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Abstract

In this paper, we address the graph matching problem. Following the recent works
of Zaslavskiy et al. (2009); Vestner et al. (2017) we analyze and generalize the
idea of concave relaxations. We introduce the concepts of conditionally concave
and probably conditionally concave energies on polytopes and show that they
encapsulate many instances of the graph matching problem, including matching
Euclidean graphs and graphs on surfaces. We further prove that local minima of
probably conditionally concave energies on general matching polytopes (e.g., dou-
bly stochastic) are with high probability extreme points of the matching polytope
(e.g., permutations).

1 Introduction

Graph matching is a generic and popular modeling tool for problems in computational sciences such
as computer vision (Berg et al., 2005; Zhou and De la Torre, 2012; Rodola et al., 2013; Bernard et al.,
2017), computer graphics (Funkhouser and Shilane, 2006; Kezurer et al., 2015), medical imaging
(Guo et al., 2013), and machine learning (Umeyama, 1988; Huet et al., 1999; Cour et al., 2007). In
general, graph matching refers to several different optimization problems of the form:

min
X

E(X) s.t. X ∈ F (1)

where F ⊂ Rn×n0 is a collection of matchings between vertices of two graphs GA and GB , and
E(X) = [X]TM [X] + aT [X] is usually a quadratic function in X ∈ Rn×n0 ([X] ∈ Rnn0×1 is its
column stack). Often, M quantifies the discrepancy between edge affinities exerted by the matching
X . Edge affinities are represented by symmetric matrices A ∈ Rn×n, B ∈ Rn0×n0 . Maybe the most
common instantiation of (1) is

E1(X) = ‖AX −XB‖2F (2)

and F = Πn, the matrix group of n×n permutations. The permutations X ∈ Πn represent bijections
between the set of (n) vertices of GA and the set of (n) vertices of GB . We denote this problem as
GM. From a computational point of view, this problem is equivalent to the quadratic assignment
problem, and as such is an NP-hard problem (Burkard et al., 1998). A popular way of obtaining
approximate solutions is by relaxing its combinatorial constraints (Loiola et al., 2007).

A standard relaxation of this formulation (e.g. Almohamad and Duffuaa (1993); Aflalo et al. (2015);
Fiori and Sapiro (2015)) is achieved by replacing Πn with its convex hull, namely the set of doubly-
stochastic matrices DS = hull(F) =

{
X ∈ Rn×n | X1 = 1, XT

1 = 1, X ≥ 0
}

. The main ad-
vantage of this formulation is the convexity of the energy E1; the main drawback is that often the
minimizer is not a permutation and simply projecting the solution onto Πn doesn’t take the energy
into account resulting in a suboptimal solution. The prominent Path Following algorithm (Zaslavskiy
et al., 2009) suggests a better solution of continuously changing E1 to a concave energy E′ that
coincide (up to an additive constant) with E1 over the permutations. The concave energy E′ is called
concave relaxation and enjoys three key properties: (i) Its solution set is the same as the GM problem.
(ii) Its set of local optima are all permutations. This means no projection of the local optima onto the
permutations is required. (iii) For every descent direction, a maximal step is always guaranteed to
reduce the energy most.
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Dym et al. (2017); Bernard et al. (2017) suggest a similar strategy but starting with a tighter convex
relaxation. Another set of works (Vogelstein et al., 2015; Lyzinski et al., 2016; Vestner et al., 2017;
Boyarski et al., 2017) have considered the energy

E2(X) = −tr(BXTAX) (3)

over the doubly-stochastic matrices, DS, as well. Note that both energies E1, E2 are identical (up
to an additive constant) over the permutations and hence both are considered relaxations. However,
in contrast to E1, E2 is in general indefinite, resulting in a non-convex relaxation. Vogelstein
et al. (2015); Lyzinski et al. (2016) suggest to locally optimize this relaxation with the Frank-Wolfe
algorithm and motivate it by proving that for the class of ρ-correlated Bernoulli adjacency matrices
A,B, the optimal solution of the relaxation almost always coincides with the (unique in this case)
GM optimal solution. Vestner et al. (2017); Boyarski et al. (2017) were the first to make the useful
observation that E2 is itself a concave relaxation for some important cases of affinities such as heat
kernels and Gaussians. This leads to an efficient local optimization using the Frank-Wolfe algorithm
and specialized linear assignment solvers (e.g., Bernard et al. (2016)).

In this paper, we analyze and generalize the above works and introduce the concepts of conditionally
concave and probably conditionally concave energies E(X). Conditionally concave energy E(X)
means that the restriction of the Hessian M of the energy E to the linear space

lin(DS) =
{
X ∈ Rn×n | X1 = 0, XT

1 = 0
}

(4)

is negative definite. Note that lin(DS) is the linear part of the affine-hull of the doubly-stochastic
matrices, denoted aff(DS). We will use the notation M |lin(DS) to refer to this restriction of M , and

consequently M |lin(DS) ≺ 0 means vTMv < 0, for all 0 6= v ∈ lin(DS). Our first result is proving
there is a large class of affinity matrices resulting in conditionally concave E2. In particular, affinity
matrices constructed using positive or negative definite functions1 will be conditionally concave.

Theorem 1. Let Φ : Rd → R, Ψ : Rs → R be both conditionally positive (or negative) definite
functions of order 1. For any pair of graphs with affinity matrices A,B ∈ Rn×n so that

Aij = Φ(xi − xj), Bij = Ψ(yi − yj) (5)

for some arbitrary {xi}i∈[n] ⊂ Rd, {yi}i∈[n] ⊂ Rs, the energy E2(X) is conditionally concave, i.e.,

its Hessian M |lin(DS) ≺ 0.

One useful application of this theorem is in matching graphs with Euclidean affinities, since Euclidean
distances are conditionally negative definite of order 1 (Wendland, 2004). That is, the affinities are
Euclidean distances of points in Euclidean spaces of arbitrary dimensions,

Aij = ‖xi − xj‖2 , Bij = ‖yi − yj‖2 , (6)

where {xi}i∈[n] ⊂ Rd, {yi}i∈[n] ⊂ Rs. This class contains, besides Euclidean graphs, also affinities

made out of distances that can be isometrically embedded in Euclidean spaces such as diffusion
distances (Coifman and Lafon, 2006), distances induced by deep learning embeddings (e.g. Schroff
et al. (2015)) and Mahalanobis distances. Furthermore, as shown in Bogomolny et al. (2007) the
spherical distance, Aij = dSd(xi, xj), is also conditionally negative definite over the sphere and
therefore can be used in the context of the theorem as-well.

Second, we generalize the notion of conditionally concave energies to probably conditionally concave
energies. Intuitively, the energy E is called probably conditionally concave if it is rare to find a linear
subspace D of lin(DS) so that the restriction of E to it is convex, that is M |D � 0. The primary
motivation in considering probably conditionally concave energies is that they enjoy (with high
probability) the same properties as the conditionally concave energies, i.e., (i)-(iii). Therefore, locally
minimizing probably conditionally concave energies over F can be done also with the Frank-Wolfe
algorithm, with guarantees (in probability) on the feasibility of both the optimization result and the
solution set of this energy.

A surprising fact we show is that probably conditionally concave energies are pretty common and
include Hessian matrices M with almost the same ratio of positive to negative eigenvalues. The

1In a nutshell, positive (negative) definite functions are functions that when applied to differences of vectors
produce positive (negative) definite matrices when restricted to certain linear subspaces; this notion will be
formally introduced and defined in Section 2.
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following theorem bounds the probability of finding uniformly at random a linear subspace D such
that the restriction of M ∈ Rm×m to D is convex, i.e., M |D ≻ 0. The set of d-dimensional linear
subspaces of Rm is called the Grassmannian Gr(d,m) and it has a compact differential manifold
structure and a uniform measure Pr.

Theorem 2. Let M ∈ Rm×m be a symmetric matrix with eigenvalues λ1, . . . , λm. Then, for all
t ∈ (0, 1

2λmax
):

Pr(M |D � 0) ≤
m∏

i=1

(1− 2tλi)
− d

2 , (7)

where M |D is the restriction of M to the d-dimensional linear subspace defined by D ∈ Gr(d,m)
and the probability is taken with respect to the Haar probability measure on Gr(d,m).

For the case d = 1 the probability of M |D � 0 can be interpreted via distributions of quadratic forms.
Previous works aimed at calculating and bounding similar probabilities (Imhof, 1961; Rudelson et al.,
2013) but in different (more general) settings providing less explicit bounds. As we will see, the case
d > 1 quantifies the chances of local minima residing at high dimensional faces of hull(F).

As a simple use-case of theorem 2, consider a matrix where 51% of the eigenvalues are −1 and 49%
are +1; the probability of finding a convex direction of this matrix, when the direction is uniformly
distributed, is exponentially low in the dimension of the matrix. As we (empirically) show, one class
of problems that in practice presents probably conditionally concave E2 are when the affinities A,B
describe geodesic distances on surfaces.

Probable concavity can be further used to prove theorems regarding the likelihood of finding a local
minimum outside the matching set F when minimizing E over a relaxed matching polytope hull(F).
We will show the existence of a rather general probability space (in fact, a family) (Ωm, Pr) of
Hessians M ∈ Rm×m ∈ Ωm with a natural probability measure, Pr, so that the probability of local
minima of E(X) to be outside F is very small. This result is stated and proved in theorem 3. An
immediate conclusion of this result provides a proof of a probabilistic version of properties (i) and (ii)
stated above for energies drawn from this distribution. In particular, the global minima of E(X) over
DS coincide with those over Πn with high probability. The following theorem provides a general
result in the flavor of Lyzinski et al. (2016) for a large class of quadratic energies.

Theorem 4. Let E be a quadratic energy with Hessian drawn from the probability space (Ωm, Pr).
The chance that a local minimum of minX∈DS E(X) is outside Πn is extremely small, bounded by
exp(−c1n

2), for some constant c1 > 0.

Third, when the energy of interest E(X) is not probably conditionally concave over lin(F) there is
no guarantee that the local optimum of E over hull(F) is in F . We devise a simple variant of the
Frank-Wolfe algorithm, replacing the standard line search with a concave search. Concave search
means subtracting from the energy E convex parts that are constant on F (i.e., relaxations) until an
energy reducing step is found.

2 Conditionally concave energies

We are interested in the application of the Frank-Wolfe algorithm Frank and Wolfe (1956) for locally
optimizing E2 (potentially with a linear term) from (3) over the doubly-stochastic matrices:

min
X

E(X) (8a)

s.t. X ∈ DS (8b)

where E(X) = −[X]T (B ⊗A)[X] + aT [X]. For completeness, we include a simple pseudo-code:

input :X0 ∈ hull(F)

while not converged do

compute step: X1 = minX∈DS −2[X0]
T (B ⊗A)[X] + aT [X];

line-search: t0 = argmint∈[0,1]E((1− t)X0 + tX1) ;

apply step: X0 = (1− t0)X0 + t0X1 ;

end

Algorithm 1: Frank-Wolfe algorithm.

Definition 1. We say that E(X) is conditionally concave if it is concave when restricted to the linear
space lin(F), the linear part of the affine-hull hull(F).
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If E(X) is conditionally concave we have that properties (i)-(iii) of concave relaxations detailed
above hold. In particular Algorithm 1 would always accept t0 = 1 as the optimal step, and therefore it
will produce a series of feasible matchings X0 ∈ Πn and will converge after a finite number of steps
to a permutation local minimum X∗ ∈ Πn of (8). Our first result in this paper provides sufficient
condition for W = −B ⊗A to be concave. It provides a connection between conditionally positive
(or negative) definite functions (Wendland, 2004), and negative definiteness of −B ⊗A:

Definition 2. A function Φ : Rd → R is called conditionally positive definite of order m if for all
pairwise distinct points {xi}i∈[n] ⊂ Rd and all 0 6= η ∈ Rn satisfying

∑

i∈[n] ηip(xi) = 0 for all

d-variate polynomials p of degree less than m, we have
∑n

ij=1 ηiη̄jΦ(xi − xj) > 0.

Specifically, Φ is conditionally positive definite of order 1 if for all pairwise distinct points {xi}i∈[n] ⊂

Rd and zero-sum vectors 0 6= η ∈ Rd we have
∑n

ij=1 ηiη̄jΦ(xi − xj) > 0. Conditionally negative

definiteness is defined analogously. Some well-known functions satisfy the above conditions, for
example: −‖x‖2, − (c2 + ‖x‖22)

β for β ∈ (0, 1] are conditionally positive definite of order 1, while
the functions exp(−τ2‖x‖22) for all τ , and c30 = (1− ‖x‖22)+ are conditionally positive definite of
order 0 (also called just positive definite functions). Note that if Φ is conditionally positive definite
of order m, it is also conditionally positive definite of any order m′ > m. Lastly, as shown in
Bogomolny et al. (2007), spherical distances −d(x, x′)γ are conditionally positive semidefinite for
γ ∈ (0, 1], and exp(−τ2d(x, x′)γ) are positive definite for γ ∈ (0, 1] and all τ . We now prove:

Theorem 1. Let Φ : Rd → R, Ψ : Rs → R be both conditionally positive (or negative) definite
functions of order 1. For any pair of graphs with affinity matrices A,B ∈ Rn×n so that

Aij = Φ(xi − xj), Bij = Ψ(yi − yj) (9)

for some arbitrary {xi}i∈[n] ⊂ Rd, {yi}i∈[n] ⊂ Rs, the energy E2(X) is conditionally concave, i.e.,

its Hessian M |lin(DS) ≺ 0.

Lemma 1 (orthonormal basis for lin(DS)). If the columns of F ∈ Rn×(n−1) constitute an or-

thonormal basis for the linear space 1
⊥ =

{
x ∈ Rn | xT

1 = 0
}

then the columns of F ⊗ F are an

orthonormal basis for lin(DS).

Proof. First, (F⊗F )T (F⊗F ) = (FT⊗FT )(F⊗F ) = (FTF )⊗(FTF ) = In−1⊗In−1 = I(n−1)2 .

Therefore F ⊗F is full rank with (n−1)2 orthonormal columns. Any column of F ⊗F is of the form
Fi ⊗ Fj , where Fi, Fj are the ith and jth columns of F , respectively. Now, reshaping Fi ⊗ Fj back

into an n× n matrix using the inverse of the bracket operation we get X =]Fi ⊗ Fj [= FjF
T
i which

are clearly in lin(DS). Lastly, since the dimension of lin(DS) is (n− 1)2 the lemma is proved.

Proof. (of Theorem 1 ) Let A,B ∈ Rn×n be as in the theorem statement. Checking that E(X)
is conditionally concave amounts to restricting the quadratic form −[X]T (B ⊗ A)[X] to lin(DS):
−(F ⊗ F )T (B ⊗A)(F ⊗ F ) = −(FTBF )⊗ (FTAF ) ≺ 0, where we used Lemma 1 and the fact
that Φ,Ψ are conditionally positive definite of order 1.

Corollary 1. Let A,B be Euclidean distance matrices then the solution set of Problem (8) and GM
coincide.

3 Probably conditionally concave energies

Although Theorem 1 covers a rather wide spectrum of instantiations of Problem (8) it definitely does
not cover all interesting scenarios. In this section we would like to consider a more general energy

E(X) = [X]TM [X] + aT [X], X ∈ Rn×n, M ∈ Rn2
×n2

and the optimization problem:

min
X

E(X) (10a)

s.t. X ∈ hull(F) (10b)

We assume that F = ext(hull(F)), namely, the matchings are extreme points of their convex hull
(as happens e.g., for permutations F = Πn). When the restricted Hessians M |lin(F) are ǫ−negative

definite (to be defined soon) we will call E(X) probably conditionally concave.
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Probably conditionally concave energies E(X) will possess properties (i)-(iii) of conditionally
concave energies with high probability. Hence they allow using Frank-Wolfe algorithms, such as
Algorithm 1, with no line search (t0 = 1) and achieve local minima in F (no post-processing is
required). In addition, we prove that certain classes of probably conditionally concave relaxations
have no local minima that are outside F , with high probability. In the experiment section we will also
demonstrate that in practice this algorithm works well for different choices of probably conditionally
concave energies. Popular energies that fall into this category are, for example, (3) with A,B geodesic
distance matrices or certain functions thereof.

We first make some preparations. Recall the definition of the Grassmannian Gr(d,m): It is the set of
d-dimensional linear subspaces in Rm; it is a compact differential manifold defined by the quotient
O(m)/O(d)×O(m− d), where O(s) is the orthogonal group in Rs. The orthogonal group O(m)
acts transitively on Gr(d,m) by taking an orthogonal basis of any d-dimensional linear subspace
to an orthogonal basis of a possibly different d-dimensional subspace. On O(m) there exists Haar
probability measure, that is a probability measure invariant to actions of O(m). The Haar probability
measure on O(m) induces an O(m)-invariant (which we will also call Haar) probability measure on
G(k,m). We now introduce the notion of ǫ-negative definite matrices:

Definition 3. A symmetric matrix M ∈ Rm×m is called ǫ-negative definite if the probability of
finding a d-dimensional linear subspace D ∈ G(d,m) so that A is convex over D is smaller than ǫd.

That is, Pr({M |D � 0}) ≤ ǫd where the probability is taken with respect to a Haar O(m)-invariant
measure on the Grassmannian Gr(d,m).

One way to interpret M |D, the restriction of the matrix M to the linear subspace D, is to consider a

matrix F ∈ Rm×d where the columns of F form a basis to D and consider M |D = FTMF . Clearly,
negative definite matrices are ǫ-negative definite for all ǫ > 0. The following theorem helps to see
what else this definition encapsulates:

Theorem 2. Let M ∈ Rm×m be a symmetric matrix with eigenvalues λ1, . . . , λm. Then, for all
t ∈ (0, 1

2λmax
):

Pr(M |D � 0) ≤
m∏

i=1

(1− 2tλi)
− d

2 , (11)

where M |D is the restriction of M to the d-dimensional linear subspace defined by D ∈ Gr(d,m)
and the probability is taken with respect to the Haar probability measure on Gr(d,m).

Proof. Let F be an m× d matrix of i.i.d. standard normal random variables N (0, 1). Let Fj , j ∈ [d],
denote the jth column of F . The multivariate distribution of F is O(m)-invariant in the sense that

for a subset A ⊂ Rm×d, Pr(RA) = Pr(A) for all R ∈ O(m). Therefore, Pr(M |D � 0) =

Pr(F
TMF � 0). Next, Pr(F

TMF � 0) ≤ Pr(∩
d
j=1

{
FT
j MFj ≥ 0

}
) =

∏d
j=1 Pr(F

T
j MFj ≥

0), where the inequality is due to the fact that a positive semidefinite matrix necessarily has non-
negative diagonal, and the equality is due to the independence of the random variables FT

j MFj ,

j ∈ [d]. We now calculate the probability Pr(F
T
1 MF1) which is the same for all columns j ∈ [d].

For brevity let X = (X1, X2, . . . , Xm)T = F1. Let M = UΛUT , where U ∈ O(m) and Λ =
diag(λ1, λ2, . . . , λm) be the spectral decomposition of M . Since UX has the same distribution as
X we have that Pr(X

TMX ≥ 0) = Pr(X
TΛX ≥ 0) = Pr(

∑m
i=1 λiX

2
i ≥ 0). Since X2

i ∼ χ2(1)
we have transformed the problem into a non-negativity test of a linear combination of chi-squared
random variables. Using the Chernoff bound we have for all t > 0:

Pr

(
m∑

i=1

λiX
2
i ≥ 0

)

≤ E
(

et
∑

m
i=1 λiX

2
i

)

=

m∏

i=1

E
[

etλiX
2
i ,
]

where the last equality follows from the independence of X1, ..., Xm. To finish the proof we note

that E
[

etλiX
2
i

]

is the moment generating function of the random variable X2
i sampled at tλi which

is known to be (1− 2tλi)
−1/2 for tλi <

1
2 which means that we can take t < 1

2λi
when λi 6= 0 and

disregard all λi = 0.

Theorem 2 shows that there is a concentration of measure phenomenon when the dimension m of the
matrix M increases. For example consider

Λm,p =
(

(1−p)m
︷ ︸︸ ︷

λ1, λ2, . . .,

pm
︷ ︸︸ ︷
µ1, µ2, . . .

)
, (12)
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where λi ≤ −b, b > 0 are the negative eigenvalues; 0 ≤ µi ≤ a, a > 0 are the positive eigenvalues
and the ratio of positive to negative eigenvalues is a constant p ∈ (0, 1/2). We can bound the r.h.s. of

(11) with (1 + 2bt)−
(1−p)m

2 (1 − 2at)−
pm

2 . Elementary calculus shows that the minimum of this
function over t ∈ (0, 1/2a) gives:

Pr(v
tMv ≥ 0) ≤

(

a1−pbp

a+b
2

1

2
(1− p)p−1p−p

)m
2

, (13)

0 0.1 0.2 0.3 0.4 0.5

p

0.5

0.6

0.7

0.8

0.9

1where v is uniformly distributed on the unit sphere in Rm. The function
1
2 (1 − p)p−1p−p is shown in the inset and for p < 1/2 it is strictly smaller

than 1. The term a1−pbp

(a+b)/2 is the ratio of the weighted geometric mean and the

arithmetic mean. Using the weighted arithmetic-geometric inequality it can
be shown that these terms is at-most 1 if a ≤ b. To summarize, if a ≤ b and
p < 1/2 the probability to find a convex (positive) direction in M is exponentially decreasing in m,
the dimension of the matrix. One simple example is taking a = b = 1, p = 0.49 which shows that
considering the matrices

U
(

0.51m
︷ ︸︸ ︷

−1,−1, . . . ,−1,

0.49m
︷ ︸︸ ︷

1, 1, . . . , 1
)
UT

it will be extremely hard to get in random a convex direction in dimension m ≈ 3002, i.e., the
probability will be ≈ 4 · 10−5 (this is a low dimension for a matching problem where m = (n− 1)2).

Another consequence that comes out of this theorem (in fact, its proof) is that the probability of
finding a linear subspace D ∈ Gr(d,m) for which the matrix M is positive semidefinite is bounded
by the probability of finding a one-dimensional subspace D1 ∈ Gr(1,m) to the power of d. Therefore
the d exponent in Definition 3 makes sense. Namely, to show a symmetric matrix M is ǫ-negative
definite it is enough to check one-dimensional linear subspaces. An important implication of this fact
and one of the motivations for Definition 3 is that finding local minima at high dimensional faces of
the polytope hull(F) is much less likely than at low dimensional faces.

Next, we would like to prove Theorem 3 that shows that for natural probability space of Hessians
{M} the local minima of (10) are with high probability in F , e.g., permutations in case that F = Πn.
We therefore need to devise a natural probability space of Hessians. We opt to consider Hessians of
the form discussed above, namely

Ωm =
{
UΛm,pU

T | U ∈ O(m)
}
, (14)

where Λm,p is defined in (12). The probability measure over Ωm is defined using the
Haar probability measure on O(m), that is for a subset A ⊂ Ωm we define Pr(A) =
Pr(

{
U ∈ O(m) | UΛm,pU

T ∈ A
}
), where the probability measure on the r.h.s. is the proba-

bility Haar measure on O(m). Note that (14) is plausible since the input graphs GA, GB are
usually provided with an arbitrary ordering of the vertices. Writing the quadratic energy E re-
sulted from a different ordering P,Q ∈ Πn of the vertices of GA, GB (resp.) yields the Hessian
H ′ = (Q⊗P )(B ⊗A)(Q⊗P )T , where Q⊗P ∈ Πm ⊂ O(m). This motivates defining a Hessian
probability space that is invariant to O(m). We prove:

Theorem 3. If the number of extreme points of the polytope hull(F ) is bounded by exp(m1−ǫ), for
some fixed arbitrary ǫ > 0, and the Hessian of E is drawn from the probability space (Ωm, Pr), the
chance that a local minimum of minX∈hull(F) E(X) is outside F is extremely small, bounded by

exp(−c1m), for some constant c1 > 0.

Proof. Denote all the edges (i.e., one-dimensional faces) of the polytope P = hull(F) by indices α.
Even if every two extreme points of P are connected by an edge there could be at most exp(2m1−ǫ)
edges. A local minimum X∗ ∈ P to (10) that is not in F necessarily lies in the (relative) interior of
some face f of P of dimension at-least one. The restriction of the Hessian M of E(X) to lin(f) is
therefore necessarily positive semidefinite. This implies there is a direction vα ∈ Rm, parallel to an
edge α of P so that vTαMvα ≥ 0.

Let us denote by Xα the indicator random variable that equals one if vTαMvα ≥ 0 and zero otherwise.
If Xα = 1 we say that the edge α is a critical edge for M . Let us denote X =

∑

α Xα the random

variable counting critical edges. The expected number of critical edges is E(X) =
∑

α Pr(v
T
αMvα ≥

0). We use Theorem 2, in particular (13), to bound the summands.

6



Since Pr(v
T
αMvα ≥ 0) = Pr(v

T
αUΛm,pU

T vα ≥ 0) and UT vα is distributed uniformly on the

unit sphere in Rm, we can use (13) to infer that Pr(v
T
αMvα ≥ 0) ≤ ηm/2 for some η ∈ [0, 1)

and therefore E(X) ≤ exp(m log η/2)
∑

α 1 (note that log η < 0). Incorporating the bound on

edge number in P discussed above we get E(X) ≤ exp( log η
2 m+ 2m1−ǫ) ≤ exp(−c1m) for some

constant c1 > 0. Lastly, as explained above, the event of a local minimum not in F is contained in
X ≥ 1 and by Markov’s inequality we finally get Pr(X ≥ 1) ≤ E(X) ≤ exp(−c1m).

Let us use this theorem to show that the local optimal solutions to Problem (10) with permutations as
matchings, F = Πn, are with high probability permutations:

Theorem 4. Let E be a quadratic energy with Hessian drawn from the probability space (Ωm, Pr).
The chance that a local minimum of minX∈DS E(X) is outside Πn is extremely small, bounded by
exp(−c1n

2), for some constant c1 > 0.

Proof. In this case the polytope DS = hull(Πn) is in the (n − 1)2 dimensional linear subspace
lin(DS) of Rn×n. It therefore makes sense to consider the Hessians’ probability space restricted to
lin(DS), that is considering M |lin(DS) and the orthogonal subgroup acting on it, O((n− 1)2). In this

case m = (n− 1)2. The number of vertices of DS is the number of permutations which by Stirling’s
bound we have n! ≤ exp(1− n+ log n(n+ 1/2)) ≤ exp((n− 1)1.1). Hence the number of edges
is bounded by exp(2(n− 1)1.1), as required.

Lastly, Theorems 3 and 4, can be generalized by considering d-dimensional faces of the polytope:

Theorem 5. If the number of extreme points of the polytope hull(F ) is bounded by exp(m1−ǫ), for
some fixed arbitrary ǫ > 0, and the Hessian of E is drawn from the probability space (Ωm, Pr), the
chance that a local minimum of minX∈hull(F) E(X) is in the relative interior of a d-dimensional

face of hull(F) is extremely small, bounded by exp(−c1dm), for some constant c1 > 0.

This theorem is proved similarly to Theorem 3 by considering indicator variables Xα for positive
semidefinite M |lin(α) where α stands for a d-dimensional face in hull(F). This generalized theorem
has a practical implication: local minima are likely to be found on lower dimensional faces.

4 Graph matching with one sided permutations

In this section we examine an interesting and popular graph matching (1) instance, where the
matchings are the one-sided permutations, namely F =

{
X ∈ {0, 1}n×n0 | X1 = 1

}
. That is F are

well-defined maps from graph GA with n vertices to GB with n0 vertices. This modeling is used in
the template and partial matching cases. Unfortunately, in this case, standard graph matching energies
E(X) are not probably conditionally concave over lin(F). Note that lin(DS) $ lin(F).

We devise a variation of the Frank-Wolfe algorithm using a concave search procedure. That is, in
each iteration, instead of standard line search we subtract a convex energy from E(X) that is constant
on F until we find a descent step. This subtraction is a relaxation of the original problem (1) in the
sense it does not alter (up to a global constant) the energy values at F .

The algorithm is summarized in Algorithm 2 and is guaranteed to output a feasible solution in F . The
linear program in each iteration over hull(F) has a simple closed form solution. Also, note that in the
inner loop only n different λ values should be checked. Details can be found in the supplementary
materials.

input :X0 ∈ hull(F)

while not converged do
while energy not reduced do

add concave energy Mcurr = M − λΛ;

compute step: X1 = minX∈hull(F)[X0]
TMcurr[X];

increase λ;

end
Update current solution X0 = X1 and set λ = 0;

end

Algorithm 2: Frank-Wolfe with a concave search.
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Figure 1: (a) SHREC07 benchmark: Cumulative distribution functions of all errors (left) and mean
error per shape (right). (b) Anatomical dataset embedding in the plane. Squares and triangles
represent different bone types, lines represent temporal trajectories.

5 Experiments

Bound evaluation: Table 1 evaluates the probability bound (11) for Hessians M ∈ R1002×1002 of
E2(X) using affinities A,B defined by functions of geodesic distances on surfaces. Functions that
are conditionally negative definite or semi-definite in the Euclidean case: geodesic distances d(x, y),

its square d(x, y)2, and multi-quadratic functions (1 + d(x, y)2)
1
10 . Functions that are positive

definite in the Euclidean case: c30(‖x‖2) = (1 − ‖x‖2)+, c31(‖x‖2) = (1 − ‖x‖2)
4
+(4 ‖x‖2 + 1)

and exp(−τ2‖x‖22) (note that the last function was used in Vestner et al. (2017)). We also provide
the empirical chance of sampling a convex direction. The results in the table are the mean over all the
shape pairs (218) in the SHREC07 (Giorgi et al., 2007) shape matching benchmark with n = 100.
The empirical test was conducted using 106 random directions sampled from an i.i.d. Gaussian
distribution. Note that 0 in the table means numerical zero (below machine precision).

Table 1: Evaluation of probable conditional concavity for different functions of geodesics on lin(DS).

Distance Distance Squared MultiQuadratic c30 c31 Gaussian

Bound mean 0 0.024 7 · 10−4 0 0 0

Bound std 0 0.021 1.7 · 10−3 0 0 0

Empirical mean 0 0.003 7 · 10−5 0 0 0

Empirical std 0 0.003 1.8 · 10−4 0 0 0

Initialization: Motivated by Fischler and Bolles (1987); Kim et al. (2011) and due to the fast
running time of the algorithms (e.g., 150msec for n = 200 with Algorithm 1, and 16sec with
Algorithm 2, both on a single CPU) we sampled multiple initializations based on randomized l-pairs
of vertices of graphs GA, GB and choose the result corresponding to the best energy. In Algorithm 1
we used the Auction algorithm (Bernard et al., 2016), as in Vestner et al. (2017).

Table 2: Comparison to "convex to concave" methods. The table shows the average and the std of the
energy differences. Positive averages indicate our algorithm achieves lower energy on average.

ModelNet10 SHREC07

# points 30 60 90 30 60 90

DSPP 5.0± 5.3 9.8± 10.8 14.468± 19.8 1.3± 2.3 9.5± 9.5 26.2± 24.3

PATH 101.4±53.9 512.3±198.4 1251.9±426.4 69.263±55.9 307.7±230.6 721.0±549.7

RANDOM 197.9±35.2 865.3±122.1 1986.1±273.0 120.2±83.6 532.7±357.8 1230.7±817.6

Comparison with convex-to-concave methods: Table 2 compares our method to Zaslavskiy et al.
(2009); Dym et al. (2017) (PATH, DSPP accordingly). As mentioned in the introduction, these
methods solve convex relaxations and then project its minimizer while deforming the energy towards
concavity. Our method compares favorably in the task of matching point-clouds from the ModelNet10
dataset (Wu et al., 2015) with Euclidean distances as affinities, and the SHREC07 dataset (Giorgi
et al., 2007) with geodesic distances. We used F = Πn, and energy (3). The table shows average and
standard deviation of energy differences of the listed algorithms and ours; the average is taken over
50 random pairs of shapes. Note that positive averages mean our algorithm achieves lower energy on
average; the difference to random energy values is given for scale.
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Automatic shape matching: We use our Algorithm 1 for automatic shape matching (i.e., with no
user input or input shape features) on a the SHREC07 (Giorgi et al., 2007) dataset according to the
protocol of Kim et al. (2011). This benchmark consists of matching 218 pairs of (often extremely)
non-isometric shapes in 11 different classes such as humans, animals, planes, ants etc. On each shape,
we sampled k = 8 points using farthest point sampling and randomized s = 2000 initializations of
subsets of l = 3 points. In this stage, we use n = 300 points. We then up-sampled to n = 1500
using the exact algorithm with initialization using our n = 300 best result. The process takes about
16min per pair running on a single CPU. Figure 1 (a) shows the cumulative distribution function
of the geodesic matching errors (left - all errors, right - mean error per pair) of Algorithm 1 with
geodesic distances and their functions c30, c31. We used (3) and F = Π. We also show the result
of Algorithm 2 with geodesic distances, see details in the supplementary materials. We compare
with Blended Intrinsic Maps (BIM) (Kim et al., 2011) and the energies suggested by Boyarski et al.
(2017) (heat kernel) and Vestner et al. (2017) (Gaussian of geodesics). For the latter two, we used the
same procedure as described above and just replaced the energies with the ones suggested in these
works. Note that the Gaussian of geodesics energy of Vestner et al. (2017) falls into the probably
concave framework.

Anatomical shape space analysis: We match a dataset of 67 mice bone surfaces acquired us-
ing micro-CT. The dataset consists of eight time series. Each time series captures the devel-
opment of one type of bone over time. We use Algorithm 1 to match all pairs in the dataset
using Euclidean distance affinity matrices A,B, energy (3), and F =
Πn. After optimization, we calculated a 67 × 67 dissimilarity matrix.
Dissimilarities are equivalent to our energy over the permutations (up
to additive constant) and defined by

∑

ijkl XijXkl(dik − djl)
2. A color-

coded matching example can be seen in the inset. In Figure 1 (b) we used
Multi-Dimensional Scaling (MDS) (Kruskal and Wish, 1978) to assign
a 2D coordinate to each surface using the dissimilarity matrix. Each
bone is shown as a trajectory. Note how the embedding separated the two
types of bones and all bones of the same type are mapped to similar time
trajectories. This kind of visualization can help biologists analyze their
data and possibly find interesting time periods in which bone growth is changing. Lastly, note that
the Tibia bones (on the right) exhibit an interesting change in the midst of its growth. This particular
time was also predicted by other means by the biologists.

6 Conclusion

In this work, we analyze and generalize the idea of concave relaxations for graph matching prob-
lems. We concentrate on conditionally concave and probably conditionally concave energies and
demonstrate that they provide useful relaxations in practice. We prove that all local minima of such
relaxations are with high probability in the original feasible set; this allows removing the standard
post-process projection step in relaxation-based algorithms. Another conclusion is that the set of
optimal solutions of such relaxations coincides with the set of optimal solutions of the original graph
matching problem.

There are popular edge affinity matrices, such as {0, 1} adjacency matrices, that in general do not
lead to conditionally concave relaxations. This raises the general question of characterizing more
general classes of affinity matrices that furnish (probably) conditionally-concave relaxations. Another
interesting future work could try to obtain information on the quality of local minima for more
specific classes of graphs.
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