 0.582127 0.091520 0.144649

4 0.42253 0.567138 0.082037 0.084329 0.103620

5 0.41964 0.558567 0.075061 0.077543 0.056707 0.082719

TABLE 10.3(a) Long-term prediction: autoregressive,
r = 0.7411, sX

2 = 1, CX(1) = 0.7411.

p MSE Coefficients

1 0.99750 0.04977

2 0.99750 0.04977 0

achieves most of the possible performance with a system, but small reductions in mean
square error do accrue by adding more coefficients. This is due to the persistent correlation
among the values in 

Table 10.3 shows the dramatic impact of long-range dependence on prediction perfor-
mance. We modified Eq. (10.86) to provide the optimum linear predictor for based on two ob-
servations and that are in the relatively remote past. and its previous values are
almost uncorrelated, so the best predictor has a mean square error of almost 1, which is the vari-
ance of On the other hand, retains significant correlation with its previous values and
so the mean square error provides a significant reduction from the unit variance. Note that the
second-order predictor places significant weight on the observation 20 samples in the past.

X21t2X11t2.
X11t2Xt-20Xt-10

Xt

X21t2.
p = 1

TABLE 10.3(b) Long-term prediction: long-range dependent
process, Hurst = 0.9, sX

2 = 1, CX(1) = 0.7411.

p MSE Coefficients

10 0.79354 0.45438

10;20 0.74850 0.34614 0.23822
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10.4.3 Estimation Using the Entire Realization of the Observed Process

Suppose that is to be estimated by a linear function of the entire realization of 
that is, and Eq. (10.73) becomes

In the case of continuous-time random processes, we have

The optimum filters must satisfy Eqs. (10.78) and (10.79), which in this case become

(10.88a)

(10.88b)

The Fourier transform of the first equation and the Fourier transform of the second
equation both yield the same expression:

which is readily solved for the transfer function of the optimum filter:

(10.89)

The impulse response of the optimum filter is then obtained by taking the appropriate
inverse transform. In general the filter obtained from Eq. (10.89) will be noncausal,
that is, its impulse response is nonzero for We already indicated that there are
applications where this makes sense, namely, in situations where the entire realiza-
tion is recorded and the estimate is obtained in “nonreal time” by “playing
back”

Example 10.24 Infinite Smoothing

Find the transfer function for the optimum filter for estimating Z(t) from 
where and are independent, zero-mean random processes.

The cross-correlation between the observation and the desired signal is

since Z(t) and N(t) are zero-mean, independent random processes. The cross-power spectral
density is then

(10.90)SZ,X1t2 = SZ1f2.

= RZ1t2,
= E3Z1t + t2Z1t24 + E3Z1t + t2N1t24

RZ,X1t2 = E3Z1t + t2X1t24 = E3Z1t + t21Z1t2 + N1t224

N1a2Z1a2a H 1-q , q2,
X1a2 = Z1a2 + N1a2,

Xa .
ZtXa

t 6 0.

H1f2 =
SZ,X1f2
SX1f2 .

SZ,X1f2 = H1f2SX1f2,

RZ,X1t2 = L
q

-q
h1b2RX1t - b2 db for all t.

RZ,X1m2 = a
q

b=-q
hbRX1m - b2 for all m

Y1t2 = L
q

-q
h1b2X1t - b2 db.

Yt = a
q

b=-q
hbXt-b .

a = b = q
Xt ,YtZt



614 Chapter 10 Analysis and Processing of Random Signals

The autocorrelation of the observation process is

The corresponding power spectral density is

(10.91)

Substituting Eqs. (10.90) and (10.91) into Eq. (10.89) gives

(10.92)

Note that the optimum filter H( f ) is nonzero only at the frequencies where is nonzero,
that is, where the signal has power content. By dividing the numerator and denominator of Eq.
(10.92) by we see that H( f ) emphasizes the frequencies where the ratio of signal to noise
power density is large.

10.4.4 Estimation Using Causal Filters

Now, suppose that is to be estimated using only the past and present of that is,
Equations (10.78) and (10.79) become

(10.93a)

(10.93b)

Equations (10.93a) and (10.93b) are called the Wiener-Hopf equations and, though sim-
ilar in appearance to Eqs. (10.88a) and (10.88b), are considerably more difficult to solve.

First, let us consider the special case where the observation process is white, that
is, for the discrete-time case Equation (10.93a) is then

(10.94)

Thus in this special case, the optimum causal filter has coefficients given by

The corresponding transfer function is

(10.95)

Note Eq. (10.95) is not since the limits of the Fourier transform in Eq. (10.95) do
not extend from to However, H( f ) can be obtained from by finding 

keeping the causal part (i.e., for ) and setting the non-
causal part to 0.

m Ú 0hmhm = f-13SZ,X1f24,
SZ,X1f2+q .-q

SZ,X1f2,
H1f2 = a

q

m=0

RZ,X1m2e-j2pfm.

hm = b0 m 6 0

RZ,X1m2 m Ú 0.

RZ,X1m2 = a
q

b=0

hb dm-b = hm m Ú 0.

RX1m2 = dm .

RZ,X1t2 = L
q

0

h1b2RX1t - b2 db for all t.

RZ,X1m2 = a
q

b=0

hbRX1m - b2 for all m

I = 1-q , t2.
Xa ,Zt

*

SZ1f2,
SZ1f2

H1f2 =
SZ1f2

SZ1f2 + SN1f2 .

SX1f2 = SZ1f2 + SN1f2.

= RZ1t2 + RN1t2.
RX1t2 = E31Z1t + t2 + N1t + t221Z1t2 + N1t224
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FIGURE 10.15
Whitening filter approach for solving Wiener-
Hopf equations.
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8The method for factoring as specified by Eq. (10.96) is called spectral factorization. See Example
10.10 and the references at the end of the chapter.

SX1f2

We now show how the solution of the above special case can be used to solve the
general case. It can be shown that under very general conditions, the power spectral
density of a random process can be factored into the form

(10.96)

where G( f ) and 1/G( f ) are causal filters.8 This suggests that we can find the optimum
filter in two steps, as shown in Fig. 10.15. First, we pass the observation process through
a “whitening” filter with transfer function to produce a white noise
process since

Second, we find the best estimator for using the whitened observation process
as given by Eq. (10.95). The filter that results from the tandem combination of

the whitening filter and the estimation filter is the solution to the Wiener-Hopf
equations.

The transfer function of the second filter in Fig. 10.15 is

(10.97)

by Eq. (10.95). To evaluate Eq. (10.97) we need to find

(10.98)

where is the impulse response of the whitening filter. The Fourier transform of
Eq. (10.98) gives an expression that is easier to work with:

(10.99)SZ,X¿1f2 = W…1f2SZ,X1f2 =
SZ,X1f2
G…1f2 .

wi

= a
q

i=0

wiRZ,X1k + i2,

= a
q

i=0

wiE3Zn+kXn- i4
RZ,X¿1k2 = E3Zn+kXnœ 4

H21f2 = a
q

m=0

RZ,X¿1m2e-j2pfm

Xn
œ

Zn

SX¿1f2 = ƒW1f2 ƒ 2SX1f2 =
ƒG1f2 ƒ 2
ƒG1f2 ƒ 2 = 1 for all f.

Xn
œ ,

W1f2 = 1>G1f2

SX1f2 = ƒG1f2 ƒ 2 = G1f2G…1f2,
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The inverse Fourier transform of Eq. (10.99) yields the desired which can
then be substituted into Eq. (10.97) to obtain 

In summary, the optimum filter is found using the following procedure:

1. Factor as in Eq. (10.96) and obtain a causal whitening filter 

2. Find from Eq. (10.98) or from Eq. (10.99).

3. is then given by Eq. (10.97).

4. The optimum filter is then

(10.100)

This procedure is valid for the continuous-time version of the optimum causal filter problem,
after appropriate changes are made from summations to integrals. The following example con-

siders a continuous-time problem.

Example 10.25 Wiener Filter

Find the optimum causal filter for estimating a signal Z(t) from the observation 
where Z(t) and N(t) are independent random processes, N(t) is zero-mean white noise

density 1, and Z(t) has power spectral density

The optimum filter in this problem is called the Wiener filter.

The cross-power spectral density between Z(t) and X(t) is

since the signal and noise are independent random processes. The power spectral density for the
observation process is

If we let

then it is easy to verify that is the whitening causal filter.
Next we evaluate Eq. (10.99):

(10.101)=
c

1 + j2pf
+

c

23 - j2pf
,

=
2

11 + j2pf2123 - j2pf2

SZ,X¿1f2 =
SZ,X1f2
G…1f2 =

2

1 + 4p2f2

1 - j2pf

23 - j2pf

W1f2 = 1>G1f2

G1f2 =
j2pf + 23

j2pf + 1
,

= ¢ j2pf + 23

j2pf + 1
≤ ¢ -j2pf + 23

-j2pf + 1
≤ .

=
3 + 4p2f2

1 + 4p2f2

SX1f2 = SZ1f2 + SN1f2

SZ,X1f2 = SZ1f2,

SZ1f2 =
2

1 + 4p2f2 .

N1t2,
X1t2 = Z1t2 +

H1f2 = W1f2H21f2.

H21f2
RZ,X¿1k2

W1f2 = 1>G1f2.SX1f2
H21f2.

RZ,X¿1k2,
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where If we take the inverse Fourier transform of we obtain

Equation (10.97) states that is given by the Fourier transform of the portion of

Note that we could have gotten this result directly from Eq. (10.101) by noting that only the first
term gives rise to the positive-time (i.e., causal) component.

The optimum filter is then

The impulse response of this filter is

10.5 THE KALMAN FILTER

The optimum linear systems considered in the previous section have two limitations:
(1) They assume wide-sense stationary signals; and (2) The number of equations grows
with the size of the observation set. In this section, we consider an estimation approach
that assumes signals have a certain structure. This assumption keeps the dimensionali-
ty of the problem fixed even as the observation set grows. It also allows us to consider
certain nonstationary signals.

We will consider the class of signals that can be represented as shown in Fig. 10.16(a):

(10.102)

where is the random variable at time 0, is a known sequence of constants, and is
a sequence of zero-mean uncorrelated random variables with possibly time-varying vari-
ances The resulting process is nonstationary in general.We assume that the
process is not available to us, and that instead, as shown in Fig. 10.16(a), we observe

(10.103)

where the observation noise is a zero-mean, uncorrelated sequence of random vari-
ables with possibly time-varying variances We assume that and are
uncorrelated at all times and In the special case where and are Gaussian
random processes, then and will also be Gaussian random processes. We will de-
velop the Kalman filter, which has the structure in Fig. 10.16(b).

Our objective is to find for each time n the minimum mean square estimate (ac-
tually prediction) of based on the observations using a linear esti-
mator that possibly varies with time:

(10.104)Yn = a
n

j= i

hj
1n-12Xn- j .

X0 ,X1 , Á ,Xn-1Zn

XnZn

NnWnn2 .n1

NnWn5E3Nn246.
Nn

Xn = Zn + Nn n = 0, 1, 2, Á ,

Zn

Zn5E3Wn246.
WnanZ0

Zn = an-1Zn-1 + Wn-1 n = 1, 2, Á ,

h1t2 = cet
-23 t 7 0.

H1f2 =
1

G1f2H21f2 =
c

23 + j2pf
.

H21f2 = f5ce-Tu1t26 =
c

1 + j2pf
.

RZ,X¿1t2:
t 7 0H21f2

RZ,X¿1t2 = b ce-t t 7 0

ce23t t 6 0.

SZ,X¿1f2,c = 2>11 + 232.
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FIGURE 10.16
(a) Signal structure. (b) Kalman filter.

The orthogonality principle implies that the optimum filter satisfies

which leads to a set of n equations in n unknowns:

(10.105)

At the next time instant, we need to find

(10.106)

by solving a system of equations:

(10.107)

Up to this point we have followed the procedure of the previous section and we
find that the dimensionality of the problem grows with the number of observa-
tions. We now use the signal structure to develop a recursive method for solving
Eq. (10.106).

RZ,X1n + 1, l2 = a
n+1

j=1

hj
1n2
RX1n + 1 - j, l2 for l = 0, 1, Á , n.

1n + 12 * 1n + 12
Yn+1 = a

n+1

j=1

hj
1n2
Xn+1- j

RZ,X1n, l2 = a
n

j=1

hj
1n-12

RX1n - j, l2 for l = 0, 1, Á , n - 1.

EB ¢Zn - a
n

j=1

hj
1n-12

Xn- j≤XlR = 0 for l = 0, 1, Á , n - 1,

5hj1n-126
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We first need the following two results: For we have

(10.108)

since that is, is uncorrelated with the past of the
process and the observations prior to time n, as can be seen from Fig. 10.16(a).Also for

we have

(10.109)

since that is, the observation noise at time n is uncorre-
lated with prior observations.

We now show that the set of equations in Eq. (10.107) can be related to the set in
Eq. (10.105). For we can equate the right-hand sides of Eqs. (10.108) and (10.107):

(10.110)

From Eq. (10.109) we have so we can replace the first term on
the right-hand of Eq. (10.110) and then move the resulting term to the left-hand side:

(10.111)

By dividing both sides by we finally obtain

(10.112)

This set of equations is identical to Eq. (10.105) if we set

(10.113a)

Therefore, if at step n we have found and if somehow we have found 

then we can find the remaining coefficients from

(10.113b)

Thus the key question is how to find h1
1n2 .

hj+1
1n2

= 1an - h1
1n22hj1n-12

j = 1, Á , n.

h1
1n2,

h1
1n-12, Á , hn

1n-12,

hj
1n-12

=
hj+1
1n2

an - h1
1n2 for j = 1, Á , n.

for l = 0, 1, Á , n - 1.
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n

j¿ =1

hj¿ +1
1n2
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1n2RX1n - j¿, l2
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1n2

= a
n

j¿ =1

hj¿ +1
1n2
RX1n - j¿, l2.

1an - h1
1n22RZ,X1n, l2 = a

n+1

j=2

hj
1n2
RX1n + 1 - j, l2

RX1n, l2 = RZ,X1n, l2,
for l = 0, 1, Á , n - 1.

= h1
1n2RX1n, l2 + a

n+1

j=2

hj
1n2
RX1n + 1 - j, l2

anRZ,X1n, l2 = a
n+1

j=1

hj
1n2
RX1n + 1 - j, l2

l 6 n,

E3NnXl4 = E3Nn4E3Xl4 = 0,

= RX1n, l2 - E3NnXl4 = RX1n, l2,
RZ,X1n, l2 = E3ZnXl4 = E31Xn - Nn2Xl4

l 6 n,

WnE3WnXl4 = E3Wn4E3Xl4 = 0,

= anRZ,X1n, l2 + E3WnXl4 = anRZ,X1n, l2,
RZ,X1n + 1, l2 = E3Zn+1Xl4 = E31anZn + Wn2Xl4

l 6 n,
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Suppose we substitute the coefficients in Eq. (10.113b) into Eq. (10.106):

(10.114)

where the second equality follows from Eq. (10.104). The above equation has a very
pleasing interpretation, as shown in Fig. 10.16(b). Since is the prediction for time
n, is the prediction for the next time instant, based on the “old” informa-
tion (see Eq. (10.102)). The term is called the “innovations,” and it gives the 

discrepancy between the old prediction and the observation. Finally, the term is
called the gain, henceforth denoted by and it indicates the extent to which the in-
novations should be used to correct to obtain the “new” prediction If we de-
note the innovations by

(10.115)

then Eq. (10.114) becomes

(10.116)

We still need to determine a means for computing the gain 
From Eq. (10.115), we have that the innovations satisfy

where is the prediction error. A recursive equation can be obtained for
the prediction error:

(10.117)

with initial condition Since and are zero-mean, it then follows that
for all n. A recursive equation for the mean square prediction error is ob-

tained from Eq. (10.117):

(10.118)

with initial condition We are finally ready to obtain an expression for
the gain 

The gain must minimize the mean square error Therefore we can dif-
ferentiate Eq. (10.118) with respect to and set it equal to zero:

0 = -21an - kn2E3en24 + 2knE3Nn24.
kn

E3en+1
2 4.kn

kn .
E3e0

24 = E3Z0
24.

E3en+1
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9We caution the student that there are two common ways of defining the gain. The statement of the Kalman
filter algorithm will differ accordingly in various textbooks.

Then we can solve for 

(10.119)

The expression for the mean square prediction error in Eq. (10.118) can be sim-
plified by using Eq. (10.119) (see Problem 10.72):

(10.120)

Equations (10.119), (10.116), and (10.120) when combined yield the recursive
procedure that constitutes the Kalman filtering algorithm:

Kalman filter algorithm:9

Initialization:
For

Note that the algorithm requires knowledge of the signal structure, i.e., the and the
variances and The algorithm can be implemented easily and has conse-
quently found application in a broad range of detection, estimation, and signal pro-
cessing problems. The algorithm can be extended in matrix form to accommodate a
broader range of processes.

Example 10.26 First-Order Autoregressive Process

Consider a signal defined by

where and and suppose the observations are made in additive
white noise

where Find the form of the predictor and its mean square error as 
The gain at step n is given by

The mean square error sequence is therefore given by

E3e0
24 = E3Z0

24 = 0

kn =
aE3en24
E3en24 + 1

.

n: q .E3Nn24 = 1.

Xn = Zn + Nn n = 0, 1, 2, Á ,

a = 0.8,E3Wn24 = sW
2 = 0.36,

Zn = aZn-1 + Wn n = 1, 2, Á Z0 = 0,

E3Wn24.E3Nn24
an ,

E3en+1
2 4 = an1an - kn2E3en24 + E3Wn24.

Yn+1 = anYn + kn1Xn - Yn2
kn =

anE3en24
E3en24 + E3Nn24

n = 0, 1, 2, Á
Y0 = 0 E3e0

24 = E3Z0
24

E3en+1
2 4 = an1an - kn2E3en24 + E3Wn24.

kn =
anE3en24

E3en24 + E3Nn24 .
kn:
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The steady state mean square error must satisfy

For and the resulting quadratic equation yields and 
Thus at steady state the predictor is

10.6 ESTIMATING THE POWER SPECTRAL DENSITY

Let be k observations of the discrete-time, zero-mean, wide-sense sta-
tionary process The periodogram estimate for is defined as

(10.121)

where is obtained as a Fourier transform of the observation sequence:

(10.122)

In Section 10.1 we showed that the expected value of the periodogram estimate is

(10.123)

so is a biased estimator for However, as 

(10.124)

so the mean of the periodogram estimate approaches 
Before proceeding to find the variance of the periodogram estimate, we note that

the periodogram estimate is equivalent to taking the Fourier transform of an estimate
for the autocorrelation sequence; that is,

(10.125)

where the estimate for the autocorrelation is

(10.126)

(See Problem 10.77.)
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FIGURE 10.17
Periodogram for 64 samples of white noise sequence iid uniform in (0, 1),
1>12 = 0.083.

SX1 f2 = sX
2 =Xn

We might expect that as we increase the number of samples k, the periodogram es-
timate converges to This does not happen. Instead we find that fluctuates
wildly about the true spectral density, and that this random variation does not decrease
with increased k (see Fig. 10.17).To see why this happens, in the next section we compute
the statistics of the periodogram estimate for a white noise Gaussian random process.We
find that the estimates given by the periodogram have a variance that does not approach
zero as the number of samples is increased. This explains the lack of improvement in the
estimate as k is increased. Furthermore, we show that the periodogram estimates are un-
correlated at uniformly spaced frequencies in the interval This explains
the erratic appearance of the periodogram estimate as a function of f. In the final section,
we obtain another estimate for whose variance does approach zero as k increases.

10.6.1 Variance of Periodogram Estimate

Following the approach of [Jenkins and Watts, pp. 230–233], we consider the peri-
odogram of samples of a white noise process with at the frequencies

which will cover the frequency range 
(In practice these are the frequencies we would evaluate if we were using the FFT al-
gorithm to compute ) First we rewrite Eq. (10.122) at as follows:
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x
'
kan
k
b = a

k-1

m=0

Xmacosa 2pmn

k
b - j sina2pmn

k
b b

f = n>kx
'
k1f2.
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where

(10.128)

and

(10.129)

Then it follows that the periodogram estimate is

(10.130)

We find the variance of from the statistics of and 
The random variables and are defined as linear functions of the

jointly Gaussian random variables Therefore and are also
jointly Gaussian random variables. If we take the expected value of Eqs. (10.128) and
(10.129) we find

(10.131)

Note also that the and terms are different in that

(10.132a)

(10.132b)

The correlation between and (for n, m not equal to or 0) is

where we used the fact that since the noise is white.The second sum-
mation is equal to zero, and the first summation is zero except when Thus

(10.133a)

It can similarly be shown that

(10.133b)

(10.133c)E3Ak1n2Bk1m24 = 0 for all n,m.
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When or 0, we have

(10.133d)

Equations (10.133a) through (10.133d) imply that and are uncorrelated
random variables. Since and are jointly Gaussian random variables, this
implies that they are zero-mean, independent Gaussian random variables.

We are now ready to find the statistics of the periodogram estimates at the fre-
quencies Equation (10.130) gives

(10.134)

The quantity in brackets is the sum of the squares of two zero-mean, unit-variance, in-
dependent Gaussian random variables. This is a chi-square random variable with two
degrees of freedom (see Problem 7.6). From Table 4.1, we see that a chi-square random
variable with v degrees of freedom has variance 2v.Thus the expression in the brackets
has variance 4, and the periodogram estimate has variance

(10.135a)

For and 

The quantity in brackets is a chi-square random variable with one degree of freedom
and variance 2, so the variance of the periodogram estimate is

(10.135b)

Thus we conclude from Eqs. (10.135a) and (10.135b) that the variance of the peri-

odogram estimate is proportional to the square of the power spectral density and does not

approach zero as k increases. In addition, Eqs. (10.133a) through (10.133d) imply that the

periodogram estimates at the frequencies are uncorrelated random variables.A
more detailed analysis [Jenkins and Watts, p. 238] shows that for arbitrary f,

(10.136)

Thus variance of the periodogram estimate does not approach zero as the number of
samples is increased.

The above discussion has only considered the spectrum estimation for a white
noise, Gaussian random process, but the general conclusions are also valid for non-
white, non-Gaussian processes. If the are not Gaussian, we note from Eqs. (10.128)Xi
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and (10.129) that and are approximately Gaussian by the central limit theorem
if k is large.Thus the periodogram estimate is then approximately a chi-square random
variable.

If the process is not white, then it can be viewed as filtered white noise:

where and The periodograms of and are
related by

(10.137)

Thus

(10.138)

From our previous results, we know that is a chi-square random variable
with variance This implies that

(10.139)

Thus we conclude that the variance of the periodogram estimate for nonwhite noise is
also proportional to 

10.6.2 Smoothing of Periodogram Estimate

A fundamental result in probability theory is that the sample mean of a sequence of
independent realizations of a random variable approaches the true mean with proba-
bility one.We obtain an estimate for that goes to zero with the number of obser-
vations k by taking the average of N independent periodograms on samples of size k:

(10.140)

where are N independent periodograms computed using separate sets of k
samples each. Figures 10.18 and 10.19 show the and smoothed peri-
odograms corresponding to the unsmoothed periodogram of Fig. 10.17. It is evident
that the variance of the power spectrum estimates is decreasing with N.

The mean of the smoothed estimator is

(10.141)

where we have used Eq. (10.35). Thus the smoothed estimator has the same mean as
the periodogram estimate on a sample of size k.
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FIGURE 10.18
Sixty-four-point smoothed periodogram with iid uniform in (0, 1),
SX1f2 = 1>12 = 0.083.
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FIGURE 10.19
Sixty-four-point smoothed periodogram with iid uniform in (0, 1),
SX1f2 = 1>12 = 0.083.

N = 50, Xn
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The variance of the smoothed estimator is

Thus the variance of the smoothed estimator can be reduced by increasing N, the num-
ber of periodograms used in Eq. (10.140).

In practice, a sample set of size is divided into N blocks and a
separate periodogram is computed for each block. The smoothed estimate is then the
average over the N periodograms.This method is called Bartlett’s smoothing procedure.
Note that, in general, the resulting periodograms are not independent because the un-
derlying blocks are not independent. Thus this smoothing procedure must be viewed as
an approximation to the computation and averaging of independent periodograms.

The choice of k and N is determined by the desired frequency resolution and
variance of the estimate. The blocksize k determines the number of frequencies for
which the spectral density is computed (i.e., the frequency resolution). The variance of
the estimate is controlled by the number of periodograms N.The actual choice of k and
N depends on the nature of the signal being investigated.

10.7 NUMERICAL TECHNIQUES FOR PROCESSING RANDOM SIGNALS

In this chapter our discussion has combined notions from random processes with basic
concepts from signal processing. The processing of signals is a very important area in
modern technology and a rich set of techniques and methodologies have been devel-
oped to address the needs of specific application areas such as communication systems,
speech compression, speech recognition, video compression, face recognition, network
and service traffic engineering, etc. In this section we briefly present a number of gen-
eral tools available for the processing of random signals. We focus on the tools provid-
ed in Octave since these are quite useful as well as readily available.

10.7.1 FFT Techniques

The Fourier transform relationship between and is fundamental in the
study of wide-sense stationary processes and plays a key role in random signal analysis.
The fast fourier transform (FFT) methods we developed in Section 7.6 can be applied
to the numerical transformation from autocorrelation functions to power spectral den-
sities and back.

Consider the computation of and for continuous-time processes:

RX1t2 = L
 q

-q 

SX1f2e-j2pft df L L
W

-W 

SX1f2e-j2pft df.
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First we limit the integral to the region where has significant power. Next we re-
strict our attention to a discrete set of frequency values at so that

and then approximate the
integral by a sum:

Finally, we also focus on a set of discrete lag values: so that 
We obtain the DFT as follows:

(10.142)

In order to have a discrete Fourier transform, we must have which is equiv-
alent to: and and We can use the FFT
function introduced in Section 7.6 to perform the transformation in Eq. (10.142) to ob-
tain the set of values from 
The transformation in the reverse direction is done in the same way. Since and

are even functions various simplifications are possible.We discuss some of these
in the problems.

Consider the computation of and for discrete-time processes.
spans the range of frequencies so we restrict attention to N points 1/N apart:

(10.143)

The approximation here involves neglecting autocorrelation terms outside 
Since the transformation in the reverse direction is scaled differently:

(10.144)

We assume that the student has already tried the FFT exercises in Section 7.6, so we
leave examples in the use of the FFT to the Problems.

The various frequency domain results for linear systems that relate input, output,
and cross-spectral densities can be evaluated numerically using the FFT.

Example 10.27 Output Autocorrelation and Cross-Correlation

Consider Example 10.12, where a random telegraph signal X(t) with is passed through a
lowpass filter with and Find 

The random telegraph has and the filter has transfer function
so is given by:
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FIGURE 10.20
(a) Transfer function and input power spectral density; (b) Autocorrelation of filtered random telegraph with filter b � 10.

We used an FFT to evaluate autocorrelation functions numerically for and
and Figure 10.20(a) shows and for It can be seen that the

transfer function (the dashed line) is close to 1 in the region of f where has most of its
power. Consequently we expect the output for to have an autocorrelation similar to that
of the input. For , on the other hand, the filter will attenuate more of the significant fre-
quencies of X(t) and we expect more change in the output autocorrelation. Figure 10.20(b)
shows the output autocorrelation and we see that indeed for is
close to the double-sided exponential of For the output autocorrelation differs
significantly from 

10.7.2 Filtering Techniques

The autocorrelation and power spectral density functions provide us with information
about the average behavior of the processes. We are also interested in obtaining sam-
ple functions of the inputs and outputs of systems. For linear systems the principal tools
for signal processing are the convolution and Fourier transform.

Convolution in discrete-time (Eq. (10.48)) is quite simple and so convolution is
the workhorse in linear signal processing. Octave provides several functions for per-
forming convolutions with discrete-time signals. In Example 10.15 we encountered the
function filter(b,a,x) which implements filtering of the sequence x with an ARMA
filter with coefficients specified by vectors b and a in the following equation.

Other functions use filter(b,a,x) to provide special cases of filtering. For example,
conv(a,b) convolves the elements in the vectors a and b.We can obtain the output of a
linear system by letting a be the impulse response and b the input random sequence.
The moving average example in Fig. 10.7(b) is easily obtained using this conv. Octave
provides other functions implementing specific digital filters.

Yn = -a
q

i=1

aiYn- i + a
p

j=0

bjXn- j .

RX1t2.
b = 1RX1t2.

b = 10 (the solid line), RY1t2
b = 1

b = 10
SX1f2

b = 10.SX1f2ƒH1f2 ƒ 2b = 10.b = 1
a = 1N = 256
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We can also obtain the output of a linear system in the frequency domain.We take
the FFT of the input sequence and we then multiply it by the FFT of the transfer
function.The inverse FFT will then provide of the linear system.The Octave function
fftconv(a,b,n) implements this approach. The size of the FFT must be equal to the
total number of samples in the input sequence, so this approach is not advisable for long
input sequences.

10.7.3 Generation of Random Processes

Finally, we are interested in obtaining discrete-time and continuous-time sample func-
tions of the inputs and outputs of systems. Previous chapters provide us with several tools
for the generation of random signals that can act as inputs to the systems of interest.

Section 5.10 provides the method for generating independent pairs of Gaussian
random variables. This method forms the basis for the generation of iid Gaussian se-
quences and is implemented in normal_rnd=(M,V,Sz). The generation of sequences of
WSS but correlated sequences of Gaussian random variables requires more work. One
approach is to use the matrix approaches developed in Section 6.6 to generate individ-
ual vectors with a specified covariance matrix. To generate a vector Y of n outcomes
with covariance we perform the following factorization:

and we generate the vector

where X is vector of iid zero-mean, unit-variance Gaussian random variables. The Oc-
tave function svd(B) performs a singular value decomposition of the matrix B, see
[Long]. When is a covariance matrix, svd returns the diagonal matrix D of
eigenvalues of as well as the matrices and 

Example 10.28 Generation of Correlated Gaussian Random Variables

Generate 256 samples of the autoregressive process in Example 10.14 with 
The autocorrelation of the process is given by We generate a vector r

of the first 256 lags of and use the function toeplitz(r) to generate the covariance ma-
trix. We then call the svd to obtain A. Finally we produce the output vector 

> n=[0:255]

> r=(-0.5).^n;

> K=toeplitz(r);

> [U,D,V]=svd(K);

> X=normal_rnd(0,1,1,256);

> y=V*(D^0.5)*transpose(X);

> plot(y)

Figure 10.21(a) shows a plot of Y. To check that the sequence has the desired autocovari-
ance we use the function autocov(X,H)which estimates the autocovariance function of the se-
quence X for the first H lag values. Figure 10.21(b) shows that the sample correlation coefficient
that is obtained by dividing the autocovariance by the sample variance. The plot shows the alter-
nating covariance values and the expected peak values of and 0.25 to the first two lags.-0.5

Y � AT X.
RX1k2

RX1k2 = 1-1/22 ƒk ƒ.
a = -0.5, sX = 1.

V = PT.U = PKY

B = KY

Y =  AT X

KY =  AT A P L P T,

KY ,

Yn

Xn
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An alternative approach to generating a correlated sequence of random variables with
a specified covariance function is to input an uncorrelated sequence into a linear filter with a
specific H( f ). Equation (10.46) allows us to determine the power spectral density of the out-
put sequence. This approach can be implemented using convolution and is applicable to ex-
tremely long signal sequences. A large choice of possible filter functions is available for both
continuous-time and discrete-time systems. For example, the ARMA model in Example 10.15
is capable of implementing a broad range of transfer functions. Indeed the entire discussion
in Section 10.4 was focused on obtaining the transfer function of optimal linear systems in
various scenarios.

Example 10.29 Generation of White Gaussian Noise

Find a method for generating white Gaussian noise for a simulation of a continuous-time com-
munications system.

The generation of discrete-time white Gaussian noise is trivial and involves the generation
of a sequence of iid Gaussian random variables.The generation of continuous-time white Gauss-
ian noise is not so simple. Recall from Example 10.3 that true white noise has infinite bandwidth
and hence infinite power and so is impossible to realize. Real systems however are bandlimited,
and hence we always end up dealing with bandlimited white noise. If the system of interest is
bandlimited to W Hertz, then we need to model white noise limited to W Hz. In Example 10.3 we
found this type of noise has autocorrelation:

The sampling theorem discussed in Section 10.3 allows us to represent bandlimited white Gauss-
ian noise as follows:

Xn 1t2 = a
q

n=-q
X1nT2p1t - nT2 where p1t2 =

sin1pt>T2
pt>T ,

RX1t2 =
N0 sin12pWt2

2pt
.
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FIGURE 10.21
(a) Correlated Gaussian noise (b) Sample autocovariance.
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where The coefficients X(nT) have autocorrelation which is given by:

We thus conclude that X(nT) is an iid sequence of Gaussian random variables with variance
Therefore we can simulate sampled bandlimited white Gaussian noise by generating a se-

quence X(nT). We can perform any processing required in the discrete-time domain, and we can
then apply the result to an interpolator to recover the continuous-time output.

SUMMARY

• The power spectral density of a WSS process is the Fourier transform of its auto-
correlation function. The power spectral density of a real-valued random process
is a real-valued, nonnegative, even function of frequency.

• The output of a linear, time-invariant system is a WSS random process if its input
is a WSS random process that is applied an infinite time in the past.

• The output of a linear, time-invariant system is a Gaussian WSS random process
if its input is a Gaussian WSS random process.

• Wide-sense stationary random processes with arbitrary rational power spectral
density can be generated by filtering white noise.

• The sampling theorem allows the representation of bandlimited continuous-time
processes by the sequence of periodic samples of the process.

• The orthogonality condition can be used to obtain equations for linear systems that
minimize mean square error. These systems arise in filtering, smoothing, and predic-
tion problems.Matrix numerical methods are used to find the optimum linear systems.

• The Kalman filter can be used to estimate signals with a structure that keeps the di-
mensionality of the algorithm fixed even as the size of the observation set increases.

• The variance of the periodogram estimate for the power spectral density does not
approach zero as the number of samples is increased.An average of several inde-
pendent periodograms is required to obtain an estimate whose variance does ap-
proach zero as the number of samples is increased.

• The FFT, convolution, and matrix techniques are basic tools for analyzing, simu-
lating, and implementing processing of random signals.

CHECKLIST OF IMPORTANT TERMS

N0W.

=
N0W sin1pn2

pn
= bN0W for n = 0

0 for n Z 0.

RX1nT2 =
N0 sin12pWnT2

2pnT
=
N0 sin12pWn>2W2

2pn>2W

RX1nT21>T = 2W.

Amplitude modulation
ARMA process
Autoregressive process
Bandpass signal
Causal system

Cross-power spectral density
Einstein-Wiener-Khinchin theorem
Filtering
Impulse response
Innovations
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References [1] through [6] contain good discussions of the notion of power spectral
density and of the response of linear systems to random inputs. References [6] and [7]
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through [9] discuss linear filtering and power spectrum estimation in the context of
digital signal processing. Reference [10] discusses the basic theory underlying power
spectrum estimation.
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Kalman filter
Linear system
Long-range dependence
Moving average process
Nyquist sampling rate
Optimum filter
Orthogonality condition
Periodogram
Power spectral density
Prediction
Quadrature amplitude modulation

Sampling theorem
Smoothed periodogram
Smoothing
System
Time-invariant system
Transfer function
Unit-sample response
White noise
Wiener filter
Wiener-Hopf equations
Yule-Walker equations
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PROBLEMS

Section 10.1: Power Spectral Density

10.1. Let g(x) denote the triangular function shown in Fig. P10.1.

(a) Find the power spectral density corresponding to 
(b) Find the autocorrelation corresponding to the power spectral density 

SX1f2 = g1f>W2.
RX1t2 = g1t>T2.

10.2. Let p(x) be the rectangular function shown in Fig. P10.2. Is a valid au-
tocorrelation function?

RX1t2 = p1t>T2

10.3. (a) Find the power spectral density of a random process with autocorrelation
function where is itself an autocorrelation function.

(b) Plot if is as in Problem 10.1a.

10.4. (a) Find the autocorrelation function corresponding to the power spectral density
shown in Fig. P10.3.

(b) Find the total average power.

(c) Plot the power in the range as a function of f0 7 0.ƒf ƒ 7 f0

RX1t2SY1f2
RX1t2RX1t2 cos12pf0t2,
SY1f2

FIGURE P10.1
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10.5. A random process X(t) has autocorrelation given by 

(a) Find the corresponding power spectral density.

(b) Find the amount of power contained in the frequencies where

10.6. Let Under what conditions does 

10.7. Show that

(a)

(b)

10.8. Let

(a) Find and 

(b) Find and 

10.9. Do Problem 10.8 if X(t) has the triangular autocorrelation function g( ) in Problem
10.1 and Fig. P 10.1.

10.10. Let X(t) and Y(t) be independent wide-sense stationary random processes, and define

(a) Show that Z(t) is wide-sense stationary.

(b) Find and 

10.11. In Problem 10.10, let where is a uniform random variable in
Find and 

10.12. Let

(a) Find

(b) Plot for and and comment on the effect of the value of 

10.13. Let

(a) Find

(b) Plot for and and comment on the effect of value
of

10.14. Let for and 0 elsewhere. Find and plot 

10.15. Let where is a uniformly distributed random variable in the
interval Find and plot for 

10.16. Let where d is an integer constant and is a zero-mean, WSS ran-
dom process.

(a) Find and in terms of and What is the impact of d?

(b) Find

10.17. Find and in Problem 10.16 if is the moving average process of Example
10.7 with 

10.18. Let be a zero-mean, bandlimited white noise random process with for
and 0 elsewhere, where 

(a) Show that 

(b) Find when 

10.19. Let be a zero-mean white noise sequence, and let be independent of 

(a) Show that is a white sequence, and find 

(b) Suppose is a Gaussian random process with autocorrelation 
Specify the joint pmf’s for Yn .

RX1k2 = 11>22 ƒk ƒ.Xn

s2
Y.Yn = WnXn

Wn .XnWn

fc = 1>4.RX1k2
RX1k2 = sin12pfck2>1pk2.

fc 6 1>2.ƒf ƒ 6 fc

SX1f2 = 1Xn

a = 1.
XnSD1f2RD1k2

E3D2
 n4.

SX1f2.RX1k2SD1f2RD1k2
XnDn = Xn - Xn-d ,

f0 = 0.5, 1, 1.75, p.SX1f210, 2p2.
®Xn = cos12pf0n + ®2,

SX1f2.ƒk ƒ 6 NRX1k2 = 911 - ƒk ƒ >N2,
a>b.

a = 0.75 = 3ba = b = 0.5SX1f2
SX1f2.

RX1k2 = 41a2 ƒk ƒ + 161b2 ƒk ƒ, a < 1, b < 1.

a.a = 0.75,a = 0.25SX1f2
SX1f2.

RX1k2 = 4a ƒk ƒ, ƒa ƒ 6 1.

SZ1f2.RZ1t210, 2p2.
®X1t2 = a cos12pf0 t + ®2

SZ1f2.RZ1t2
Z1t2 = X1t2Y1t2.

t/T

SY1f2.RY1t2
SX,Y1f2.RX,Y1t2

Y1t2 = X1t2 - X1t - d2.
SX,Y1f2 = S…Y,X1f2.
RX,Y1t2 = RY,X1-t2.

SZ1f2 = SX1f2 + SY1f2?Z1t2 = X1t2 + Y1t2.
k = 1, 2, 3.

ƒf ƒ 7 k /2pa,

RX1t2 = sX
2 e-t

2>2a2

, a > 0.
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10.20. Evaluate the periodogram estimate for the random process 
where is a uniformly distributed random variable in the interval What hap-
pens as 

10.21. (a) Show how to use the FFT to calculate the periodogram estimate in Eq. (10.32).

(b) Generate four realizations of an iid zero-mean unit-variance Gaussian sequence of
length 128. Calculate the periodogram.

(c) Calculate 50 periodograms as in part b and show the average of the periodograms
after every 10 additional realizations.

Section 10.2: Response of Linear Systems to Random Signals

10.22. Let X(t) be a differentiable WSS random process, and define

Find an expression for and Hint: For this system,

10.23. Let Y(t) be the derivative of X(t), a bandlimited white noise process as in Example 10.3.

(a) Find and 

(b) What is the average power of the output?

10.24. Repeat Problem 10.23 if X(t) has 

10.25. Let Y(t) be a short-term integration of X(t):

(a) Find the impulse response h(t) and the transfer function H(f).

(b) Find in terms of 

10.26. In Problem 10.25, let for and zero elsewhere.

(a) Find

(b) Find

(c) Find

10.27. The input into a filter is zero-mean white noise with noise power density The filter
has transfer function

(a) Find and 

(b) Find and 

(c) What is the average power of the output?

10.28. A bandlimited white noise process X(t) is input into a filter with transfer function

(a) Find and in terms of and 

(b) Find and in terms of and 

(c) What is the average power of the output?

10.29. (a) A WSS process X(t) is applied to a linear system at Find the mean and auto-
correlation function of the output process. Show that the output process becomes
WSS as t: q .

t = 0.

SX1f2.RX1t2RY1t2SY1f2
SX1f2.RX1t2RY,X1t2SY,X1f2

H1f2 = 1 + j2pf.

RY1t2.SY1f2
RY,X1t2.SY,X1f2

H1f2 =
1

1 + j2pf
.

N0>2.

E3Y21t24.
RY1t2.
SY1f2.

ƒ t ƒ 6 TRX1t2 = 11 - ƒ t ƒ >T2
SX1f2.SY1f2

Y1t2 =
1

TL
t

t-T

X1t¿2 dt¿.

SX1f2 = b2e-pf
2

.

RY1t2.SY1f2
H1f2 = j2pf.RY1t2.SY1f2

Y1t2 =
d

dt
X1t2.

T: q?
10, 2p2.®

X1t2 = a cos12pf0t + ®2,
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Z(t)

X(t)






�

FIGURE P10.5

10.30. Let Y(t) be the output of a linear system with impulse response h(t) and input X(t). Find
when the input is white noise. Explain how this result can be used to estimate the

impulse response of a linear system.

10.31. (a) A WSS Gaussian random process X(t) is applied to two linear systems as shown in
Fig. P10.4. Find an expression for the joint pdf of and 

(b) Evaluate part a if X(t) is white Gaussian noise.

W1t22.Y1t12

RY,X1t2

10.32. Repeat Problem 10.31b if and are ideal bandpass filters as in Example 10.11.
Show that Y(t) and W(t) are independent random processes if the filters have nonover-
lapping bands.

10.33. Let and as shown in Fig. P10.5.

(a) Find in terms of 

(b) Find E3Z21t24.
SX1f2.SZ1f2
Z1t2 = X1t2 - Y1t2Y1t2 = h1t2 * X1t2

h21t2h11t2

10.34. Let Y(t) be the output of a linear system with impulse response h(t) and input 
Let

(a) Find and 

(b) Find

(c) Find if X(t) and N(t) are independent random processes.

10.35. A random telegraph signal is passed through an ideal lowpass filter with cutoff frequency
W. Find the power spectral density of the difference between the input and output of the
filter. Find the average power of the difference signal.

SZ1f2
SZ1f2.

RZ1t2.RX,Y1t2
Z1t2 = X1t2 - Y1t2.

X1t2 + N1t2.
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hn

Yn
Wn Zngn

FIGURE P10.6

10.36. Let be applied to an ideal bandpass filter that passes 
the frequencies Assume that is uniformly distributed in Find
the ratio of signal power to noise power at the output of the filter.

10.37. Let be a “smoothed” version of Find 
and

10.38. Suppose is a white Gaussian noise process in Problem 10.37. Find the joint pmf for

10.39. Let where is a zero-mean, first-order autoregressive process with
autocorrelation

(a) Find and 

(b) Find and 

(c) For what value of is a white noise process?

10.40. A zero-mean white noise sequence is input into a cascade of two systems (see Fig. P10.6).
System 1 has impulse response and system 2 has impulse response

where for and 0 elsewhere.

(a) Find and 

(b) Find and find and Hint: Use a partial fraction
expansion of prior to finding 

(c) Find E3Z2
n4.

RW,Z1k2.SW,Z1f2
SW,Z1f2.SW,Y1f2RW,Z1k2;RW,Y1k2

SZ1f2.SY1f2
n Ú 0u1n2 = 1gn = 11>42nu1n2

hn = 11>22nu1n2
Ynb

E3Y2
n4.SY1f2, RY1k2,

SY,X1f2.RY,X1k2
RX1k2 = s2ak, ƒa ƒ 6 1.

XnYn = Xn + bXn-1 ,

1Yn , Yn+1 , Yn+22.
Xn

E3Y2
 n4.

RY1k2, SY1f2,Xn .Yn = 1Xn+1 + Xn + Xn-12>3
10, 2p2.®ƒf–fc ƒ 6 W>2.

Y1t2 = a cos12pfct + ®2 + N1t2

10.41. A moving average process is produced as follows:

where is a zero-mean white noise process.

(a) Show that for 

(b) Find by computing then find 

(c) Find the impulse response of the linear system that defines the moving average
process. Find the corresponding transfer function H( f ), and then Compare
your answer to part b.

10.42. Consider the second-order autoregressive process defined by

where the input is a zero-mean white noise process.

(a) Verify that the unit-sample response is for and 0 oth-
erwise.

(b) Find the transfer function.

(c) Find and RY1k2 = f-15SY1f26.SY1f2

n Ú 0,hn = 211>22n - 11>42n
Wn

Yn =
3

4
Yn-1 -

1

8
Yn-2 + Wn ,

SX1f2.
hn

SX1f2 = f5RX1k26.E3Xn+kXn4,RX1k2
ƒk ƒ 7 p.RX1k2 = 0

Wn

Xn = Wn + a1Wn-1 + Á + apWn-p ,

Xn
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10.43. Suppose the autoregressive process defined in Problem 10.42 is the input to the following
moving average system:

(a) Find and 

(b) Explain why is a first-order autoregressive process.

(c) Find a moving average system that will produce a white noise sequence when is
the input.

10.44. An autoregressive process is produced as follows:

where is a zero-mean white noise process.

(a) Show that the autocorrelation of satisfies the following set of equations:

(b) Use these recursive equations to compute the autocorrelation of the process in
Example 10.22.

Section 10.3: Bandlimited Random Processes

10.45. (a) Show that the signal x(t) is recovered in Figure 10.10(b) as long as the sampling rate
is above the Nyquist rate.

(b) Suppose that a deterministic signal is sampled at a rate below the Nyquist rate.
Use Fig. 10.10(b) to show that the recovered signal contains additional signal com-
ponents from the adjacent bands. The error introduced by these components is
called aliasing.

(c) Find an expression for the power spectral density of the sampled bandlimited ran-
dom process X(t).

(d) Find an expression for the power in the aliasing error components.

(e) Evaluate the power in the error signal in part c if is as in Problem 10.1b.

10.46. An ideal discrete-time lowpass filter has transfer function:

(a) Show that H( f ) has impulse response 

(b) Find the power spectral density of Y(kT) that results when the signal in Problem
10.1b is sampled at the Nyquist rate and processed by the filter in part a.

(c) Let Y(t) be the continuous-time signal that results when the output of the filter in
part b is fed to an interpolator operating at the Nyquist rate. Find 

10.47. In order to design a differentiator for bandlimited processes, the filter in Fig. 10.10(c) is
designed to have transfer function:

H1f2 = j2pf>T for ƒf ƒ 6 1/2.

SY1f2.

hn = sin12pfcn2>pn.

H1f2 = b1 for ƒf ƒ 6 fc 6 1>2
0 for fc 6 ƒf ƒ 6 1>2.

SX1f2

RY1k2 = a
q

i=1

aiRY1k - i2.

RY102 = a
q

i=1

aiRY1i2 + RW102
Yn

Wn

Yn = a1Yn-1 + Á + aqYn-q + Wn ,

Yn

Zn

Zn

RZ1k2.SZ1f2
Zn = Yn - 1/4Yn-1 .
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(a) Show that the corresponding impulse response is:

(b) Suppose that is sampled at a rate and then
input into the above digital filter. Find the output Y(t) of the interpolator.

10.48. Complete the proof of the sampling theorem by showing that the mean square error is
zero. Hint: First show that 

10.49. Plot the power spectral density of the amplitude modulated signal Y(t) in Example 10.18,
assuming Assume that A(t) is the signal in Problem 10.1b.

10.50. Suppose that a random telegraph signal with transition rate is the input signal in an am-
plitude modulation system. Plot the power spectral density of the modulated signal as-
suming and 

10.51. Let the input to an amplitude modulation system be where is uni-
formly distributed in Find the power spectral density of the modulated signal
assuming

10.52. Find the signal-to-noise ratio in the recovered signal in Example 10.18 if for
and zero elsewhere.

10.53. The input signals to a QAM system are independent random processes with power spec-
tral densities shown in Fig. P10.7. Sketch the power spectral density of the QAM signal.

ƒf ; fc ƒ 6 W
SN1f2 = af2

fc 7 f1 .
1-p, p2.

£2 cos12pf1 + £2,
fc = 10a>p.fc = a>p

a

fc 7 W; fc 6 W.

E31X1t2-1Xn 11t2X1kT24 = 0, all k.

1>T = 4f0X1t2 = a cos12pf0t + ®2
h0 = 0, hn =

pn cospn - sinpn

pn2T
=
1-12n
nT

n Z 0

10.54. Under what conditions does the receiver shown in Fig. P10.8 recover the input signals to
a QAM signal?

10.55. Show that Eq. (10.67b) implies that is a purely imaginary, odd function of f.SB,A1f2
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Section 10.4: Optimum Linear Systems

10.56. Let as in Example 10.22, where is a first-order process with
and is white noise with 

(a) Find the optimum filter for estimating 

(b) Find the mean square error of the resulting filter.

10.57. Let as in Example 10.21, where has and has 

where and are less than one in magnitude.

(a) Find the equation for the optimum filter for estimating 

(b) Write the matrix equation for the filter coefficients.

(c) Solve the case, if and 

(d) Find the mean square error for the optimum filter in part c.

(e) Use the matrix function of Octave to solve parts c and d for 

10.58. Let as in Example 10.21, where is the first-order moving average
process of Example 10.7, and is white noise.

(a) Find the equation for the optimum filter for estimating 

(b) For the and cases, write and solve the matrix equation for the filter co-
efficients.

(c) Find the mean square error for the optimum filter in part b.

10.59. Let as in Example 10.19, and suppose that an estimator for uses ob-
servations from the following time instants:

(a) Solve the case if and are as in Problem 10.56.

(b) Find the mean square error in part a.

(c) Find the equation for the optimum filter.

(d) Write the matrix equation for the filter coefficients.

(e) Use the matrix function of Octave to solve parts a and b for 

10.60. Consider the predictor in Eq. (10.86b).

(a) Find the optimum predictor coefficients in the case when 

(b) Find the mean square error in part a.

(c) Use the matrix function of Octave to solve parts a and b for 

10.61. Let X(t) be a WSS, continuous-time process.

(a) Use the orthogonality principle to find the best estimator for X(t) of the form

where and are given time instants.

(b) Find the mean square error of the optimum estimator.

(c) Check your work by evaluating the answer in part b for and Is the an-
swer what you would expect?

10.62. Find the optimum filter and its mean square error in Problem 10.61 if and

10.63. Find the optimum filter and its mean square error in Problem 10.61 if and 
and Compare the performance of this filter to the performance

of the optimum filter of the form Xn 1t2 = aX1t - d2.
RX1t2 = e-a ƒ t ƒ- 2d,

t2 = tt1 = t - d

t2 = t + d.
t1 = t - d

t = t2 .t = t1

t2t1

Xn 1t2 = aX1t12 + bX1t22,

p = 3, 4, 5.

RZ1k2 = 911>32 ƒk ƒ.p = 2

p = 2, 3.

2p + 1

NaZap = 1

I = 5n - p, Á , n, Á , n + p6.
ZaXa = Za + Na

p = 2p = 1

Za .

Na

ZaXa = Za + Na

p = 3, 4, 5.

r2 = 1>3.sZ
2 = 9, r1 = 2>3, sN

2 = 1,p = 2

Za .

r2r1RN1k2 = sN
2 r2

 ƒk ƒ,

NaRZ1k2 = sZ
2 1r12 ƒk ƒZaXa = Za + Na

Za .p = 1

sN
2 = 1.NaRZ1k2 = 413>42 ƒk ƒ

ZaXa = Za + Na
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10.64. Modify the system in Problem 10.33 to obtain a model for the estimation error in the op-
timum infinite-smoothing filter in Example 10.24. Use the model to find an expression
for the power spectral density of the error and then show that the
mean square error is given by:

Hint:

10.65. Solve the infinite-smoothing problem in Example 10.24 if Z(t) is the random telegraph
signal with and N(t) is white noise. What is the resulting mean square error?

10.66. Solve the infinite-smoothing problem in Example 10.24 if Z(t) is bandlimited white noise
of density and N(t) is (infinite-bandwidth) white noise of noise density What
is the resulting mean square error?

10.67. Solve the infinite-smoothing problem in Example 10.24 if Z(t) and N(t) are as given in
Example 10.25. Find the resulting mean square error.

10.68. Let where and are independent, zero-mean random processes.

(a) Find the smoothing filter given by Eq. (10.89) when is a first-order autoregressive
process with and and is white noise with 

(b) Use the approach in Problem 10.64 to find the power spectral density of the error 

(c) Find as follows: Let factor the denominator and take the in-
verse transform to show that:

(d) Find an expression for the resulting mean square error.

10.69. Find the Wiener filter in Example 10.25 if N(t) is white noise of noise density 
and Z(t) has power spectral density

10.70. Find the mean square error for the Wiener filter found in Example 10.25. Compare this
with the mean square error of the infinite-smoothing filter found in Problem 10.67.

10.71. Suppose we wish to estimate (predict) by

(a) Show that the optimum filter must satisfy

(b) Use the Wiener-Hopf method to find the optimum filter when 

10.72. Let where and are independent random processes, is a white
noise process with and is a first-order autoregressive process with 

We are interested in the optimum filter for estimating from Xn ,Xn-1 , Á .Zn411>22 ƒk ƒ.
RZ1k2 =Zns2

N = 1,
NnNnZnXn = Zn + Nn ,

RX1t2 = e-2 ƒt ƒ.

RX1t + d2 = L
q

0

h1x2RX1t - x2 dx t Ú 0.

Xn 1t + d2 = L
q

0

h1t2X1t - t2 dt.
X1t + d2

Sz1f2 =
4

4 + 4p2f2 .

N0>2 = 1>3

Re1k2 =
sX

2z1

a11 - z1
22 z1

ƒk ƒ where 0 6 z1 6 1.

Se1f2,Z = ej2pf,Re1k2
Se1f2.

sN
2 = 4.Nna = 1/2sX

2 = 9
Zn

NnZnXn = Zn + Nn ,

N0>2.N1>2
a = 1/2

E3e21t24 = Re102.

E3e21t24 = L
q

-q

SZ1f2SN1f2
SZ1f2 + SN1f2 df.

e1t2 = Z1t2 - Y1t2,
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(a) Find and express it in the form:

(b) Find the whitening causal filter.

(c) Find the optimal causal filter.

Section 10.5: The Kalman Filter

10.73. If and are Gaussian random processes in Eq. (10.102), are and Markov
processes?

10.74. Derive Eq. (10.120) for the mean square prediction error.

10.75. Repeat Example 10.26 with and 

10.76. Find the Kalman algorithm for the case where the observations are given by

where is a sequence of known constants.

Section 10.6: Estimating the Power Spectral Density

10.77. Verify Eqs. (10.125) and (10.126) for the periodogram and the autocorrelation function
estimate.

10.78. Generate a sequence of iid random variables that are uniformly distributed in (0, 1).

(a) Compute several 128-point periodograms and verify the random behavior of the pe-
riodogram as a function of f. Does the periodogram vary about the true power spec-
tral density?

(b) Compute the smoothed periodogram based on 10, 20, and 50 independent peri-
odograms. Compare the smoothed periodograms to the true power spectral density.

10.79. Repeat Problem 10.78 with a first-order autoregressive process with autocorrelation
function:

10.80. Consider the following estimator for the autocorrelation function

Show that if we estimate the power spectrum of by the Fourier transform of 
the resulting estimator has mean

Why is the estimator biased?

Section 10.7: Numerical Techniques for Processing Random Signals

10.81. Let X(t) have power spectral density given by 

(a) Before performing an FFT of you are asked to calculate the power in the
aliasing error if the signal is treated as if it were bandlimited with bandwidth kW0 .

SX1f2,
SX1f2 = b2e-f

2>2W0
2>22p .

E3p'k1f24 = a
k-1

m¿ = -1k-12
RX1m¿2e-j2pfm¿.

rN œk1m2,Xn

rN œk1m2 =
1

k - ƒm ƒ a
k- ƒm ƒ -1

n=0

XnXn+m .

RX1k2 = 1.12 ƒk ƒ.RX1k2 = 11>22 ƒk ƒ;RX1k2 = 1.92 ƒk ƒ;
Xn

Xn

*

bn

Xn = bnZn + Nn

a = 2.a = 0.5

XnZnNnWn

SX1f2 =

1

2z1
¢1 -

1

z1
e-j2pf≤ ¢1 - z1e

j2pf≤
a1 -

1

2
e-j2pfb a1 -

1

2
ej2pfb

.

SX1f2



Problems 645

What value of W should be used for the FFT if the power in the aliasing error is to
be less than 1% of the total power? Assume and .

(b) Suppose you are to perform point FFT of Explore how W, T, and
vary as a function of Discuss what leeway is afforded by increasing N.

(c) For the value of W in part a, identify the values of the parameters T, and for

(d) Find the autocorrelation by applying the FFT to Try the options
identified in part c and comment on the accuracy of the results by comparing them
to the exact value of 

10.82. Use the FFT to calculate and plot for the following discrete-time processes:

(a) for and 

(b)

(c) where is a uniformly distributed in (0, 2 ] and .

10.83. Use the FFT to calculate and plot for the following discrete-time processes:

(a) for and 0 elsewhere, where 

(b) for

10.84. Use the FFT to find the output power spectral density in the following systems:

(a) Input with for for 

(b) Input where is a uniformly distributed random variable 

and for 

(c) Input with as in Problem 10.14 with N = 3 and for 

10.85. (a) Show that

(b) Use approximations to express the above as a DFT relating N points in the time do-
main to N points in the frequency domain.

(c) Suppose we meet the requirement by letting Compare
this to the approach leading to Eq. (10.142).

10.86. (a) Generate a sequence of 1024 zero-mean unit-variance Gaussian random variables
and pass it through a system with impulse response for 

(b) Estimate the autocovariance of the output process of the digital filter and compare
it to the theoretical autocovariance.

(c) What is the pdf of the continuous-time process that results if the output of the digi-
tal filter is fed into an interpolator?

10.87. (a) Use the covariance matrix factorization approach to generate a sequence of 1024
Gaussian samples with autocovariance 

(b) Estimate the autocovariance of the observed sequence and compare to the theoret-
ical result.

Problems Requiring Cumulative Knowledge

10.88. Does the pulse amplitude modulation signal in Example 9.38 have a power spectral den-
sity? Explain why or why not. If the answer is yes, find the power spectral density.

10.89. Compare the operation and performance of the Wiener and Kalman filters for the signals
discussed in Example 10.26.

h1t2 = e-2 ƒt ƒ.

n Ú 0.hn = e-2n

t0 = f0 = 1>2N .t0f0 = 1>N

RX1t2 = 2Reb Lq

0

SX1f2e-j2pft df r .

ƒf ƒ 6 1/2.H1f2 = 1RX(k)Xn

ƒf ƒ 6 1/2.H1f2 = j2pf

®Xn = cos12pf0n + ®2,
ƒf ƒ 6 1/4.H1f2 = 1a = 0.25,RX1k2 = 4a ƒk ƒ,Xn

ƒf ƒ 6 1/2.SX1f2 = 1/2 + 1/2 cos 2pf

fc = 1/8, 1/4, 3/8.ƒf ƒ 6 fcSX1f2 = 1

RX1k2
f0 = 1000p®Xn = cos12pf0n + ®2,

RX1k2 = 411>22 ƒk ƒ + 1611>42 ƒk ƒ..
a = 0.75.a = 0.25RX1k2 = 4a ƒk ƒ,

SX1f2
RX1t2.

SX1f2.5RX1kt026
N = 128, 256, 512, 1024.

t0f0 ,

f0 .
t0SX1f2.N = 2M

b = 1W0 = 1000
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10.90. (a) Find the power spectral density of the ARMA process in Example 10.15 by finding
the transfer function of the associated linear system.

(b) For the ARMA process find the cross-power spectral density from and
then the power spectral density from 

10.91. Let and be jointly WSS and jointly Gaussian random processes that are input
into two linear time-invariant systems as shown below:

(a) Find the cross-correlation function of and Find the corresponding cross-
power spectral density.

(b) Show that and are jointly WSS and jointly Gaussian random processes.

(c) Suppose that the transfer functions of the above systems are nonoverlapping, that is,
Show that and are independent random processes.

(d) Now suppose that and are nonstationary jointly Gaussian random
processes. Which of the above results still hold?

10.92. Consider the communication system in Example 9.38 where the transmitted signal X(t)
consists of a sequence of pulses that convey binary information. Suppose that the pulses
p(t) are given by the impulse response of the ideal lowpass filter in Figure 10.6.The signal
that arrives at the receiver is which is to be sampled and processed
digitally.

(a) At what rate should Y(t) be sampled?

(b) How should the bit carried by each pulse be recovered based on the samples Y(nT)?

(c) What is the probability of error in this system?

Y1t2 = X1t2 + N1t2

X21t2X11t2
Y21t2Y11t2ƒH11f2 ƒ ƒH21f2 ƒ = 0.

Y21t2Y11t2
Y21t2.Y11t2

X21t2: � h21t2 �: Y21t2
X11t2: � h11t2 �: Y11t2

X21t2X11t2
E3YnYm4.

E3YnXm4,


