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Abstract. This paper develops a new computational model for learning stochastic rules, called PAD (Probably 
Almost Discriminative)-learning model, based on statistical hypothesis testing theory. The model deals with the 
problem of designing a discrimination algorithm to test whether or not any given test sequence of examples of 
pairs of (instance, label) has come from a given stochastic rule P*. Here a composite hypothesis P is unknown 
other than it belongs to a given class C. 

In this model, we propose a new discrimination algorithm on the basis of the MDL (Minimum Description 
Length) principle, and then derive upper bounds on the least test sample size required by the algorithm to guarantee 
that two types of error probabilities are respectively less than d~l and 62 provided that the distance between the 
two rules to be discriminated is not less than e. 

For the parametric case where C is a parametric class, this paper shows that an upper bound on test sample 

size is given by O(~ In -~7, + ~ In ~2 + ~ In ~ + e ( @ ) .  Here k is the number of real-valued parameters 

for the composite hypothesis /5, and g(hT/) is the description length for the countable model for/5. Further 

this paper shows that the MDL-based discrimination algorithm performs well in the sense of sample complexity 
efficiency, comparing it with other kinds of information-criteria-based discrimination algorithms. This paper 
also shows how to transform any stochastic PAC (Probably Approximately Correct)-learning algorithm into a 
PAD-learning algorithm. 

For the non-parametric case where C is a non-parametric class but the discrimination algorithm uses a parametric 
class, this paper demonstrates that the sample complexity bound for the MDL-based discrimination algorithm is 
essentially related to Barron and Cover's index of resolvability. The sample complexity bound gives a new view 
at the relationship between the index of resotvability and the MDL principle from the PAD-learning viewpoint. 

Keywords: Computational learning theory, universal hypothesis testing, stochastic rule, PAD-learning, MDL 
principle 

1. I n t r o d u c t i o n  

1.1. Basic  problem 

T h e  p r o b l e m  of  l ea rn ing  s tochas t ic  rules  has  recen t ly  c o m e  to be  wide ly  d i s c u s s e d  in 

c o m p u t a t i o n a l  l ea rn ing  theory  (see for example ,  Kearns  & Schapi re ,  1994, Yaman i sh i ,  

1992a,  Yaman i sh i ,  1991, R i s s a n e n  & Yu, 1991).  A s tochas t ic  ru le  here  refers  to a cond i t i ona l  

p robab i l i t y  d i s t r ibu t ion  over  the  set of  labels  3) = {0, 1} g iven  an  ins t ance  X ,  and  is, fo r  

example ,  exp res sed  as a rule  of  the form:  " i f  X m a k e s  a B o o l e a n  f o r m u l a  f ( X )  true, then  

g = 1 wi th  p robab i l i t y  P l  and  Y" = 0 wi th  p robab i l i t y  1 - P l ,  e lse  i f  . . . .  " In  o the r  words ,  

a s tochas t i c  ru le  refers  to a rule  w h i c h  p robab i l i s t i ca l ly  ass igns  a n u m b e r  of  labe ls  to each  

ins tance .  M o d e l s  of  l ea rn ing  s tochas t ic  rules  e n a b l e  us to deal  w i th  l ea rn ing  u n d e r  no ise  

An extended abstract appeared in Proceedings of the Fifth ACM Workshop on Computational Learning Theory 
(Yamanishi, 1992a). A part of this paper appeared in Proceedings of the Sixth ACM Conference on Computational 
Learning Theory (Yamanishi, 1993). 
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or such uncertainty as the occurrence of noise and ambiguity induced by lack of relevant 

attributes in data. 

In the community of computational learning theory, several relevant issues concerning 

stochastic rules have extensively been studied, including "estimation" (Kearns & Schapire, 

1994, Yamanishi, 1992a, Rissanen & Yu, 1991) and "on-line prediction" (DeSantis, 

Markowsky & Wegman, 1988, Yamanishi, 1991, Haussler & Barron, 1992). In addition to 

these issues, the field of statistical inference studies a third important issue called hypothe- 
sis testing [or the discrimination problem (Hand, 1981)], which deals with the problem of 

discriminating between two probability distributions, by testing which of them generated 

a given sequence of test examples. This paper considers this issue from the computational 

learning aspect. 

Let us briefly describe the basic problem which we address in this paper. Let 2( = A'l x 

• .. x 2(n be a countable set which we call a domain and 3) be {0, 1} which we call a range. 

Here n is the size of the domain. Let Q(X)  denote a probability distribution over A', and 

both P* (Y  I X ) a n d / 5 ( Y  I X ) denote stochastic rules. Let D ra = (X1, ] I1 )""  (X,~, Ym) 

be a given sequence of test examples• Here we assume that each (Xi, Yi) is independently 

generated according to Q(X)P*  (Y I X) or Q ( X ) p ( Y  I X). We further suppose that P* is 

known, and that Q and P are unknown other than P is assumed to belong to a predetermined 

class, which we call the target class. 

We may then design a discrimination algorithm ,A that takes as input a given sequence 

D m and a class of stochastic rules, called a hypothesis class, and outputs a decision about 

whether D '~ has originated from QP* or not. For a given discrimination algorithm A, we 

define Type 1 error probability for A as the probability that D m is generated according 

to P* even though .A outputs a decision that D '~ has not come from P*. Similarly we 

define Type 2 error probability for A as the probability that D m is not generated according 

to P* although A outputs a decision that D m has come from P*. We wish to design a 

discrimination algorithm such that both Type 1 and 2 error probabilities approach to zero 

as fast as possible as sample size increases. This kind of hypothesis testing problem has 

been called a universal hypothesis testing problem (Zeitouni & Gutman, 1991). 

In this study, we focus on "computational efficiency," most specifically "sample-size effi- 

ciency" for the universal testing problem, and our technical approach may be characterized 

by "finite-sample-size analysis" of discrimination performance. Speaking more precisely, 

we address the issue of how large a test sample size and how much computation time are 

required to guarantee that for a given target class C and a given hypothesis class 7-/, for 

some discrimination algorithm using ~ ,  for any 0 < e < 1, for any 0 < 61,62 < 1, for 

al l /5 E C, and for all P* such that d(/5, P*) > ¢, Type 1 and Type 2 error probabilities 

for the discrimination algorithm are respectively not more than 61 and 62, where d(/5, P*) 

denotes a distance between t5 and _P* (e.g. the Kullback-Leibler divergence). We are then 

interested in the question of which classes of stochastic rules are PAD (Probably Almost 

Discriminatively)-learnable in the sense that the sample size and computation time as de- 

scribed above are polynomial in 1/¢, 1/61, 1/62, and n. This learning framework is inspired 

by Valiant's PAC-learning model (Valiant, 1984) in the sense that the main concern is to 

evaluate sample and time complexity required for "probably almost correct" learning• 
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1.2. Purposes of this paper 

This paper has two purposes. The first is to explore a new computational model of learning, 

which we call PAD-learning model, based on the universal hypothesis testing theory. This 

model enables us to determine whether any given class of stochastic rules is PAD-learnable 

in the sense that there exists a polynomial-time algorithm that can discriminate with high 

probability a known hypothesis from an unknown composite hypothesis by testing from 

which of the two a given test sequence has originated. 

The second purpose is to introduce a discrimination algorithm that performs well within 

our model and to derive upper bounds on the test sample size required for PAD-learning with 

the proposed algorithm. We analyze the sample complexity issue for both the "parametric 

case" and "non-parametric case." Here the parametric case refers to the case where the target 

class is parametric and is identical to the hypothesis class. The non-parametric case refers 

to the case where the target class is non-parametric while the hypothesis class is parametric. 

1.3. Related work 

Related to our problem setting, for the special case where both hypotheses P* and/5 are 

known, it was shown by Hoeffding (Hoeffding, 1965) that the discrimination algorithm 

based on the likelihood ratio (of P* to/5)  for test examples is optimal in the sense that 

Type 2 error probability is minimum over all discrimination algorithms for any fixed Type 1 

error probability. In this case the asymptotically best error exponent is given in Stein's 

lemma (see e.g., Blahut, 1988, Cover & Thomas, 1991), which relates the error exponent 

to the Kullback-Leibler divergence between P* and/5. 

The universal testing problem that we consider in this paper has extensively been discussed 

in the context of information theory (see e.g., Ziv, 1988, Gutman, 1989, Zeitouni & Gutman, 

1991). In particular, Ziv proposed a discrimination algorithm based on a universal coding 

scheme (Ziv, 1988), e.g. Lempel-Ziv universal coding (Ziv & Lempel, 1978), and proved 

that his proposed discrimination algorithm is asymptotically optimal with respect to the 

Neyman-Pearson criterion [see e.g. (Hoeffding 1965)], i.e., it maximizes the rate of decrease 

in Type 2 error probability in the limit under the constraint that the rate of decrease in Type 1 

error probability is bounded by a fixed number. However, it has not yet been reported how 

well his proposed discrimination algorithm works for finite sample size. Further note that 

his algorithm makes no use of any hypothesis class as we do. 

Our own technical approach is unique in this regard in that a discrimination algorithm 

is designed using a parametric hypothesis class and the MDL (Minimum Description 

Length) principle (Wallace & Boulton, 1968, Schwarz, 1978, Rissanen, 1978, Rissanen, 

1987, Rissanen, 1989, Barron & Cover, 1991) rather than universal coding schemes, and 

that it offers a method of finite test sample analysis. Notice here that while Ziv's anal- 

ysis concentrated on the issue of asymptotic optimality, we instead consider the issue of 

how many examples are required to achieve given error probabilities for a given pair of 

/5 and P* such that d(/5, P*) > c. We are further interested in determining whether any 

given class is PAD-learnable with sample size polynomial in the size of the domain and 



26 K. YAMANISHI 

other relevant parameters. We stress that asymptotic optimality does not always imply 

polynomial-sample-size PAD-learnability. 

The application of the MDL principle to hypothesis testing problems was first suggested 

by Rissanen in (Rissanen, 1987) (pp. 236-238), (Rissanen, 1989), (pp. 109-121). He 

proposed an MDL-based approach to hypothesis testing for a number of classes of distri- 

butions including binomial distributions, gaussian distributions, and two-way contigency 

tables. He has not yet reported, however, any general theory for finite-sample-size behavior 

of the MDL-based approach in the universal hypothesis testing setting. 

1.4. Summary of results 

Let us summarize the results shown in this paper. Let m0 (c, 81, ~52,/5) be the test sample size 

required by the MDL-based discrimination algorithm (for short, the MDL discrimination 

algorithm) to guarantee that for a given target class C, for an unknown/5 E C and for the 

known P* such that d(/5, P*) > e, Type 1 and 2 error probabilities are respectively at most 

8i and 62, where d is the Kullback-Leibler divergence. 

For the parametric case in which the target class C is a parametric class called a class of 

stochastic rules with finite partitioning [(Yamanishi, 1992a), each of which takes a form of 

a piecewise constant conditional probability distribution] with suppc c supx,v{1/P(Y ] 

X) } < (x~, ignoring time complexity, we give the following upper bound on m0 (¢, 81,8~,/5): 

m 0(£, 61, 62, /5) = O in + ~- in ~ + in -¢ + , 

where k is the number of real-valued parameters in /5, and g(2~/) is the code-length 

for the countable model specifying /5. This paper shows that the upper bound on test 

sample size for the MDL discrimination algorithm is the least reported to date for any 

information-criteria-based discrimination algorithm, including the maximum likelihood 

principle-based algorithm. 

In addition to the above target-dependent sample size bound, we derive a worst-case 

bound where the worst-case is taken over the set of all possible /5 in the given class. 

Thereby we derive worst-case sample size bounds for PAD-learning of stochastic decision 

lists (Yamanishi, 1992a, Kearns & Shapire, 1994) with at most s literals in each term (s is 

fixed) and of stochastic decision trees with depth of at most s in  r~ (s is fixed) in order to 

demonstrate their polynomial-sample-size PAD-learnability. 

Further we give a relationship between PAD-learnability and stochastic PAC-learnability. 

Here the stochastic PAC-learning criterion determines whether any given class of stochas- 

tic rules is learnable in the sense that there exists a polynomial-time algorithm that with 

high probability produces an approximately correct hypothesis from a given training se- 

quence (Kearns & Shapire, 1994, Yamanishi, 1992a). The criterion can be regarded as a 

stochastic analogue of Valiant's PAC-learning criterion (Valiant, 1984). We show that when 

given any class of stochastic rules with finite partitioning, if there exists a polynomial-time 

stochastic PAC-learning algorithm for it, then the class is polynomial-time PAD-learnable 
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under some conditions. This theorem is proven illustrating how to transform a stochastic 

PAC learning algorithm to a PAD-learning algorithm. 

For the non-parametric case where the non-parametric target class C satisfies some 

smoothness conditions and the class of stochastic rules with finite partitioning is employed as 

a hypothesis class, we give the following upper bound on test sample size m0 (~, ~51, 52,/5): 

1 - a -  
fft0(C,~l,(~2,/5) : O(~h1~-1 ~- z-~-ln~--2 -~- (~)  l n l ) ,  

for some c~ > 0. We show that a general test sample size bound for the non-parametric 

case is essentially related to Barron and Cover's index of  resolvability (Barron & Cover, 

1991), which is the sample-size dependent measure of the optimal balance between the 

approximation error of  the parametric hypothesis class (to the non-parametric target rule) 

and the descriptional complexity of the hypothesis class itself. 

1.5. Organization of paper 

The rest of this paper is organized as follows. Section 2 gives a formal definition of  

the PAD-learnability criterion. Section 3 reviews a number of  notions of  stochastic rule 

learning. Section 4 derives upper bounds on test sample complexity of  PAD-learning for the 

parametric case. Section 5 yields a relationship between PAD-learnability and stochastic 

PAC-learnability. Section 6 derives upper bounds on test sample complexity for the non- 

parametric case. Section 7 gives concluding remarks. 

2. PAD-learning model 

Although the basic outline of the model dealt with in this paper was briefly described in 

Introduction, this section gives a more precise formal definition of the PAD-learnability 

criterion. Hereafter all logarithms used are natural logarithms. 

For a positive integer n, let Xi be a measurable space for i = 1 , . . . ,  ~. Let X = X1 x 

• • • × X~ be a measurable space which we call a domain and y = {0, 1} be a range. We may 

call n the size of the domain. Let q(X) be a probability density function over 2( in the case 

where 2( is continuous and let it be a probability mass function over 2( in the case where 

2( is discrete. Q ( X )  denotes the probability distribution corresponding to q(X).  Let Cal~ 

be a set of  all stochastic rules defined over 2( x y .  Let C be a parametric or non-parametric 

subclass of  C~1. Here a parametric class is a class in which each rule is specified by a 

finite number of real-valued parameters, and a non-parametric class is a class in which 

each rule is not specified by any parameter and is constrained only by some conditions such 

as smoothness or differentiability. Let P* (Y i X)  be a stochastic rule belonging to C~1 and 

/ 5 ( y  [ X)  be a stochastic rule belonging to C. 

We observe the sequence D m = D 1 . . .  Dm(Di  = (Xi,  ~ ) ,  i = 1 , . . . ,  rn), which we 

call a test sequence (each of which we call a test example), and based on the observation, we 

wish to decide on a correct hypothesis among the two: D ~ has originated from Q (X) P* (Y t 
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X)  or from Q ( X ) / 5 ( Y  I X) .  Here we assume that each DiG = 1 , . . . ,  m)  is independently 

generated from the identical source. We are specifically interested in the situation where P* 

is known but Q and/5  are unknown to us other than that t5 E C. Hereafter, according to the 

convention of statistics, we may call P* the null hypothesis and/5 the composite hypothesis. 

Let 7-t be a parametric class of stochastic rules. Let (A' x 32) * denote the set of  all finite 

sequences of elements of  2¢' x 32, and let R ( R  +) denote the set of  real numbers (the set of  

all positive real numbers). A discrimination algorithm using 7-g, which we write as "4, is an 

algorithm that takes as input P* E Can, 7-{, D m E (X x 32)*, e E (0, oo) and outputs " + 1 "  

or " - 1 . "  Here " +  1" means the decision that D m has originated from P*,  and " - 1 "  means 

the decision that D m has not originated from P*.  Since any discrimination algorithm "4 

can also be regarded as a function Call × 7-t x (2( x 32)* x R + --~ {+1,  - 1 } ,  we write 

A ( P * ,  7-/, D m, ¢) = +1  ( - 1 )  when the outputs of"4  is " + 1 "  ( " - 1 " ) .  

Hereafter we refer to the class C to which the composite hypothesis belongs as a target 

class. We refer to the class 7{ which a discrimination algorithm uses as a hypothesis class. 

For a given discrimination algorithm "4, we define Type 1 error probability for .4 by 

(QP*)m[D'~: .4(P*,  7-t, D "~, e) = -1 ] ,  

where (Qp.)m denotes the distribution (Q(X)P*(Y I X))  m over (2( x 32)'~. That is, 

Type 1 error probability is the probability that the test sequence has originated from P* 

but .4 determines that it has not been generated from P*.  Further we define Type 2 error 

probability for .4 by 

(Q/5) '~[D'~:  .4(P*,  7-t, D "~, e) = +1], 

where (Q/5)m denotes the distribution ( Q ( X ) / 5 ( Y  ] X) )  m over (2( x y ) m .  That is, Type 

2 error probability is the probability that the test sequence has originated f r o m / 5  but .4 

determines that it has been generated from P*.  

Now we are ready to define PAD-learnability. 

Definition 1 (PAD-Learnability). Let three classes of stochastic rules, C, D and 7-/be 

given where 7-/is a parametric class. Let a distance measure d be given. We say that C is 

statistically PAD (Probably Almost Discriminatively)-learnable (with respect to d) in terms 

of ~ under D-constraint, if there exists a discrimination algorithm .,4 using ~ such that 

for some polynomial poly (.,.,., .), for all n, for all e > 0, for all 0 < 61 < 1, for all 

0 < 62 < 1, for all m > poly(~, 1 1 n), for all q(X)  on 2(, for a l l / 5 ( y  ] X)  E C, for 
- -  6 a  ' 6 2  ' 

all P * ( Y  I X)  E D such that d(/5, P *) > e, Type 1 and Type 2 error probabilities for A 

are respectively at most 61 and 62, i.e., 

( Q P * ) ' ~ [ D ~ :  A ( P * , 7 - / , D m , e )  = - 1 ]  _< 61, (1) 

(Q/5)'~[Dm:A(P*,~,Dm,e) = +1] _< 62. (2) 

1 1 and n, then we say that C is If, in addition, .,4 runs in time polynomial in ~, 61,62, 

polynomial-time PAD-learnable (with respect to d) in terms ofT-( under D-constraint. 
In particular, we say that C is (statistically~polynomial-time) PAD-learnable under D- 

constraint when C is (statistically/polynomial-time) PAD-learnable in terms of C itself 

under D-constraint. 
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Hereafter, we use as a distance measure the Kullback-Leibler divergence d(*, *). When 

,V is continuous, d(*, *) is defined as follows: 

f , P(v I x) d(P,P*) d°J dXq(X) I X),n  
YEY 

When 2( is discrete, the integral is replaced with the summation over 2(, and q(X)  is 

considered as a probability mass function. 

For a given target class C and a hypothesis class 7-{, for a given discrimination algorithm 

A, let mA(e ,  81, 52, n) be the least test sample size required by .A to guarantee that Type l 

and 2 error probabilities for A do not exceed (51 and 62 respectively for all ]5 C C, for all 

P* E 7? such that d(/5, P*)  > e. We define the test sample complexity of  PAD-learning of  

C in terms of  T-{ under 7?-constraint as minA m A  (¢, 61, 52, n). Our main concern is here to 

design a discrimination algorithm that requires the least test sample size. 

Hereafter, a parametric case refers to the case where C = 7-{ and C is a parametric class. 

A non-parametric case refers to the case where C ¢ ~ and C is a non-parametric class. 

3. Preliminaries 

In order to define the MDL discrimination algorithm in the next section, we need to intro- 

duce into our discussion the following two notions with regard to stochastic rule learning: 

"stochastic rules with finite partitioning" and a "minimum description length." This section 

briefly reviews them. 

Let n be the size of the domain. Let k be a positive integer. Let {Si}i=l,2 ..... k be a finite set 

of disjoint cells of 2( (non-empty subsets of 2() such that U~_lSi = 2(, Si A SA = 0 (i ¢ j ) ,  

and let p~ E [0, 1](i = 1 , . . . ,  k) be a real-valued parameter. Let us consider a stochastic 

rule of the following form: 

"For any given X E 2(, 

Y = 1 (with probability p~) and Y = 0 (with probability 1 - Pi) , "  (3) 

where i denotes the index of the cell into which X falls. The set of disjoint cells, { S~ }i= 1 ..... k, 

is assumed to be specified by a countable parameter, called a countable model, which we 

denote as M. We call a k-tuple vector 0 = (Pl , • • . ,  Pk ) a probability parameter vector. We 

denote a stochastic rule specified by 0 and M as P ( Y  ] X: 0 -4 M) .  A rule of  this form is 

called a stochastic rule with finite partitioning (Yamanishi, 1992a). 

Letting .M be a finite set of all countable models and O ( M )  be a set of  real-valued 

parameter vectors associated with a fixed M E .Ad, we denote a class C of stochastic rules 

with finite partitioning as 

C = { P ( Y  I X: O -~ M) :  M ~ ~ 4 , 0  ~ e ( M ) } .  

Examples of  such classes include stochastic decision lists and stochastic decision trees [see 

(Yamanishi, 1992a)]. Notice here that @(M) = [0,1J k when a k-dimensional probability 

parameter vector is associated with M.  We denote the dimension of O ( M )  as d im @(M).  

That is, if (9(M) = [0, 1] k, then d i m O ( M )  = k. 
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O ~ ( M )  denotes a set obtained by quantizing O ( M )  with respect to m so that 01 (M)  C 

0 2 ( M )  C . . . .  In the discussion to follow, we quantize O ( M )  for each M E 3,4 with 

width of  6 = ( 6 a , . . . ,  6k) so that every component of any element in O m ( M )  is not less 

than 1 / ( 2 m v ~  ), and 8j is v / ( t j (1  - t j ) ) / 2 r n  (j  = 1 , . . . ,  k) where tj  denotes a one- 

dimensional parameter on [0, 1]. It turns out that this gives an optimal quantization scale for 

minimum-length coding for the sum of quantization scale and data itself [see (Yamanishi, 

1992a), p. 180, Eq. (19) for the details]. 

For a given class C = {P(Y [ X: 0 -4 M) :  M E AA, O E O ( M ) } ,  for sample size rn, 

C,~ denotes a class obtained by replacing O ( M )  with O ~ ( M ) ,  i.e., 

C,~ = { P ( Y I X :  0 -4 M) :  M ~ A4,0 E O,~(M)} .  

Let D "~ = D1... D,~(Di = (Xi,  Y~),i = 1 , . . . ,  rn) be given. Hereafter, we denote 

X1 . - '  X m  as X m and Y1 "' • Y,~ as y m .  We define the minimum description length (MDL) 

(ofYm for given X m) relative to C,~, denoted as LMDL(Y m I X'~:  Cm), by 

LMDL( Yrn I Xm:  Cm) de2 min  min  { -  l n P ( Y  r~ I x r " :  0 -4 M) + gr,(O, M)} ,  
MC.AdOCO.,.(M) 

where we denote 1-[i~1 P(Yi I Xi:  0 ~ M )  as P(Y'~ Xm: 0 -4 M) .  em is a function 

Om x A.4 ~ R + U {0} satisfying the following inequality: 

E E e-e"(°'M) -< 1. (4) 

It is known from (Yamanishi, 1992a) [R 183, Eq. (25)] that if we use the above method of 

quantizing C, for any stochastic rule with finite partitioning, g,~(0, M )  is calculated as 

g.~(O,M)- k l n . ~  (51n2)k 
+ - - 5 - - -  + e(M), (5) 

where k = d im O ( M ) ,  and g is an arbitrary function 3// --+ R + to {0} such that Y'~MeZ4 

e -e(M) _< 1. Throughout this paper we fix function (5) as g,~(0, M) .  

When given a set S, a code for S is defined as a mapping from S to a set of  all binary 

sequences, and a codeword for s over S is an image of a code for s E S. A code for 

S is said to be a prefix code for S if no codeword is a prefix of  any other codeword, 

and then a codeword for a prefix code is said to be a prefix codeword (see e.g. Cover 

& Thomas, 1991, p. 81). Hereafter, a code-length for s (over S) refers to a length of a 

prefix codeword for s. Although a code-length is usually measured in bits, for the sake of 

mathematical convenience, we measure it in hats, and allow it to take a non-integer value 

throughout this paper. 
In general it is known (see e.g., Cover & Thomas, 1991, p. 82, Theorem 5.2.1.) that there 

exists a prefix code such that g: S --+ R + tO {0} is a code-length assignment function (for 

short, a code-length function) over S if and only if it holds ~ s c s  e-e(s) -< 1 (Kraft, 1949), 

which is called Kraft's inequality (over. S). Hence, by (4), gr~(O, M )  = klnra2 -~- ---~-(5122)k 
g(M)  can be interpreted as a code-length for (0, M)  over tOM~M@,~(M) X 3.4 where 

e(M) is a code-length for M over A.4, and k L ~  + (51~2)__.___~k is a code-length for 0 over 
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(0re(M). When 0 and M are given, following the argument by Shannon (1988, 1948), 

- l n P (  Y'~ I Xm: 0 -< M) is also interpreted as a code-length for Y'~ over y '~  when 

given X TM under the assumption that each Y is generated according to P ( Y  I X: 0 -< M).  

Thus LMDL(Y "~ I X'~: C,~) can be interpreted as the minimum of the total code-length 

for y m  over ym for given X "~ under the condition that only the class C,~ of distributions 

is known. 

A remarkable property of LMDL (Y~ ] Xm: C~) is that it satisfies Kraft's inequality over 

32 "~, i.e., for given X "~, 

Z e--LMDL(Y"IX": c,,,) < 1. (6) 

Y~"EY'" 

This holds because LMDL(Y ~ I xm:  C~) is a code-length for the prefix codeword for ym 

when given X m. 

4. Sample complexity bounds for PAD-learning: Parametric ease 

This section introduces the MDL discrimination algorithm and analyzes its PAD-learning 

performance for the parametric case. 

4.1. Sample size bounds for PAD-learning: Parametric case 

Here is a definition of the MDL discrimination algorithm. 

Definition 2 (MDL Discrimination Algorithm). Let ~ = { P (Y I X : 0 -< M) : M E 

Ad, 0 c (~ (M)} be a class of stochastic rules with finite partitioning. For a sequence of 

independent test examples D TM = (X1, Y1)""" (X~,  Y~), let LMDL(Y ~ [ X~ :  ~m)  be 

the MDL o fY  ~ = ]I1 • " • Y~ for given X ~ = X1 • • - Xm relative to ~ ,  where 7g~ is the 

class obtained by quantizing 7-[ depending on m (see Section 3). For P* E Can, we denote 

t--[i~l P*(Y~ [ Xi) as P*(Y'~ [ X'~). We define a function hMDL: Call × "]"{ × (X × y)* × 
R + --* R as follows: 

, me (7) hMDL( -p ,7-{, Din, e) = lnP*(  v '~  I X~)  + LMDL( Y'~ ] X'~: 7-{,~) + ~ -  

The MDL discrimination algorithm, which we write as  ,AMDL, is an algorithm that takes 

as input P*, 7-/, D '~, e and outputs "+1" if hMDL (P*, 7-/, D m, e) > 0; otherwise " -1 . "  

The following theorem shows hypothesis-dependent and worst-case upper hounds on test 

sample size for PAD-learning with the MDL discrimination algorithm for the parametric 

case. Hereafter, for 1 < 2/ < co, we denote as C.y the set of stochastic rules such that for 

all P* E C~, suPx ,y (1 /P*(Y  I X)) < 7- 

Theorem 3 (A) Hypothesis-Dependent Sample Size Bound. Let C = { P ( Y  I X: 0 -< 

M): M EAd,  0 E (9(M)} be a class of stochastic rules with finite partitioning. For any 
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n, for any c > O, for any 0 < 51, 52 < 1,for any Q over X,  for any P E C such that 

;~ d~f suPXEX,yTy{1 /p(y  ] X)} < (xD,for any P* E C~u such that d(P,P*)  > ¢ and 

3'* def s u p x e x , y e y { 1 / p .  (y  ] X)} < o% whenever sample size satisfies 

{2  1 8(ln~7") 2 1 2e ( 256k ) }  
m > max - In in /~ In - -  + 2g(~/) (8) 

- -  e 51 ' E 2 52' e ( e -  1) ¢ 

Type 1 and 2 error probabilities for the MDL discrimination algorithm using C are then at 

most 51 and 52 respectively. Here k = dim O(_~/), and g( J~/f) is the code-length for M (the 

countable model specifying P ). 

(B) Worst-Case Sample Size Bound. For a class C of stochastic rules with finite par- 

titioning, assume that 7(C) clef SUPPEcSUPxEX,YEY { 1 / P ( Y  ] X)} < oo. Then for 

any 1 < 7 < oo, we have the following upper bound on the test sample complexity 

too(e, 51, 52, n) of PAD-learning of C under CT-constraint. 

[~/1 ~1 1 1 too(C, fl ,  82, n) = 0 In + ~- in ~ + 
in IMI) #(C) In #(C) + , (9) 

E £ £ 

where #(C) d__ef maXME.M dim O(M) is the largest number of real-valued parameters in 

any rule in C, and I.L4[ is the total number of countable models for C. 

Therefore,for any given class C of stochastic rules with finite partitioning,for any 1 < 

3' < o% if "y(C) < cxD and both #(C) and in IMI are polynomial in n, then C is statistically 

PAD-learnable with respect to the Kullback-Leibler divergence under C./-constraint. 

Proof of  (A). First we evaluate Type 1 error probability for the MDL discrimination 

algorithm. Letting (*)be the event that hMDL(P*,C, Dm,c) <_ 0 (i.e., P* (Y~  ] X m) < 
e - - L M D L ( Y ' ~ t X m :  C,,.)--~), we have 

(Qp , )m  [Din: AMDL(P*, C, D m, ¢) = -1] 

= (QP*)m[Dm: hMDL(P*,C, Dm,e) <_ O] 

= E (QP*)(Dm) 

D .. . . . .  (*)  
m ,a 

D ... . . .  (*) 

¢--LMDL (Y [ C m )  _< Q ( x  x-, 

X m y ~,. 
%-~ 

d e  

Here we have used the property (6) of the MDL to derive the last inequality. Thus, for 
0 < 81 < 1, the following sample size is sufficient to guarantee that Type I error probability 

is at most 81. 

2 1 
r a > - l n  . (10) 
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Next we evaluate Type 2 error probability for the MDL discrimination algorithm. Here- 

after, for the sake of notational simplicity, we denote l-I~=l P*(Y~ I x i )  as P*(Y'~ [ x "~) 

and P(Y'~ ] X'~: 0 -< 2~/) = Eim=l P(~/  [ Xi: 0 -~ M) as f ) (ym [ Xm). Here 0 and 2~/ 

respectively denote the probability parameter vector and the countable model f o r / 5  We 

have the following inequalities for Type 2 error probability: if d(/5, P*) > c, then 

(Q/5)m[Dm: AMDL(P*, C, D m, ~) = ÷1] 
= (Q/5)m[Drn: hMDL(P*,C, Drn,¢) > 0] 

m e  
= (Q/5)m[ D'~: lnP*(  Y'~ [ X'~) + LMDL( Y'~ [ Xm: Cm) + ~ > 0] 

[ 1  P * ( y m l x m )  
= (Q/5)'~ 1~ +d(/5,_P*) 

/5(V-~ I X ~ ) 

l ( l n / 5 ( y ~  
n 

I x  "~) + LMDL(V ~ 'X~: Cry)) > d(/5, P*) -- ~1 + 
m z j  

< (Q/5)~ 1~ +d(/5,P*) > (11) 
- / 5 ( v , ~  I X~)  2 

P ~  

(Q/5/~/~(1. /5(Y~ I x m / +  LMDL(Y~ I X~: C~/) + 
L - -  

d(/5, P*) - ~/2.] 
> 2 3 

_< (Q/5),~ In /3(y,~ i Xm) 

1 
Here in order to derive inequality (11) we have used the general inequality: Prob[A + B > 

c] < Prob[A > ~]+ Prob[B > ~1. 

To further evaluate the probability (12), we prepare the following lemma. 

L e m m a  4. Letting :~ = supxcx,vcy {1//5(Y ] X)} < oo and'y = supxcx,yey { l / P *  

(Y [ X)} < oo, for 0 < 62 < 1, the probability (12) is at most ~52 for all sample size 
satisfying 

m > 8(ln~7")2 in 1 
- e 2 62" ( 1 4 )  

Proof of  Lemma 4. We prepare the following sublemma in order to prove Lemma 4. 

Sublemma 5 ( Hoeffding 1963). Letting Z I , . . .  , Z m be independent random variables 
with bounded ranges: a < Zi < b, for each q > O, we have 

r- TR, ] 2 rt 2 m, 

Prob1-1 ~ z,- E[z] > ~] _< ~- <',-,,)=. 

El/% i=1 
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Let EO, p be the expectation taken with respect to Q(X)/5(Y [ X). Since - l n ~  < 

In  /~(YtX) . /  [In /5(YIX) ] d(/5 p*) ,wehave  "" P* (Y IX) - in 7* for all X E 32 and Y E Y, and EQ,p t... p. (glx) J = 
the following inequality using Hoeffding's inequality. 

(O/5)~ In ~(ym I Xm) 

= (QP)'~ ~ in - - -  E Q , p . - l n  ~-777-~ . > 
i=1  

~1.¢ 2 

_< e ~(,,,s~*)~. (15) 

Letting the righthand side of (15) be 52 and solving it for m2 yield (14). This completes 

the proof of Lemma 4. [] 

To evaluate the probability (13), we prepare the following lemma. 

Lemma 6. The probability (13) is O for all sample size satisfying 

2e ( In 256~ ) 
m > c(e----1) ~ ~ + 2g(2~r) . (16) 

Proof of Lemma 6. We define a maximum likelihood estimator t9 for a fixed M as 

0 clef= arg max0co(£r ) P(Y'~ ] X'~: 0 -~/~/). We denote the truncated vector (in @~(/~/)) 

of 0 as 0. From the definition of the MDL and (5), we have the following inequalities: 

LMDL( Ym I xm:  Cm) 
< - l n P ( Y  m I X'~: 0 -< -]~/) +gm(O,M) 

< - l n P ( Y  ~ ]Xm: 0 -< 2V/) + gm(0,-~/) + k ln2  (17) 

~ ln .~  (51n2)~ 
= - lnP(Y ~ I X "~: 0 -~ M) + --5--  + ---5---- +g(M) + ~ln2, 

where k = dim @(.~/), and ~(J~/) is the code-length for M over 3,4. To derive (17) we have 

used the following general relationship between the likelihood for 0 and that for 0 with 

regard to stochastic rules with finite partitioning (see Yamanishi, 1992a, p. 184, Eq. (27)): 

- l n / 5 ( Y m  I Xm: 0 -< 2~/) < -- ln/5(Y m I Xm: t) -4 iV/) + kln2.  

Hence we obtain 

lnm 
l n P ( Y  m ] X "~) + LMDL(Y ~ ! X'~: Cm) < ~ + - -  

Thus, if m satisfies 

( ~  (5 in 2)~: ) 
Z + - - + ~ l n 2 + e ( M )  <4 ,  
m 2 --  

(51n2)k 
+ k ln2  + g(-M). (18) 

(19) 
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then 

(O/5)~n [~(In/5(Y~ l X ~ ) +  LMDL(Y'~ I 

(19) yields the following equivalent expression: 

2fc inm (141n2)/c 4g(lV/) 
m >_ - -  + + - -  (20) 

£ C E 

Notice here that the following general inequality holds for x, y E R + [see, (Haussler & 

Long, 1990) for the proof]. 

lnx  < xy - lney. 

Thus, for any 0 < ~ < 1,1nrn < "e~ + l n  2~ Hence the following sample size is 
- -  2 k  u ~ "  

sufficient to guarantee (20). 

) m >_ - -  + l n  + 
(141n2)k 4 g ( 2 ~ / )  

+ - -  
£ E 

Letting u = I / e  and solving this for m, we see that 

rn >_ c ( e ~  1) k l n - - c  + 2g(2~/) . 

suffices to guarantee that (19) holds. This completes the proof of Lemma 6. [] 

From (10), (14), and (16), we see that sample size satisfying 

{ 2  1 8(ln-~?*) 2 1 2e ( 256k ) }  
r e > m a x  - l n  , In6 , k ln  ~-2e(f/)  

- e (51 e 2 a e ( e - - -  1 )  e ' 

is sufficient to guarantee that Type 1 and 2 error probabilities are at most (51 and (52 respec- 

tively if d(/5, P*) > c. This completes the proof of (A) in Theorem 3. [] 

Proof of(B). First note that the righthand side of (8) depends on/5 and P* but does not 

depend on Q. Applying the worst-case analysis, we see that the following two inequalities 

must be satisfied in order to guarantee that for all Q over 2(, for all/5 E C, for all P* E C.y 

such that d(/5, P*) > c, Type 1 and 2 error probabilities are respectively not larger than (51 
and (52. 

sup (QP*)m[Dm: hMDL(P*,C, Dm,e ") <_ O] < ~1, 
P* CC-~ 

~up ~up (QP)'~[D~: h~L(P*,C,  D~,~) > 0] _< 5~. 
P*6c~ ;5cc,d(p,p.)> ~ 

(21) 

(22) 
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Notice that the righthand side of (8) is a monotone increasing function with respect to "~, -),*~ 

and/c. Thus, by replacing ~, "7", k in (8) with ~,(C), % #(C) respectively, we can prove that 

(21) is satisfied for 

m > _21n 1 
- -  e (~1 

and that (22) is satisfied for all sample size satisfying 

{ 8(ln7(C)7)2 in 1 2e ( 2 5 6 # ( C )  ) }  
m _ > m a x  e2 82 'e (e - -1 )  #(C) l n - - + 2 1 n l 3 d l e  , (23) 

where we have used the following code-length function over .M: 

e(M) = in IM I 

for all 2~/ E A d .  Hence (23) yields (9). It immediately follows from (9) that for any 

1 < y < oo, if 7(C) < ec and both #(C) and In IMI are polynomial in n, then C 

is statistically PAD-learnable with respect to the Kullback-Leibler divergence under C-~- 

constraint. This completes the proof of (B) in Theorem 3. [] 

In the proof of Theorem 3, we have used two notable properties of the MDL. One is that 

the MDL satisfies Kraft's inequality (see (6)), which we have used to derive (10). The other 

is that the MDL determines the minimum of the total code-length for test examples over 

the hypothesis class, which we have used to derive (16). 

From bound (8) we see that the order of sample complexity (with respect to either 1 1 
E~ 61 ~ 

__1 it, or g(2~/)) is at most a square of the parameter. 
62 

As corollaries of Theorem 3, we have results on PAD-learnability of specific classes of 

stochastic rules with finite partitioning. 

Corollary 7. Let 2( = {0, 1} ~ and y = {0, 1). Consider classes of  stochastic decision 

lists (see Yamanishi, 1992a, Kearns & Shapire, 1994). Let a positive integer 1 < s <_ n 

be given. We denote the set o f  all terms with at most s-literals as T~. Letting Q , . . . ,  tk C 

T n T n (1 < k < t s 1), each stochastic decision list (with at most s literals in each term) 

is defined as a stochastic rule o f  the form: (tl, Pl) " " ( tk-1,  Pk-1) ,  ( t rue,  Pk), with the 

following semantics: for  any given X E 2(, Y = 1 with probability Pi and U = 0 with 

probability 1 - p~ where i is the least index such that X makes ti true. We denote the 

class o f  stochastic decision lists (with at most s literals in each term) as C]) L. Let F~s ~ be 

the set o f  alI countable models specifying C~) z. That is, each finite partitioning specifying 

a stochastic decision list is parametrized by an element in F~ ~. Then CSDL can be written 

as C]9 c = { P ( Y  I X: 0 ~ M): M E F~,0 E (9(M)}, where / f d i m O ( M )  = k, 
then 0 = (Pl , . . - ,Pk)  and (9(M) = [0, 1] k. When we wish to emphasize the number o f  

attributes, n, we will indicate this in parentheses after the class name, as in C])z (n ). 

For given 0 < u < 1, let CDL be a subclass o f  C~z  such that for  each probability 

parameter vector 0 = (Pl , . . . , Pk ), u << Pi <- 1 - u( i = 1 , . . . ,  k ). Then for  f ixed s and u, 

for  any 1 < 7 < oc, cs~L is statistically PAD-learnable with respect to the Kullback-Leibler 
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divergence under C.<constraint. We have the following worst-case upper bound on the test 

sample complexity mo (~, 61, 62, n ) f o r  PaD-learning o f  C ~  (n): 

m0@,61,62, n) = O (  1 1 ~ 1 n s n )  jl. + . (24) 

Proo f  (24) is immediately obtained from (9) and the facts that p(CDL(n)) = O ( n  ~) and 

O(ln I r 2 l )  = o(~s  in n) [see (Yamanishi, 1992a)]. It follows from (24) that mo (e, 61,62, n) 
1 1 and n. Thus for fixed s and u, for any 1 < '7 < oc, C~'~ is is polynomial in 1, 6a' ~2' 

PAD-learnable with respect to the Kullback-Leibler divergence under C.<constraint. This 

completes the proof of Corollary 7. [] 

Corollary 8. Let 2( = {0, 1} n and 32 = {0, 1}. Let s be a f l xedpos i t i ve  integer. Let 
S h i  Tt, 

f~DT (n) be the set o f  all countable models each of  which specifies finite partitioning for  

a stochastic decision tree (see Yamanishi, 1992a) (with at most s Inn  depth). We denote 

the class o f  stochastic decision trees with at most s In n depth as C])I~ ~ = { P ( Y  I X: 0 -< 

o s  Inn / ~ 0 E 6)( M )  }. Assume that all leaves o f  a decision tree is appropriately M ) : M  E ~ . D T  \7%], 

indexed. When P ( Y  I X: 0 -< M )  denotes a stochastic decision tree with k leaves, for  

0 = ( P l , . . .  ,Pk) C O ( M ) ,  each Pi denotes the probability that Y = 1 for  an3, X that 

reaches the ith leaf  That is, a stochastic decision tree is a stochastic rule which has the 

following semantics: for  any given X E 2(, Y = 1 with probability Pi and Y = 0 with 

probability 1 - Pi where i is the index of  the leaf  that X reaches. When we wish to emphasize 

the number of  attributes, n, we will indicate this in parentheses after the class name, as in 
c s l n n /  \ 

D T  k n )  • 

ys  lnn,u subclass o f  C~)l~ n such that for  each probability For given 0 < u < 1, let "DT be a 

parameter vector 0 = (Pl , . . .  , P~ ) , u < Pi <_ 1 - u, ( i = 1 , . . . ,  k ). Then for  f ixed s and 

t,s mn , ,  is statistically PAD-learnable with respect to the Kullback- u, for  any 1 < ~/ < 0% ~DT 

Leibler divergence under C-~-constraint. We have the following worst-case upper bound on 

the test sample complexity mo (e, 61, 62, n) for  PAD-learning ~ '~  l . . . . . . . . .  OIt~DT ~ n ) .  

m o ( e , 6 1 , 6 2 , n ) = O ( 1  ~ 1 1 n~ lnn  n )  
~5 in + ~5 in ~-2 + e In . (25) 

e , . s  In Proo f  (25) can be immediately obtained from (9) and the facts that #~.C.DT ~ " ( n ) )  = 

O ( n  s) and O(ln 1%~n(T01) = 2 s nn-1 ln(,~ + 1) . . .  (n  - s ! n n  + 1) : O(nS( lnn)2 ) .  

1 1 1 andn.  Thus for fixed It follows from (25) that too(e, 61,62, n) is polynomial in ~, ~ ,  ~2' 
( ,s  In n ,u  

s and u, for any 1 < 2/ < o% ~I)T is statistically PAD-learnable with respect to the 
Kullback-Leibler divergence under C.<constraint. This completes the proof of Corollary 8. 
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4.2. Comparison of MDL discrimination with other information-criteria-based discrimi- 

nation 

To see how well the MDL discrimination algorithm performs within the PAD-learning 

model, let us consider a more general family of information-criteria-based discrimination 

algorithms and compare their discriminative performance with that of the MDL discrimina- 

tion algorithm. Here an information-criteria-based discrimination algorithm is a discrim- 

ination algorithm .A that takes as input P*, 7~, D m, e, and outputs "+1"  if the following 

h(P*,  C, D m, e) is positive; otherwise " -1 . "  

h(P*,g, Dm,g) = lnP*(ym l xm)  

+ min min { - l n P ( Y  m ]X'~: 0 -.< M) + fm(O,M)}, (26) 
MEAAOee.,,(M)- 

where fro(O, M) is a function of 0 E Ore(M) and M, depending on rn. 

We evaluate the discrimination performance of the general information-criteria-based 

discrimination algorithm in terms of the sample size bound required for (1) and (2) to be 

satisfied for given e, 81, and 82. We consider the following three cases. 

Case I. fm(O, M) = O(ln s m)(0 < a < 1). 

Specifically, if we let fro(O, M) = 0, the second term of the righthand side of (26) can 

be written as m i n M c ~  min0ce,T, (v)  {-- l n P ( Y  m ] X r~: 0 -< M)} = - lnmaxMe~4 

maxoco,,,(M) p ( y m  ] xm:  0 -< M),  which is a logarithm of the maximum likelihood for 

y m  for given X "~ relative to gin. 

First let us investigate the case where fm (0, M) = C In s m + 9(M) for some C > 0 and 

where for some code-length function g satisfying Kraft's inequality over 54, g(M) > g(M) 

for all M. In Case 1, we cannot any longer apply Kraft's inequality in Type 1 error probability 

evaluation as with the derivation of (10) in the proof of Theorem 3. It can be easily verified 

that Type 1 error probability is at most 81 for sample size O(~ In ± + u(e) In t,(c)), where 61 
>(C) is the largest number of parameters in any rule in C. Using the same type of proof 

technique as in Theorem 3, it is easily verified that the least sample size required for Type 

1 £ ln~(~ 9(~_) 2 error probability to be at most 82 is O ( ~  in g + 7 ) + - - ) "  Hence we obtain 

the following upper bound on the test sample size: 

O in + 7 1 n ~ +  #(C)¢ ln#(C ) ¢  + 9(e2V/) ) ,  (27) 

which is larger than (8) except in the case where/5 has the largest number of parameters 

in C. 

If we consider the case where f,~(O, M) = C in s m + 9(M) and where there exists no 

code-length function g over 54 such that 9(M) >_ g(M) for all M, then the fourth term in 

(27) may be replaced with the term larger than g(M) and is at most lnlMI. This still yields 

a bound of higher order than (8). 

Case 2. f,~(O, M) = O(ln s m)(c~ = 1). 
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In this case, letting fro(O, M) - kln,~ + (51n2)~ 2 2 + g(M), we have the MDL discrim- 

ination function. Then we have the best upper bound (8) on test sample size in this case. 

Case3. f,~(O,M) = O(lnS rn)(a > 1). 

Specifically we consider the case where fro(O, M) = C ln  s rn + 9(M) for some C > 0 

and where for some code-length function g satisfying Kraft's inequality over J~¢~, g(M) > 
g(M) for all M E A.4. In this case we can apply Kraft's inequality in Type 1 error prob- 

ability evaluation as with the derivation of (10), and thus the least sample size required 

for Type 1 error probability to be at most 61 is O( I  In ~ ) .  On the other hand, the least 

sample size required to guarantee that the probability corresponding to (13) becomes zero 

is O(-~ lnS(-~ ) + g(~______2)), and thus the least sample size required for Type 2 error probability 

1 s (~)  a(_[~) Hence, using the same type of proof to be at m o s t 6 2 i s O ( ~ l n ~ + 7  n , ? -  + ~ . 

technique as in Theorem 3, we obtain the following upper bound on the test sample size: 

( 1 1  1 ~ / c  ( ! )  9(¢]~r) ) 
O in ~ + ~7 in + -e Ins + ' (28) 

which is of higher order with respect to ~ and ~: than (8) since a is larger than 1. 

If we consider the case where fro(O, M) = C ln  s rn + 9(M) and where there exists no 

code-length function g over A.4 such that 9(M) >_ g(M) for all M, then the fourth term in 

(27) may be replaced with the term larger than t(Y4) and is at most lnl~l. This still yields 
C 

a bound of higher order than (8). 

From the above comparison of the upper bounds on test sample size, we can say that the 

upper bound on the test sample size given for the MDL discrimination algorithm is the least 

reported to date for any information-criteria-based discrimination algorithm. Although this 

is a comparison of upper bounds and any lower bounds to be compared have not yet been 

obtained, this analysis shows that the MDL principle effectively works in the universal 

hypothesis testing problem. 

5. Relationship between PAD-learnability and stochastic PAC-learnability 

In this section we give a theorem relating PAD-learnability to "stochastic PAC-learnability." 

Before describing the theorem, let us review the definition of stochastic PAC-learning 

algorithms. The following definition follows (Yamanishi, 1992a). 

Definition 9 (Stochastic PAC-Learning Algorithm). Let a class C of stochastic rules and 

a distance measure d be given. We say that A is a stochastic PAC-learning algorithm for 
C (with respect to d) if for some polynomial poly(*, *, *), for all e > 0, for all 0 < 6 < 1, 

for all Q over X, for all P* c C, for all positive integer m > poly( 1, 3, r~), A takes as 

input D rn = D 1 . . . D m ( D i  = (Xi, Yi) E X x y , i  = 1,... ,rn), each Di of which is 

independently drawn according to Q(X)P*(Y I X) (Q and P* are unknown to .2,), and 

outputs a hypothesis/5{D,,. 1 E C such that 

Prob[d(P*,/5[D.,,]) > e] < 8, 
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1 1 and .4 runs in time polynomial in 2, $, and n, where Prob denotes the probability taken 

with respect to the probability distribution (Q(X)P*(Y [ X) )  "~ over (2( x y ) m  and any 

coin-tossing that .4 may make. 

T h e o r e m  1 0 .  For a class C = {P(Y  I X: 0 -4 M) :  M c A4, 0 E O ( M ) }  of stochastic 

rules with finite partitioning, assume that 3'(C) = s u p p e c  supxex ,y -ey  {1/ P ( Y  I X) } < 

oo, and that #(C) = d i m M ~ z 4 0 ( M )  and In IMI are both polynomial in n. If there exists 

a stochastic PAC-learning algorithm for C with respect to the Kullback-Leibler divergence, 

then for any 1 < ~/ < oo, C is polynomial-time PAD-learnable with respect to the Kullback- 

Leibler divergence under C.~-constraint. 

Proof For a given class C, assume that 7(C) < oo, and that #(C) and in IMI are 

both polynomial in n. Suppose that there exists a stochastic PAC-learning algorithm for 

C with respect to the Kullback-Leibler divergence d and denote it as A. Letting D m = 

D1.. .  Dm(D i = (Xi ,  Y~), i = 1 , . . . ,  m)  be a test sequence, we denote an output of -4 

from D "~ as P[D-,]. We define a discrimination algori thm/3 as an algorithm that takes as 

input P* ,  7-/, D m, e and outputs " 4 1 "  if the following function h~ is positive; otherwise 

" - 1 . "  Here hB is defined as 

his(P*, C, D ~, c) 
= in p * ( y m  I x ' ~ )  - l n t ) [ D m ] ( y m l x  m) 

p(C) l n m  (51n2)#(C) 
+ 2 + 2 + In IMI + - -  

(29) 

m E  

First let us evaluate Type 1 error probability for B. We prepare the following lemma. 

L e m m a  11. For any fixed X m, the following inequality holds. 

~ e -  ( -  In P[D T M  ] (Ym'lXm')q-P'(C)21 ...... q_ (s In 2)Me) bin [M[) 
• ~ < 1 .  (30) 

Proof of Lemma 11. First notice that, for a given class C = {P(Y  I X: 0 -4 M) :  M E 

A/l, 0 E O ( M ) }  of stochastic rules with finite partitioning, there exists a prefix code with 

code-length of k l n m  (51n2)k + 2 + g(M) for P ( Y  ] X: 0 -4 M )  E C (see Yamanishi, 

1992a). Here k = d im 19(M) and g is an arbitrary code-length function over Ad. 

Hence, letting g(M) = in ]All for all M E Ad, there exists a prefix code over C with 

code-length of Mc) In m (5 In 2),a(C) 2 + 2 + lntAd ] for all P E C, since it allows even the 

rule with the highest number of real-valued parameters over C to be encoded into a prefix 

codeword. 

Next observe that when given X m, each ym can be encoded into a prefix codeword with 
#(C) In m (5 In 2)#(C) 

code-lengthofatmost-lnP[Dml( Ym I x m )  + 2 + 2 + lnl .M I i n the  

following two steps. First/5[D., ] itself is encoded into a prefix codeword with code-length 
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of ~(c)l~m (5 In 2)p,(C) 2 + 2 + In [A4[, and then y m  is encoded using the arithmetic coding 
^ 

scheme (Rissanen, 1989) into a prefix codeword with code-length of - In P[D-q (ym [ X m) 
^ 

under the condition that P[D'-] has already been known. 

Since the existence of a prefix code over any countable set implies that its code-length 

function satisfies Kraft's inequality over the set (see Section 3), the code-length function 

defined above satisfies Kraft's inequality. This completes the proof of Lemma 11. []  

Using Lemma 11, Type 1 error probability for B is bounded as follows. Letting (*) be 
the event that h~(P*, C, D m, e) <_ 0 (i.e., p*(ym ] X-~) 
__< e-- ( -  in/5[Dm } ( Y ' ~ I X " ) +  ;,.(c)l ..... -t (5 h, 2),(C)7 +ln I'MI)- ~-e ), we have 

(QP*)'~[Dm: h~(P*, C, D "~, e) <_ 0] 

= ~ (QP*)(D ~) 
D .... .  (*) 

~-- E Q(Xra)e-(-lnP[D"l(Ym[xm)+'(C½1 ..... + (5 h' ~)"(C) + ln  ]'MI) " ~  

D ... . .  (*) 

"Q e - - ~  E Q ( x r n )  E e--(--ln[~iDm](Ym[X)+'(C)21 ..... + (5 h~), , (C)+ln IA4]) 

X "  Y "  
m , z  

< e  ~ .  

Here we have used Lemma 11 to derive the last inequality. Thus, for 0 < 61 < 1, the 
following sample size is sufficient to guarantee that Type 1 error probability is at most (51. 

2 1 
m >_ - l n - - .  (31) 

c (51 

Next let us evaluate Type 2 error probability for/3. First notice that the following in- 

equalities hold if d(/5, P*) > c. 
N m 

(QP) [h~(P ,C, Dm,e) > 01 

[_~ P*(Y'~,x m) d(P,P*)-c/2.] 
< (Q/5)m In = + d(/5, P*) > 
- p ( y m  I Xm ) 4 

p(vm I X m) d(P, P*)4 - c12]j 

d(P,P*)-~/2] 
+ (Qp)m d(P, PE~-']) > 4 j 

+ (Q/5),~ [ 1  ( # ~ ) l n  rn + (5 In 2)#(C)2 + in 1 3 , 4 ] ) d ( 1 5 ~ P * ) - e / 2 ] >  4 j 

P*(Y~ I X d  + d(P,  P*) > (32) 
_< (Q/5)m In /~(Y/ [ Xi) 

+(Q/5)m E l n  ^/5(y~[X~) -- d( [', -fi'[D-q) > (33) 
~=1 PI.-'l(~ I xd 

+(Q!P)m[d(P,P[D~.I) > 8] (34) 
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+ ( Q p ) ~  ~(C n m  ÷ 2 +lnlA4t  > . (35) 

Using Hoeffding's inequality as with the derivation of (14), we see that for 0 < 62 < 1, 

if supx,v(1/P(Y [ X)) < 7 < co, the probabilities (32) and (33) are at most 82/3 for all 

sample size satisfying 

m > 32(ln7(C)7)2 In --.3 (36) 
- e 2 ~2 

From the assumption that A is a stochastic PAC-learning algorithm, we see that the least 

sample size and computation time required for the probability (34) to be upper bounded by 
t and n. 82/3 are both polynomial in ~, 

It can be proven as with the derivation of (16) that the probability (35) becomes zero for 

all sample size satisfying 

4e ( 512#(C) ) 
rn >_ e(e----1) #(C)ln--e +21nlMI ' (37) 

1 and n since by the assumption, #(C) and In IMI are both poly- which is polynomial in 7 

nomial in n. 

From (31), (36), (37) and the polynomiality of sample size and computation time for 

,,4, we see that the least sample size and computation time required for Type 1 and 2 error 
1 1 1 probabilities for B to be respectively upper bounded by (~1 and ~2 are polynomial in 7, ~1' ~2 

and n. This implies that B is a polynomial-time PAD-learning algorithm, and thus for any 

1 < 7 < 0% C is polynomial-time PAD-learnable with respect to the Kullback-Leibler 

divergence under C~-constraint. This completes the proof of Theorem 10. [] 

Theorem 10 shows that for any given class C of stochastic rules with finite partitioning such 

that #(C) and in IZ41 are polynomial in n and that 7(C) < oc, the existence of stochastic 

PAC-learning algorithms for C immediately implies polynomial-time PAD-learnability of 

C. However, it is an open problem whether the converse holds. We may conjecture that 

the converse doesn't hold because one may not efficiently produce a good hypothesis 

approximately achieving the MDL even if one can approximate the MDL itself in polynomial 

time. 

6. Sample  complexi ty  bounds  for PAD-learning: Non-parametr ic  case 

This section derives test sample size bounds for PAD-learning for the non-parametric case 

where the target class C is non-parametric and the hypothesis class 7-{ is written as a union 

of an infinite number of finite dimensional parametric classes of stochastic rules. 

Hereafter let ,-t" be continuous. We assume that a parametric hypothesis class 7-t is written 

as ~ = U~__lT-t (d) and 7-{ (a) = {P(Y I X: 0 -< M): M EA d  (a), 0 E O(M)} is a class 
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of stochastic rules with finite partitioning each of which is specified by a d-dimensional 

real-valued probability parameter vector and a countable model belonging to a finite set 

A4(a). We define 7-{~ ) by 7-{~ ) de_f ~-{m A ~-~(d) where 7-{,~ is a quantized subset of 7-/. 

For any given set C of stochastic rules such that 7(C) = suPpe c s u P x , y { 1 / P ( Y  ] X)} < 

co, for any /5 E C, we define the projection of/5 on 7-{ (a), which we denote as /5(a) 

by /5(a) d~f arg minp d(/5, P), where the minimum is taken over all Ps in 7-{ (a) such 

that supx ,g (1 /P(Y  [ X)) <_ 7(C). We let/5(d) be the function obtained by truncating 

/5(a) E 7/(a) in 7-{~ ). We write/?.(ma) (Y ] X) as P ( Y  I X: g(a) ~ 2~/(a)) where O(a) is a 

d-dimensional probability vector and/~/(d) E 2M (a). 

In this setting, when D m is given, the MDL ofY "~ given X m relative to 7-t,~ is calculated 

as follows: 

LMDL( Ym I xrn: ~m) 

= rain min rain { - l n P ( Y  m I X'~: 0-4 M) +g.~(O,A/I)}, 
l < d < r a  MEAd(,~) 066)~,(M) 

(38) 

where g,~ (0, M) def d Inm -l- 5d in 2 _~_ ~ ( M )  -I- 6" (d) .  Here  g(M) is an arbitrary code-length 
= 2 

function over Ad (d). Hereafter, we assume that for each d, g(M) is constant over jgi (d). 

6" (d) is the code-length required for encoding of the integer d and is calculated using 

Rissanen's integer coding scheme [see (Rissanen, 1983), (Rissanen, 1989)] as follows: 

~*(d) = (ln 2)(log 2 c + log 2 d + log 2 log 2 d + . . . )  where c = 2.865. Note that the range 

of d in (38) could be improved, which will be discussed after the proof of Theorem 12. 

The following theorem shows an upper bound on test sample size for PAD-learning of a 

non-parametric class in terms of a parametric class. 

Theorem 12. Let C be a non-parametric class of stochastic rules such that 7(C) = suppEc 

s u P x , y { 1 / P ( Y  ] X)} < oo. Let 7-( = l.)~=lT-~(d) be a class of stochastic rules with finite 

partitioning where 7-{ (a) = { P ( Y  [ X: 0 -< M): M E j~(a), 0 E O(M)} as described 

above. For any n, for any 0 < ¢ < 1, for any 0 < ~1,52 < 1, for any density q over 2(, 

for any P E C such that ~ = supx,y(1//5(Y ] X)) < oo, for any P* E Cau such that 

d(/5, P*) > c andT* = s u p x y ( 1 / P * ( Y  [ X)) < oc, whenever sample size satisfies 

{ 2 1 18( ln#7*)21n~,m1(¢  ' } m > max - in /5: 7-/) (39) 
- -  £ ~11 £2 

Type I and 2 error probabiIities for the MDL discrimination algorithm using 7-{ are then at 

most 51 and 62 respectively. Here ml(¢,/5: ~ )  is the least sample size such that 

mind d(/~'/~(d)) _~ rn\Tporn ] -~- _< ~, (40) 

wherefor bZd)(f I X) = f ( Y  I X: ~(d) _< i~(d)), em(/5Zd)) do~: ~n.~ + ---7+~d~n~ 
~(M(d)) + e*(d). 
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Proof. It can be proven as with the derivation of (10) that Type 1 error probability for the 

MDL discrimination algorithm using 7-I is at most 52 for all sample size satisfying 

2 1 
m _> - i n - - .  : 51 (41) 

Next we evaluate Type 2 error probability for the MDL discrimination algorithm using 

7"/. If d(/5, P*)  > : ,  then for any 1 < d < m, we have the following inequalities. 

(QP)~[Dm: hMDL(P*, 7-/, D m, :) > O] 

[1 d(T',P*)-:/21 P * ( Y m l X m )  +d( /5 ,p*)  > 
_< (Q/5)-~ In /~ (y~  i X,~) 3 

[1 d(P,P*)-:/2] P( z m  I x m) _ d(P, p(d)) > 
+ (Qp)m in p(d)(ym I x m) 3 

+ :n I x m) + 

d(P, P*) - : / 2 ]  
+ 1LMDL(Ymm I X m: 7~m) > 3 

<_ (Q/5)m 1 in } ( y ~ l x i )  + d(/5,P*) > g (42) 

/Tz i=l 

] +(QJ)) m E l n  /5(Yi I x i )  d(P,P (d)) > : (43) 
i=1 P(~-(-(Yi I Xi) 

+ (Qf~)~[1 ln[~(d)(y~txm) + d(~,~(d) ) 

(44) 

It can be proven using Hoeffding's inequality as with the derivation of (14) that the 

probabilities (42) and (43) are both at most 82/2 for all sample size satisfying 

18( ln~7")  2 2 (45) 
m > c2 in 52" 

Next we upper bound (44). Since the MDL is a lower bound for the total code-length of 

examples, as with (17), for any d such that I < d < m, we have 

LMDL(Y m I Xm: 7-{m) < in/5(d)(Y "~ IX  '~) + fm(/5~ )) + d l n 2  

Hence we obtain 

]-ln.p(d)(ymlxm ) + d(P, ~(d)) 4- 1LMDL(ym l xm: 7"Lm) 
m m 

r/~, (d) ~ din 2 < --=d(~', = - t  '(d)) + "~ ' ~  + - -  
m m 



PROBABLY ALMOST DISCRIMINATIVE LEARNING 45 

Thus if m exceeds the least sample size such that 

then 

g.~ (/5(d)) d l n 2 }  e 
min d(/5,/5(d)) + - -  + - -  < 

d 7rb 7Y~ - - 6 ~  
(46) 

(Q/5)m [ 1  ln/5(d)(ym i X ~ ) +  d(/5,/5(d) ) 

From (41), (45), and (46), we see that Type 1 and 2 error probabilities are respectively at 

most 61 and (52 for all sample size satisfying 

{ ~  1 18(ln'~7*)21n52 ml(e,/5:7.{)} m _> max In ~-, e2 - 

which yields the bound (39). This completes the proof of Theorem 12. [] 

Let do (m) dezf arg mine suppcc {d(P, 15 (d)) -~ g" (P}r:')) + d h, 21 As seen from the proof 

of Theorem 12, even if we replace the range "1 _< ~ _< m" for the minimization in (38) 

with respect to d with "1 < d < do(m)," we obtain the same upper bound on test sample 

size as (39). Thus, hereafter, we may change the range of d in (38) into 1 < d < do(m). 

This range reduces computation-time greatly since do (m) becomes much smaller than m 

when m is sufficiently large, do (m) is hard to estimate in actual cases, however, as shown 

after Corollary 13, there exist classes for which do(m) can be obtained as a simple form. 

The lefthand side of (40) is called the index of resolvability (Barron & Cover, 1991), 

which is considered to be the optimal balance of trade-off between the approximation error 

d(/5/5(d)) of the d-dimensional hypothesis class ~(d) to /5  and the complexity e,,.(~(f) 
?]% 

of the projection of/5 on 7-{~ ) (measured by the ratio of the code-length for/5~) to sample 

size). Note that (40) is not truly the same as Barron and Cover's original definition of index 

of resolvability, in which d(P,/5(d)) is replaced with d(/5,/5(d))m / and d(ln 2 ) /m does not 

appear. In most cases, however, they have the same order with respect to m. 

It is known from (Barron & Cover, 1991) that in the context of density estimation, the rate 

of convergence of the MDL estimator to the target rule is asymptotically governed by the 

index of resolvability. Theorem 12 shows that even in the context of universal hypothesis 

testing, the test sample size bound is also essentially related to the rate of convergence of 
the index of resolvability to zero. 

Let Q be a class of densities over X. In particular, if Q and C are constrained so that for 
some c~ > 0, for all q E Q, for all t5 C C, for any d, 
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we have 

a ( ~ ,  ~ ( d ) )  + _ _  
gm (/5~) ) dln2 

+ - -  
77~ 77~, 

(47) 

since e.,(p(:o) = o ( d l n m  ) 
m m " 

The minimum of (47) is attained by 

C m 

d l n m  where c is a positive constant. The minimum is then given by 0(3-~,~ ) + 0 ( ~ )  = 

O((ln'~)w~+~ ). Hence we see 
\ x  m / 

rnidn d(f~, f:)(d)) + gm(P(md))--m + m-- = O . (4S) 

Thus the least sample size needed for the lefthand side of (48) to be at most ~ has the 

following upper bound: 

The method of optimizing d by balancing d(/5,/5(a)) and e.,.(P.~;!)) follows from (Barron 
77~  

& Cover, 1991). More generally, a can be replaced with a function a(n) of n. 

Combining the above argument with Theorem 12 and applying the worst-case analysis 

as in (B) of Theorem 3 to sample size evaluation, we have the following corollary. 

Corollary 13. Let 7-I = U~_I~ (a) be a class of stochastic rules with finite partitioning 

as in Theorem 12. Let Q be a class of densities on 2( and C be a non-parametric class of 

stochastic rules such that for some a > 0, SUpqeQ sup~c c d(P,/5(a)) = SUpqeQ s u p ~ c  

minp~7_t(, o d(/5, P) = O(1/d  c') and suppcc s u P x , y { 1 / P ( Y  I X)} < cx~. Then for any 

1 < "y < oc,for any q E Q, we have the following upper bound on the sample complexity 

of PAD-learning of C in terms of ~ with respect to the Kullback-Leibler divergence under 

C~-constraint. 

( 1  ~ 1 1 ( 1 )  '~+1--7- ~ )  
too(e, ~x, 52, n) = O In + )-ff In ~ + in . (49) 

We see that if the target class C is constrained as in Corollary 13, the range 1 < d < m 
c r~ 0) .  for the minimization in (38) can be replaced with 1 < d < [ ( ~ )  a-~+~ ] (c > 

Next let us derive a test sample complexity bound for a more concrete non-parametric 

class of stochastic rules. We prepare the following lemma. 
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Lemma 14 [Rissanen & Yu, 1991]. Let X = [0, 1] and y = {0, 1}. Let Q be a class of  

densities over X such that for some 0 < Co < 1, 1 < Cl < oo, and 0 < c2 < co, for  all 

q E Q, for all X E X, 0 < co < q(X) < Cl and ]~xq(X)l < c2. Let C be a class of  

stochastic ruIes such that for some O < c3 < c4 < 1, 0 < Ca < o o , f o r a l l P  E C, for 

all X c X, 0 < c3 < P(0  ] X) < c4 < 1, and I~xP(0lX) l< c5. Let ~ = t_J~_17-{ (d) 

be a class of stochastic rules with finite partitioning with equal-length cells where 7-[ (a) 

is a d-dimensional parametric class, i.e., the set of  disjoint cells of  2( = [0, 1] for  each 

element in 7-i (a) consists of  d equal-length cells with length 1/d. Then for any q E Q, for  

any D C C, there exists P C 7-{ (d) such that 

Combining Corollary 13 with Lemma 14, we have the following theorem° 

Theorem 15. Let ,IV = [0, 1] and 3) = {0, 1}. Let Q be a class of  densities over 2( as 

in Lemma 14. Let C be a non-parametric class of stochastic rules as in Lemma 14. Let 

7-[ = U~_ 17-{(cl) be a class of  stochastic rules with finite partitioning with equal-length cells 

as in Lemma 14. Then for any 1 < ",/ < oc, for any q E Q, we have the following upper 

bound on the sample complexity of  PAD-learning of  C in terms of  ~ with respect to the 

KulIback-Leibler divergence under C.y-constraint. 

rn0(e, 51,~2, n) = O in + i n ~ +  In 

= o ( l l n  ~1 + e-~ In ~ ) .  (51) 

We see that if the target class C is constrained as in Lemma 40, the range 1 < d < m for 
rn  1 the minimization in (40) can be replaced with 1 < d < [e(l~-~) ~ 1 (c > 0). 

The bound (51) shows that for the non-parametric class as in Corollary 13, the upper 

bound on test sample size is governed by the first and second terms of (51) only, and the 

third term of (51) is asymptotically ignored compared to the second term. 

Theorem 15 implies that if C is a non-parametric class specified by some smoothness 

conditions over the real line, then C is also polynomial-time PAD-learnable in terms of the 

class of stochastic rules with finite partitioning because the computation time for the MDL 

discrimination algorithm is polynomial in 1/e and 1/(5 in the case where the size of domain 
is fixed to be 1. 

7. Conclusion 

In this paper, we have developed a PAD-learning model based on the universal hypothesis 

testing theory. Unlike the conventional Neyman-Pearson type hypothesis testing theory, 

our concern is not to find an asymptotically optimal test but to derive tight bounds on test 

sample size. The discrimination algorithm which we have proposed based on the MDL 
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principle has turned out to perform well within the PAD model in the sense of sample 

complexity efficiency. 

For the parametric case, an upper bound on test sample size for PAD-learning with the 
~ 

MDL discrimination algorithm is given by O(½ in ~ + ~ + 2 in ~ + g(-t~-J) where ~: 

is the number of parmeters for the composite hypothesis, and g(2~/) is the code-length for 

the countable model for the composite hypothesis. Further we have demonstrated that this 

upper bound is the least reported to date for any information-criteria-based discrimination 

algorithm. This sample complexity analysis might give a rationale for the effectiveness of 

the MDL principle in the PAD-learning framework. 

For the non-parametric case, we have shown the test sample size bound for PAD-learning 

by the MDL discrimination algorithm is essentially related to Barron and Cover's index 

of resolvability. This analysis might give a new view at the index of resolvability from 

the universal hypothesis testing viewpoint, whereas Barron and Cover related it to the rate 

of convergence of the MDL estimation only. Further we have shown that when a non- 

parametric target class of hypotheses is constrained under some smoothness conditions and 

the family of stochastic rules with finite partitioning is taken as a hypothesis class, an upper 
1 l l n  1 1 bound on test sample size is given by O ( I  In K + ~ E + ( 1 ) @  in ~) for some c~ > 0. 

The following issues remain open. 

1) How can we design an efficient algorithm for approximating the MDL discrimination 

algorithm? This paper has shown the sample size efficiency of the MDL discrimination 

algorithm, but it is computationally inefficient to calculate the MDL itself in some cases 

where an important class (e.g. stochastic decision lists, stochastic decision trees, etc.) 

is employed as a hypothesis class. Hence the development of an efficient algorithm 

for approximating the MDL is an important issue which we have to address to get 

polynomial-time PAD-learnability results. It is shown in (Yamanishi, 1993) that a large 

family of classes of stochastic rules including k-stochastic decision lists is polynomial- 

time PAD-learnable for some limited range of accuracy parameter. However it still 

remains open whether they are polynomial-time PAD-learnable for arbitrary c > 0. 

2) How can we separate stochastic PAC-learnable classes from PAD-learnable ones? In 

Section 5 it has been shown that under some conditions polynomial-time stochastic PAC- 

learnability of any class is a sufficient condition for polynomial-time PAD-learnability 

of the class. We may conjecture that PAD-learnability is weaker than stochastic PAC- 

learnability, but it still remains open whether there exists a class which is polynomial- 

time PAD-learnable but is not polynomial-time stochastic PAC-learnable. 

3) How can we improve the upper bounds on sample complexity of PAD-learning? All 

the bounds derived in this paper include an O ( ~  in ~ )  term, which was derived using 

Hoeffding's inequality. We expect that this can be improved to 0 (  1 in 4 )  using more 

sophisticated techniques. It would be interesting to derive a lower bound on test sample 

size to compare it with our upper bounds. 

These issues will be dealt in future study. 
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