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Figure 1: Examples from the ’Fourlegs’ category of COSEG [WAvK∗12], ordered by increasing distortion (symmetry error).

The single best detected symmetry is shown for each shape; symmetry type and distortion are reported below each image. The

color of each point is the absolute difference between a point and its match in the transformed shape (increasing from blue to

red). In the horse, for example, the body is symmetric but the legs are not.

Abstract

We present a fast algorithm for global rigid symmetry detection with approximation guarantees. The algorithm

is guaranteed to find the best approximate symmetry of a given shape, to within a user-specified threshold, with

very high probability. Our method uses a carefully designed sampling of the transformation space, where each

transformation is efficiently evaluated using a sub-linear algorithm. We prove that the density of the sampling

depends on the total variation of the shape, allowing us to derive formal bounds on the algorithm’s complexity and

approximation quality. We further investigate different volumetric shape representations (in the form of truncated

distance transforms), and in such a way control the total variation of the shape and hence the sampling density

and the runtime of the algorithm. A comprehensive set of experiments assesses the proposed method, including an

evaluation on the eight categories of the COSEG data-set. This is the first large-scale evaluation of any symmetry

detection technique that we are aware of.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—

1. Introduction

Symmetry is “a distinction without a difference” in the

words of the renowned physicist and Nobel laureate Frank

Wilczek. Doubtlessly, symmetry along with the related con-

cepts of self-similarity and invariance is an all-pervasive

property of Nature and man-made art. Engineering, archi-

tectural, and artistic designs characterized by symmetry usu-

ally enjoy structural robustness and efficiency, which also

explains why evolution led many biological constructions to

assume symmetric properties. Symmetry also plays an im-

portant role in our visual perception, in particular that of

beauty, and according to modern physical theories, is incor-

porated deeply into the laws of the universe itself.

Automatic detection of symmetries of a 3D geometric

shape has received significant attention in computational ge-

ometry, computer graphics, and vision literature. However,
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despite the steady progress in the field, the task remains

computationally challenging. Existing approaches to sym-

metry detection interpret symmetry as invariance under a

certain class of transformations and they can be categorized

according to several key features. The taxonomy we present

here is by no means complete, and the reader is referred

to [MPWC12, HOK10] for a comprehensive survey of sym-

metry detection in 3D shapes and images.

First and foremost, symmetry is characterized by a group

of admissible transformations. While it is customary to tac-

itly assume the Euclidean group (defining rigid symmetries

or congruences further categorized into reflections or invo-

lutions, rotations, and improper rotations or roto-reflections

including the former two), more elaborate types of trans-

formations involving uniform scaling (similarities), affine

and projective transformations, and even intrinsic symme-

tries have been studied in the literature. Our main focus will

be restricted to rigid symmetries, though the proposed algo-

rithm and analysis can be extended to practically any group

with a finite (and reasonably small) number of parameters,

such as the affine group.

Second, symmetries can be classified as global, partial,

and local. Global symmetry is defined by a transformation

that maps the whole shape onto itself. A shape not possess-

ing a global symmetry can still have partial symmetries in

the form of self-similar parts. Local symmetry usually refers

to regular spatial arrangements of a structural element into

tilings and ornaments. Here, we focus on global symmetries.

Finally, exact (perfect) and approximate (imperfect) sym-

metries can be distinguished: the former map the shape ex-

actly to itself, whereas in case of the latter the mapping leads

to a distortion smaller than a pre-defined threshold. Depend-

ing on the application, exact partial symmetries can also be

regarded as approximate global ones. This work focuses on

approximate symmetries.

1.1. Prior work

Exact symmetry. Efficient algorithms exist for exact sym-

metry detection. For example, in the case of a collection of

n points in the plane, Atallah [Ata85] describes an algorithm

for enumerating all axes of symmetry under reflection of a

planar shape. Wolter et al. [WWV85] give exact algorithms,

based on string matching, for the detection of symmetries of

point clouds, polygons, and polyhedra. These algorithms are

often impractical due to their sensitivity to noise, because

they are restricted to exact symmetries.

Non-parametric symmetry. Several algorithms exist for

the detection of non-parametric intrinsic symmetries of de-

formable shapes (as opposed to the rigid extrinsic counter-

parts). Raviv et al. [RBBK10] use a branch-and-bound tech-

nique to find global intrinsic symmetries with a prescribed

distortion of pairwise geodesic distances. Ovsjanikov et al.

[OSG08] detects the global intrinsic symmetry of shapes us-

ing the spectral properties of the Laplace-Beltrami operator.

Lipman et al. [LCDF10] relieve the assumption of a known

transformation group by introducing a symmetry-factored

embedding, which enables detecting approximate, as well

as partial symmetries of a point cloud, also using spectral

methods.

Approximate symmetry. The detection of approximate

symmetries has also been addressed in the literature, and can

be roughly divided into two approaches:

The first approach defines approximate symmetry by an

infimum of a continuous distance function quantifying how

similar is a shape to its transformed version. Zabrodsky et

al. [ZPA95] proposed such a symmetry distance, which has

been largely adopted and extended by following works, in-

cluding our approach. One way to detect an approximate in-

fimum is through an exhaustive evaluation of the transfor-

mation space on a grid with a high-enough density. This task

can be done naïvely in O(n6) for a shape discretized by an

n× n× n grid, and reaching high accuracy in this approach

requires bigger n and an increase in computation times. A

more efficient algorithm by Kazhdan et al. [KFR04] per-

forms the task in O(n4) using an FFT-like approach, but

does not provide guarantees on the distance from the opti-

mal possible distortion (See Section 4.4 for a more detailed

comparison to our method).

The second approach alleviates the computational com-

plexity by translating the search into a proxy domain, re-

alizing that the set of admissible symmetries is sparse in

the transformation space. One of the earliest examples is

[SS97], which uses the gaussian image as the proxy do-

main. Later work by Martinet et al. [MSHS06] examines

extrema and spherical harmonic coefficients of generalized

even moments. Mitra et al. [MGP06] cluster Hough-like

votes for transformations that align boundaries with simi-

lar local shape descriptors. Podolak et al. [PSG∗06] detect

reflection symmetries using a monte-carlo algorithm that se-

lects a pair of surface points and votes for the plane be-

tween them. Searching a proxy space provides a set of candi-

date transformations, that have to be validated directly using

some symmetry measure (e.g., [ZPA95]). These candidate

transformation are usually further refined using e.g. Iterative

Closest Point (ICP). Consequently, there is no guarantee on

how far is the symmetry measure of the detected symmetries

from that of the optimal one.

Our algorithm follows the first approach in that it samples

the transformation space, but does so in an efficient manner

that guarantees a known approximation error. This enables

the use of a branch-and-bound scheme that allows to match

the performance of the second approach while maintaining

approximation guarantees.

Alignment methods A method related to ours is the sur-

face registration algorithm of [AMCO08] that uses a clever
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sampling of transformation space. However, it is not easily

applicable to the problem of detecting all approximate sym-

metries of a shape.

Our work follows that of [KRTA13], who proposed a fast

method for 2D affine template matching in images with

global guarantees. As opposed to their sampling density

which depends on a generic image assumption (e.g., im-

age smoothness), ours is determined adaptively according to

the specific shape ‘complexity’. Additionally, we manipu-

late the shape representation to control the sampling density,

and hence the algorithm’s runtime. Finally, while template

matching focuses on finding a single best transformation, our

goal is to detect all such transformations.

1.2. Contributions

We detect global rigid symmetries in volumetric representa-

tions of 3D shapes, and introduce an algorithm that is guar-

anteed, with high probability, to detect the best symmetry

within a given degree of approximation. This is inspired by

the classical “probably approximately correct” (PAC) frame-

work [Val84] in learning theory (hence the title of the present

paper). To the best of our knowledge, this is the first symme-

try detection algorithm coming with such a guarantee. An

example output of the algorithm, ranking shapes by their best

symmetry, can be seen in Figure 1.

We provide a bound on the required sampling density of

transformation space, which is the basis of our algorithm.

This bound depends on the desired approximation level as

well as, surprisingly, on the ‘complexity’ of the specific

shape, which is manifested through the total variation of its

volumetric representation. We further show how to construct

shape representations with reduced total variation leading to

reduced complexity, and discuss the tradeoff between com-

plexity and sensitivity to noise.

A comprehensive experimental evaluation validates that

our approach is capable of detecting approximate symme-

tries in a large data-set, as well as detecting all symmetries

in complicated shapes, all within state-of-the-art execution

times.

2. Approximate rigid symmetries

We start by defining our level-set based shape representa-

tion and approximate symmetry. We then bound the sample

density required to detect approximate symmetries with a

user specified precision parameter δ. Generally speaking, al-

though we keep all derivations in the continuous setting, they

are straightforwardly amenable to any reasonable discretiza-

tion of the volume, including hierarchical subdivisions.

2.1. Shape representation

Let S be a three-dimensional rigid shape with the centroid

aligned at the origin. We represent the shape by the 1
2 -sub-

level set of a level set function s : R3 7→ [0,1]. The simplest

of such representations is the binary indicator function of

S (equalling 1 in the interior); other representations such as

truncated distance maps will be discussed in Section 3.1. We

will freely interchange between S and s referring to a shape.

We will take the radius of the shape to be the smallest scalar

r such that the function s is invariant to rotations outside the

Euclidean ball Br(0) of radius r centered at the origin,

r = inf
r
{s(RRRxxx) = s(xxx) : xxx ∈ Br(0),RRR ∈ SO(3)}. (1)

The ball Br(0) defines the effective support of s, which might

be larger than the shape S.

We associate with the shape the total variation of s,

VS =
1

VolBr

∫
Br

‖∇s(xxx)‖dvol(xxx), (2)

where dvol denotes the standard volume element. When s

is not differentiable, total variation can be defined using the

weak derivative. In particular, for the case of the indicator

function VS is equal to the ratio between the area of the

boundary ∂S and the volume of the bounding ball Br. Geo-

metrically, total variation can be related to the total curvature

of the shape and the amount of “features” it contains. Note

that for the case of O(3), one could have considered deriva-

tion and integration only tangent to concentric spheres.

2.2. Rigid symmetries

Let T ∈ E(3) be a Euclidean transformation (a combina-

tion of translation, rotation, and reflection). The transformed

shape TS will be represented by the indicator function

s(Txxx). T is said to be an exact global symmetry of S if

s(Txxx) = s(xxx). The collection of all symmetries of S forms

a group under function composition, which we refer to as

the symmetry group of S, denoted by Sym S. Each sym-

metry T ∈ Sym S defines a collection of stationary points,

{xxx = Txxx}, which is known to be either a line or a plane.

Such a line or plane is called a symmetry axis (or plane) of

the shape. The set of symmetry axes and planes fully defines

the symmetry group of a shape. Since translations have no

stationary points, for compactly supported shapes, Sym S is

necessarily a subgroup of the orthogonal group O(3) con-

taining rotations and reflections around the shape’s centroid.

For this reason, we will henceforth denote the admissible

transformations as 3×3 rotation or reflection matrices, RRR.

Exact symmetries are a mathematical idealization rarely

achieved in practice due to acquisition and representation

inaccuracies. In order to account for such imperfections, we

define the distortion

diss RRR =
1

VolBr
‖s−RRR

−1(s)‖1 (3)

=
1

VolBr

∫
Br

|s(xxx)− s(RRRxxx)|dvol(xxx),

where RRR−1(s) is a short-hand notation for (s ◦ RRR)(x) =
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s(RRRxxx). Note that diss RRR is bounded to the interval [0,1], and

equals zero in the case of perfect symmetry. For solid shapes

represented by indicator functions, the distortion can be in-

terpreted as the total amount of mismatched volume and it

coincides with the common symmetry measure of [ZPA95].

Note that such an L1 formulation is more robust to outliers

compared to, e.g., the worst-case Hausdorff distance.

We say that RRR ∈ O(3) defines an ε-symmetry of S if

diss RRR ≤ ε, and denote by Sym εS the collection of all ε-

symmetries of S. Note that unlike their exact counterparts,

approximate symmetries do not necessarily form a group.

2.3. Sampling of the orthogonal group

In order to practically detect symmetries, one necessarily has

to work with a finite sample of the transformation space (i.e.

the orthogonal group). The main ingredient of our approach

is an upper bound on the sampling density controlled by the

maximum allowed distortion of an approximate symmetry.

We begin by defining a metric between any two transfor-

mations in the space, which will be used later to define a net

of transformations. The metric measures how far apart any

point in the ball Br may be mapped by two different trans-

formations, formally:

D(RRR1,RRR2) = max
‖xxx‖≤r

‖RRR1xxx−RRR2xxx‖. (4)

Note that this distance does not depend on the shape, but

rather only on its support radius r.

A key observation is that the difference in the distortion

of two transformations is upper bounded by the product of

the shape total-variation VS and the distance D between the

transformations. This is formalized in the following propo-

sition, with the accompanying illustration in Figure 2.

Proposition 2.1 |diss RRR1 −diss RRR2| ≤ VS ·D(RRR1,RRR2) for any

RRR1,RRR2 ∈ O(3).

Proof First, observe that invoking the triangle inequality and

using the group properties,

|diss RRR1 − diss RRR2| . . .

=
1

VolBr
· |‖s−RRR

−1
1 (s)‖1 −‖s−RRR

−1
2 (s)‖1|

≤
1

VolBr
· ‖RRR

−1
1 (s)−RRR

−1
2 (s)‖1

=
1

VolBr
· ‖q−RRR

−1
1 (q)‖1 = disq RRR (5)

with q = RRR−1(s) and RRR = RRR2RRR−1
1 . We can therefore define

a new shape Q = RRR1S with the corresponding function q,

and operate with diss RRR. Using the group properties, it is also

straightforward that D(RRR1,RRR2) = D(III,RRR), with III being the

identity transformation.

We define the flow ΦRRR : (xxx, t)→ RRRtxxx, t ∈ [0,1], inducing

x

Figure 2: A 2D illustration of Proposition 2.1. A planar

shape (gray region) represented by a function s undergoes a

rotation RRR. The change in value at every point is bounded by

the accumulation of ‖∇s‖ along the orbit it travels (marked

by black arrows). The longest path D(III,RRR) is traveled by the

points farthest from the rotation axis, e.g. the one marked

in red. Integrating these changes over the entire ball gives

dissRRR, which is bounded by VS ·D(III,RRR).

the orbits C(xxx) = {RRRtxxx : xxx ∈ Br, t ∈ [0,1]}, whose length is

upper-bounded by D(III,RRR) . Using the triangle inequality,

|q(xxx)−q(RRRxxx)| = |q◦ΦRRR(xxx,0)−q◦ΦRRR(xxx,1)| (6)

≤
∫ 1

0
‖∇(q◦ΦRRR(xxx, t))‖‖Φ̇RRR(xxx, t)‖dt

where Φ̇RRR(xxx, t) =
∂
∂t

ΦRRR(xxx, t). We can now derive that

VolBr ·disq RRR =
∫

Br

|q(xxx)−q(RRRxxx)|dvol(xxx)

≤
∫

Br

∫ 1

0
‖∇(q◦ΦRRR(xxx, t))‖‖Φ̇RRR(xxx, t)‖dt dvol(xxx)

=
∫ 1

0

∫
Br

‖∇(q◦ΦRRR(xxx, t))‖‖Φ̇RRR(xxx, t)‖dvol(ΦRRR(xxx, t))dt

≤ D(III,RRR) ·
∫

Br

‖∇(q◦ΦRRR(xxx, t))‖dvol(ΦRRR(xxx, t))

= D(III,RRR) ·
∫

Br

‖∇q‖dvol(xxx) = D(III,RRR) ·VolBrVS , (7)

where the first inequality follows from (6), the following

equality follows from the volume preservation under rota-

tions and reflections, and the final equality from the defini-

tion of the total variation VS .

Finally, the proposition follows by combining inequalities

(5) and (7) and using the fact that D(RRR1,RRR2) = D(III,RRR).

Proposition 2.1 bounds the change in the distortion under

a bounded displacement in the transformation space (the or-

thogonal group O(3)). We can now turn to defining a finite

sampling of O(3). Let us fix a precision parameter δ > 0, set

a sampling radius ρ = δ/VS , and construct a discrete set of

transformations, Nρ, forming a ρ-net in O(3) with respect to

the distance D, namely that any point in O(3) has a sample

in Nρ at a distance of at most ρ.

The rationale behind defining such a net of transforma-

tions is as follows: Let RRR∗ ∈ O(3) be an ε-symmetry of S.

While RRR∗ will not necessarily be contained in the net Nρ,

there will exist some other RRR ∈ Nρ with diss RRR ≤ ε+ δ. In
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other words, evaluating the distortion of all the transforma-

tions in such a net guarantees the detection of symmetries

within a predefined distortion. In the following proposition,

we describe an efficient construction of such a net and give

a bound on its size.

Proposition 2.2 Let Nρ be a ρ-net in O(3) with respect to the

distance D. Then, |Nρ| ≤ nρ = 4π
( ρ

r − sin
ρ
r

)
∼O

(
( r

ρ )
3
)

.

Proof First, from D ≤ r · d (d being the standard geodesic

distance on O(3)), we conclude that a ρ′-net (for ρ′ = ρ/r)

is a ρ-net in the metric D. We can therefore use the more

convenient d, proceeding with the standard packing number

argument: The total volume of O(3) is given by twice the

area of the three-dimensional hypersphere, 2VolS3. Since

Nρ is ρ′-separated, the balls Bρ′/2 in S
3 form a disjoint col-

lection, whose volume is smaller than the total volume of

O(3). The bound is obtained by demanding nρVolBρ′/2 =

2VolS3. Substituting closed form expressions for the vol-

umes on the sphere yields nρπ(ρ′ − sinρ′) = 4π2, from

where nρ is obtained. Finally, using the Taylor expansion

sinρ′ = ρ′− ρ′3

6 +O(ρ′5) yields ρ′− sinρ′ ∼O(ρ′3).

Our sampling of the orthogonal group is summarized in

the following corollary, which is a direct consequence of the

combination of Propositions 2.1 and 2.2, with the choice of

ρ = δ/VS .

Corollary 2.3 For a given precision parameter δ > 0,

there exists a sampling of the orthogonal group of size

O(( r·VS

δ
)3), such that for any given transformation T in

O(3), the sample contains a transformation, whose distor-

tion is bounded away by δ from the distortion of T .

Such a sampling of O(3) can be achieved, using e.g.

farther-point sampling [ELPZ97] or fixed-step strategies.

The choice of ρ = δ/VS translates into an angular density

of about 2π·δ
r·VS

in the standard axis-angle parametrization.

2.4. Fast evaluation of the distortion

A naïve symmetry detection algorithm consists of testing

whether diss RRR ≤ δ for each RRR in the net Nρ. However, such

a test requires the computation of the integral (3) for each

sample, which results in a non-trivial complexity. To allevi-

ate this burden, we use a faster randomized sub-linear sam-

pling procedure, which gives approximately the same result

with overwhelmingly high probability.

Let xxx1, · · · ,xxxm be points randomly drawn from the uni-

form distribution on Br. We define the approximate distor-

tion as

d̃issRRR =
1

m

m

∑
i=1

|s(xxxi)− s(RRRxxxi)|, (8)

where each of the summands is bounded on [0,1]. Since

E{d̃issRRR} = diss RRR, we can use the Chernoff-Hoeffding in-

equality to bound the probability P(|d̃issRRR − diss RRR| > ε),
leading to the following

input : Shape S represented by s; precision parameter

δ > 0; error probability p

output: Approximate symmetry RRR ∈ O(3); approximate

distortion d

Construct a ρ = δ
2VS

-net Nρ on O(3)

foreach RRR ∈Nρ do

Sample mδ/2 =
2
δ2 log 2

p random points from Br

Compute d̃issRRR = 1
m ∑

m
i=1 |s(xxxi)− s(RRRxxxi)|

end

Return RRR with the minimal d = d̃issRRR

Algorithm 1: Best approximate symmetry detection.

Proposition 2.4 For mε = 1
2ε2 log 2

p = O(ε−2 log 1
p ),

|diss RRR− d̃issRRR| ≤ ε with probability higher than 1− p.

3. Symmetry detection algorithm

Putting the pieces together, we summarize in Algorithm 1

the proposed method for detecting the best approximate

symmetry. Combining the previous results, we state the fol-

lowing

Theorem 3.1 The runtime complexity of Algorithm 1 is

O((r ·VS)
3δ−5 log 1

p ) and with probability 1− p, it holds

that:

1. if d ≤ 0.5 ·δ, then RRR is a δ-symmetry of S
2. if d > 1.5 ·δ, then S has no δ-symmetries.

Observe that unless some elements of Nρ are removed, the

second condition will never happen, as the algorithm will

return a symmetry δ-close to the identity transformation.

Algorithm 1 detects a single approximate symmetry of S.

In order to detect the entire Sym δS, we run the algorithm

sequentially, each time removing a neighborhood of the de-

tected transformation RRR from Nρ. The neighborhood can be

naturally defined as the δ-component of RRR, computed by ap-

too large radius too small radius flood-fill

Figure 3: Illustration of minima neighbourhood removal.

A 2D function, visualized using a heat-map. In our imple-

mentation, we use a fixed-sized removal radius. Using a too

large radius may remove other minima, while a too small

one leaves areas that might be detected in the next iteration.

These phenomena may be avoided by applying a flood-fill

procedure.
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input : Shape S represented by s; precision parameter

δ > 0; error probability p

output: Collection of δ-symmetries S = Sym δS

Initialize S = ∅

Construct a ρ = δ
2VS

-net Nρ on O(3)

while not all symmetries have been detected do

Run Algorithm 1 on Nρ to detect RRR with

approximate distortion d

if d > 1.5 ·δ then stop;

if RRR is a rotation (and not a reflection) then
Let X be the set of n-fold symmetries along its

axis, with distortion ≤ δ (n = 2, · · · ,N)

else
Let X = {RRR}

end

Add X to S and remove from Nρ a fixed-sized

neighborhood of each symmetry in X

end

Return all detected transformations RRR

Algorithm 2: Detection of all approximate symmetries.

plying a flood-fill procedure to Nρ. Alternatively, the neigh-

borhood can be defined as a ball of a fixed radius with re-

spect to the standard geodesic distance on O(3). The latter

approach was adopted in our experiments due to its simplic-

ity, despite the problems that may arise when using a too

small or too big radius (see Figure 3 for an illustration).

Algorithm 2 summarizes the described procedure for the

detection of all approximate symmetries. When a rotation

symmetry is detected, we further investigate its axis to find

its n-fold symmetries (up to some integer N). We report on

an n-fold rotation if the distortion of all its n members is be-

low δ. A continuous (axial) rotational symmetry is reported

when the distortions of all members of all n-fold rotations,

n = 2, . . . ,N, are below δ.

3.1. Manipulating the shape complexity

For a fixed precision δ, the complexity of our symmetry de-

tection algorithm is governed by the term (r ·VS)
3, which is

the cube of the shape complexity factor C = r ·VS , a unit-

less quantity that resembles the isoperimetric quotient and

describes the geometric complexity of the function s repre-

senting the shape.

Through the total variation of s, C depends on the func-

tion representing S and not directly on S itself. This leads to

the important issue of designing representation functions for

shapes that minimize the computation complexity.

To this end, we suggest controlling the shape complexity

using truncated signed distance function (TSDF) represen-

tations. The advantages of doing so are two-fold: First, the

TSDFs produce smoother shape representations, which lead

to faster running time. Additionally, the resulting represen-

tation values have lower variance (as a result of increased

smoothness), allowing use of tighter bounds than the one

stated in Proposition 2.4, which only assumes that the sum-

mands are bounded but does not consider their variance.

Nevertheless, these advantages come at the cost of the en-

hancement of thin structures (possibly amplifying the effect

of shot-noise) as well as the possible loss of discriminativity,

due to smoothing of fine details. The effects (noise amplifi-

cation and loss of discriminativity) are studied below. Also,

as part of our large-scale experiment in Section 4.3, we ana-

lyze the influence of these choices on discriminativity.

For a given (truncation) constant K, we define the Eu-

clidean TSDF by

dK(xxx,∂S) = min{K,max{−K,d(xxx,∂S)}} (9)

where d(xxx,∂S) is the signed distance map from the bound-

ary ∂S of the shape S. Since d(xxx,∂S) satisfies the eikonal

equation ‖∇d(xxx,∂S)‖= 1 almost everywhere, the total vari-

ation of dK(xxx,∂S) is bounded by

VS(dK) ≤
c ·K ·Area∂S

VolBr+K
, (10)

where c is a constant.

We construct a family of functions

sK(xxx) =
1

2K
dK(xxx,∂S)+

1

2
(11)

with the image in [0,1], whose 1
2 -sub-level set is S. For

K = 0, s0 is simply the binary indicator function. Denoting

VSK = VS(sK) and CK = C(sK), we observe that

CK ≤ (r+K) ·VSK ≤ (r+K)
VS0 ·VolBr

VolBr+K

= C0

(
r

r+K

)2

, (12)

which for K ≫ r becomes CK ∼ O(K−2). Therefore, from

the point of view of the complexity factor alone, it is advan-

tageous to increase K without limits.

However, a large K has a negative impact on the noise

resilience of the symmetry detection algorithm. To visualize

this, assume that the shape is almost perfectly symmetric,

such that under a transformation RRR∈O(3), s0 and s0RRR match

except for on a small ball Bε resulting from noise. Therefore,

using s0, RRR has the distortion of δ0 = diss RRR = VolBε/VolBr.

Increasing K yields

δK =
VolBε+K

VolBr+K
=

(
ε+K

r+K

)3

, (13)

which for K ≫ r becomes δK ∼ 1, amplifying the noise to

unreasonable proportions.
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Figure 4: Distortion maps for different truncation levels. We consider only reflection symmetries in this illustration. Each row

shows one example in the following format: (a) the shape (b)-(e): distortion levels of the function sK for different truncation

values K. Color-coding ranges from 0 (blue) to a clipped value of 0.2 (red) at each location and represents the respective

distortion of the planar reflection symmetry, whose normal passes through the point. (f) a section of the distortion along the

equator of the sphere. See text for interpretation.

The same effect also decreased the sensitivity to fine

features. Suppose two approximate symmetries R1 and R2

maintain the shape invariant except for on small balls Bε and

B2ε, respectively. The corresponding distortions when using

s0 are

δ1 =
VolBε

VolBr
=

( ε

r

)3
, δ2 =

VolB2ε

VolBr
=

(
2ε

r

)3

= 8δ1 .

That is, R2 is an order of magnitude "worse" than R1,

which is typically an easily detectable situation.

When increasing K ,the discriminativity, viewed as the ra-

tio

δ2
K

δ1
K

=

(
2ε+K

r+K

)3

/
(

ε+K

r+K

)3

=

(
2ε+K

ε+K

)3

(14)

approaches 1 for K >> ε, meaning that features of size K

are smoothed out.

4. Experiments and applications

The code used to generate the reported results can be down-

loaded from the project webpage [KLAB].

Data-sets The main data-set we work with is the COSEG

data-set [WAvK∗12], which includes (among other) 190

shapes belonging to eight categories, that were originally

purported for the evaluation of segmentation algorithms.

While the shapes were created using CAD tools, they are not

completely synthetic in their nature. Specifically, while most

of the shapes have at least one kind of symmetry, in the vast

majority of the cases the symmetry is far from being perfect,

which makes its detection challenging. We first rasterize a

randomly rotated version of each shape into a cartesian vox-

elized volume, where the maximal dimension is taken to be

160 voxels. Since all COSEG shapes are vertically aligned, a

random rotation disables the advantage of any specific sam-

pling location. Then, we center the shape around its centroid

and measure its support. Finally, we pad and crop the vol-

ume to a cube, with the side length twice the shape support

radius r. This guarantees that the shape remains within the

volume under arbitrary rotations and reflections. The final

volume dimensions are around 2003.

We also created a small data-set of shapes that have com-

plex symmetry groups. These include the icosahedron and

the dodecahedron (See Figure 10 for an illustration). Find-

ing all the symmetries of such shapes is computationally

challenging. The third type of data we use is a volumetric

scalar MRI image taken from [CKK∗97].

Symmetries and their notations We seek to find approxi-

mate symmetries of different kinds. The first kind are planar

reflections, around a generally oriented plane which passes

through the centroid. We denote such a symmetry by REFL

and visualize it as a transparent plane. The second kind are t-

fold rotations around an axis that passes through the centroid

(where we search for t between 2 and 20). Such a symmetry

(or a set of symmetries) includes rotation symmetries of the

submitted to COMPUTER GRAPHICS Forum (6/2014).



8 S. Korman & R. Litman & S. Avidan & A. Bronstein / Probably Approximately Symmetric

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
o
ta

l−
V
a
ri
a
ti
o
n

Truncation Parameter K [% of radius]
0

0

5

10

15

20

25

30

35

40

R
u
n
ti
m

e
 [

se
co

n
d
s]

Runtime

Total-Variation (VS)

AUTO Runtime median

AUTO VS median

Figure 5: The empirical dependence of VS and run time

on K. Large K leads to lower total-variation VS . Plotted

are the median of the total-variation (and of the runtime in

seconds), over the entire COSEG data-set. Error bars are

10th and 90th percentiles. See Section 4.1 for details.

set of angles {2πi/t} for i = 1, ..., t − 1. We denote such a

symmetry by t-fold-ROT and visualize its rotation axis in

red. The third kind, axial-symmetries, are fully-continuous

rotation symmetries around some axis. We denote these by

CONT and visualize them using a magenta colored axis.

Algorithm settings and implementation details We rep-

resent a shape sK by applying a TSDF, where the truncation

parameter K is chosen adaptively such that the total variation

VS of the shape is approximately 3/r, as detailed in Sec-

tion 4.2. When running the main algorithm (Algorithm 2),

we aim for high precision, which translates into invoking the

(single symmetry detection) Algorithm 1 with low values of

the precision parameter δ. For efficiency, we run Algorithm 1

in a branch-and-bound manner, which begins with an ini-

tial (coarse) net defined by δ = 0.25 and iteratively increases

resolution only in "promising" regions of the transformation

space, finally reaching the desired resolution. Note that this

can be done as in [KRTA13], based on our net construction,

while keeping the theoretical guarantees. In addition, after

the detection of each symmetry, we carve out all transforma-

tions whose symmetry axis is less than 10◦ from that of the

detected axis and then repeat the search for additional sym-

metries. All experiments were run on a 2.70GHz machine,

with 8GB RAM. Our timings throughout (excluding Table 1

and 2) do not include a 0.8 seconds pre-processing time for

the TSDF computation, per shape.

4.1. The influence of truncation

Figure 4 shows intermediate results of running our algorithm

when a shape is represented with the binary indicator func-

tion, s0, as well as with sK with various truncation values K,

on a variety of shapes. Each row depicts a different shape,

followed by color-maps of the different distortion levels on

a hemisphere (The hemisphere has the same orientation of

the shape). For simplicity we focus only on planar reflec-

tive symmetries. The color-coding at each location on the

hemisphere represents the distortion of the planar reflection

’C
h

a
ir

s
1

0
2

’

REFL (0.014) CONT (0.21) CONT (0.2) CONT (0.2)

’I
ro

n
s

1
0

3
’

REFL (0.012) 2-ROT (0.015) REFL (0.018) CONT (0.17)

’V
a

se
s

8
2

6
’

REFL (0.001) CONT (0.03) CONT (0.086) CONT (0.087)

Figure 6: Four best symmetries of COSEG shapes. Three

typical examples from the data set with different numbers of

symmetries of different quality. The original shape is shown

in green and the shape mapped to by the detected transfor-

mation is shown in blue. The chair shape has one clear re-

flection; three other transformations have higher distortion

(reported in parentheses). The iron has three good symme-

tries (two reflections and a 2-fold rotation), while the vase

has one nearly perfect reflection symmetry, and another ro-

tation symmetry that is inexact because of the handle.

symmetry, whose normal passes through the point. Each col-

umn of (b)-(e) shows such a sphere, for K taken to be 0%,

20%, 50%, and 100% of the shape radius. The last column

(f) shows a 1D profile of the map around the equator of the

sphere. As can be seen, when K = 0 (the binary indicator

case) the distortion is relatively volatile. Increasing K de-

creases the total variation (and shape complexity factor, as

in Eq. (12)) and therefore makes the distortion map much

smoother (see Proposition 2.1). As a result, the sampling

rate required by the algorithm can be decreased. Notice that

in the case of the lamp (second row) the distortion of the

binary indicator function (i.e. K = 0) is high even around

approximate symmetries, because the shape is not perfectly

symmetric. An increase in K is necessary is such cases (see

discussion in Section 4.3). Finally, the binary indicator func-

tion is not affected much by the handle of the bucket (last

row) because this is a very thin structure. The detection of

the exact symmetry would require extremely fine sampling,

while increasing K increases the sensitivity to fine features.

4.2. Automatic selection of the truncation parameter K

It is desirable to make the runtime of Algorithm 1 depend

only on the precision parameter δ, and not on the properties

of the shape itself. Recall that the number of samples (net

size) depends on the total variation VS , which in turn de-

pends on the shape representation. Therefore, we would like
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Figure 7: Distortion distribution of manually labeled re-

sults. We manually labeled as "approximate symmetry" or

"non-symmetry" the best four detections of the 190 COSEG

shapes, and plotted the distortion distributions over these

two sample sets. It turns out that these sets can be separated

nicely by thresholding the distortion. This empirically estab-

lished threshold is used as the stopping criterion in subse-

quent experiments.

to automatically choose a value of K for each shape, that will

produce VS proportional to 1/r. This will make the shape

complexity factor C relatively constant (since C = r · VS )

and therefore ensures constant runtime for a wide range of

values of δ. To this end, we measured the empirical depen-

dence of the total variation on the truncation level K, over

the entire COSEG data-set. Figure 5 shows the median, 10th

and 90th percentiles of VS (in blue) and runtimes (in green,

for a single detection per shape). Observe that increasing K

reduces both runtime and the total variation of the shape, in

accordance with the bound stated in Section 3.1.

The automatic choice of K for an unseen shape, is deter-

mined by initially calculating its VS for an arbitrary value of

K and then by improving the choice using a binary search,

according to the above empirical distribution. We empiri-

cally chose the goal of C = 3, which implies VS = 3/r.

Figure 5 also shows two specific shapes. For the shape ‘gob-

lets 32’ (right) whose shape complexity C is large, we use a

rather high truncation of K = 0.7r in order to reduce its VS

drastically to the order of 3/r. On the other hand, the shape

‘vases 801’ (left), which is more solid and has a lower shape

complexity requires a much lower truncation of K = 0.3r.

The described automatic calculation of K, which we term

’AUTO’, was used throughout the following experiments.

We empirically evaluated the influence of the truncation

level K on the discriminativity of the detection algorithm, as

part of the large-scale experiment in the following section.

4.3. Large-scale evaluation

After establishing the accuracy and runtime complexity of

our algorithm, we tested it on the complete COSEG dataset.

To the best of our knowledge, we are the first to report sym-

metry detection results on a data-set of this scale. At the first

stage, we ran the algorithm to detect the four best symme-

tries per shape giving a total of 760 = 190 · 4 symmetries.

We did so (even though each shape might have less or more

than 4 approximate symmetries) in order to investigate the

option of automatically detecting when the returned sym-

metry is indeed an approximate symmetry. See Figure 6 for

the four first detected symmetries (along with their distor-

tion levels) for three such example shapes. As an example,

the ’Chairs 102’ shape has only one approximate symmetry,

a planar reflection, which we detect first and which has low

distortion of 0.014. The three remaining detected symme-

tries, which can not be considered approximate symmetries,

have distortions levels of over 0.2.

We manually labeled all the ‘potential’ symmetries re-

turned by our algorithm as either "approximate symmetry"

or "non-symmetry" and plotted a histogram of the respective

distortions. As can be seen in Figure 7, our distortion mea-

sure is fairly invariant to the shape and a global threshold of

dis= 0.05 can be used to determine if the detected symmetry

is indeed a meaningful symmetry. We then ran the algorithm

again, with the stopping criterion defined by this threshold.

The algorithm found a total of 463 symmetries in the 190

shapes. Please refer to the supplementary material (availi-

able also on [KLAB]) for the complete set of detections. In

Figure 8, we show the approximate symmetries that were

detected for eight representative shapes. Notice, that while

some of the shapes have almost perfect symmetries (camel,

lamp, candelabras), some others have (possibly, in addition

to a perfect symmetry) some symmetries that are only ap-

proximate (e.g. cup and guitar). In the latter cases, our visu-

alization shows how well each part of the shape undergoes

the symmetry (see cup handle and guitar neck).

Discriminativity analysis The use of TSDF representa-

tions significantly improves the runtime complexity of the

algorithm, as was shown in Figure 5. We now turn to test the

qualitative consequences of manipulating the truncation pa-

rameter K (as well as of the automatic choice of K). While

the large-scale experiment was done using the automatic se-

lection of K (described in Section 4.2), here we experiment

also using a fixed set of truncation levels K. The results

are summarized in Figure 9, where we count for each rep-

resentation the number of detected approximate-symmetries

as well as the number of false detections. As expected, the

increase in K comes at a certain loss of discriminativity, as

the ratio between true and false detections slightly deterio-

rates. The increase in the number of detected approximate

symmetries, up to a certain level of K, is due to the rejection

of approximate symmetries by the less smooth representa-

tions (i.e. lower K’s). Most noticeably, our automatic selec-

tion mode outperforms any fixed selection of K in terms of

the number of true detections and the ratio of false detections

as well as in terms of runtime (see Figure 5).
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’Candelab. 27’ ’Candelab. 27’ ’Candelab. 27’ ’Candelab. 28’

REFL (0.004) REFL (0.010) 2-ROT (0.012) CONT (0.011)

’Fourleg 393’ ’Goblets 12’ ’Guitars 427’ ’Guitars 427’

REFL (0.008) CONT (0.010) REFL (0.011) REFL (0.024)

’Guitars 427’ ’Lamps 18’ ’Vases 817’ ’Vases 817’

2-ROT (0.028) REFL (0.008) REFL (0.007) CONT (0.023)

Figure 8: Detected approximate symmetries on represen-

tative COSEG shapes. Several examples - 8 shapes and the

12 symmetries we detected for them, using the threshold from

Figure 7 as the largest admissible distortion. See the sup-

plementary material for all 463 symmetries detected on the

entire dataset.

4.4. Comparison with Kazhdan et al. [KFR04]

As mentioned in Section 1.1, the work of Kazhdan et

al [KFR04] bares some resemblance to the present work,

mainly because it also directly evaluates many transforma-

tions using the measure of [ZPA95] and therefore some of

our bounds may apply to it. In spite of the similarities, there

are some major differences which make the comparison dif-

ficult. The methods mainly differ in the choice of the set of

transformations, as well as in the way by which they are eval-

uated.

The FFT-like approach in [KFR04] requires a regular

n×n grid sampling of the latitude-longitude space of trans-

formations, where n is preferably a complete power of 2.

For this setting, the complexity of [KFR04] is O(n4) , which

is dominated by an auto-correlation computation of order

O(n4), followed by a computation of order O(kn2) for de-

tecting k-fold symmetries for each k. In comparison, our

method’s complexity, O(n3 · ε−2 log 1
p ), scales more grace-

fully with n.

We first evaluated both methods on the task of detect-

ing the best symmetry in O(3) (including reflections and

rotations of up to 8 folds) for the shapes in the COSEG

data-set and compared several grid-size configurations of
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Figure 9: The empirical discriminativity vs. K. Low values

of K lead to rejection of some approximate symmetries, while

large ones reduce the discriminative power of our method.

The automatic selection of K leads to a favorable tradeoff.

See Section 4.3 for details.

[KFR04] against our method. The publicly available imple-

mentation of [KFR04] does not allow access to the O(n4)
auto-correlation result and requires to recalculate it for each

k-fold detection and therefore, for fairness of comparison,

we report the average time over all k-fold computations for

[KFR04]. The results summarized in Table 1 show that our

method reaches lower distortion values even when compared

to a grid of 2562, which takes much longer to evaluate. Note

that all distortion results are calculated on the original shape

representation, following [ZPA95].

algorithm
grid

size

number

of trans.

distortion

[ZPA95]

runtime

[sec]

Kazhdan

et al.

[KFR04]

322 1,024 0.160 0.17

642 4,096 0.087 0.42

1282 16,384 0.056 3.42

2562 65,536 0.044 30.56

Proposed method − 106,054 0.040 2.62

Table 1: Best symmetry detection. The table summarizes

performance of two algorithms for best symmetry detection

on the COSEG data-set. Presented are median values for: (i)

number of evaluated transformations (ii) symmetry measure

[ZPA95] and (iii) run-time.

The sets of transformations used by both methods are

quite similar when limited to reflection symmetries, there-

fore we were able to perform a more delicate comparison in

this setting. We made several modifications to our method

so it would be directly comparable to [KFR04]. First, we set

our net sizes to be equivalent to the grid sizes in the code

of [KFR04], rather than following Proposition 2.2 by using

VS and δ. For the same reason, we disabled the branch-and-

bound procedure, which allows reaching fine resolutions

even with an initial coarse net. These modifications have a

negative impact on our algorithm. Note however that this

comparison does not show the full effectiveness of [KFR04],
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as the O(n4) auto-correlation preprocess (which is manda-

tory) is used only for the limited case of reflections.

We ran our algorithm in two configurations: one with the

original binary shape (K = 0), and another with automatic

selection of K (AUTO), as can be seen in Table 2. Note that

our net covers the transformation space uniformly, while the

sampling used in [KFR04] (a product of equidistant samples

in the azimuth-elevation space) is denser around the ’poles’

and less around the ’equator’. This explains the slightly bet-

ter distortions we obtain, for each fixed grid size.

algorithm
grid

size

number

of trans.

distortion

[ZPA95]

runtime

[sec]

Kazhdan

et al.

[KFR04]

322 1,024 0.162 0.19

642 4,096 0.085 0.32

1282 16,384 0.057 2.64

2562 65,536 0.044 27.65

Proposed

method

(K = 0)

∼ 322 1,031 0.076 0.19

∼ 642 4,094 0.055 0.22

∼ 1282 16,370 0.045 0.29

∼ 2562 65,301 0.044 0.50

Proposed

method

(AUTO K)

∼ 322 1,031 0.076 0.96∗

∼ 642 4,094 0.052 1.02∗

∼ 1282 16,370 0.041 1.12∗

∼ 2562 65,301 0.035 1.40∗

Table 2: Best reflection symmetry detection. The table sum-

marizes performance of three algorithms for best reflection

symmetry detection on the COSEG data-set. See Table 1 and

text for more details. (*) Runtimes for ’AUTO K’ include

a pre-processing of ∼ 0.8 seconds for the TSDF calculation.

A benefit of using the TSDF representation is evident

when comparing the distortions achieved in the K = 0 and

the AUTO runs. As stated in Section 3.1, applying the TSDF

lowers the variance of the shape representation, allowing use

of tighter bounds than the one mentioned in proposition 2.4

(which only assumes the individual summands are bounded

and does not take advantage of their variance). As a result,

better estimation of the distortion is achieved.

4.5. Complex symmetry groups

We tested our algorithm on shapes with known complex

symmetries. Cumulative runtimes for finding the entire set of

symmetries are reported in Figure 10. In both cases (Dodec-

ahedron and Icosahedron), the algorithm correctly detected

exactly all 46 symmetries. The average symmetry detection

time of the algorithm decreases as the number of symmetries

of a shape increases because after each symmetry is detected

we carve out its neighborhood.

Martinet et al. [MSHS06] evaluate their algorithm on the

icosahedron as well. The runtime we report here (45 sec-

onds) is more than an order of magnitude smaller compared
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Figure 10: Runtimes for the ‘icosahedron’ and ‘dodeca-

hedron’. The plot shows the runtime accumulating while

detecting the symmetries. The algorithm found exactly the

46 symmetries of these shapes: fifteen reflections, ten 3-fold

rotations, six 5-fold rotations and fifteen 2-fold rotations.

Note that less effort is needed the further the algorithm pro-

gresses. This is due to the fact that regions around the pre-

viously detected symmetries are being ’carved-out’ from the

search space. Our runtimes are competitive with those re-

ported by Martinet et al. [MSHS06]. See text for details.

to the 50 minutes for detecting all symmetries of the icosahe-

dron, reported in [MSHS06], when treating the icosahedron

as a single complex shape. The authors of [MSHS06] also

report a runtime of 1 minute and 57 seconds when applying

their ’constructive’ method, which assumes that the icosahe-

dron is given as a segmented set of 30 tiles.

4.6. Determining how symmetric a shape is

Some applications only require to determine if a shape is

symmetric or not. For example, in the case of quadrupeds,

their shape will be symmetric if they are in the natural pose.

To demonstrate this we took the ‘Fourlegs’ class from the

COSEG dataset [WAvK∗12], which includes 20 shapes of

various quadrupeds. We ran our algorithm and found the best

symmetry for each of the shapes. Figure 1 shows some of the

shapes in increasing distortion order.

Several observations can be made. First, observe that the

algorithm indeed found the most prominent symmetry in

each case. The color code in Figure 1 encodes the differ-

ence between the corresponding points, measured as the ab-

solute difference between a point on the original shape and

its corresponding point on the transformed shape. As shown

in the first example (pig), the shape is almost perfectly sym-

metric. In the next example (cow), the head is slightly tilted

and indeed this is correctly detected by our algorithm. Note

that this distortion does not affect the quality of the recov-

ered plane of symmetry. The third example (horse) shows

that the algorithm properly detects the symmetry plane de-

spite the fact that the legs are not symmetric. The last two

examples show shapes that are not symmetric and indeed

the animals are not in their natural pose and the distortion of

the best symmetry found by the algorithm is high.
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Figure 11: Symmetry in an MRI scalar volume. Left: an il-

lustration of the bottom half of a volumetric MRI of a brain.

Center: visualization of the reflection distortion of the vol-

ume. Right: The detected reflection symmetry plane, along

with the original image (green) and its reflected version

(blue), visualized as iso-surfaces.

4.7. Symmetry in an MRI scalar volume

So far we assumed that the input originates from solid 3D

shapes. However, our method can handle general scalar vol-

umes, which are common in 3D medical imaging. We used

a simulated volume of a normal brain from [CKK∗97], in

the T1 MRI modality, slice thickness of 1mm, 3% noise

and 20% non-uniformity. The best symmetry detected by

our method discovered the bilateral symmetry of the left and

right brain hemispheres (see Figure 11), although the model

is far from being perfectly symmetric.

5. Summary

We presented a fast algorithm for global approximate 3D

symmetry detection that is guaranteed to find all approxi-

mate symmetries of a volumetric representation of a shape

within a user specified accuracy. The algorithm is robust to

noise and is fast in practice, taking about two seconds to de-

tect a symmetry.

A key contribution of our work is a proof that the den-

sity of the net depends on the total variation of the shape.

Therefore, the best transformation on the net is within an ap-

proximation constant from the optimal transformation. We

further show the use of TSDF representations to control the

shape total variation, and hence the sampling density. The al-

gorithm is further accelerated using sub-linear sampling that

randomly examines only a small number of points, which

makes the algorithm find symmetry with overwhelmingly

high probability.

Several experiments asses the performance of the algo-

rithm, including very complicated shapes with tens of sym-

metries. Unlike previous work, we include an experiment on

a large set of shapes and show that the method scales well.

The proposed algorithm can be modified and generalized

in the following manners. First, it could handle richer trans-

formation groups like Euclidean transformations E(3), en-

abling rigid registration of shapes. Second, it could be ap-

plied to a given part of a shape (as was done in [KRTA13]),

and act as a component in a partial symmetry detector.
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