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Abstract. Automating the process of model building from experimen-
tal data is a very desirable goal to palliate the lack of modellers for many
applications. However, despite the spectacular progress of machine learn-
ing techniques in data analytics, classification, clustering and prediction
making, learning dynamical models from data time-series is still challeng-
ing. In this paper we investigate the use of the Probably Approximately
Correct (PAC) learning framework of Leslie Valiant as a method for the
automated discovery of influence models of biochemical processes from
Boolean and stochastic traces. We show that Thomas’ Boolean influence
systems can be naturally represented by k-CNF formulae, and learned
from time-series data with a number of Boolean activation samples per
species quasi-linear in the precision of the learned model, and that pos-
itive Boolean influence systems can be represented by monotone DNF
formulae and learned actively with both activation samples and oracle
calls. We consider Boolean traces and Boolean abstractions of stochastic
simulation traces, and study the space-time tradeoff there is between the
diversity of initial states and the length of the time horizon, and its im-
pact on the error bounds provided by the PAC learning algorithms. We
evaluate the performance of this approach on a model of T-lymphocyte
differentiation, with and without prior knowledge, and discuss its merits
as well as its limitations with respect to realistic experiments.

1 Introduction

Modelling biological systems is still an art which is currently limited in its appli-
cations by the number of available modellers. Automating the process of model
building is thus a very desirable goal to attack new applications, develop patient-
tailored therapeutics, and also design experiments that can now be largely au-
tomated with a gain in both the quantification and the reliability of the obser-
vations, at both the single cell and population levels.

Machine learning is revolutionising the statistical methods in biological data
analytics, data classification and clustering, and prediction making. However,
learning dynamical models from data time-series is still challenging. A recent
survey on probabilistic programming [14] highlighted the difficulties associated



with modelling time, and concluded that existing frameworks are not sufficient
in their treatment of dynamical systems. There has been early work on the use
of machine learning techniques, such as inductive logic programming [19] com-
bined with active learning in the vision of the “robot scientist” [4], to infer gene
functions, metabolic pathway descriptions [1,2] or gene influence systems [3],
or to revise a reaction model with respect to CTL properties [5]. Since a few
years, progress in this field is measured on public benchmarks of the “Dream
Challenge” competition [15,18]. Logic Programming, and especially Answer Set
Programming (ASP), provide efficient tools such as CLASP [11] to implement
learning algorithms for Boolean models. They have been applied in [12] to the
detection of inconsistencies in large biological networks, and have been subse-
quentially applied to the inference of gene networks from gene expression data
and to the design of discriminant experiments [26]. Furthermore, ASP has been
combined with CTL model-checking in [20] to learn mammalian signalling net-
works from time series data, and identify erroneous time-points in the data.

Active learning extends machine learning with the possibility to call oracles,
e.g. make experiments, and budgeted learning adds costs to the calls to the
oracle. The original motivation for the budgeted learning protocol came from
medical applications in which the outcome of a treatment, drug trial, or control
group is known, and the results of running medical tests are each available for a
price [8]. In this context, multi-armed bandit methods [7] currently provide the
best strategies. In [16], a bandit-based active learning algorithm is proposed for
experiment design in dynamical system identification.

In this paper, we consider the framework of Probably Approximately Cor-
rect (PAC) Learning which was introduced by Leslie Valiant in his seminal paper
on a theory of the learnable [24]. Valiant questioned what can be learned from
a computational viewpoint, and introduced the concept of PAC learning, to-
gether with a general-purpose polynomial-time learning protocol. Beyond the
algorithms that one can derive with this methodology, Valiant’s theory of the
learnable has profound implications on the nature of biological and cognitive
processes, of collective and individual behaviors, and on the study of their evo-
lution [25].

Here we present PAC learning as a possible basis to develop a method for
the automated discovery of influence models of biochemical processes from time-
series data. To the best of our knowledge, the application of PAC learning to
dynamical models of biochemical systems has not been reported before. We show
that Thomas’ gene regulatory networks [23,22] can be naturally represented by
Boolean formulae in conjunctive normal forms with a bounded number of litterals
(i.e. k-CNF formulae), and can be learned from Boolean traces with a number
of Boolean transition samples per species quasi-linear in the precision of the
learned model, using Valiant’s PAC learning algorithm for k-CNF formulae. We
also show that Boolean influence systems with their positive Boolean semantics
discussed in [9] can be naturally represented by monotone DNF formulae, and
learned actively from a set of positive samples with calls to an oracle.
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For the sake of evaluation, we consider Boolean traces and Boolean abstrac-
tions of stochastic simulation traces, and study the space-time tradeoff there is
between the diversity of initial states and the length of the time horizon, and
its impact on the error bounds provided by PAC learning algorithms. In the
following, we first illustrate our results3 with a toy example, the Lotka-Volterra
prey-predator system as running example, and then on a Thomas regulatory net-
work of the differentiation of the T-helper lymphocytes from [21,17], composed
of 32 influences and 12 variables. We evaluate the performance of PAC learning
on this model, with and without prior knowledge, and discuss its merits as well
as its limitations with respect to realistic experiments.

2 Preliminaries on PAC Learning

2.1 PAC Learning Protocol

Let n be the dimension of the model to learn, and let us consider a finite set
of Boolean variables x1, . . . , xn, A vector is an assignment of the n variables
to B = {0, 1}; A Boolean function G : Bn → B; assigns a Boolean value to
each vector. The idea behind the PAC learning protocol is to discover a Boolean
function4, G, which approximates a hidden function F , while restricting oneself
to the two following operations:

– Sample(): returns a positive example, i.e. a vector v such that F (v) = 1.
The output of Sample() is assumed to follow a given probability distribution
D(v), which is used to measure the approximation of the result.

– Oracle(v): returns the value of F (v) for any input vector v.

Definition 1 ([24]). A classM of Boolean functions is said to be learnable if
there exists an algorithm A with some precision parameter h ∈ N such that:

– A runs in polynomial time both in n and h;
– for any function F inM, and any distribution D on the positive examples,
A deduces with probability higher than 1 − h−1 an approximation G of F
such that
• G(v) = 1 implies F (v) = 1 (no false positive)
•

∑
v s.t. F (v)=1∧G(v)=0

D(v) < h−1 (low probability of false negatives)

For the sake of simplicity, the same precision parameter h is used above for
quantifying both the probability that the result is correct, and the approximation
error tolerated in the correctness criterion.
3 For the sake of reproducibility, the code used in this article is available at http:
//lifeware.inria.fr/wiki/software/#CMSB17.

4 More generally, the PAC learning protocol can discover partial vectors, but for the
applications discussed in the current article it is enough to only consider total vectors.
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2.2 PAC Learning Algorithms

Valiant showed the learnability of some important classes of functions in this
framework, in particular for Boolean formulae in conjunctive normal forms with
at most k literals per conjunct (k-CNF), and for monotone (i.e. negation free,
positive literals only) Boolean formulae in disjunctive normal form (DNF).

The computational complexity of the PAC learning algorithms for these
classes of functions is expressed in terms of the function L(h, S) defined as the
smallest integer i such that in i independent Bernoulli trials, each with probabil-
ity at least h−1 of success, the probability of having fewer than S successes is less
than h−1. Interestingly, this function is quasi-linear in h and S, more precisely
for all integers S ≥ 1 and reals h > 1, we have L(h, S) ≤ 2h(S + loge h) [24].

Theorem 1 ([24]). For any k, the class of k-CNF formulae on n variables is
learnable with an algorithm that uses L(h, (2n)k+1

) positive examples and no call
to the oracle.

The proof is constructive and relies on Alg. 1 below. In this algorithm, the
initialization of the learned function g to the false constraint expressed as the
conjunction of all possible clauses (i.e. disjunctions of litterals) leads to the learn-
ing of a minimal generalization of the positive examples with no false positive
and low probability of false negatives.

Algorithm 1 PAC-learning of k-CNF formulae.
1. initialise g to the conjunction of all the (2n)k possible clauses of at most k literals,
2. do L(h, (2n)k+1) times

(a) v := Sample()
(b) delete all the clauses in g that do not contain a literal true in v

3. output: g

In our implementation of the PAC-learning algorithm for k-CNF formulae,
we shall make use of the lattice structure of k-clauses ordered by implication.
Interestingly, this data structure allows for

– O(1) access to any k-clause;
– and for a clause c, O(1) access to the smallest clauses implied by c and to

the biggest clauses that imply c.

The class of monotone DNF formulae is also learnable. Let the degree of
a Boolean formula be the largest number of prime implicants (i.e., minimal
formulae covering one of the product-terms of the Boolean formula expressed as
a sum of products) in an equivalent rewriting of the formula as a non-redundant
sum of prime-implicants.
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Theorem 2 ([24]). The class of monotone DNF formulae on n variables is
also learnable with an algorithm that uses L(h, d) examples and dn calls to the
oracle, where d is the degree of the function to learn.

The proof relies on Alg. 2. As previously, the algorithm guarantees that a
minimal generalization is learned from both the samples and the oracle. The
polynomial computational complexity follows from the fact that each monomial
m is a prime implicant of f by construction, and that it is constructed by at
most n calls to the oracle.

Algorithm 2 PAC-learning of monotone DNF formulae.
1. initialise g with false (constant zero),
2. do L(h, d) times

(a) v := Sample()
(b) if v ⇒ g exit
(c) for i := 1 to n

i. if xi is determined in v
A. v∗ := v[xi ← ∗]
B. if Oracle(v∗) then

– v := v∗

– m :=
∧

v⇒xj
xj ∧

∧
v⇒¬xk

¬xk
– g := g ∨m

3. output: g

3 Influence Models of Molecular Cell Processes

In this section, we present the formalism of influence systems used to model
regulatory networks in cell molecular biology. We assume again a finite set of
molecular species {x1, . . . , xn} and consider Boolean states that represent the
activation or presence of each molecular species of the system, i.e. vectors in Bn

that specify whether or not the ith species is present, or the ith gene activated.

3.1 Influence Systems with Forces

Influence systems with forces have been introduced in [9] to generalize the widely
used logical models of regulatory networks à la Thomas [22], in order to pro-
vide them with a hierarchy of semantics including quantitative differential and
stochastic semantics, similarly to reaction systems [10].

Definition 2 ([9]). An influence system I is a set of quintuples (P, I, t, σ, f)
called influences, noted in the examples below in Biocham v45 syntax,
f for P/I -> t if σ = +, and f for P/I -< t if σ = −, where
5 http://lifeware.inria.fr/biocham4
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– P is a multiset on S, called positive sources of the influence,
– I a multiset of negative sources,
– t ∈ S is the target,
– σ ∈ {+,−} is the sign of the influence, accordingly called either positive or

negative influence,
– and f : R+

n → R+ is a function6 called the force of the influence.

The positive sources are distinguished from the negative sources of an influ-
ence (positive or negative), in order to annotate the fact that in the differential
semantics, the source increases or decreases the force of the influence, and in
the Boolean semantics with negation whether the source, or the negation of the
source, is a condition for a change in the target.

Example 1. The classical birth-death model of Lotka–Volterra can be repre-
sented by the following influence system between a proliferating prey A and
a predator B:

k1*A*B for A,B -< A.
k1*A*B for A,B -> B.
k2*A for A->A.
k3*B for B-<B.

The influence forces can be used for differential or stochastic simulation as
above. This example contains both positive and negative influences but no influ-
ence inhibitor, i.e. no negative source in the influences: ({A,B}, ∅, A,−, k1 ∗A ∗
B), ({A,B}, ∅, B,+, k1∗A∗B), ({A}, ∅, A,+, k2∗A) and ({B}, ∅, B,−, k3∗B).
For an example of influence with inhibitor, one can consider the specific inhi-
bition of the proliferation rate of A by some variable C (which is distinguished
from a general negative influence of C on A) by writing C as an inhibitor of the
positive influence of A on A: k2*A/(1+C) for A/C -> A.

Definition 3 (Boolean Semantics). The Boolean semantics (resp. positive
Boolean semantics) of an influence system {(Pi, Ii, ti, σi, fi)}1≤i≤n over a set S
of n variables, is the Boolean transition system −→ defined over Boolean state
vectors in Bn by x −→ x′ if there exists an influence (Pi, Ii, ti, σi, fi) such that
x |=

∧
p∈Pi

p
∧

n∈Ii ¬n (resp. x |=
∧

p∈Pi
p) and x′ = x σi ti.

where adding (resp. subtracting) t amounts to making the corresponding coor-
dinate true (resp. false).

Equivalently, the Boolean semantics of an influence system over n species,
x1, . . . , xn, can be represented by n activation and n deactivation Boolean func-
tions, which determine the possible transitions from each Boolean state:
6 More precisely, in a well-formed influence system, f is assumed to be partially dif-
ferentiable; xi ∈ P if and only if σ = + (resp. −) and ∂f/∂xi(x) > 0 (resp. < 0) for
some value x ∈ Rn

+; and xi ∈ I if and only if σ = + (resp. −) and ∂f/∂xi(x) < 0
(resp. > 0) for some value x ∈ Rn

+.
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Definition 4 (Boolean Activation Functions). The Boolean activation func-
tions xk+, xk− : {0, 1}n → {0, 1}, 1 ≤ k ≤ n, of an influence systemM are

xk
+ =

∨
(P,I,xk,+,f)∈M

∧
p∈Pi

p
∧
n∈Ii

¬n xk
− =

∨
(P,I,xk,−,f)∈M

∧
p∈Pi

p
∧
n∈Ii

¬n

The positive activation functions are defined without negation by ignoring the
inhibitors.

Conversely any system of Boolean activation functions can be represented by
an influence system by putting the activation functions in DNF, and associating
an influence to each conjunct.

Note that the positive Boolean semantics simply ignores the negative sources
of an influence. This is motivated by the abstraction and approximation rela-
tionships that link the Boolean semantics to the stochastic semantics and to the
differential semantics, for which the presence of an inhibitor decreases the force
of an influence but does not prevent it to apply [9].

Definition 5 (Stochastic Semantics). The stochastic semantics (resp. pos-
itive stochastic semantics) of an influence system {(Pi, Ii, ti, σi, fi)}1≤i≤n over
a set S of n variables, relies on the transition system −→ defined over discrete
states, i.e. vectors in Nn, by ∀(Pi, Ii, ti, σi, fi),x −→ x′ with propensity fi if x ≥
Pi,x < Ii (resp. no condition on Ii) and x′ = x σi ti. Transition probabilities
between discrete states are obtained through normalization of the propensities of
all enabled transitions, and the time of next transition is given by an exponential
distribution [13].

We call a positive influence system, an influence system without inhibitors
or interpreted under the positive semantics.

3.2 Monotone DNF Representation of Positive Influence Systems

Def. 4 shows how to represent an influence system by 2 ∗ n activation functions
in DNF, and positive influence systems by monotone DNF activation functions.

Example 2. The activation functions of the Lotka–Volterra influence system of
Ex. 1 are monotonic DNF formulae with only one conjunct since in this example
there is only one signed influence per variable:

A+ = (A) B+ = (A ∧B)

A− = (A ∧B) B− = (B)

3.3 k-CNF Representation of General Influence Systems

Monotone DNF formulae cannot encode the Boolean dynamics of influence sys-
tems with negation, which tests the absence of inhibitors, i.e., negative literals.
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This is possible using a k-CNF representation of the activation functions, pro-
vided that there are at most k species that can play a given “role”. For instance,
in a hypothetic activation function in CNF (a ∨ b ∨ c)

∧
(d ∨ e)

∧
¬f , each clause

can be interpreted as a role, and each role can be played by a limited number of
species, at most k.

Example 3. The activation functions of the prey-predator model with inhibition
of Ex. 1 cannot be represented by monotone formulae. They can however be
represented by the following 1-CNF formulae (k = 1 since there is only one
positive and one negative influence for each target):

A+ = (A) ∧ (¬C) A− = (A) ∧ (B)

B+ = (A) ∧ (B) B− = (B)

Example 4. In Sec. 5, we shall study a model of T lymphocyte differentiation
which contains 2-CNF activation functions, for instance

IFNg+ = (STAT4 ∨ TBet) IFNg− = (¬STAT4) ∧ (¬TBet)

3.4 k-CNF Models of Thomas Functional Influence Systems

Definition 6 ([22]). A Thomas network on a finite set of genes {x1, . . . , xn} is
defined by n Boolean functions {f1, . . . , fn} which give for each gene its possible
next state, given the current state.

The difference with the previous general influence systems is that the activa-
tion and deactivation functions are exclusive and defined by one single function.
As shown in [9], non-terminal self-loops cannot be represented in Thomas func-
tional influence systems. Given a general influence system with activation func-
tions xi+ and xi−, one can associate a Thomas network with attractor function7

fi(v) =


1 if

{
vi = 0 and xi+(v) = 1
vi = 1 and xi−(v) = 0

0 if
{
vi = 0 and xi+(v) = 0
vi = 1 and xi−(v) = 1

k-CNF formulae can again be used to represent Thomas gene regulatory
network functions with some reasonable restrictions on their connectivity. In
particular, it is worth noticing that in Thomas networks of degree bounded by
k, each gene has at most k regulators, each gene activation function fi thus
depends of at most k variables and can consequently be represented by a k-CNF
formula.
7 Note that this function ignores the cases where vi = 0 and xi

−(v) = 0, or vi = 1
and xi+(v) = 1 which may create loops in non-terminal states in general influence
systems.
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Example 5. The above translation applied to Ex. 1 gives fA = A ∧ ¬B, fB = 0.
Note that the form of fB means that the only possible state change for B is from
1 to 0.

Example 6. The T-lymphocyte model studied in Sec. 5 is originally a Thomas’
network, where we have, for instance: fIFNg = (STAT4 ∨ TBet)

4 PAC Learning from Traces

4.1 Diverse Initial States versus Long Time Horizon

In practice, one cannot assume to have full access to the hidden Boolean function
as required by Sample and Oracle, but rather to data time-series, or traces,
produced from biological experiments. For the scope of this paper, we consider
simulation traces obtained from a hidden model which we wish to discover. Two
types of traces are considered: Boolean and stochastic simulation traces. In both
cases, the mapping to the concepts of PAC-learning is easy: a Sample for the
activation function x+ (resp. deactivaction function x−) is a state si such that
xi < xi+1 (resp. xi > xi+1). See Fig. 1 for an example.

· · · →


0
1
0
1


(a)

→


1
1
0
1


(b)

→


1
1
0
0


(c)

→ · · ·

Fig. 1: Illustration of a Boolean trace with three steps. Between a and b, the first
gene has been activated, and between b and c, the last one has been deactivated.

One striking feature of PAC learning is to associate a guarantee on the quality
h of each learnt Boolean function depending on the number of samples used,
namely L(h, (2n)k+1), where n is the number of genes/molecules observed, and
k is the maximum number of literals per conjunct. In practice, k seems to be
limited to 3 or 2, and the number 2n of different possible literals in a clause, can
also be reduced through prior knowledge (e.g. in Sec. 5.3).

It is worth noticing that the global guarantee on the learnt model is the
minimum of all precision bounds h. In order to perfectly recover a hidden model,
it is thus necessary to have sufficiently diverse samples. For this reason, one
should expect to get better performance with large sets of short traces obtained
from a uniformly distributed set of initial states, rather than with a small set of
long traces which introduce a bias in the distribution of the transition samples
(e.g. when looping in an attrator). The important point is that PAC learning
algorithms do provide bounds on the error according to this space-time trade-off.
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On the other hand, the Oracle procedure needs to evaluate the (de)activation
function on a given vector v, that is, it needs to be able to set the system in a
state abstracted by v and say whether or not a given gene can be (de)activated
from this state. In practice, this cannot be achieved without approximation.
The intuitive solution would be to set the system in the desired state and see
whether or not the gene is (de)activated. However, different atomic steps are
possible from a given state and we have no guarantee that the one we are in-
terested in will happen in a given finite number of runs. These considerations
militate for studying an extension of the PAC-learning framework with an oracle
that would be only probabilistic.

4.2 PAC Learning from Boolean Traces

A first experiment was to produce Boolean (de)activation traces by simulation
of a given influence model, and use them to learn the hidden model. Fig. 2
reports our results obtained with 25 Boolean traces of short length equal to 2
(i.e. when trading time for space) on Ex. 1, where to increase readability we
used long names for the species. It is worth noticing that in this particular
model, the positive infuences cannot be learned from (de)activation traces, since
they contain their target as positive source and thus do not correspond to an
activation function. Indeed, the activation functions in the Lokta–Voltera models
report the apparition on extinction of the species’ population as a whole and not
of individuals of it. The results in this tradeoff are perfect in the sense that the
negative influences are correctly inferred.

Prey , Predator -< Prey.
Prey , Predator -> Predator.
Prey -> Prey.
Predator -< Predator.

Predator -< Predator
Predator , Prey -< Prey

Fig. 2: The Lokta-Voltera prey vs. predator influence model of Ex. 1 with long
names (left panel) and the (most likely) influence model PAC-learned on 25
simulations of length 2 (right panel) from random initial states.

On the other hand, PAC learning from a single Boolean trace obtained from
the standard initial state where both the prey and the predator are present
(i.e. trading space for time), most likely leads to the influence model shown in
Fig. 3. For the prey to go extinct, there must be both a prey in the first place and
a predator to eat it. This is correct. For the predator to disappear, it is necessary
that there is a predator in the first place and that there is no prey. The first
part of this conjunction is true, but the second is false: predators may disappear
even if there are preys left. However, this case is unlikely, the most likely case
is that the predator will go extinct only once there are no more preys left for it

10



Predator+ : False
Predator - : Predator /\ !Prey
Prey+ : False
Prey - : Predator /\ Prey

Predator / Prey -< Predator
Predator , Prey -< Prey

Fig. 3: Most likely PAC-learned activation functions (left pane, where !A stands
for ¬A), and corresponding influence model (rigth panel obtained by CNF-DNF
conversion), on a single random Boolean trace of length 50 from the standard
initial state with prey and predator present.

to eat. As can be seen even on this very simple example, the “approximately” in
PAC has a precise meaning. Yet, as explained in Def. 1, the quantification of this
approximation relies on the knowledge of the distributions of the samples. In the
present case, the probability of a positive example v of (de)activation function
x± to be sampled is strongly and intuitively correlated to both the probability
that the system reaches state v and the probability of the actual (de)activation
of gene x from state v.

4.3 PAC Learning from Stochastic Traces

biocham: pac_learning(’library:examples/lotka_volterra/LVi.bc
’, 50, 1).

% Maxmimum K used: 1
% minimum number of samples for h=1: 18

% 14 samples (max h ~ 0.7777777777777778)
Predator -< Predator

% 7 samples (max h ~ 0.3888888888888889)
Predator ,Prey -> Predator

% 1 samples (max h ~ 0.05555555555555555)
Predator ,Prey -< Prey

% 21 samples (max h ~ 1.1666666666666667)
Prey -> Prey

Listing 1: Biocham running the k-CNF PAC learning algorithm on the Lotka–
Volterra influence model from stochastic simulation traces of length 1, obtained
from 50 random initial states. Among those 50 initial states, 7 had both prey
and predator absent, leading to no sample.
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Let us now consider sets of stochastic traces. They can be produced from
an influence system with forces, using Gillespie’s algorithm (Def. 5), assuming
here mass-action kinetics with rate 1 for all influences. The initial states are
random, but with equal probability to be 0 or > 0 in order to facilitate the ob-
servation of the inhibitions in the influences. The states in Nn can be abstracted
to Boolean samples by the usual {0, > 0} abstraction for the states, and the
increasing/decreasing abstraction for choosing samples for the activation/deac-
tivation functions. Using the same {0, > 0} abstraction to detect samples would
again forbid to learn autocatalytic influences like Prey -> Prey for the same
reason as in the Boolean case.

Interestingly, Listing 1 shows that here again, even with a low number of
samples, and therefore a very low precision bound h, one can find the full model
with less than 50 simulations of length 1, all starting from random initial states.

5 Evaluation on a Model of T-helper Lymphocytes
Differentiation

5.1 Boolean Thomas Network

Fig. 4: Fig. 4 of [21] displaying the Th-lymphocyte differentiation model.

In this section we evaluate the performance of the k-CNF PAC learning
algorithm on an influence system of 12 variables and 32 influences that models
the differentiation of the T-helper lymphocytes. This model, presented in [21]
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STAT4 , TBet -> IFNg.
/ STAT4 -< IFNg.
/ TBet -< IFNg.
GATA3 / STAT1 -> IL4.
/ GATA3 -< IL4.
STAT1 -< IL4.
IFNg / SOCS1 -> IFNgR.
/ IFNg -< IFNgR.
SOCS1 -< IFNgR.
IL4 / SOCS1 -> IL4R.
/ IL4 -< IL4R.
SOCS1 -< IL4R.
IL12 / STAT6 -> IL12R.
/ IL12 -< IL12R.
STAT6 -< IL12R.
IFNgR -> STAT1.

/ IFNgR -< STAT1.
IL4R -> STAT6.
/ IL4R -< STAT6.
IL12R / GATA3 -> STAT4.
/ IL12R -< STAT4.
GATA3 -< STAT4.
STAT1 -> SOCS1.
TBet -> SOCS1.
/ STAT1 , TBet -< SOCS1.
STAT6 / TBet -> GATA3.
STAT1 / GATA3 -> TBet.
TBet / GATA3 -> TBet.
GATA3 -< TBet.
/ STAT1 , TBet -< TBet.
/ STAT6 -< GATA3.
TBet -< GATA3.

Listing 2: Influence system for the lymphocyte differentiation of example 5.

is actually a Boolean simplification of the original multi-level model of [17]. It
studies the regulatory network of stimuli leading to differentiation between Th-1
and Th-2 lymphocytes from an original CD4+ T helper (Th-0). The model has
three different stable states corresponding to Th-0 (naive lymphocyte), Th-1 and
Th-2 when IL12 is off, and two others when IL12 is on (the Th-0 one is lost).
Fig. 4 shows the influence graph of the model. The influence model is given in
Listing 2.

All learning experiments described below run on a 3GHz Linux desktop in
less than 3s. However, the CNF (activation functions) to DNF (influence model)
conversions could be very slow, reaching more than 4 minutes in the worst cases
(e.g. with a single simulation of 106 steps). Note also that since IL12 is an
input, in all experiments the PAC learning algorithm only finds false as Boolean
function for its activation or deactivation. We thus removed it from the results
below for readability.

5.2 Ab initio PAC Learning from Stochastic Traces

When using stochastic simulations in this example, Fig. 5 shows that a simple
randomization of the initial states (while keeping the total number of samples
constant) provides a much more homogeneous repartition of activation and de-
activation samples (as shown by the decreasing standard deviation), and, as
expected, a much higher confidence h in the learnt model. The minimum num-
ber of samples gives in fact a quasi-linear estimate of the model confidence h.
Obviously, more diverse initial states reveal more about the model structure
than longer experiments.

On the other hand, the error measured as the number of false positive and
false negative influences (right scale divided by 10), reveals a non monotonic
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Fig. 5: Minimum numbers of (de)activation samples with standard deviations,
and model errors (i.e. false positive and negative infleunces) obtained for the 24
boolean functions of the Th-lymphocyte example, as a function of the number
of initial states (with total number of samples kept constant by adjusting the
time horizon).

behavior: in this example, there is a zone with sets of 10 to 100 traces, where
PAC learning produces models with very complex (de)activation formulae that
are not readable by humans and that produce many errors. Above 500 traces
from random initial states the learnt model is perfect.

The guarantee on the accuracy of the learnt model comes directly from
Valiant’s work with the approximation bounds. Note however that Valiant’s re-
sults stand only if we actually have at least L samples for each of the (de)activation
functions, where L is Valiant’s bound. A first naive approach might be to sim-
ply let the trace run for 2nL steps, or a constant factor of it. Nevertheless, the
repartition of samples for each function can be pretty non-uniform, as illustrated
in Fig.. Interestingly, the minimal number of samples gives us the lowest L(h, S)
and thus quasi-linearly the lowest guarantee h.

Our simulation results show that when using PAC-learning to find the struc-
ture of a regulatory model, an approach based on mutants (knock-offs, over-
expression, etc.) is much more informative than an approach based on (repeated

14



or longer) similar observations. Note that this is in line with the pratice of inte-
grative analyses such as [6] and its more than 130 mutants.

5.3 PAC Learning with Prior Knowledge on the Influence Graph

Furhtermore, to improve the guarantee h and the corresponding accuracy of
the learnt models, especially for bigger models, it is necessary to look again at
what constrains h. We have samples = 2h(S + log h), where S is the number of
possible k-CNF clauses, bounded by (2n)k+1.

The previous section explored the diversity of the samples, another option
is to reduce S for a given n. This can be done by formalizing possible/known
interactions as prior knowledge, as is common in Machine Learning, effectively
restricting the possible clauses for each activation/deactivation function.

Here we want the user to be able to specify, for each gene x, a set of gene
Vx which are the only ones on which x+ and x− may depend. If one views the
influences as a graph, this is akin to specifying a set of possible (undirected) edges
outside of which the algorithm cannot build its influence system. An example of
such hints for the lymphocyte model are given at http://lifeware.inria.fr/
wiki/software/#CMSB17.

In such an example, the number of possible clauses becomes bounded by 33

(maximum 3 effectors that are either a positive literal, a negative literal or not
in the clause at all) instead of 264 (Valiant’s bound). Since for a given number
of samples h varies quasi-linearly in S, the improvement is drastic (50000 times
less samples for the same h). The accuracy of the model is, as expected with
such guarantee, improving a lot.

6 Conclusion and Perspectives

We have shown that Valiant’s work on PAC learning provides an elegant trail,
with error bounds, to attack the challenge of inferring the structure of influence
models from the observation of data time series, and more precisely to auto-
matically discover possible regulatory networks of a biochemical process, given
sufficiently precise observations of its executions.

The Boolean dynamics of biochemical influence systems, including Thomas
regulatory networks, can be represented by k-CNF formulae without loss of gen-
erality, and k-CNF PAC learning algorithm can be used to infer the structure of
the network, and bound the errors made according to the distribution of the state
transition samples and the space-time tradeoff in the traces. When dimension
increases, we have shown on an example of T-lymphocyte differentiation from
the literature that the k-CNF PAC learning algorithm can also leverage avail-
able prior knowledge on the system to deliver precise results with a reasonable
amount of data.

The Boolean dynamics of positive influence systems can also be straightfor-
wardly represented by monotone DNF activation and deactivation functions, and
monotone DNF PAC learning algorithm applied with an interesting recourse to
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oracles which are particularly relevant in the perspective of online active learning
and experimental design. More work is needed however to make comparisons on
common benchmarks with other approaches already investigated in this context,
such as Answer Set Programming (ASP) and budgeted learning, and to investi-
gate the applicability of these methods to real experiments taking into account
the noise in the observations.
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