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Abstract. This paper proposes "Matching Models A, B, and C" for the meet-in- 
the-middle attacks against a message with digital signature to provide a more 
sound foundation for the calculation of the probability of success. The typical 
procedures by Yuval and by Merkle are regarded as Model A or "birthday paradox 
in two groups," and are different from the classical birthday paradox. Models B 
and C are applicable for other similar procedures. 

The relationship of Matching Models and probabilistic models for testing the 
algebraic structure of DES is also discussed. 

Key words. Authentication, Digests, Forgery, Hash functions, Data Encryption 
Standard, Birthday problem, Occupancy, Urn models. 

1. Introduction 

The high probabil i ty of success in the "meet-in-the-middle at tack" is often credited 
to the classical bir thday paradox. The credit is not  exact and is misleading. Al though 
the asymptot ic  conclusions in the literature are correct, finite probabilistic models 
should be considered for each version of  the attack as theoretical foundations.  In 
this note Matching  Models A, B, and C are proposed for some versions of  the attack, 
and the exact probabilities of success are calculated. Model  A, which is adequate 
for the typical attack, can be regarded as "bir thday paradox  in two g roups . "  

Digital signature using compressed encoding was proposed  by Rabin [12] to 
confirm efficiently the contents of a message, document ,  or  file as the unchanged 
original. For  this purpose a conventional  encrypt ion function E(K, M), a mapping  
of the pair  of  a x-bit key K and a #-bit  message M to a #-bit cipher, is used for 
hashing, or  compressed encoding, of  a message to produce  its digest, or  a sort of 
checksum. Divide a message W into a sequence of x-bit fragments (W~)I= 1. Starting 
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from some initial/~-bit code Ho, using W~'s as keys, generate 

H i = E ( W ~ , H ~ _ t ) ,  i = 1 ,2 , . . . , / ,  

and the pair (H o, Hz) is the digest of W. Then the digest is signed by a public-key 
authentication method. It is expected that any change of W will produce a different 
H t and that to find a different message which produces the same H~ is intractable. 

Yuval discussed the weak points of Rabin's procedure, and pointed out a possible 
attack as follows [14, Appendix B]. Two parties A and B are going to have a 
contract. Party B writes up one good contract which A is willing to sign, and one 
bad contract which A would never sign. Then B generate 2 u/2 random perturbations 
on both of them, and the digest for all these perturbed documents, hoping to get a 
pair of good and bad ones with the same digest. Yuval tried to justify his procedure 
by the birthday paradox. However, his proof  was vague. In fact, he was not 
discussing matching within a group like the birthday paradox but between good 
contracts and bad contracts. This point has been overlooked in the literature and 
the phrases "birthday effect" or "birthday attack" have been used without critical 
evaluation. 

Subsequently, the attack methods were devised further. Ralph Merkle (attributed 
to by Davies and Price [3]) showed a way to tamper with a message to obtain 
another one having the same digest. This procedure was called the meet-in-the- 
middle attack, and appears to be a more plausible method. Other attacks have been 
reviewed by Akl [1] and Winternitz [13]. All the attacks are based on the random 
perturbation of a given message. If many fragments of the message are perturbed, 
independent random codes on the cipher space will be expected. 

In Section 2 of this paper, Yuval's and Merkle's procedures are formulated 
as Matching Model A. This is a new probabilistic model showing the "birth- 
day paradox in two groups." It is shown that if m (=  2 ~) is the cardinality of the 
message space, the meet-in-the-middle attack will succeed with probability p by 
( - m  l o g ( 1 -  p))t/2 trials, while the corresponding straightforward attack needs 

- m log(1 - p) trials (Propositions 1 and 2). The mathematical details of the analysis 
were published in another paper [1 i].  

In Section 3 a simpler procedure involving tampering of two consecutive frag- 
ments of a message is considered. Actually, perturbation of a word or phrase is 
difficult and the procedure is limited to tampering with numbers or codes. Matching 
Model B, a candidate for this procedure, has simply a hypergeometric distribution. 
In Section 4 another procedure, studied by Mueller-Schloer [9], is considered. The 
third Matching Model C for this procedure is a sort of mixture of Models A and B 
and is also new, however, the necessary analysis is simple. In these three models 
asymptotic behavior of the matching probabilities are the same. 

Our discussion is based on the randomness assumption of the encryption and 
decryption functions to be used, actually the Data  Encryption Standard (DES) [10]. 
The question whether DES has some algebraic structure or can be considered 
random in a sense has been studied extensively by Kaliski et al. [7]. To break DES 
itself they considered a version of'the meet-in-the-middle attack. Since its success 
depends on the real characteristics of DES, they proposed the use of the attack for 
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the experimental testing of the DES characteristics. In Section 3 their attack is 
related to Matching Model B. 

Another "cycling test" for DES, which is better than the meet-in-the-middle test 
in the space complexity comparison, was also proposed by Kaliski et al. [7]. In 
Section 5 probabilistic aspects of the test are mentioned, as the classical birthday 
paradox is related to this test. In the final section open questions for future research 
are presented. 

Before completing this section we review the classical birthday problem for 
completeness, see [4]. Assume that the birthdays of a group of n persons are 
distributed independently on m (= 365) days, and let T denote the number of days 
which represent someone's birthday. Then 

m (n) 

Pr[T < n] = 1 - P r [T  = n] = 1 rn" (1) 

where rn ~"~ = m(m - 1)--.(m - n + 1). The probability is paradoxically large for 
even small n--when m = 365:0.507 at n = 23 and 0.970 at n = 50. If rn --, oe the 
probability (1) is 

1 - e x p [  n ( n -  1) 1 2 ~  + O(m-m) if n = O(m m) (2) 

or  

hill, (1) 
2------m-~+O ~ -  if n=O(1) .  

Further, T follows the "classical occupancy distribution"; {:}m,, 
P r [ T = t ; n ] =  m " '  1 < t _ < n ,  (3) 

where { :}  denotes the Stirling number of the second kind, defined by the poly- 

nomial identity, 

x " = ~ { : }  x ~ t , t = l  (4) 

[5], [6]. Expression (1) is a special case of (3). 
In terms of urns and balls [6] the distribution (3) is obtained as follows: An urn 

contains m balls which are numbered 1, 2 . . . .  , m. A ball is taken out at random and 
its number is recorded. Repeat this n times independently replacing a selected ball 
each time, i.e. sampling "with replacement." The number T of distinct selected balls 
has the distribution (3). Another version which is used in the following is: n balls are 
randomly thrown into one ofm urns and the number T of urns occupied by one or 
more balls has the probability distribution (3). 

Now, the games are played sequentially until the "hitting time." In the last game, 
for example, balls are thrown one by one until the (N + 1)st ball falls, for the first 
time, into an urn which is already occupied by another ball. Since, using the notation 
(3), 

Pr[N _> t] = P r [T  = t; t], 
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it is shown that 

m (o 
PrI-N = t] = Pr[-N > t] -- Pr[,N > t + 1] = tmt+l, 1 < t < oo. (5) 

From (2), it is shown that N2/2m follows asymptotically the standard exponential 
distribution as m --* ~ .  This is not the "coupon collector's problem," in which the 
"hitting" means the number of occupied urns reaches a constant fixed in advance. 

2. Meet-in-the-Middle Attack; Matching Model A 

To introduce notations Rabin's procedure is repeated in a more formal way. 
A cryptosystem of the conventional type consists of an encryption function E: 

x J / ~  ff and a decryption function D: ~ x cg ~ ~,, where ~ denotes a key 
space, ~ '  denotes a message space, and cg denotes a cipher space. We assume 
.//¢' = c4 = {0, 1} ~, the set of/~-bit codes, ~ = {0, 1} ~, and D(K, ") is the inverse 
function of E(K, .) for any K s .,'g'; then {E(K, M): M ~ .At'} is a permutat ion o f ~ '  
and {D(K, M): M e J /}  is its inverse for a fixed K e iF. Typically, DES satisfies the 
assumption with x = 56 and/~ = 64. 

In Rabin's scheme for compression, a message W is divided into a sequence of 
x-bit fragments l (W~)i= x. Starting from some initial value H o, generate 

Hi = E(Wi, Hi-l) ,  i = 1, 2 . . . . .  l, 

and the pair (Ho, Hi) is a digest of W. The digest is signed by a public-key authenti- 
cation method, and the resulted authenticator is sent with the message W. The 
receiver can verify W and identify the sender by regenerating the digest. 

A forger, knowing (Ho, H,), wants to tamper  with the message, keeping the digest 
and the authenticator unchanged. (At least the sender and the receiver of the 
message know the digest and can become the forger.) He tries to generate randomly 
another sequence (~)~=i which reaches the same Hz. An example of forging l~ 's  by 
perturbation, namely random rephrasing, is illustrated by Davies and Price [-3]. 

In the meet-in-the-middle attack, the forger fixes a middle step r, 0 < r < l, and 
starting from both ends , / t~  = H o and/-t/" = H,, he randomly generates forward 
sequences 

H~- - - +  (6a) = E(Wi, Hi-l) ,  i = I, 2 . . . . .  r, 

and backward sequences 

H[_ I = V( l~ , /~ - ) ,  i = l, l -- 1 . . . . .  r + 1. (6b) 

If a forward result /~,+ and a backward result /t~- coincide, then the attack is 
accomplished. In fact, the total length l need not be the original one. We use the 
symbol l, however, for simplicity. 

Now, our Matching Model A is formulated as follows. Assume that the forger 
wants to tamper with many fragments of the message, fo r  example, the whole 
message. Let a trial mean one generation of H~ by (6a) or H~- by (6b). Since H,+ and 
/~- are obtained by repeated encryptions and decryptions randomly changing the 
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keys,/4+ and/~;- can be regarded as random variables uniformly distributed on J/¢ 
and independent trial by trial. In this attack, the generated/4+ and/~;" correspond 
to bails, all the possible #-bit codes at the r th stage correspond to urns, and there 
are m = 2 ~ urns. Unlike the birthday problem, there are two types of balls: One 
corresponds to /4+ and the other to H;-. Regard these types as balls of different 
colors, say, white and red. The event of concern is a collision between the two colors. 
So, modify the classical birthday problem as follows: There are two groups, say, n 1 
boys and n z girls. What is the probability that  a boy's birthday coincides with a 
girl's birthday? This can be called the "bir thday problem in two groups." 

Yuval's procedure, mentioned in Section 1, also fits Model A: perturbed good 
contracts and bad contracts correspond to white and red balls. 

Under uniformity and independence assumptions, the probability of no collision 
between nl white and n 2 red balls is shown to be 

1 ' 
- 

1 
- rn"'+"2 Z (7) v=,,+,2 I t 1 ]  t2 ' 

where the symbol defined by (4) is used. Because when n~ white balls are thrown at 
random into one of m urns, the number  T of the urns occupied by the white balls 
follows the classical occupancy distribution: 

m"' m (t), 1 _< t _< n~. 

Under the condition that T = t ,  n 2 red balls are thrown at random into the urns. 
Then the number  S of the red balls falling into the urns that are occupied by white 
balls is a binomial random variable: 

Pr[S = s l Y  = t;  n 2 ]  = 1 - -  

Unconditionally, 

ql = Pr[S = 0;n I ,n2]  = Y'.Pr[S = 0 I T  = t; n2] P r [ T =  t ;n l ] ,  
t 

and this is the first expression of (7). Because the above random event is symmetric 
with respect to the white and red balls the second expression is equivalent to the 
first, and definition (4) leads to the third expression. It  is shown that for fixed nl + n 2 
the probability q~ is increasing in In t - n z l .  The matching probability 1 - q l  is 
surprisingly large for small n~ = n z = n - - w h e n  rn = 365:0.504 at n = 16, 0.915 at 
n = 30, and 0.999 at n = 50. 

In [11] it was shown that ql of expression (7) is bounded as follows when 
n l  = . r /2  = n >  1; 
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where 2 = n2/2(m - n). As m ~ ~ ,  the above inequalities lead to 

ql = exp - m [ 1  + O(m-1/2)] if n = 0(ml/2). (8) 

The corresponding probability by the one-way straightforward attack of n trials 
is the probability of missing n times to hit a specific/-/z: 

0 2 : = ( 1 - 1 ) " = e x p { - n [ 1  + 0 ( 1 ) 1  }. (9) 

In summary, 

Proposition 1. In the meet-in-the-middle attack of Matching Model A, the forger's 
failure probability is given by ql in (7). In other words, approximately 

1 x~ 1/2 
n 1 = n 2 = m log1 _p}7-------5_/ 

trials give the success probability p. In the corresponding one-way attack, the forger's 
failure probability is given by q2 in (9). In other words, approximately 

1 
n = m 1 0 g - -  

l - p  
trials give the success probability p. 

When the attack is tried sequentially, the argument for obtaining (5) is applied. 
From (8) and (9) we obtain the following result. See [11] for the exact meaning of 
the asymptotic distribution. 

Proposition 2. In Matching Model A, let N = N~ = N2 be the hitting time for success 
of the sequential meet-in-the-middle attack. Then the asymptotic distribution of N2/m 
is the standard exponential distribution. 

Let N* be the hitting time for success of the straightforward attack. Then the 
asymptotic distribution of N*/m is the standard exponential distribution. 

Thus, a lucky forger can succeed without enormous efforts if Rabin's original 
scheme for making a digest is adopted. 

3. Meet-in-the-Middle Attack; Matching Model B 

Matching Model B is as follows. Assume that H,-I and Hr+l are fixed, that/~+ = 
E ( ~ ,  Hr-~) forms a simple random sample without replacement from {E(K, Hr-1): 
K ~ ~¢} for n~ trials of random ffz and that H~- = D(ffz,+~, H,+I) forms a similar 
one, which is independent of the forward sample, for n2 trials of random I4z~+ 1. Then 
the probability that there is no overlap in the two samples is 

(m - nx) !  (m - n2)!  m ("'+"~ 

q3 := m! (m -- n 1 -- n2)! m("l)m t"2)" (10) 
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Further, the number  S of overlapping codes follows the hypergeometric distribution 

P r [ S = s ; n ~ , n 2 ] = ( n ~ ' ] ( m - n ~ ' ] / ( m ' ] = ( n g ( m - n z ) / ( m  ) 
\ s / \ n 2 -- s / /  k n z /  s n I -- s n 1 

nl! n2! ( m -  nl)! (m-  n2)! 
m !  S! (r/1 - -  S)! (n  2 - -  s ) !  ( m  - -  n 1 - n 2 + s)! '  

where max(0, nl + n 2 - m) ___ s _< min(n~, n2), and (10) can be obtained as q3 = 
Pr [S  = 0; n 1, n~]. 

As m ~ ~ ,  Stirling's formula and the Taylor  expansion of the logarithmic func- 
tion show that 

q3 = exp -- 1 + 2m + 0 if n i = 0(ml/2), i = 1, 2, (11) 

o r  

q31 ln2  t   nin nl--n2+l  
= - - - +  t - O  if n i=O(1) ,  i =  1 ,2 .  

m 2rn  2 

If the attack proceeds sequentially, the probabilistic distribution of the hitting 
time N, the number of trials both forward and backward when the first coincidence 
occurs, is obtained from (11): 

P r [ N > n ] = P r [ S  = 0 ; n ,  n ] =  e x p { - - ~ - [ 1  + O(m-l/Z)]} i f  n =  0(ml/2). 

The variate NZ/m follows asymptotically the standard exponential distribution. 
Model B is effective for the attack against the cryptosystem itself [7]. Given 

a small set of plaintexts M 0, M1, . . . ,  M~ and their ciphertexts C~ = E(K, Mi), 
i = 0, 1, . . . ,  l, instead of disclosing K, the cryptanalyst tries to find a pair of keys 
(KI,  K2) such that 

E(K, -) = E(K2, E(K1,  ")) (12) 

by the meet-in-the-middle attack. That  is, for randomly selecting K 1 and K 2, he 
tries to find a pair which satisfies E ( K I ,  Mo) = D(K2, Co). When such a pair is 
found, (12) should be checked by E(K2,  E(K1,  Mi)) = Ci, i = 1 . . . . .  1. 

If the cryptosystem is assumed to be "closed" in the sense that for any K~, K 2 ~ X 
there exists a key K e ~¢~ satisfying (12), this means that {E(K, .): K ~ • }  forms a 
permutation group, and there are k = 2 ~ pairs (K1, K2) satisfying (12), and the 
above discussions are applied. We remark that the discussions in the first part  of 
this section do not assume the cryptosystem to be closed. (The last expression of 
Section 3.4 in Kaliski et al. [7] is incorrect and it affects their Proposition 4.1.) 

Now assume that {E(K, .): K e ~ }  is a simple random sample without re- 
placement from all the permutations of ~/. From this sample take similarly two 
subsamples ~ of size n i, i = 1, 2. The set {E(K 2, E ( K  1, ")): K 1 e .Y, fl ,  K2 e ~('2} 
contains at most n~ n2 permutations, and may be close to n~ n2. Thus the set includes 
a particular permutation with the probabili ty at most nlnz /m! ,  which is much 
smaller than 1 - q 3 .  There are some regularities found in DES, yet practically 
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{E(K, "): K s JT'} can be regarded as a random sample from all the permutations 
of ~//[7].  

4. Meet-in-the-Middle Attack; Matching Model C 

There can be another type of attack, which is a sort of combination of Matching 
Model A and B. Assume that the forward sequences (/4[)[=t are generated as (6a) 
of Section 2, while the backward sequences (6b) are generated just one step,/4;- = 
D(14z,+l, H,+I), as in Section 3. Thus/4,+ 's are independent random variables taken 
from ~ '  with replacement, while/47's are assumed to be random samples from ./g 
without replacement. If nl /4~ 's and n2/4;-'s are generated, the number S + o f / ~  
which matches one of the H7 's is the binomial distribution 

The number S- of/4;- which matches one of the H~'s, given the number T = t of 
different/4,+ 's, has the hypergeometric distribution 

,)/( P r [ S - = s l T = t ; n 2 ] =  s nz s n 2 " 

Since T has the classical occupancy distribution (3), the unconditional distribution 
of S-  is (;)(m 

Pr[S -  = s; nl, n2] = ~ n2 _ s /  ( t j rn,, / kn2/" 

We are just interested in the probability of the event S-  = 0 which is equivalent to 
S + = 0, and if n i = O(rnm), i = 1, 2, as m --* oe, 

Pr[S + = 0 ] = P r [ S - = 0 ] =  1 -  = e x p  - l + O ( m  - m  . 

Matching Model C is effective for the following situation. A hashing scheme, 
based on a cipher block chaining (CBC) mode of operation, was studied by Mueller- 
Schloer [9]. Starting from/40 = 0, and using the leading fragment of the message 
as the key, K = W 0, compute 

N = E(K, Hi-t  OWi), i = 1, 2 , . . . ,  l, 

where (9 denotes exclusive-or, and the pair (K, Ht) is used as a digest of the message 
(Wi)l= o. This is vulnerable against the following attack. Using perturbed fragments 
(l~i)~'= 1 and I'Ve+l, generate 

/~+ = E(K,/~+_x G 1¢~), i = 1 , 2  . . . . .  r, 
and 

= D(K, H,+I) @ 

If a pair of/t~+ and/1;- matches, the attack is accomplished. In this case, H+ can be 
regarded as randomly chosen from J [  with replacement, but H2 without replace- 
ment, if the perturbed I~,+ l's are different to each other. 
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5. The Cycling Test 

Let q / b e  any finite set with the cardinality u = Iq/I, and let ~- be the set of all 
functions f :  og _~ q / ( [~1  = u"). We select at random one point U® s q / a n d  one 
function f ~  ~', and form a sequence (Ui)~=o by Ui+l = f(Ui).  Let J1 be the least 
integer such that Us1 = Ui for some 0 _< J1 < i, and let J2 be the least positive integer 
such that UjI+j~ = U j .  The sequence is determined by the leader ~tU~S'-~n=o and the 
cycle ~U ~J'+J~ It is known [8] that d := d t + J2 has the distribution ~, i J i = d  I • 

U ( t )  

Pr [ J  = t] = tu,+~, 1 _< t < oc, (13) 

and given J, J1 is distributed uniformly on [0, J - 1]. 
In fact, the probabilistic quantities up to Uj,+j: are completely equivalent to the 

random walk on q/: starting from Uo, each of U~, i = 1, 2 . . . . .  are selected indepen- 
dently and randomly from og. This is further equivalent to the sequential version of 
the classical birthday problem in Section 1. Notice that (13) is the same as (5). 

M~O In testing DES starting from a random code M® s ~/, a sequence ( ~)i=o is 
generated by M~+I = E(g(Mi),  M~), where g: ~/--* X is a pseudorandom function. 
Let ok,. denote the space on which the sequence (Mi)~0 walks randomly. If DES is 
algebraically closed, then [q/*[ _< ]J~ff[, while if {E(K, .): K ~ ~('} is a random sample 
from the all permutations of ~g, then og. will cover almost the whole ~ [7]. 

6. Quadratic Efficiency 

In the literature, including [7], the phrase "birthday paradox" is used to cover the 
probabilistic phenomena of several situations as discussed in this note. New schemes 
of hashing are proposed, and more complicated attacks against them are investi- 
gated [1], [2], [9], [13]. These are related as matching models, but it is not clear 
whether there is a unifying probabilistic principle to explain them. 

A possible definition of the phenomena is as follows. Try to tamper with a message 
or find a key by random trials against a crypt®system of the size characterized by 
rn and k, the cardinalities of the message space and the key space, respectively. As 
rn - ,  m, the number n of naive random trials must be n = ®(m) to keep the success 
probability p > 0 fixed (see [5] for the symbol ®). If a smart attack can proceed with 
n = 0(ml/2), then it has an effect like the birthday paradox. Alternatively, m and k 
being fixed, the failure probability q decreases as n -~ oe such that --log(q(n)) is 
quadratically dependent on n rather than linearly dependent. Then, the attack is 
effective. A milder requirement is for q(n) to be a log-concave function of n. 

Questions remain as to other possible situations, their models, and a more general 
way of analysis. 
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