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We build a new probability measure on closed space and plane polygons. The key construction

is a map, given by Knutson and Hausmann using the Hopf map on quaternions, from the complex

Stiefel manifold of 2-frames in n-space to the space of closed n-gons in 3-space of total length 2.

Our probability measure on polygon space is defined by pushing forward Haar measure on the Stiefel

manifold by this map. A similar construction yields a probability measure on plane polygons which

comes from a real Stiefel manifold.

The edgelengths of polygons sampled according to our measures obey beta distributions. This

makes our polygon measures different from those usually studied, which have Gaussian or fixed

edgelengths. One advantage of our measures is that we can explicitly compute expectations and

moments for chordlengths and radii of gyration. Another is that direct sampling according to our

measures is fast (linear in the number of edges) and easy to code.

Some of our methods will be of independent interest in studying other probability measures on

polygon spaces. We define an edge set ensemble (ESE) to be the set of polygons created by rear-

ranging a given set of n edges. A key theorem gives a formula for the average over an ESE of the

squared lengths of chords skipping k vertices in terms of k, n, and the edgelengths of the ensemble.

This allows one to easily compute expected values of squared chordlengths and radii of gyration for

any probability measure on polygon space invariant under rearrangements of edges.

1. INTRODUCTION

In 1997, Jean-Claude Hausmann and Allen Knutson [11] introduced a useful description of the

space of closed n-edge space polygons of total length 2. They constructed a smooth surjection

based on the Hopf map from the Stiefel manifold V2(C
n) of Hermitian orthonormal 2-frames in

complex n-space to the space of edge sets of closed n-edge polygons in R
3 of total length 2. They

proved that over “proper” polygons with no length-zero edges, this map is locally a smooth U(1)n

bundle1.

While Knutson and Hausmann were interested in this map primarily as a way to analyze the

symplectic and algebraic geometry of polygon space, our focus is on the theory of random poly-

gons. The main idea of this paper is to use versions of their map to push forward natural and highly

symmetric probability measures from four Riemannian manifolds to four spaces of polygons: the

∗University of Georgia, Mathematics Department, Athens GA
†Ochanomizu University, Physics Department, Tokyo, Japan
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spheres in quaternionic and complex n-space map to open n-gons of fixed (total) length 2 in space

and in the plane and the Stiefel manifolds of 2-frames in complex and real n-space map to closed

n-gons of fixed (total) length 2 in space and in the plane. We call the spheres and Stiefel manifolds

the “model spaces” for their spaces of polygons. This construction suggests a natural measure

on polygon spaces that does not seem to have been studied before: the measure pushed forward

from Haar measure on the model spaces. Since Haar measure is maximally symmetric, these mea-

sures are mathematically fundamental and may be physically significant. In this context, we find it

promising that in the case of an equilateral n-edge polygon, our measure restricts to the standard

probability measure on arm space: the product measure on n copies of the standard S2. Further,

for a closed equilateral polygon, our measure again restricts to the expected one: it is the subspace

measure on n-tuples of vectors in the round S2 which sum to zero. We note that alternate measures

on the polygon spaces can be constructed in the same way by choosing different measures on the

model spaces (such as the various measures on Stiefel manifolds found in [3]).

The most important practical property of these measures is that it is very easy to directly sam-

ple n-edge closed polygons in O(n) time (the constant is small), allowing us to experiment with

very large and high-quality ensembles of polygons. The most important theoretical property of

this measure is that it is highly symmetric, allowing us to prove theorems which match our exper-

iments. We will be able to define a transitive measure-preserving action of the full unitary group

U(n) on n-edge closed space polygons of length 2. Using these symmetries, we will be able to ex-

plicitly compute simple exact formulae for the expected values of squared chord lengths and radii

of gyration for random open and closed polygons of fixed length, with corresponding formulae for

equilateral polygons. We can then obtain explicit bounds on how fast the chord lengths of a closed

polygon converge to those of an open polygon as the number of edges increases, providing rigorous

justification for the intuition that a sufficiently long polygon “forgets” that it is closed.

The advantages of the present method for generating random polygons should be quite impor-

tant in the study of ring polymers in polymer physics. While this is not a standard model for random

polygons, our scaling results agree with the results for equilateral polygons in [14], [21], and [2].

Orlandini and Whittington [18] give an excellent survey on what is known about the effects of

topological constraints (such as knotting or linking) on the behavior of ring polymers. While we

do not analyze knotting and linking here, our hope is that by providing an exactly solvable model

together with an efficient algorithm for unbiased sampling, we can eventually answer some of the

open theoretical questions in this field. Furthermore, ring polymers of large molecular weights with

small dispersion have been synthesized quite recently, by which one can experimentally confirm

theoretical predictions.
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2. POLYGONAL ARM SPACES, MODULI SPACES, AND QUATERNIONS

We are interested in a number of spaces of polygons in this paper. For convenience, all of our

polygon spaces will be composed of polygons with total length 2 (though our results apply, by

scaling, to polygon spaces of any fixed length).

Definition 1. Let Arm3(n) be the moduli space of n-edge polygons (which may not be closed) of

length 2 up to translation in R
3, and Arm2(n) be the corresponding space of planar polygons. We

note that by fixing a plane in R
3, we have Arm2(n) ⊂ Arm3(n). If we identify polygons related

by a rotation, we have the commutative diagram:

SO(3) ✲ Arm3(n) ✲✲ Arm3(n)/SO(3) = Arm3(n)

O(2)

✻

✲ Arm2(n)

✻

✲✲ Arm2(n)/O(2) = Arm2(n)

✻

(1)

where Arm3(n) is the moduli space of n-edge polygons of length 2 up to translation and rotation

in R
3, but Arm2(n) is the space of n-edge polygons of length 2 up to translation, rotation, and

reflection in R
2. This additional identification is needed to make Arm2(n) ⊂ Arm3(n), since two

polygons related by a reflection in the plane are related by a rotation in space.

An element of Armi(n) is a list of edge vectors e1, . . . , en in R
i whose lengths sum to 2, while

an element of Armi(n) is an equivalence class of edge lists.

We now need some special properties of R2 and R
3. Recall that the skew-algebra of quaternions

is defined by adding formal elements i, j, and k to R with the relations that i2 = j2 = k2 = −1 and

ij = k, jk = i, and ki = j while ji = −k, kj = −i, and ik = −j. Using these rules, quaternionic

multiplication is an associative (but not commutative) multiplication on R
4 which makes R4 into a

division algebra. As with complex numbers, we refer to the real and imaginary parts of a quater-

nion, though here the imaginary part is a 3-vector determined by the three coefficients of i, j, and

k. If we identify R
3 with the imaginary quaternions, the unit quaternions (S3) double-cover the

orthonormal 3-frames (SO(3)) via the triple of Hopf maps Hopf i(q) = q̄iq, Hopfj(q) = q̄jq, and

Hopfk(q) = q̄kq. Since we will focus on the map Hopf i as our “standard” Hopf map, we denote

Hopf i by Hopf .

q = (q0, q1, q2, q3) 7→

(
q̄iq q̄jq q̄kq

)
=




q20 + q21 − q22 − q23 2q1q2 + 2q0q3 2q1q3 − 2q0q2
2q1q2 − 2q0q3 q20 − q21 + q22 − q23 2q0q1 + 2q2q3
2q0q2 + 2q1q3 2q2q3 − 2q0q1 q20 − q21 − q22 + q23


 (2)
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It is a standard computation to verify that q̄iq (and the other columns) are purely imaginary

quaternions with i, j and k components matching the real matrix form at right, that they are all

orthogonal in R
3, and that the norm of each column is the square of the norm of q. Further, if we

call this map the “frame Hopf map” FrameHopf(q), then it is also standard that this is a covering

map and

FrameHopf(q) = FrameHopf(q′) ⇐⇒ q = ±q′ (3)

If we write a unit quaternion in the form q = (cos θ/2, sin θ/2~n), then the image

FrameHopf(q) ⊂ SO(3) is the rotation around the axis ~n by angle θ. The action of this rota-

tion matrix on R
3 corresponds to quaternionic conjugation by q. That is, explicitly, if we view a

purely imaginary quaternion p ∈ IH as a vector ~p ∈ R
3, we have

FrameHopf(q)~p = q̄pq. (4)

There is one last way of writing unit quaternions which will be important to us: the unit quater-

nions can be identified with the special unitary group SU(2) by representing quaternions as Pauli

matrices. If we let q = a+ bj, where a, b ∈ C, then the map η : H → Mat2×2(C) given by

η(q) =

(
a b
−b̄ ā

)
, η(1) =

(
1 0
0 1

)
, η(i) =

(
i 0
0 −i

)
, η(j) =

(
0 1
−1 0

)
, η(k) =

(
0 i
i 0

)
(5)

is an injective R-algebra homomorphism. In particular, η(q̄) = η(q)∗, η(pq) = η(p)η(q) and

det(η(q)) = qq̄ = |q|2, so η is an isomorphism between the groups UH and SU(2).

We can extend the Hopf map coordinatewise to a map Hopf : H
n → R

3n.

Proposition 2. Hopf is a smooth map from the sphere of radius
√
2, S4n−1 ⊂ H

n onto Arm3(n).

Proof. Given ~q ∈ H
n, we define the edge set of the polygon Hopf(~q) by

(e1, . . . , en) := (Hopf(q1), . . . ,Hopf(qn)).

The only thing to check is that

Length(P ) =
∑

|ei| =
∑

|qi|2 = 2. (6)

This follows from the fact that the Hopf map squares norms.

We now consider the moduli space Arm3(n) = Arm3(n)/SO(3). By (4), for any unit quater-

nion p we have

Hopf(qp) = p̄Hopf(q)p = FrameHopf(p)Hopf(q).
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This means that the Hopf map takes equivalence classes of points in H
n under right-multiplication

by a unit quaternion to equivalence classes of edge vectors under the action of SO(3). That is,

Hopf maps points in the quaternionic projective space HPn−1 = S4n−1/Sp(1) to Arm3(n). Here

we use Sp(1) to refer to the group of unit quaternions. This yields the commutative diagram

Sp(1) = UH ✲ S4n−1 ⊂ H
n ✲✲ HPn−1 = S4n−1/Sp(1)

SO(3)

FrameHopf
❄❄

✲ Arm3(n)

Hopf
❄❄

✲✲ Arm3(n)/SO(3) = Arm3(n)

❄❄
(7)

Our spaces of planar arms fit naturally into this framework. Consider the planes 1 ⊕ j and

i(1⊕ j) = i⊕ k ⊂ H. The Hopf map sends each of these to the i⊕ k plane:

Hopf(a+ bj) = (a− bj)i(a+ bj) = (a2 − b2)i+ 2abk = i(a+ bj)2 (8)

Hopf(ai+ bk) = (−ai− bk)i(ai+ bk) = (a2 − b2)i− 2abk = i(a+ bj)2 (9)

That is, if we think of z = a+ bj, then Hopf(z) = iz2 and Hopf(iz) = iz2.

The planes 1⊕ j and i⊕ k are preserved by quaternionic multiplication by i (which exchanges

them) and by multiplication by any unit quaternion of the form a + bj, which rotates each plane.

If we think of unit quaternions as elements of SU(2) using the η map of (5), these matrices form a

copy of O(2) given by the subspace SO(2) ⊂ SU(2) of matrices with real entries and the complex

matrices η(±i) which exchange purely real and purely imaginary matrices while negating one of

the columns.

We now have a diagram corresponding to (7) for planar polygons. The edge lists of polygons

in the i ⊕ k plane are all Hopf images of points in the disjoint union of the complex spheres of

radius
√
2 in the 2n-dimensional subspaces of Hn given by (1 ⊕ j)n and (i ⊕ k)n. These spheres

are exchanged by the action of η(±i) and their (complex) coordinates are rotated by the action of

the real matrices SO(2) ⊂ SU(2).

SO(2)× η(±i) = O(2) ✲ S2n−1 ⊔ S2n−1 ⊂ H
n ✲✲ S2n−1 ⊔ S2n−1/O(2)

O(2)

FrameHopf
❄❄

✲ Arm2(n)

Hopf
❄❄

✲✲ Arm2(n)/O(2) = Arm2(n)

❄❄
(10)

We note that while Hopf : S2n−1⊔S2n−1 → Arm2(n) is surjective, these spheres are not all of the

inverse image of Arm2(n) in the unit sphere S4n−1 ⊂ H
n. There are also 2n−1 “mixed” spheres

where some quaternionic coordinates lie in the 1 ⊕ j plane and others lie in the i ⊕ k plane who

project to planar polygons. We won’t need these extra spheres to define our measure on Arm2(n).

Putting this all together, we have
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Proposition 3. The diagrams (7) and (10) can be joined with (1) to form a large commutative

diagram:

SU(2) ✲ S4n−1 ⊂ H
n ✲ S4n−1/ Sp(1) = HPn−1

O(2) ✲

✛

S2n−1 ⊔ S2n−1 ✲

✛

S2n−1 ⊔ S2n−1/O(2)

✛

SO(3)

❄❄
✲ Arm3(n)

Hopf
❄❄

✲✲ Arm3(n)

❄❄

O(2)

FrameHopf

❄❄
✲

✛

Arm2(n)

Hopf
❄❄

✲✲

✛

Arm2(n)

❄❄

✛

Proof. The only thing left to check is that the top right arrow S2n−1 ⊔ S2n−1/O(2) →֒ HPn−1 is

well defined. This follows from the fact that our embedding of O(2) in SU(2) is the stabilizer of

this subset of S4n−1 ⊂ H
n in the group action of SU(2) = Sp(1) on H

n.

3. CLOSED POLYGON SPACES AND STIEFEL MANIFOLDS

Now that we understand arm spaces from the quaternionic point of view, we turn to closed

polygon spaces as subspaces of the arm spaces. It is easiest to see closed polygons in context by

defining Armi(n, ℓ) to be the subspace of Armi(n) of polygons which fail to close by length ℓ
and then letting Poli(n) = Armi(n, 0). As before Pol3(n) = Pol3(n)/SO(3) while Pol2(n) =
Pol2(n)/O(2), since we want Pol2(n) ⊂ Pol3(n).

We now describe the fiber Hopf−1(Pol3(n)) as a subspace of the quaternionic sphere S4n−1. To

do so, we write the quaternionic n-sphere S4n−1 as the join S2n−1 ⋆ S2n−1 of complex n-spheres.

The join map is given in coordinates by

(u, v, θ) 7→
√
2(cos θu+ sin θvj) (11)

where u, v ∈ C
n lie in the unit sphere and θ ∈ [0, π/2]. Now consider the subspace of the

quaternionic sphere described by {(u, v, π/4) | 〈u, v〉 = 0}. This subspace is naturally identified

with the Stiefel manifold V2(C
n) of Hermitian orthonormal 2-frames (u, v) in C

n, and in fact the

subspace metric on V2(C
n) agrees with its standard Riemannian metric. It is the inverse image of

Pol3(n) under Hopf , as shown by Knutson and Hausmann.
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Proposition 4 ([11]). The coordinatewise Hopf map Hopf takes the Stiefel manifold

V2(C
n) ⊂ C

n × C
n = H

n onto Pol3(n). The SU(2) or Sp(1) action on H
n preserves V2(C

n)
(and is the standard action of SU(2) on V2(C

n), rotating the two basis vectors in their common

plane) and descends to the SO(3) action on Pol3(n), leading to a commutative diagram:

SU(2) ✲ V2(C
n) ⊂ H

n ✲✲ V2(C
n)/SU(2)

SO(3)

FrameHopf
❄❄

✲ Pol3(n)

Hopf
❄❄

✲✲ Pol3(n)/SO(3) = Pol3(n)

❄❄
(12)

Proof. In complex form, the map Hopf i(q) can be written more simply as

Hopf i(a+ bj) = (aā− bb̄,−i(ab̄− āb), ab̄+ āb)

= (|a|2 − |b|2, 2ℑ(ab̄), 2ℜ(ab̄))
= i(|a|2 − |b|2 + 2ab̄j)

(13)

using the identification of R3 with the imaginary quaternions. This means that the vector connect-

ing the first and last vertices of P = Hopf(q1, . . . , qn) has norm

∣∣∣
∑

ei

∣∣∣
2
=
∣∣∣
∑

Hopf(qi)
∣∣∣
2
=
∣∣∣
∑

2| cos θ ui|2 −
∑

2| sin θ vi|2 + 4 cos θ sin θ
∑

uivij
∣∣∣
2

=
∣∣2 cos2 θ − 2 sin2 θ

∣∣2 + |4 cos θ sin θ 〈u, v〉|2

= |2 cos 2θ|2 + |2 sin 2θ 〈u, v〉|2

= 4 cos2 2θ + 4 sin2 2θ |〈u, v〉|2 .

(14)

Thus the polygon closes if and only if θ = π/4 and u, v are orthogonal.

We note in passing that V2(C
n)/SU(2) is not quite the complex Grassmann mani-

fold G2(C
n) of complex 2-planes in C

n. In fact, V2(C
n)/SU(2) is a circle bundle over

G2(C
n) = V2(C

n)/U(2). Howard, Manon, and Millson [12] identified G2(C
n) as essentially a

covering space of the quotient of the moduli space of framed closed polygons in R
3 by the circle

action given by simultaneous rotation of all vectors in the frame.

A corresponding theorem holds for closed planar polygons under the action of O(2) rather than

SO(2). In the language of Howard, Manon, and Millson, these are not planar polygons framed in

3-space, but rather planar polygons framed with respect to the plane.
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Proposition 5 ([11]). The coordinatewise Hopf map Hopf takes the disconnected mani-

fold V2(R
n) ⊔ iV2(R

n) ⊂ C
n × C

n = H
n onto Pol2(n). The action of the orthogonal group

O(2) = SO(2)× η(±i) ⊂ SU(2) on H
n preserves V2(R

n) ⊔ iV2(R
n). The quotient space

(V2(R
n) ⊔ iV2(R

n))/O(2) is the Grassmann manifold G2(R
n) of 2-planes in R

n and we have

a commutative diagram:

O(2) ⊂ SU(2) ✲ V2(R
n) ⊔ iV2(R

n) ⊂ C
n × C

n = H
n ✲✲ G2(R

n)

O(2)

FrameHopf
❄❄

✲ Pol2(n)

Hopf
❄❄

✲✲ Pol2(n)/O(2) = Pol2(n)

❄❄
(15)

Proof. This follows by combining of our characterization of closed polygons from Proposition 4

and our characterization of planar polygons from (10). We note that as above, this is not the entire

inverse image of Pol2(n) under the Hopf map. Just as “mixed” spheres with some quaternionic

coordinates in 1 ⊕ j and some in i ⊕ k map to Arm2(n), “mixed” frames (a, b) ∈ V2(C
n) with

some pairs (ai, bi) purely real and others purely imaginary map to Pol2(n). We will not need these

additional frames to define our measure below.

As before, the inclusion of planar polygons into space polygons can now be extended to a large

commutative diagram:

Proposition 6. The diagrams (12) and (15) can be joined by inclusions to form a large commutative

diagram:

SU(2) ✲ V2(C
n) ⊂ H

n ✲ V2(C
n)/SU(2)

O(2) ✲

✛

V2(R
n) ⊔ iV2(R

n) ✲

✛

G2(R
n)

✛

SO(3)

❄❄
✲ Pol3(n)

Hopf
❄❄

✲✲ Pol3(n)

❄❄

O(2)

FrameHopf

❄❄
✲

✛

Pol2(n)

Hopf
❄❄

✲✲

✛

Pol2(n)

❄❄

✛
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Finally, we note that the inclusion of closed polygons into arm space generates yet another set

of useful commutative diagrams. For space polygons, we have

Sp(1) ✲ S4n−1 ⊂ H
n ✲ HPn−1

SU(2) ✲

✛
∼=

✲

V2(C
n) ✲

✛

V2(C
n)/SU(2)

✛

SO(3)

π

❄
✲ Arm3(n)

Hopf
❄

✲ Arm3(n)
❄

SO(3)

π

❄
✲

✛
∼=

✲

Pol3(n)

Hopf
❄

✲

✛

Pol3(n)

❄

✛

while there is a corresponding diagram (not shown) for planar polygons. Of course, we could

combine the two into a single mighty diagram connecting all two dozen spaces at hand, but we

refrain out of consideration for the reader.

4. SYMMETRIC MEASURES ON POLYGON SPACES

We now see the model spaces referred to in the introduction. The Hopf map now maps four

standard Riemannian manifolds to four polygon spaces:

S2n−1 ⊔ S2n−1 ✲ S4n−1 ⊂ H
n

V2(R
n) ⊔ iV2(R

n) ✲

✛

V2(C
n)

✛

Arm2(n)

Hopf

❄
✲ Arm3(n)

Hopf
❄

Pol2(n)

Hopf

❄
✲

✛

Pol3(n)

Hopf
❄

✛

We can now define probability measures on the polygon spaces by pushing forward measures on

the model spaces. While we are free to choose any measure in this construction, since each of the

model spaces is a symmetric space it is natural to choose to push forward Haar measure. Of course,

this is also the measure defined by the standard Riemannian metrics on these spaces.
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Definition 7. We define the symmetric measure µ on our polygon spaces by

for U ⊂ Arm3(n), µ(U) =
1

VolS4n−1

∫

Hopf−1(U)
dVolS4n−1⊂Hn ,

for U ⊂ Pol3(n), µ(U) =
1

VolV2(Cn)

∫

Hopf−1(U)
dVolV2(Cn),

for U ⊂ Arm2(n), µ(U) =
1

Vol(S2n−1 ⊔ S2n−1)

∫

Hopf−1(U)
dVolS2n−1⊔S2n−1⊂Hn ,

for U ⊂ Pol2(n), µ(U) =
1

Vol(V2(Rn) ⊔ iV2(Rn))

∫

Hopf−1(U)
dVolV2(Rn)⊔iV2(Rn) .

Since each of these manifolds has a transitive group of isometries, it will prove relatively easy

to integrate over these spaces. For instance, our measure on Arm3(n) is preserved by the action of

the quaternionic unitary group Sp(n) on S4n−1, while our measure on Pol3(n) is preserved by the

action of U(n) on V2(C
n). Our measure on Arm2(n) is preserved by the action of U(n) on each

complex sphere, as well as by the Z/2Z action exchanging them, while our measure on Pol2(n) is

preserved by the O(n) action on each V2(R
n), as well as by the Z/2Z action exchanging them.

We note that these measures push forward to corresponding measures on the smaller spaces

Poli(n) and Armi(n). This fact turns out to be relatively unimportant for computing expectations,

since it seems easier to integrate over the larger spaces. The real importance of this construction

is likely to be theoretical: any function on plane polygons which is invariant under the full Eu-

clidean group O(2)×R
2 now lifts to a function on G2(R

n), while any function on space polygons

which is invariant under orientation preserving isometries SO(3) × R
3 now lifts to a function on

V2(C
n)/SU(2). This seems potentially fascinating! For instance, what are the properties of the

writhing number as a map Writhe: V2(C
n)/SU(2) → R?

5. MOMENTS OF THE EDGELENGTH DISTRIBUTION ON ARM AND POLYGON SPACE

Since the Hopf map squares norms, given a point (q1, . . . , qn) in the quaternionic n-sphere

S4n−1, the edges of the corresponding polygon have lengths |q1|2, . . . , |qn|2. We now compute

the moments of the edgelength distribution on arm space and on polygon space using a formula of

Lord [16] relating the moments µ2, µ4, . . . of a spherical distribution on k-space to the moments

ν2, ν4, . . . of its projection onto an l-dimensional subspace:

µ2

k
=

ν2
l
,

µ4

k(k + 2)
=

ν4
l(l + 2)

,
µ6

k(k + 2)(k + 4)
=

ν6
l(l + 2)(l + 4)

, . . .

This can be packaged into the following general formula either by doing some arithmetic on the
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above or by integrating [15, Equation (8)]:

1

2
µ2p B(p, k/2) =

1

2
ν2p B(p, l/2),

where B is the Euler beta function.

We can now easily compute moments of the edgelength distribution on our arm and polygon

spaces. We will later give an explicit probability density function for these distributions in Propo-

sition 24.

Proposition 8. The moments of the distribution of an edgelength |ei| are

E(|ei|p,Arm3(n)) = 2p
B(p, 2n)

B(p, 2)
, E(|ei|p,Pol3(n)) =

B(p, n)

B(p, 2)

E(|ei|p,Arm2(n)) = 2p
B(p, n)

B(p, 1)
, E(|ei|p,Pol2(n)) =

B(p, n/2)

B(p, 1)
.

Using Stirling’s formula, we get the following approximations for large n:

E(|ei|p,Arm3(n)) ≃
(p+ 1)!

np
≃ E(|ei|p,Pol3(n))

E(|ei|p,Arm2(n)) ≃
2pp!

np
≃ E(|ei|p,Pol2(n))

Proof of Proposition 8. The pth moment of edgelength for space arms is the 2pth moment ν2p
of the distribution on H

1 = R
4 obtained by projecting the uniform measure on the quaternionic

(4n− 1)-sphere of radius
√
2 onto quaternionic 1-space. Since the measure on the sphere has 2pth

moment
√
2
2p

= 2p, according to Lord’s formula we have

1

2
2p B(p, 2n) =

1

2
ν2p B(p, 2),

so

ν2p = 2p
B(p, 2n)

B(p, 2)
.

For the Arm2(n) spaces, we are projecting from the
√
2-sphere in C

n to C
1, so the calculations

become

1

2
2p B(p, n) =

1

2
ν2p B(p, 1) =⇒ ν2p = 2p

B(p, n)

B(p, 1)
.

Repeating these calculations on the Stiefel manifolds representing Pol3(n) and Pol2(n) re-

quires only a little more work. Given a pair (a, b) ∈ V2(C
n) representing a polygon in Pol3(n),
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the edgelength is given by |ei| = |ai|2 + |bi|2, or the squared norm of the vector (ai, bi) ∈ C
2. If

(a, b) is uniformly distributed on the Stiefel manifold, the vector a is uniformly distributed on the

unit S2n−1, so the projection from (a, b) 7→ ai ∈ C has 2pth moment ν2p obeying

1

2
· 1 · B(p, n) = 1

2
ν2p B(p, 1) =⇒ ν2p =

B(p, n)

B(p, 1)
.

On the other hand, the measure on V2(C
n) is U(2) invariant, so the projection (a, b) 7→

(ai, bi) ∈ C
2 projects the uniform measure on V2(C

n) to a spherically symmetric measure on

C
2 = R

4. The projection from C
2 to C

1 given by (ai, bi) 7→ ai takes this unknown measure to the

measure on C whose moments we computed above. Thus, we can apply Lord’s formula again to

solve backwards for the moments µ2p of edgelength:

1

2
µ2p B(p, 2) =

1

2

(
B(p, n)

B(p, 1)

)
B(p, 1) =⇒ µ2p =

B(p, n)

B(p, 2)
.

For planar polygons, the calculations are similar, but the moments of the projected measure on

ai ∈ R are

ν2p =
B(p, n/2)

B(p, 1/2)
,

and the same “backwards” application of Lord’s formula works as above to solve for the moments

of the unknown distribution on C = R
2 from these moments of the distribution on R.

Notice that in all cases the first moment of edgelength is 2/n, as we expect since the sum of the

edgelengths is always 2. In the ensuing sections we will repeatedly use the second moments of

edgelength, which we collect in the following corollary.

Corollary 9. The second moments of the distribution of an edgelength |ei| are

E(|ei|2,Arm3(n)) =
6

n(n+ 1/2)
, E(|ei|2,Pol3(n)) =

6

n(n+ 1)
,

E(|ei|2,Arm2(n)) =
8

n(n+ 1)
, E(|ei|2,Pol2(n)) =

8

n(n+ 2)
.

There is one more expectation which we will need below. We have written Armi(n) as the

union of the spaces Armi(n, ℓ) of arms which fail to close by distance ℓ. We now show:

Proposition 10. The expected value of the squared failure to close ℓ2 = |
∑

ei|2 on Armi(n) is

given by

E(ℓ2,Armi(n)) = nE(|ej |2,Armi(n)).
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Proof. We can expand ℓ2 as
∑

|ei|2 + 2
∑

〈ei, ej〉 and compute the expectation of each term

separately. Now

E(〈ei, ej〉 ,Arm3(n)) = E(〈Hopf(qi),Hopf(qj)〉 , S4n−1),

and if we write q = a+ bi+ cj+ dk, then q′ = c− di− aj+ bk has Hopf(q′) = −Hopf(q). This

is easily checked by recalling that

Hopf(a+ bi+ cj+ dk) = (a2 + b2 − c2 − d2)i+ (2bc− 2ad)j+ (2ac+ 2bd)k.

Using this, we see the map (q1, . . . , qi, . . . , qn) 7→ (q1, . . . , q
′
i, . . . , qn) is an isometry of the quater-

nionic sphere which reverses the sign of 〈Hopf(qi),Hopf(qj)〉. Thus the expectation of 〈ei, ej〉 is

zero, as desired. The proof for Arm2(n) is similar.

Since we have nice formulae for the first and second moments of edgelength, we can work out

the variance of edgelength with only a bit of algebra:

Corollary 11. The variance of edgelength on our spaces is given by

V (|ei|,Arm3(n)) =
2(n− 1)

n2(n+ 1/2)
, V (|ei|,Pol3(n)) =

2(n− 2)

n2(n+ 1)
.

V (|ei|,Arm2(n)) =
4(n− 1)

n2(n+ 1)
, V (|ei|,Pol2(n)) =

4(n− 2)

n2(n+ 2)
.

Similarly, it is easy to work out the covariance of edgelength.

Corollary 12. The covariance of edgelength is given by

Cov(|ei|, |ej |,Arm3(n)) =
−2

n2(n+ 1/2)
, Cov(|ei|, |ej |,Pol3(n)) =

n− 2

n− 1

−2

n2(n+ 1)

Cov(|ei|, |ej |,Arm2(n)) =
−4

n2(n+ 1)
, Cov(|ei|, |ej |,Pol2(n)) =

n− 2

n− 1

−4

n2(n+ 2)

Proof. We start with the fact that

V

(
n∑

i=1

|ei|
)

=
∑

i,j

Cov(|ei|, |ej |) =
n∑

i=1

V (|ei|) +
∑

i 6=j

Cov(|ei|, |ej |).

Since
∑ |ei| = 2, the left hand side is zero. For i 6= j, Cov(|ei|, |ej |) is independent of i and

j since we can permute edges; likewise, V (|ei|) is independent of i. Therefore, on each of our

polygon spaces the above equation reduces to

Cov(|ei|, |ej |) =
−1

n− 1
V (|ei|).

Plugging in the variances from Corollary 11 yields the desired covariances.
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We can see that the variance and covariance of edgelength are approaching zero as n → ∞. It

is tempting to think that this makes our polygons “asymptotically equilateral”. However, Diao [5]

notes that this is really an artifact of the fact that the edgelength is approaching zero. If we rescale

our polygons to length 2n so that the mean edgelength is 2, we see that the variances above ap-

proach 2 or 4 as n → ∞. Thus our polygons are not becoming “relatively equilateral” as n → ∞:

the probability that an edge is larger than a fixed multiple of the mean converges to a positive

value. We will compute some of these probabilities in Section 9. However, even after rescaling the

covariance still goes to zero, so the edgelengths are becoming “asymptotically uncorrelated”.

6. AVERAGING CHORD LENGTHS OVER AN EDGE SET ENSEMBLE OF POLYGONS

We now set out to compute the expected value for the chord lengths of a random arm or poly-

gon. Given (a, b, θ) in the quaternionic sphere which maps to a fixed arm P = Hopf(a, b, θ) =
Hopf(

√
2a cos θ +

√
2b sin θj), the squared length of the chord skipping the first k edges is

Chord(k, P ) =


2 cos2 θ

k∑

j=1

aj āj − 2 sin2 θ

k∑

j=1

bj b̄j




2

+ 16 sin2 θ cos2 θ

∣∣∣∣∣∣

k∑

j=1

aj b̄j

∣∣∣∣∣∣

2

.

It does not seem simple to compute the expected value of this formula directly. We now intro-

duce one of the key ideas of this paper: we can improve the situation substantially by averaging

the right-hand side over all possible permutations of the edges in order to symmetrize it. Fur-

ther, the resulting formula will apply to any measure on polygon space which is symmetric under

rearrangements of an edge set, not just to our measures.

Definition 13. We will call the set of polygons obtained by rearranging a set of edges e1, . . . , en the

edge set ensemble of polygons P(e1, . . . , en). We note that the sum of the edges is invariant under

these rearrangements, so if the polygon e1, . . . , en fails to close, each polygon in the ensemble fails

to close by the same vector. Thus we say P ∈ Armi(n, ℓ) if the polygons in P fail to close by a

vector of length ℓ.

We use this to define a new function sChord(k,P). For any measure on polygon space which

is invariant under permutations of the edges, this has the same expected value as Chord(k, P ).
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Definition 14. The average of the squared length of the chords skipping the first k edges of poly-

gons in an edge set ensemble P is

sChord(k,P) =
4

n!

∑

σ∈Sn




cos2 θ

k∑

j=1

aσ(j)āσ(j) − sin2 θ
k∑

j=1

bσ(j)b̄σ(j)




2

+4 sin2 θ cos2 θ

∣∣∣∣∣∣

k∑

j=1

aσ(j)b̄σ(j)

∣∣∣∣∣∣

2
 .

where Sn is the symmetric group on n letters.

We can now use some algebra to prove

Proposition 15. For any edge set ensemble P ∈ Armi(n, ℓ),

sChord(k,P) =
k(n− k)

n(n− 1)

n∑

j=1

|ej |2 +
k(k − 1)

n(n− 1)
ℓ2.

The proof of this proposition is involved but not terribly illuminating, so we defer it to Ap-

pendix A. However, the result is surprising and pleasant: the averages of the squared lengths of the

chords skipping k edges over all polygons obtained from a given set of n edges depend only on k,

n, and the lengths of the edges! We note that this proposition has nothing to do with our measure on

polygon space, so it should be a general tool for computing expected chordlengths for any measure

on polygon space. Zirbel and Millett have obtained a similar result independently [22]. Figure 1

gives a particular example of this theorem.

We can also consider the radius of gyration of our polygons. If P is assembled from the edges

e1, . . . , en (in order) then the radius of gyration is half of the average squared distance between any

two vertices of the polygon (including repeated pairs where the distance is zero). Again, we can

symmetrize this definition:

Definition 16. The radius of gyration of an open polygon P with n edges e1, . . . , en and n + 1
vertices v1, . . . , vn+1 is

Gyradius(e1, . . . , en) =
1

2(n+ 1)2

∑

i,j

|vi − vj |2 .

We can symmetrize this formula over an edge set ensemble P to get

sGyradius(P) =
1

n!

∑

σ∈Sn

Gyradius(eσ(1), . . . , eσ(n))
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Histogram of squared chord lengths skipping

two edges over both ensembles.

FIG. 1: The figures above show two edge set ensembles for two sets of 5 edges of length 2/5. The first set,

shown left, includes the regular pentagon of length 2. The second set, shown center, is irregular. Though

each edge set ensemble contains 5! = 120 polygons, we reduce by cyclic reordering to display only 24

representative polygons from each. The 120 polygons in each set have a total of 120 · 5 = 600 chords which

skip two edges. The right-hand plot shows a histogram of the squared lengths of these 600 chords for the

regular edge set ensemble (pair of tall darker bars) and the irregular edge set ensemble (set of six shorter

bars). Since the polygons close, ℓ = 0, and Proposition 15 predicts a mean of 6/25 for both data sets. This

value is indicated by a thin vertical line. The mean value of each data set agrees with 6/25 to at least 15 digits

in Mathematica.

We can then prove

Proposition 17. For any edge set ensemble of polygons P ∈ Armi(n, ℓ) with ℓ > 0,

sGyradius(P) =
n+ 2

12(n+ 1)




n∑

j=1

|ej |2 + ℓ2


 .

We think of an edge set ensemble of polygons P ∈ Poli(n) = Armi(n, 0) as having one fewer

vertex. Thus, the correct formula for sGyradius is

sGyradius(P) =
n+ 1

12n




n∑

j=1

|ej |2

 .
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Proof. We start with some algebra on the definition of Gyradius:

Gyradius(e1, . . . , en) =
1

2(n+ 1)2

∑

i,j

|vi − vj |2 =
1

(n+ 1)2

n∑

j=1

n+1∑

i=j+1

|vi − vj |2

=
1

(n+ 1)2

n∑

j=1

n+1−j∑

k=1

|vj+k − vj |2 =
1

(n+ 1)2

n∑

j=1

n+1−j∑

k=1

∣∣∣∣∣∣

j+k−1∑

m=j

em

∣∣∣∣∣∣

2

.

We can then continue with sGyradius:

sGyradius(P) =
1

n!

∑

σ∈Sn

Gyradius(eσ(1), . . . , eσ(n))

=
1

n!

∑

σ∈Sn


 1

(n+ 1)2

n∑

j=1

n+1−j∑

k=1

∣∣∣∣∣∣

j+k−1∑

m=j

eσ(m)

∣∣∣∣∣∣

2


=
1

(n+ 1)2

n∑

j=1

n+1−j∑

k=1

1

n!

∑

σ∈Sn

∣∣∣∣∣∣

j+k−1∑

m=j

eσ(m)

∣∣∣∣∣∣

2

=
1

(n+ 1)2

n∑

j=1

n+1−j∑

k=1

sChord(k,P)

=
n∑

k=1

(n+ 1)− k

(n+ 1)2
sChord(k,P).

Combining this with Proposition 15 and summing over k completes the proof.

7. EXPECTED VALUE OF CHORD LENGTH AND RADIUS OF GYRATION

We can now use our previous results on the moments of the edgelength distribution to compute

the expected value of squared chord length. We note that combining Proposition 15 with our

expected value for ℓ2 from Proposition 4 and simplifying the coefficients yields that the expected

value of Chord(k) on arm space is given by

E(Chord(k),Armi(n)) = kE(|ej |2,Armi(n)).

On polygon space, the situation is similar:

E(Chord(k),Poli(n)) =

(
n− k

n− 1

)
kE(|ej |2,Poli(n)).

We can now compute explicit formulae for these expectations:
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Proposition 18. The expected values for Chord(k) on the arm and polygon spaces are:

E(Chord(k),Arm3(n)) =
6k

n(n+ 1/2)
, E(Chord(k),Pol3(n)) =

(
n− k

n− 1

)
6k

n(n+ 1)
.

E(Chord(k),Arm2(n)) =
8k

n(n+ 1)
, E(Chord(k),Pol2(n)) =

(
n− k

n− 1

)
8k

n(n+ 2)
.

Proof. This follows directly from our observations above, Proposition 15, and Corollary 9.

We can use Proposition 17 and our work above to compute expected values for radius of gy-

ration as well since again (by construction) the expected values of sGyradius match those of

Gyradius:

Proposition 19. The expected value of Gyradius over our arm and polygon spaces is

E(Gyradius,Arm3(n)) =
n+ 2

(n+ 1)(n+ 1/2)
, E(Gyradius,Pol3(n)) =

1

2

1

n
,

E(Gyradius,Arm2(n)) =
4

3

n+ 2

(n+ 1)2
, E(Gyradius,Pol2(n)) =

2

3

n+ 1

n(n+ 2)
.

We can use these chordlength formulae to compute the expected value of the inner product of

two edge vectors in a polygon:

Corollary 20. The expected value of 〈ei, ej〉 on our spaces is given by

E(〈ei, ej〉 ,Arm3(n)) = 0, E(〈ei, ej〉 ,Pol3(n)) = − 6

n3 − n
.

E(〈ei, ej〉 ,Arm2(n)) = 0, E(〈ei, ej〉 ,Pol2(n)) = − 8

(n− 1)n(n+ 2)
.

Proof. We computed the expected value on the Armi spaces above in the proof of Proposition 10.

For the Poli spaces, observe that

〈ei + ej , ei + ej〉 = 〈ei, ei〉+ 2 〈ei, ej〉+ 〈ej , ej〉

Taking the expected value of each side of the equation and rearranging, we get

E(〈ei, ej〉 ,Pold(n)) =
1

2
E(Chord(2),Pold(n))− E(Chord(1,Pold(n)),

which leads directly to the formulae above.

We note that this formula, together with the computations of covariances of edgelengths in

Corollary 12, gives us an explicit calculation of the pairwise correlations between edges.
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8. EQUILATERAL POLYGON SPACE

In our theory, the space of equilateral polygonal arms or closed polygons have a special place:

they are the only fixed edge-length polygon spaces which are invariant under rearrangement of

edges. Our symmetric measure restricts to this space (as a subspace of Arm or Pol) as the product

of measures on round spheres (of dimension 1 or 2) or the subspace of subsets of the product of

spheres which sum to zero, and the sChord and sGyradius formulae of Propositions 15 and 17

apply as well. Since the expected value of the edgelengths is easy to compute, we immediately get

expected values for chord lengths and radius of gyration. Interestingly, they do not depend on the

ambient dimension, since the expected value of edgelength is the same in each case.

Proposition 21. The expected values of Chord(k) on equilateral arm and polygon spaces is

E(Chord(k), eArmi(n)) =
4k

n2
, E(Chord(k), ePoli(n)) =

(
n− k

n− 1

)
4k

n2
.

It is interesting to compare this to the mean of the approximate pdf hk(r) for the kth chord

length r of a (closed) equilateral space polygon of length n given in [20]:

hk(r) =

(
3

2π k(n−k)
n

) 3
2

4πr2e
− 3

2
n

k(n−k)
r2
.

We compute that
∫∞
0 r2hk(r) dr = k(n−k)

n , so that (rescaling appropriately) the mean of r2 with

respect to the pdf hk(r) is
k(n−k)

n
4
n2 , which converges to the result of Proposition 21.

Similarly, we can compute the expected value of radius of gyration:

Proposition 22. The expected value of Gyradius on equilateral arm and polygon spaces is

E(Gyradius, eArmi(n)) =
2

3

n+ 2

n(n+ 1)
, E(Gyradius, ePoli(n)) =

1

3

n+ 1

n2
.

As in Corollary 20 we can compute the expected value of the inner product of two edges as

Corollary 23. The expected value of the inner product 〈ei, ej〉 on equilateral arm and polygon

spaces is

E(〈ei, ej〉 , eArmi(n)) = 0, E(〈ei, ej〉 , ePoli(n)) = − 4

n2

1

n− 1
.
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This last formula (accounting for the fact that our polygons are scaled differently) recovers

the formula of Grosberg [10] for the expected value of the inner product for equilateral closed

polygons. The slightly negative expectation seems to come from the fact that for any edge ei of a

closed n-gon, the other n− 1 edges must add up to −ei in order to close the polygon. Corollary 20

shows the same phenomenon for our larger polygon spaces.

We saw before in Corollary 11 that the variance of edgelength is going to zero as n → ∞ and

the expected value of edgelength goes to zero. However, if we rescale our polygons to length 2n,

the variance of edgelength goes to 2 for (closed) space polygons and 4 for (closed) plane polygons–

that is, the relative variance of edgelength does not go to zero. Thus, while the expected value of

Gyradius goes to zero as n → ∞ for equilateral polygons as well as our original polygons, the

expected value of Gyradius for equilateral rescaled polygons shouldn’t converge to the corre-

sponding expected value of Gyradius for our original polygons rescaled to length 2n. In fact, they

don’t: since Gyradius scales quadratically with length, scaling to length 2n gives us an expected

Gyradius of 4/3(n+1) for (space or plane) equilateral polygons. On the other hand, Proposition 19

tells us that the corresponding expectation for space polygons is 4n while the expectation for plane

polygons is 8
3
n(n+1)
n+2 .

9. EDGELENGTH DISTRIBUTIONS

We can say more precisely how far our polygons are from being equilateral by analyzing the

probability density function of edgelength. Note that the ith edgelength of an arm can be anything

from 0 to 2, so the corresponding probability density function is a function on [0, 2], whereas

polygon edgelengths must be ≤ 1, so the probability density function for polygons has domain

[0, 1].

Proposition 24. The probability density functions for the edgelength |ei| of spatial and planar

arms are given by

φArm
3 (y) =

(2n− 2)(2n− 1)

22n−1
y(2− y)2n−3, φArm

2 (y) =
n− 1

2n−1
(2− y)n−2

and the probability density functions for the edgelength |ei| of spatial and planar polygons are

φPol
3 (y) = (n− 2)(n− 1)y(1− y)n−3, φPol

2 (y) = (n/2 − 1)(1− y)
n/2−2.

Graphs of these functions for a few values of n are shown in Figure 2. Notice that each of

the above is the probability density function of a beta distribution on the appropriate domain, as

summarized in the following table:
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FIG. 2: Graphs of the probability density functions for the ith edgelength of arms and polygons in space and

in the plane.

Beta distribution with

domain shape parameters

φArm
3 (y) [0, 2] 2, 2n− 2

φArm
2 (y) [0, 2] 1, n− 1

φPol
3 (y) [0, 1] 2, n− 2

φPol
2 (y) [0, 1] 1, n/2 − 1

The appearance of beta distributions may seem somewhat surprising, but this is actually to be

expected: given the interval [0, 2] with n− 1 points chosen uniformly on it (which we might think

of as an “abstract” arm), the complement of those points consists of (generically) n subintervals
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whose lengths follow a beta distribution (the argument below is standard and can be found in, e.g.,

Feller [9]).

More specifically, the length L1 of the first subinterval is greater than y if and only if all of

the n− 1 chosen points lie in the interval (y, 2], which happens with probability 1
2n−1 (2− y)n−1.

Therefore, the cumulative distribution function of L1 is 1− 1
2n−1 (2− y)n−1 and so the probability

density function is the derivative

φ(y) =
n− 1

2n−1
(2− y)n−2. (16)

Moreover, the lengths of all of the n subintervals follow the same distribution, as can be seen by

noticing that choosing n− 1 points uniformly on [0, 2] is the same as choosing n points uniformly

on a circle of circumference 2 and cutting at the first point.

Notice that the pdf in (16) is exactly the probability density function of edgelength for planar

arms given in Proposition 24, so in our model for planar arms the edgelength distributions are

insensitive to how the arms lie in the plane. Of course the same cannot be true for polygons, and

indeed the edgelength distributions for our polygon spaces are different from the above distribution.

Perhaps more surprising is that in our model for spatial arms the edgelength distribution does not

match the above.

Proof of Proposition 24. Define the map Fi : S
4n−1 → [0, 2] by (q1, . . . , qn) 7→ |qi|2, which is just

the length of the ith edge of the corresponding arm (recall that, as in Section 2, the total space lying

over Arm3(n) is the sphere of radius
√
2 in H

n). Since the probability density function on S4n−1 is

uniform with respect to the standard metric, we can compute the corresponding probability density

function φArm
3 on [0, 2] using the coarea formula as

φArm
3 (y) =

1

VolS4n−1(
√
2)

∫

~q∈F−1
i (y)

1

|∇Fi(~q)|
dVolF−1

i (y), (17)

where ∇ indicates the intrinsic gradient in S4n−1, F−1
i (y) is the hypersurface corresponding to

arms with ith edge of length y and the measure dVolF−1
i (y) comes from the subspace metric on

this space as a submanifold of S4n−1.

If qi = qi,1 + qi,2i + qi,3j + qi,4k, then Fi(~q) = q2i,1 + q2i,2 + q2i,3 + q2i,4 and so the extrinsic

gradient of Fi is

∇HnFi(~q) = 2qi,1~xi,1 + 2qi,2~xi,2 + 2qi,3~xi,3 + 2qi,4~xi,4.

Since the unit normal to ~q is just ~n = ~q√
2
, we see that 〈~n,∇HnFi(~q)〉 =

√
2Fi(~q), and so

|∇Fi(~q)| =
√

|∇HnFi(~q)|2 − 〈~n,∇HnFi(~q)〉2 =
√
2
√

Fi(~q)
√
2− Fi(~q).
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Since |∇Fi(~q)| is constant on F−1
i (y), equation (17) simplifies as

φArm
3 (y) =

1√
2
√
y
√
2− y

· VolF−1
i (y)

VolS4n−1(
√
2)
. (18)

If Fi(~q) = |qi|2 = y, then qi lives on a 3-sphere of radius
√
y, while the remaining n − 1

quaternionic coordinates lie on a (4n− 5)-sphere of radius
√
2− y. Therefore,

VolF−1
i (y) =

(
VolS3

(√
y
))(

VolS4n−5
(√

2− y
))

= 2π2√y3
√

2− y
4n−5

VolS4n−5(1).

Combining this with (18) yields

φArm
3 (y) =

√
2π2y(2− y)2n−3 · VolS4n−5(1)

VolS4n−1(
√
2)

=
(2n− 2)(2n− 1)

22n−1
y(2− y)2n−3,

as desired.

Completely analogous reasoning yields the probability density function for planar arms since

the intrinsic gradient of edgelength is exactly the same in this case.

For space polygons, the map Fi defined above induces the ith edgelength map Fi : V2(C
n) →

[0, 1] which is given by (a, b) 7→ |ai|2 + |bi|2. Using the coarea formula, the probability density

function on [0, 1] is

φPol
3 (y) =

1

VolV2(Cn)

∫

(a,b)∈F−1
i (y)

1

|∇Fi(a, b)|
dVolF−1

i (y) . (19)

The rest of the argument proceeds as with arms, with the following variations. First, a slight

modification of the earlier calculation shows that, for (a, b) ∈ F−1
i (y), the edgelength function Fi

has intrinsic gradient

|∇Fi(a, b)| = 2
√
y
√
1− y

as Jianwei [13] also observed in the process of calculating the homology of real and complex

Grassmannians using a (degenerate) Morse function which reduces to Fi for Grassmannians of

2-planes. Therefore, (19) simplifies as

φPol
3 (y) =

1

2
√
y
√
1− y

· VolF
−1
i (y)

VolV2(Cn)
. (20)

The other major difference from arms is in the volume of F−1
i (y), which is given by the fol-

lowing lemma.
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Lemma 25. The hypersurface in V2(C
n) corresponding to spatial n-gons with ith edge of length y

has (4n− 5)-dimensional volume

VolF−1
i (y) = 2π2√y3

√
1− y

2n−5
Vol V2(C

n−1). (21)

Similarly, the hypersurface in V2(R
n) corresponding to planar n-gons with ith edge of length y

has (2n− 4)-dimensional volume

2π
√
y
√
1− y

n−3
Vol V2(R

n−1). (22)

We defer the proof of this lemma for the moment and observe that (21) allows us to simplify

(20) as

φPol
3 (y) = π2y(1− y)n−3VolV2(C

n−1)

VolV2(Cn)
= (n− 2)(n− 1)y(1− y)n−3

since
VolV2(Cn−1)
VolV2(Cn) = (n−2)(n−1)

π2 .

The argument for planar polygons is entirely parallel.

Proof of Lemma 25. Since the map Fi : V2(C
n) → [0, 1] is given by (a, b) 7→ |ai|2 + |bi|2, it is

U(2)-invariant and so descends to a map F̂i : G2(C
n) → [0, 1].

As Jianwei observes [13, Theorem 3.1], the inverse image F̂−1
i (0) is a copy of G2(C

n−1)

and F̂−1
i (1) is a copy of G1(C

n−1) = CPn−2. Moreover, following the reasoning from [19,

Section 4.1], the hypersurface F̂−1
i (y) for y ∈ (0, 1) is homeomorphic to V2(C

n)/U(1), which can

be viewed as an SU(2)-bundle over F̂−1
i (0) ≃ G2(C

n−1) and as an S2n−5-bundle over F̂−1
i (1) ≃

CPn−2.

Geometrically, the fiber over F̂−1
i (0) is scaled by

√
y, whereas the fiber over F̂−1

i (1) is scaled

by
√
1− y. Therefore, as a hypersurface in G2(C

n),

Vol F̂−1
i (y) =

√
y3
√

1− y
2n−5

Vol
(
V2(C

n−1)/U(1)
)
=

1

2π

√
y3
√
1− y

2n−5
VolV2(C

n−2).

The hypersurface F−1
i (y) ⊂ V2(C

n) is just the Stiefel fiber over F̂−1
i (y) ⊂ G2(C

n); since the

fibers of the Stiefel projection V2(C
n) → G2(C

n) are standard copies of U(2), we can just multiply

the right hand side of the above by VolU(2) = 4π3 to get

VolF−1
i (y) = 2π2√y3

√
1− y

2n−5
VolV2(C

n−1),

as desired.

Re-using notation, let Fi : V2(R
n) → [0, 1] be given by (a, b) 7→ |ai|2 + |bi|2, which descends

to F̂i : G2(R
n) → [0, 1].



25

Then (22) says that, as a hypersurface in V2(R
n),

VolF−1
i (y) = 2π

√
y
√
1− y

n−3
Vol V2(R

n−1).

Essentially the same argument as in the complex case works: for y ∈ (0, 1) the inverse image

F̂−1
i (y) ⊂ G2(R

n) is homeomorphic to V2(R
n−1)/O(1) and geometrically is an SO(2)-bundle

over G2(R
n−1) with fibers scaled by

√
y, as well as an Sn−3-bundle over G1(R

n−1) = RPn−2

with fibers scaled by
√
1− y. Therefore, as a hypersurface in G2(R

n) we have

Vol F̂−1
i (y) =

√
y
√
1− y

n−3
Vol

(
V2(R

n−1)/O(1)
)
=

1

2

√
y
√

1− y
n−3

VolV2(R
n−1).

Since the fibers of the Stiefel projection V2(R
n) → G2(R

n) are copies of O(2), we just multiply

the above by VolO(2) = 4π to get the volume of F−1
i (y) as a hypersurface in V2(R

n), yielding

the expression in (22).

We can now compute the moments of the edgelength distribution and so recover the results of

Section 5: the pth moment of edgelength for spatial arms is computed in this style as

∫ 2

0
ypφArm

3 (y) dy =

∫ 2

0

(2n− 2)(2n− 1)

2n−1
yp+1(2− y)2n−3 dy = 2p

B(p, 2n)

B(p, 2)
,

agreeing with the results of Proposition 8. This probability distribution function is easy to confirm

by experiment, as shown in Figure 3.
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FIG. 3: This plot shows squared edgelength data from an ensemble of 105 64-edge arms generated by Erica

Uehara. The smooth curve shows the function φArm
3 (y) for n = 64, while the data points are normalized

bin counts from a histogram of the squared edge lengths of the polygons in our sample. An interesting

observation is that this data also fits very well to the much simpler function 4096ye−64y , which is only

≃ 0.03343 from φArm
3 (y) in L2 distance over the interval y ∈ [0, 2]. This fitting function is quite simple and

hence should be useful for actual theoretical analysis.

More interestingly, we can make some precise statements about how close to equilateral uni-

formly sampled arms and polygons are. For example, the following proposition implies that all

edgelengths are asymptotically of the same order as the expected value 2/n.
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Proposition 26. The probability that a randomly sampled n-edge spatial arm or polygon has ith
edgelength greater than c lognn for c > 0 satisfies

P

[
|ei| ≥ c

log n

n

]
<

1 + c log n

nc

provided that n is large enough that c > 4
logn .

Similarly, the probability that a randomly sampled n-edge planar arm or polygon has ith edge-

length greater than c lognn for c > 0 satisfies

P

[
|ei| ≥ c

log n

n

]
<

1

nc/2

again provided that c > 4
logn .

Remark 27. Since e4 ≈ 54.6, we have

4

log n
< 1 for n ≥ 55

and so Proposition 26 holds with c = 1 for n ≥ 55.

Both 1+c logn
nc and 1

nc/2 go to zero as n → ∞; therefore the space of n-edge arms and polygons

with ith edgelength greater than c lognn has measure approaching zero for large n.

Proof of Proposition 26. We prove the proposition for spatial arms and planar polygons; the other

two cases are completely parallel.

For spatial arms, the probability that the ith edgelength is greater than c lognn is given by

∫ 2

c logn
n

φ3
Arm(y) dy =

(
1− c

log n

2n

)2n−2(
1 + c log n− c

log n

n

)
. (23)

The second term on the right hand side is less than 1 + c log n, taking care of the numerator in the

bound. As for the first term, if c > 4
logn , then

(
1− c

log n

2n

)2n−2

<

(
1− 4

2n

)2n−2

.

Since this expression is monotone increasing in n and limits to e−4 as n → ∞, it must be less than

e−4 =
(
n

1/logn

)−4
= n−4/logn < n−c,
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again using the fact that c > 4
logn . Therefore,

(
1− c logn2n

)2n−2
< 1

nc and the result follows.

Notice that the expression on the right hand side of (23) behaves asymptotically like the bound
1+c logn

nc , so this bound is optimal whenever it holds.

For planar polygons, the probability that the ith edgelength is greater than c lognn is given by

∫ 1

c logn
n

φ2
Pol(y) dy =

(
1− c

log n

n

)n/2−1

.

Then c > 4
logn ensures that

(
1− c

log n

n

)n/2−1

<

(
1− 4

n

)n/2−1

,

which in turn is monotone increasing in n and so is less than its limiting value of

e−2 =
(
n

1/logn

)−2
= n−2/logn < n−c/2,

as desired. Again, the actual value and the bound are asymptotically the same, so this bound is

optimal.

Proposition 26 implies that, for large n, we should expect all edgelengths of n-edge arms and

polygons to be of the same order as the expected value 2/n. However, the space of arms or polygons

with ith edgelength greater than any fixed multiple of the expected value has positive measure. For

example, the proportion of space n-gons with ith edgelength greater than c 2
n for c > 0 is

P

[
|ei| ≥ c

2

n

]
=

∫ 1

c 2
n

φ3
Pol(y) dy =

(
1− 2c

n

)n−2(
1 + 2c− 4c

n

)

(provided, of course, that c 2
n < 1). This quantity is monotone decreasing in n and hence is bounded

below by its limiting value 1+2c
e2c

. Therefore,

P

[
|ei| ≥ c

2

n

]
>

1 + 2c

e2c

for all n. Similar results hold for the other arm and polygon spaces.
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10. ASYMPTOTIC COMPARISON OF POLYGONS AND ARMS

It is a natural intuition that “sufficiently short” sections of a closed polygon should behave like

corresponding sections of polygonal arms. Since the closure constraint is global, its local effect

should vanish as n → ∞. Expressing distance along the curve in the fraction δ = k/n, it is easy

to see that we have

(1− δ)
n

n+ 1
<

E(Chord(δ),Poli(n))

E(Chord(δ),Armi(n))
< (1− δ)

n

n− 1
.

We can see from this formula that the fractional distance along the curve (in vertices) is what

matters: for any fixed k, δ → 0 as n → ∞ and the expected values of Chord converge rather

quickly for arms and polygons. An even simpler formula holds for equilateral polygons, as

E(Chord(δ), ePoli(n))

E(Chord(δ), eArmi(n))
= (1− δ)

n

n− 1
.

The radius of gyration formulae in Propositions 19 and 22 are similarly interesting: we can see

that, asymptotically, the (squared) radius of gyration of an arm is expected to be exactly twice as

large as the corresponding (squared) radius for a closed polygon.

11. SAMPLING IN ARM SPACE AND POLYGON SPACE

Sampling closed polygons is traditionally fairly difficult. Orlandini et al. [18] provide an

overview of the standard methods, many of which depend on establishing Markov chains which

are ergodic on equilateral closed polygon space and then iterating the chain until the resulting

distribution on polygon space is close to uniform. Grosberg and Moore [17] discuss some po-

tential difficulties with these iterative methods, and give a method for explicitly sampling random

equilateral closed polygons for small numbers of edges by computing the conditional probability

distribution of the n + 1-st edge based on the choice of the first n edges (see [7],[6], and [8] for

conditional probability methods applied to the even more difficult problem of sampling equilateral

closed polygons confined to a sphere, and [20] for an alternate approach to generating ensembles of

equilateral closed polygons). These conditional probability algorithms are somewhat challenging

to implement and fairly slow, requiring high precision arithmetic and scaling with O(n3).

If one is willing to shift one’s focus from equilateral polygons to our polygon spaces where the

edgelengths obey beta distributions, there is a substantial computational reward: direct sampling in

our spaces of closed length 2 (but not equilateral) polygons is fast and easy, taking only a few lines

of code and scaling with O(n). In this section, we describe our sampling algorithm and provide

some numerical results which confirm the theoretical results above.

Sampling a polygon in arm space is equivalent to choosing points uniformly on the sphere

S4n−1 or S2n−1. There is a well-established literature for this problem, but we mention that it



29

suffices to generate a vector of independent standard Gaussians and then normalize it. Sampling

in our closed polygon spaces requires us to sample with respect to Haar measure on the Stiefel

manifold V2(C
n) or V2(R

n). Chikuse [3] gives several algorithms for this. The simplest is

Proposition 28. If u and v are generated uniformly on Sn, the Gram-Schmidt orthonormalization

procedure applied to (u, v) yields an orthonormal frame (u′, v′) which is uniformly distributed on

the Stiefel manifold V2(R
n), or, if Gram-Schmidt is performed with the Hermitian inner product

for vectors on the complex unit sphere, a frame uniformly distributed on V2(C
n).

For the convenience of the reader, here is explicit pseudocode for this method. We assume the

existence of a function GAUSSIAN which gives a random value sampled from a standard Gaussian

distribution, such as the GNU Scientific Library function gsl_ran_ugaussian(). The entries

in the arrays A, B, FrameA, and FrameB are assumed to be complex, the CONJ function is

assumed to give the complex conjugate x − iy of the complex number x + iy, and the RE and

IM functions are assumed to give the real and imaginary parts of a complex number. To generate

random planar polygons, delete the expression I ∗ GAUSSIAN() both places it occurs in the first

loop of RANDOM-SPACE-POLYGON.

CPLXDOT(V,W )

✄ Compute the Hermitian dot product of two complex n-vectors.

for ind = 1 to n
do Dot + = V [ind ] ∗ CONJ(W [ind ])

return Dot

NORMALIZE(V )

✄ Normalize a complex n-vector to unit length.

for ind = 1 to n
do UnitV [ind ] = V [ind ]/SQRT(CPLXDOT(V, V ))

return UnitV

HOPFMAP(a, b)

✄ Compute the vector in R
3 given by the

✄ Hopf map applied to the quaternion a+ bj.
return ( a * CONJ(a) - b * CONJ(b), 2 RE(a * CONJ(b)), 2 IM(a * CONJ(b)) )
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RANDOM-SPACE-POLYGON(n)

✄ Produce edge vectors Edge[ind ] for a

✄ random closed space polygon of length 2.

✄ 1. Generate a frame with Gaussian coordinates.

for ind = 1 to n
do A[ind ] = GAUSSIAN() + I ∗ GAUSSIAN()

B[ind ] = GAUSSIAN() + I ∗ GAUSSIAN()

✄ 2. Perform Gram-Schmidt to get FrameA and FrameB .

for ind = 1 to n
do FrameA[ind ] = A[ind ]

FrameB [ind ] = B[ind ]− (CPLXDOT(B,A)/CPLXDOT(A,A))A[ind ]
FrameA = NORMALIZE(FrameA), FrameB = NORMALIZE(FrameB)

✄ 3. Apply the Hopf map coordinate-by-coordinate.

for ind = 1 to n
do Edge[ind ] = HOPFMAP(FrameA[ind ],FrameB [ind ]).

return Edge

Since this is a linear-time algorithm, this is a very fast way to sample random polygons uni-

formly with respect to our measure. A reference implementation in C of this method is provided as

part of Cantarella’s plCurve library, which is open-source and freely available. Figure 4 shows

some space polygons generated by this library. To provide a check on our theory and our code, we

can now test the predictions of Propositions 18 and 19 against the data generated by the library.

Figure 5 shows the comparison between theory and experiment for mean squared chordlength and

Figure 6 shows the corresponding comparison for radius of gyration. As expected, we see that it is

easy to verify our theorems to several digits numerically.

The sampling algorithm above does not directly generate an ensemble of equilateral polygons:

we are sampling only in the entire polygon spaces Poli(n) and Armi(n) and not in the codimension

n − 1 subspaces ePoli(n) or eArmi(n). However, we can generate polygons uniformly sampled

from a neighborhood of ePoli(n) or eArmi(n) by rejection sampling: we generate a larger ensem-

ble of polygons using the above algorithm and then throw out the polygons with edges longer than

a certain bound. A reference implementation of this polygon generator is provided in plCurve.

To estimate the performance of the method, we can use the pdf of Proposition 26. If we make the

simplifying assumption that the edgelengths are independent (of course, this is not literally true,

but it may be asymptotically true for large numbers of edges) we can estimate the probability of

success for the rejection sampler for a given upper bound on edgelengths. Figure 7 shows a set of

such computations carried out explicitly for 2000-gons.

We note that while the rejection sampler works as expected, it does not generate an ensemble
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200 200 200

2,000 2,000 2,000

20,000 20,000 20,000

FIG. 4: This figure shows three views of three space polygons directly sampled from our distribution on

Pol3(n) by sampling frames in the Stiefel manifold. The polygons have 200, 2,000, and 20,000 edges,

respectively.
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FIG. 5: These graphs show the comparison between the mean squared chordlength predictions of Proposi-

tion 18 and data generated by the Gram-Schmidt sampling algorithm of Section 11. We generated a sample

of 200,000 random 500-gons and computed the mean of squared chordlength for all chords spanning k edges

in each polygon. The mean of those means is plotted above. Since this is a mean over ≃ 109 values, it is not

surprising that it agrees extremely well with the predictions of Proposition 18. To give a specific example,

the computed mean for the squared length of chords skipping 250 edges in a closed space 500-gon was

0.00300383, while the predicted value was ≃ 0.003000012000. These values differ by ≃ 0.127%. The left-

hand graph shows theory and experiment for closed plane (upper curve) and space (lower curve) polygons,

while the right-hand graph shows the same for open plane (upper curve) and space (lower curve) polygons.

Each experiment takes about 18 seconds to run on a desktop Mac.

of polygons which look much like a random sample of equilateral polygons from a statistical point

of view. For instance, even when the rejection sampler accepts only 1 in 1,000 closed space 2,000-

gons, it is still generating an ensemble of polygons where some members have a longest edge as

much as 3.95 times the length of the mean edge. A numerical experiment shows that the second

moment of the edgelength distribution of these polygons is ≃ 1.46 × 10−6, which is rather close

to the value 6/(2,000 ∗ 2,001) ≃ 1.499 × 10−6 predicted for the entire ensemble of closed space

2,000-gons by Corollary 9 and rather far from the corresponding value of 4/2,0002 ≃ 1.0× 10−6

for equilateral polygons. The mean chordlengths and radii of gyration for these polygons behave

accordingly– they are very close to the corresponding mean values over the entire polygon space

and quite far from the mean values for equilateral polygons.

12. FUTURE DIRECTIONS

The sphere and Stiefel manifold techniques of this paper seem to open a large number of inter-

esting opportunities for future exploration in polygon space. Of course, having obtained explicit

formulae for the expected values of chord lengths, it is immediately desirable to start working

out the higher moments of these distributions and indeed to express them explicitly as probability

distributions.

For example, one can certainly expect to say much more than the analysis of Section 10 about
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FIG. 6: This graph shows the comparison between the radius of gyration predictions of Proposition 19 and

data generated by the Gram-Schmidt sampling algorithm of Section 11. We generated a sample of 40,000

random polygons with 100, 200, 300, 400, and 500 edges in each of our four classes of polygons. The mean

gyradius of each of these samples is plotted above, along with the curves from Proposition 19. In order

from bottom to top, the four curves are for Pol3(n) (circles), Pol2(n) (squares), Arm3(n) (diamonds), and

Arm2(n) (triangles). Since computing the radius of gyration of an n-gon is an O(n2) computation, the time

to compute gyradius for the polygons in the ensemble dominated the time required to generate the ensemble

of polygons. The resulting total experiment takes about 3 minutes to run for each class of polygons. As

before, the convergence to our predictions is very good: for closed, space 300-gons, our prediction for the

expected radius of gyradius is 1/600 ≃ 0.001666667. The mean of gyradius for our sample was 0.00166576,

which differs by ≃ 0.054%.

how the pdfs governing “short” arcs of a closed polygon converge to corresponding pdfs for arcs

of open polygonal arms. We believe this can be done with theorems of De Finetti type in proba-

bility such as [4]. These give explicit bounds on how quickly the probability distributions of the

individual coordinates of the frames in a Stiefel manifolds converge to independent (normalized)

Gaussians. We have not yet investigated this question.

Given a space polygon, we may construct a plane polygon by projecting to a plane. It is natural

to consider the relationship between the probability measure on plane polygons obtained by push-

ing forward our measure on space polygons using this construction and our original measure on

plane polygons. They cannot be the same measure, of course: the projected polygons are shorter,

with a variable total length of expected value π/2 (by Crofton’s formula). In fact, even if we rescale

the projected polygons to length 2, the rescaled measure does not seem to be the same either: com-

puting the average Gyradius for 50,000 closed space 1024-gons projected to the plane and then

rescaled to length 2 yields 5.27 × 10−4 which is very far from the expected value of Gyradius of

≃ 6.504× 10−4 predicted by Proposition 19 for closed, length 2, plane 1024-gons.

Grosberg [10] was able to use the expectation of the dot product of two edges in an equilateral

closed random polygon (cf. Corollary 23) to argue that the expected value of total curvature for
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Probability P that a random 2,000-gon has maximum edgelength < λ(mean edgelength).
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FIG. 7: These graphs show data collected from rejection sampling applied to 2,000 edge polygons. For each

of our four classes of polygons and various values of λ we sampled until we had accepted 2,000 polygons

with maximum edgelength less than λ times the mean edgelength for 2,000-gons (1/1000). We recorded the

fraction of accepted polygons for each λ. This data is plotted above; on the left for plane polygons (circles)

and arms (squares) and on the right for space polygons (circles) and arms (squares). The curves show the

comparison estimate computed from Proposition 26 assuming that each edgelength is sampled independently

from the distribution of Proposition 24. As we can see, this estimate predicts the actual performance of the

sampling algorithm quite well. For 2,000 edge plane polygons, it is quite efficient to generate polygons with

λ = 6.5, as about 4.5% of generated polygons are accepted, so our reference implementation generates a

closed polygon in ≃ 0.018 seconds. For 2,000 edge space polygons, the variance of edgelength is lower, so

it is easier to generate polygons with lower λ values. With λ = 4.5, about 8% of polygons are accepted, so

our reference implementation generates a closed space 2,000-gon in ≃ 0.013 seconds.

an n-segment closed (space) polygon is asymptotically nπ
2 + 3

8π. Averaging total curvature over

a sample of 50 million of our 5,000-gons gives an average total curvature of 7854.764997 ≃
5000π

2 + 0.783364. The “surplus” curvature is fairly close to 1
4π ≃ 0.785398, which certainly

suggests the conjecture that the corresponding expectation of total curvature for our polygons is

nπ
2 + 1

4π. We will address this conjecture in [1].

The expected value of the dot product of two edges is fairly easy to compute (as in Grosberg’s

work or Corollaries 20 and 23), but higher moments seem more challenging. More generally,

a deeper understanding of the correlations between edges in either equilateral or non-equilateral

polygons is desirable. In the case of equilateral polygons, the joint distribution of the dot products

between all pairs of edges encodes this correlation completely, so a first step might be to compute

either higher moments of the dot products or covariances of dot products. For non-equilateral poly-

gon spaces the joint distribution of dot products remains interesting, but the correlations between

edges are also dependent on the joint distribution of edgelengths. By Corollary 12 the covariance

of edgelengths is non-zero in our model, so as expected this joint distribution is non-trivial.

There are also more detailed geometric structures available for investigation. Since our arm and
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polygon spaces are quotients of symmetric spaces by groups of isometries, we do not just have a

measure on the arm and polygon spaces but a Riemannian metric, defined so that our projections

are (almost everywhere) Riemannian submersions. This means that (for instance) optimal reconfig-

urations of closed or equilateral polygons can be obtained by following corresponding geodesics.

More relevantly for the statistical physics community, the Laplace-Beltrami operator on the Stiefel

manifolds is well-understood, which should allow us to make some rather precise statements about

(intrinsic) Brownian motion of closed polygonal chains.
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Appendix A: The Proof of Proposition 15

In this section we prove Proposition 15, which we restate for convenience:

Proposition 29.

sChord(k,P) =
k(n− k)

n(n− 1)

n∑

j=1

|ej |2 + 4
k(k − 1)

n(n− 1)
ℓ2.

Proof. From the definition of sChord(k,P) and (14), this is equivalent to proving

4

n!

∑

σ∈Sn




cos2 θ

k∑

j=1

aσ(j)āσ(j) − sin2 θ

k∑

j=1

bσ(j)b̄σ(j)




2

+ 4 sin2 θ cos2 θ

∣∣∣∣∣∣

k∑

j=1

aσ(j)b̄σ(j)

∣∣∣∣∣∣

2


=
k(n− k)

n(n− 1)

n∑

j=1

|ej |2 + 4
k(k − 1)

n(n− 1)

(
cos2 2θ + sin2 2θ

∣∣∣
〈
~a,~b
〉∣∣∣

2
)
. (A1)
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To prove (A1), first expand the terms on the left hand side:


cos2 θ

k∑

j=1

aσ(j)āσ(j) − sin2 θ
k∑

j=1

bσ(j)b̄σ(j)




2

= cos4 θ
k∑

j=1

a2σ(j)ā
2
σ(j) + 2 cos4 θ

∑

1≤i<j≤k

aσ(i)āσ(i)aσ(j)āσ(j)

− 2 sin2 θ cos2 θ
k∑

i=1

k∑

j=1

aσ(i)āσ(i)bσ(j)b̄σ(j)

+ 2 sin4 θ
∑

1≤i<j≤k

bσ(i)b̄σ(i)bσ(j)b̄σ(j) + sin4 θ
k∑

j=1

b2σ(j)b̄
2
σ(j) (A2)

and

∣∣∣∣∣∣

k∑

j=1

aσ(j)b̄σ(j)

∣∣∣∣∣∣

2

=

(
k∑

i=1

aσ(i)b̄σ(i)

)


k∑

j=1

āσ(j)bσ(j)




=

k∑

i=1

aσ(i)āσ(i)bσ(i)b̄σ(i) +
∑

1≤i,j≤k

i 6=j

aσ(i)āσ(j)bσ(i)b̄σ(j). (A3)

Using (A2) and (A3) to re-write the left hand side of (A1) yields

4

n!

∑

σ∈Sn


cos4 θ

k∑

j=1

a2σ(j)ā
2
σ(j) + 2 cos4 θ

∑

1≤i<j≤k

aσ(i)āσ(i)aσ(j)āσ(j)

− 2 sin2 θ cos2 θ

k∑

i=1

k∑

j=1

aσ(i)āσ(i)bσ(j)b̄σ(j) + 2 sin4 θ
∑

1≤i<j≤k

bσ(i)b̄σ(i)bσ(j)b̄σ(j)

+ sin4 θ

k∑

j=1

b2σ(j)b̄
2
σ(j) + 4 sin2 θ cos2 θ

k∑

j=1

aσ(j)āσ(j)bσ(j)b̄σ(j)

+4 sin2 θ cos2 θ
∑

1≤i,j≤k

i 6=j

aσ(i)āσ(j)bσ(i)b̄σ(j)


 (A4)

Since Sn is finite, we can distribute the outer sum, which we do using the following lemma.
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Lemma 30. Let {c1, . . . , cn} be a set of n elements. Then

∑

σ∈Sn

k∑

j=1

cσ(j) = k!(n− k)!

(
n− 1

k − 1

) n∑

j=1

cj (A5)

and

∑

σ∈Sn

∑

1≤i<j≤k

cσ(i)cσ(j) = k!(n− k)!

(
n− 2

k − 2

) ∑

1≤i<j≤n

cicj (A6)

Proof. First, notice that any rearrangement of the k-element set {cσ(1), . . . , cσ(k)} or of its (n−k)-

element complement doesn’t change the sum
∑k

j=1 cσ(j), so each
∑k

j=1 cσ(j) is repeated k!(n−k)!
times in (A5), and likewise for each

∑
i<j cσ(i)cσ(j) in (A6).

Moreover, for each fixed index m, the term cm appears in exactly
(
n−1
k−1

)
sums of the form∑k

j=1 cσ(j), which implies (A5). Similarly, for each fixed m and s, the term cmcs appears in
(
n−2
k−2

)

sums of the form
∑

i<j cσ(i)cσ(j), so (A6) follows.

Using Lemma 30 and

k∑

i=1

k∑

j=1

aσ(i)āσ(i)bσ(j)b̄σ(j) =
k∑

i=1

aσ(i)āσ(i)bσ(i)b̄σ(i) +
∑

1≤i,j≤k

i 6=j

aσ(i)āσ(i)bσ(j)b̄σ(j),

we can re-write (A4) as

4
k!(n− k)!

n!



(
n− 1

k − 1

)
cos4 θ

n∑

j=1

a2j ā
2
j + 2

(
n− 2

k − 2

)
cos4 θ

∑

1≤i<j≤n

aiāiaj āj

− 2

(
n− 1

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j − 2

(
n− 2

k − 2

)
sin2 θ cos2 θ

∑

1≤i,j≤n

i 6=j

aiāibj b̄j

+ 2

(
n− 2

k − 2

)
sin4 θ

∑

1≤i<j≤n

bib̄ibj b̄j +

(
n− 1

k − 1

)
sin4 θ

n∑

j=1

b2j b̄
2
j

+4

(
n− 1

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j + 4

(
n− 2

k − 2

)
sin2 θ cos2 θ

∑

1≤i,j≤n

i 6=j

aiājbib̄j


 . (A7)

From here on all sums will be from 1 to n, we will use “i < j” as shorthand for “1 ≤ i < j ≤ n”

and “i 6= j” as shorthand for “1 ≤ i, j ≤ n, i 6= j”.
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Notice that

4

(
n− 1

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j + 4

(
n− 2

k − 2

)
sin2 θ cos2 θ

∑

i 6=j

aiājbib̄j

= 4 sin2 θ cos2 θ



(
n− 2

k − 1

) n∑

j=1

aj ājbj b̄j +

(
n− 2

k − 2

)


n∑

j=1

aj ājbj b̄j +
∑

i 6=j

aiāj






= 4 sin2 θ cos2 θ



(
n− 2

k − 1

) n∑

j=1

aj ājbj b̄j +

(
n− 2

k − 2

)( n∑

i=1

aib̄i

)


n∑

j=1

ājbj






= 4 sin2 θ cos2 θ



(
n− 2

k − 1

) n∑

j=1

aj ājbj b̄j +

(
n− 2

k − 2

) ∣∣∣
〈
~a,~b
〉∣∣∣

2


 .

Therefore, (A7) can be rewritten as

4
k!(n− k)!

n!



(
n− 1

k − 1

)
cos4 θ

n∑

j=1

a2j ā
2
j + 2

(
n− 2

k − 2

)
cos4 θ

∑

1≤i<j≤n

aiāiaj āj

− 2

(
n− 1

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j − 2

(
n− 2

k − 2

)
sin2 θ cos2 θ

∑

i 6=j

aiāibj b̄j

+ 2

(
n− 2

k − 2

)
sin4 θ

∑

i<j

bib̄ibj b̄j +

(
n− 1

k − 1

)
sin4 θ

n∑

j=1

b2j b̄
2
j

+4

(
n− 2

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j


+ 16

k(k − 1)

n(n− 1)
sin2 θ cos2 θ

∣∣∣
〈
~a,~b
〉∣∣∣

2
. (A8)

Now, we use the fact that |~a|2 = 1 = |~b|2 to show that this is equal to the right hand side of

(A1); specifically, we have

(i).
∑n

j=1 aj āj = 1

(ii).
∑n

j=1 bj b̄j = 1

First, we use (i) in the form

1 =




n∑

j=1

aj āj




2

=
n∑

j=1

a2j ā
2
j + 2

∑

i<j

aiāiaj āj (A9)
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to eliminate
∑

i<j aiāiaj āj from (A8), yielding

4
k!(n− k)!

n!



(
n− 2

k − 2

)
cos4 θ +

(
n− 2

k − 1

)
cos4 θ

n∑

j=1

a2j ā
2
j

− 2

(
n− 1

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j − 2

(
n− 2

k − 2

)
sin2 θ cos2 θ

∑

i 6=j

aiāibj b̄j

+ 2

(
n− 2

k − 2

)
sin4 θ

∑

i<j

bib̄ibj b̄j +

(
n− 1

k − 1

)
sin4 θ

n∑

j=1

b2j b̄
2
j

+4

(
n− 2

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j


+ 16

k(k − 1)

n(n− 1)
sin2 θ cos2 θ

∣∣∣
〈
~a,~b
〉∣∣∣

2
.

Similar manipulations involving (ii) allow us to eliminate
∑

i<j bib̄ibj b̄j from the above and get

4
k!(n− k)!

n!



(
n− 2

k − 2

)(
1− 2 sin2 θ cos2 θ

)
+

(
n− 2

k − 1

)
cos4 θ

n∑

j=1

a2j ā
2
j

− 2

(
n− 1

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j − 2

(
n− 2

k − 2

)
sin2 θ cos2 θ

∑

i 6=j

aiāibj b̄j

+

(
n− 2

k − 1

)
sin4 θ

n∑

j=1

b2j b̄
2
j + 4

(
n− 2

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j




+ 16
k(k − 1)

n(n− 1)
sin2 θ cos2 θ

∣∣∣
〈
~a,~b
〉∣∣∣

2
, (A10)

where the constant coefficient follows from

1 =
(
sin2 θ + cos2 θ

)2
= sin4 θ + 2 sin2 θ cos2 θ + cos4 θ.

Next, to eliminate
∑n

i 6=j aiāibj b̄j , note that multiplying (i) and (ii) yields

1 =

(
n∑

i=1

aiāi

)


n∑

j=1

bj b̄j


 =

n∑

i=1

n∑

j=1

aiāibj b̄j =

n∑

j=1

aj ājbj b̄j +
∑

i 6=j

aiāibj b̄j . (A11)
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Hence, (A10) can be re-written as

4
k!(n− k)!

n!



(
n− 2

k − 2

)(
1− 4 sin2 θ cos2 θ

)
+

(
n− 2

k − 1

)
cos4 θ

n∑

j=1

a2j ā
2
j

− 2

(
n− 2

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j +

(
n− 2

k − 1

)
sin4 θ

n∑

j=1

b2j b̄
2
j

+4

(
n− 2

k − 1

)
sin2 θ cos2 θ

n∑

j=1

aj ājbj b̄j


+ 16

k(k − 1)

n(n− 1)
sin2 θ cos2 θ

∣∣∣
〈
~a,~b
〉∣∣∣

2
. (A12)

Combining the third and fifth terms, then, yields

4
k(k − 1)

n(n− 1)

(
1− 4 sin2 θ cos2 θ

)
+

k!(n− k)!

n!

(
n− 2

k − 1

)
cos4 θ

n∑

j=1

a2j ā
2
j

+2 sin2 θ cos2 θ
n∑

j=1

aj ājbj b̄j + sin4 θ
n∑

j=1

b2j b̄
2
j


+ 16

k(k − 1)

n(n− 1)
sin2 θ cos2 θ

∣∣∣
〈
~a,~b
〉∣∣∣

2

or, equivalently,

k(n− k)

n(n− 1)

n∑

j=1

(∣∣∣
√
2 cos θaj

∣∣∣
2
+
∣∣∣
√
2 sin θbj

∣∣∣
2
)2

+ 4
k(k − 1)

n(n− 1)

(
1− 4 sin2 θ cos2 θ + 4 sin2 θ cos2 θ

∣∣∣
〈
~a,~b
〉∣∣∣

2
)
.

Using the double angle identity sin 2θ = 2 sin θ cos θ and the fact that the jth edge length

|ej | =
∣∣√2 cos θaj

∣∣2 +
∣∣√2 sin θbj

∣∣2, the above is just

k(n− k)

n(n− 1)

n∑

j=1

|ej |2 + 4
k(k − 1)

n(n− 1)

(
1− sin2 2θ + sin2 2θ

∣∣∣
〈
~a,~b
〉∣∣∣

2
)
,

which is equivalent to the right hand side of (A1).
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H. Poincaré Probab. Statist., 23(2, suppl.):397–423, 1987.

[5] Yuanan Diao. Personal Communication.

[6] Yuanan Diao, Claus Ernst, Anthony Montemayor, and Uta Ziegler. Corrigendum: Generating equilat-

eral random polygons in confinement. J. Phys. A, 44:449501, 2011.

[7] Yuanan Diao, Claus Ernst, Anthony Montemayor, and Uta Ziegler. Generating equilateral random

polygons in confinement. J. Phys. A, 44:405202, 2011.

[8] Yuanan Diao, Claus Ernst, Anthony Montemayor, and Uta Ziegler. Generating equilateral random

polygons in confinement II. J. Phys. A, 45:275203, 2012.

[9] William Feller. An Introduction to Probability Theory and its Applications. Vol. II. Second edition.

John Wiley & Sons Inc., New York, 1971.

[10] Alexander Yu. Grosberg. Total curvature and total torsion of a freely jointed circular polymer with

n ≫ 1 segments. Macromolecules, 41(12):4524–4527, 2008.

[11] Jean-Claude Hausmann and Allen Knutson. Polygon spaces and Grassmannians. Enseign. Math. (2),

43(1-2):173–198, 1997.

[12] Benjamin Howard, Christopher Manon, and John Millson. The toric geometry of triangulated polygons

in Euclidean space. Canad. J. Math., 63(4):878–937, 2011.

[13] Zhou Jianwei. The geometry and topology on Grassmann manifolds. Math. J. Okayama Univ., 48:181–

195, 2006.

[14] Hendrik Anthony Kramers. The behavior of macromolecules in inhomogeneous flow. J. Chem. Phys.,

14(7):415–436, 1946.

[15] Reginald Douglas Lord. The distribution of distance in a hypersphere. Ann. Math. Statistics,

25(4):794–798, 1954.

[16] Reginald Douglas Lord. The use of the Hankel transform in statistics I. General theory and examples.

Biometrika, 41(1/2):44–55, 1954.

[17] Nathan T. Moore and Alexander Yu. Grosberg. Limits of analogy between self-avoidance and

topology-driven swelling of polymer loops. Phys. Rev. E, 72(6), 2005.

[18] Enzo Orlandini and Stuart G. Whittington. Statistical topology of closed curves: some applications in

polymer physics. Rev. Modern Phys., 79(2):611–642, 2007.
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