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ABSTRACT

Knowledge is indispensable to understanding. The ongoing infor-
mation explosion highlights the need to enable machines to bet-
ter understand electronic text in human language. Much work has
been devoted to creating universal ontologies or taxonomies for this
purpose. However, none of the existing ontologies has the needed
depth and breadth for “universal understanding”. In this paper, we
present a universal, probabilistic taxonomy that is more compre-
hensive than any existing ones. It contains 2.7 million concepts
harnessed automatically from a corpus of 1.68 billion web pages.
Unlike traditional taxonomies that treat knowledge as black and
white, it uses probabilities to model inconsistent, ambiguous and
uncertain information it contains. We present details of how the
taxonomy is constructed, its probabilistic modeling, and its poten-
tial applications in text understanding.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware

General Terms

Algorithms, Design, Experimentation

Keywords

Knowledgebase, Taxonomy, Text Understanding

1. INTRODUCTION
The Web has become one of the largest data repository in the

world. But data on the Web is mostly text in natural languages,
which is poorly structured and difficult for machines to access. To
unlock the trove of information, we must enable machines to pro-
cess web data automatically. In other words, machines need to un-
derstand text in natural languages.

An important question is, what does the word “understand” mean
here? Consider the following example. For human beings, when
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we see “25 Oct 1881”, we recognize it as a date, although most of
us do not know what it is about. However, if we are given a little
more context, say the date is embedded in the following piece of
short text “Pablo Picasso, 25 Oct 1881, Spain”, most of us would
have guessed (correctly) that the date represents Pablo Picasso’s
birthday. We are able to do this because we possess certain knowl-
edge, and in this case, “one of the most important dates associated

with a person is his birthday”. As another example, consider the
following two sentences that contain the “such as” phrase: “house-

hold pets other than dogs such as cats ...” and “household pets other
than animals such as reptiles ... ”. Humans do not feel that they are
ambiguous. Subconsciously they parse the sentences in different
ways to obtain the correct semantics: “household pets such as cats”
for the first sentence, and “animals such as reptiles” for the second,
while machines do not understand why “dogs such as cats” and
“household pets such as reptiles” are improbable interpretations.
The reason is because humans have background knowledge.

It turns out that what takes a human to understand the above two
examples is nothing more than the knowledge about concepts (e.g.,
persons, animals, etc.) and the ability to conceptualize (e.g., cats
are animals). This is no coincidence. Psychologist Gregory Mur-
phy began his highly acclaimed book with the statement “Concepts

are the glue that holds our mental world together” [22]. Nature
magazine book review pointed out “Without concepts, there would

be no mental world in the first place” [4].
People use taxonomies and ontologies to represent and organize

concepts. Understanding text in the open domain (e.g., understand-
ing text on the Web) is very challenging. The diversity and com-
plexity of human language requires the taxonomy / ontology to cap-
ture concepts with various granularities in every domain. Although
many taxonomies / ontologies exist in specific domains, only a
handful of general-purpose ones (Table 1) are available. These tax-
onomies / ontologies share two key limitations, which make them
less effective in general-purpose understanding.

First, existing taxonomies have limited concept space. Most tax-
onomies are constructed by a manual process known as curation.
This laborious, time consuming, and costly process limits the scope
and the scale of the taxonomies thus built. For example, the Cyc
project [18], after 25 years of continuing effort by many domain
knowledge experts, contains about 120,000 concepts. To overcome
this bottleneck, some open domain knowledgebases, e.g., Free-
base [5], rely on community efforts to increase the scale. How-
ever, while they have near-complete coverage of several specific
concepts (e.g., books, music and movies), they lack general cover-
age of many other concepts. More recently, automatic taxonomy
construction approaches, such as KnowItAll [12], TextRunner [2],
YAGO [35], and NELL [7], have been in focus, but they still have
a limited scale and coverage in terms of concept space.

Limited concept space restricts understanding at coarse levels.
Consider the following sentence:



EXAMPLE 1. “How do we compete with the largest companies

in China, India, Brazil, etc.?”

What countries are China, India, and Brazil? What are the largest
companies there? Most of the existing taxonomies contain the con-
cept company, and have China, India, and Brazil in the concept of
country. However, these concepts are too general and do not help
understanding. To uncover the semantics encoded here, machines
need knowledge of much finer concepts such as largest compa-

nies in China, developing countries, and BRIC countries. Unfor-
tunately, none of the existing taxonomies contains these concepts.

Fine level of understanding is also desirable in many other im-
portant tasks, such as named entity recognition (NER) [23] and
word sense disambiguation (WSD) [24]. NER seeks to locate and
tag real-world entities mentioned in the text with their types (i.e.,
concepts). While early research on NER is confined to coarse-

grained named entity classes such as person and location, it is gen-
erally agreed that fine-grained NER [14, 15] (i.e., by using more
specific subcategories) is more beneficial for a wide range of web
applications, including Information Retrieval (IR), Information Ex-
traction (IE), or Query-Answering (QA). WSD governs the process
of identifying the sense (i.e., meaning) of a word used in the text.
Knowledge sources such as taxonomies and ontologies are funda-
mental components of WSD, which distinguishes senses of words
by their categories (i.e., concepts). It has been widely observed
that different NLP applications require different sense granularities
in order to best exploit word sense distinctions [33]. All these ap-
plications require the taxonomies / ontologies to contain a rich set
of concepts, with various granularities.

Existing Taxonomies Number of Concepts

Freebase [5] 1,450
WordNet [13] 25,229
WikiTaxonomy [26] 111,654
YAGO [35] 352,297
DBPedia [1] 259
ResearchCyc [18] ≈ 120,000
KnowItAll [12] N/A
TextRunner [2] N/A
OMCS [31] N/A
NELL [7] 123

Probase 2,653,872

Table 1: Scale of open-domain taxonomies

Second, existing taxonomies treat knowledge as black and white.
They believe that a knowledgebase should provide standard, well-
defined and consistent reusable information, and therefore all con-
cepts and relations included in these taxonomies are kept “reli-
giously” clean. However, many real-world concepts, such as large

company, best university and beautiful city do not have a definite

boundary, and are intrinsically vague. Many of these vague con-
cepts are useful in fine-grained understanding. For instance, there
are tens of thousands of universities in the world, while only hun-
dreds of them are considered the best. Moreover, automatic tax-
onomy construction processes, while reducing costs and improving
productivity, are never perfect. They can introduce errors and in-
consistencies into the taxonomies thus built. Without a good way
to model the vagueness and inconsistencies, all existing taxonomies
choose to either exclude the vague concepts or ignore the inconsis-
tencies.

In this paper, we argue that accommodating and modeling such
uncertainties in a taxonomy can be very useful in conceptualization.
To see this, let us take a deeper look at the sentence in Example 1.
Depending on the application, we may need to understand: i) what
does “largest companies” mean? and ii) what does “China, India,

Brazil” signify?

There are obviously millions of companies in these countries, but
only a handful of them are considered largest companies. Since the
term “largest” is subjective, to understand what are largest compa-

nies, we concretize this vague concept to a set of its most typical

instances, such as China Mobile, Tata Group, and PetroBras. On
the other hand, each of the three instances China, India, and Brazil,
may be interpreted as country, big country, developing country,
BRIC country, or emerging market. All of those choices are cor-
rect, but as a group together, BRIC country and emerging market

might be the best abstractions, because they are the most typical

and the “tightest” concept to characterize the three instances. With
this generalization, one can even suggest a fourth instance, Russia,
to complete the sentence.

From the above example, we can see that conceptualization can
proceed in two directions:

• Instantiation: given a concept, inferring its typical and likely
instances (e.g., from largest company to China Mobile, Tata

Group, etc).

• Abstraction: given one or multiple instances1, inferring the
typical and likely concepts they belong to (e.g., from China,
India, Brazil to emerging market or BRIC country);

In either direction, uncertainties are inherent, and probabilities play
an important role in the inference.

In this paper, we introduce Probase, a universal, general-purpose,
probabilistic taxonomy automatically constructed from a corpus of
1.6 billion web pages. The Probase taxonomy is unique in three
aspects:

1. It is built by a novel framework, which consists of an iter-
ative learning algorithm to extract isA pairs from web text
(see Section 2), and a taxonomy construction algorithm to
connect these pairs into a hierarchical structure (see Section
3). The resulting taxonomy has the highest precision (92.8%)
and largest scale reported so far in automated web-scale tax-
onomy inference research.

2. It is the first general-purpose taxonomy that takes a proba-
bilistic approach to model the knowledge it possesses. Knowl-
edge in Probase is no longer black and white. Each fact or
relation is associated with some probabilities to measure its
plausibility and typicality. Plausibility is useful for detect-
ing errors and integrating heterogeneous knowledge sources,
while typicality is useful for conceptualization and inference.
Such a probabilistic treatment allows Probase to better cap-
ture the semantics of human languages (see Section 4). Re-
cent work [34, 39, 37] based on this probabilistic treatment
of knowledge in Probase demonstrates the effectiveness of
this framework, which will be discussed further in Section
5.3.

3. It is the largest general-purpose taxonomy fully automati-
cally constructed from HTML text on the web. Probase has a
huge concept space with almost 2.7 million concepts, 8 times
larger than that of YAGO, which makes it the largest taxon-
omy in terms of concept space (Table 1). Besides popular
concepts such as “cities” and “musicians”, which are already
in almost every general-purpose taxonomy, it also has tens
of thousands of specific concepts such as “renewable energy
technologies”, “meteorological phenomena” and “common

1Probase also supports abstraction from a mixture of instances, at-
tributes, and actions. For example, inferring from headquarter, ap-
ple to company, or from Germany invaded Poland to war. How-
ever, in this paper, we focus on concepts and instances.



sleep disorders”, which cannot be found in Freebase, Cyc, or
any other taxonomies (see Section 5).

More information about Probase , including Probase-enabled ap-
plications [34, 39, 37], and a small excerpt of the Probase taxon-
omy, can be found at http://research.microsoft.com/
probase/.We are currently working to make the Probase taxon-
omy available to the public.

2. ITERATIVE EXTRACTION
We present a novel iterative learning framework that aims at ac-

quiring knowledge with high precision and high recall. Knowledge
acquisition consists of two phases: i) information extraction, and ii)
data cleansing and integration. A lot of work has been done in data
cleansing and integration [17, 19, 20] for Probase. In this paper, we
focus on the first phase: information extraction.

Information extraction is an iterative process. Most existing ap-
proaches bootstrap on syntactic patterns, that is, each iteration finds
more syntactic patterns for subsequent extraction. Our approach,
on the other hand, bootstraps directly on knowledge, that is, we
use existing knowledge to understand the text and acquire more
knowledge. In the following, we describe the limitations of state-
of-the-art work in Section 2.1, existing problems and challenges
in Section 2.2, and our new iterative learning framework in Sec-
tion 2.3.

2.1 Syntactic vs. Semantic Iteration
State-of-the-art information extraction methods, including Know-

ItAll [12], TextRunner [2], and NELL [7], rely on an iterative (boot-
strapping) approach. It starts with a set of seed examples and/or
seed patterns. From the examples, it derives new patterns that fit
the examples. Then, it uses the new patterns to extract more ex-
amples from the data. The iterative process is at the syntax level.
It has limitations which prevent deep knowledge acquisition. Our
goal is to break this barrier and perform extraction at semantic, or
knowledge level.

Syntactic Iteration. High quality syntactic patterns are valu-
able to information extraction. Assume we are interested in find-
ing isA relationships (the most important relationship in knowledge
bases). We can start with the Hearst patterns [16].

ID Pattern
1 NP such as {NP,}∗{(or | and)} NP
2 such NP as {NP,}∗{(or | and)} NP
3 NP{,} including {NP,}∗{(or | and)} NP
4 NP{,NP}∗{,} and other NP
5 NP{,NP}∗{,} or other NP
6 NP{,} especially {NP,}∗{(or | and)} NP

Table 2: The Hearst patterns (NP stands for noun phrase)

Using the above Hearst patterns, we can derive knowledge from
text. For example, given a sentence, “... domestic animals such as
cats ...”, we obtain the relationship: “cat isA animal”. The idea of
syntactic iteration is that, in order to find more relationships, we
need more syntactic patterns. Thus, we endeavor to discover more
syntactic patterns that exist among the current isA pairs (which in-
clude “cat isA animal”) and use them to obtain more isA pairs.

This process has been adopted by most information extraction
approaches. However, it focuses on syntax only, and has these lim-
itations:

• Syntactic patterns have limited extraction power. Natural
languages are ambiguous, and syntactic patterns alone are

not powerful enough to deal with such ambiguity. Consider
the sentence “... animals other than dogs such as cats ...”.
KnowItAll will extract (cat isA dog) rather than (cat isA an-
imal). Because the syntactic structure is inherently ambigu-
ous (as we described in Section 1), refining the syntactic rules
will not help in such a case.

• High quality syntactic patterns are rare. The syntactic pat-
terns obtained from bootstrapping often have low quality.
For instance, assume we want to find instances of countries,
that is (x isA country). From a set of seed countries, we
may obtain syntactic patterns such as “war with x”, “inva-
sion of x”, and “occupation of x”. But, from such patterns,
we might derive wrong instances, for example, “x = planet
Earth.” This problem is known as semantic drift [7]. To deal
with the problem, sophisticated “discriminators” are created
to remove syntactic patterns of low quality. Unfortunately,
for isA relationships, the remaining patterns are mostly Hearst
patterns. Thus the central idea of “more syntactic patterns
can produce more results” is not really valid.

• Recall is sacrificed for precision. Because natural languages
are ambiguous, and syntactic patterns have low quality, state-
of-the-art approaches have to sacrifice recall for precision.
For instance, when extracting isA pairs, they focus on in-
stances that are proper nouns. It thus cannot derive the knowl-
edge (cat isA animal) from simple sentences like “animals
such as cats”. But such isA relationships are essential in cre-
ating knowledge taxonomies. Furthermore, most approaches
also restrict the concept to be a noun instead of a noun phrase.
For example, from a sentence “... industrialized countries
such as US and Germany ...”, only (US isA country) is ex-
tracted, instead of (US isA industrialized country).

Semantic Iteration. Probase performs iterative learning at the
knowledge or semantic level. Given the sentence, “domestic ani-
mals other than dogs such as cats”, Probase realizes that there are
two possible readings: (cat isA dog) and (cat isA domestic animal).
If Probase knows nothing about cats, dogs, and domestic animals
(which is the case in the first iteration), it cannot decide which one
is more probable. Thus, the sentence is discarded. However, when
the second iteration begins, Probase already has acquired a lot of
knowledge, and it knows that (domestic animal isA animal), and
the frequency of (cat isA animal) is much higher than (cat isA dog).
When this difference is above a certain threshold, it can correctly
choose between the two possible readings.

In other words, in Probase, the power of obtaining new knowl-
edge does not come from the use of more syntactic patterns. In
fact, a fixed set of syntactic patterns, i.e., Hearst patterns, are used
in each iteration. Rather, the power comes from the existing knowl-
edge.

Some previous work in named entity recognition (NER) has also
addressed similar issues. Downey et al. [10] brought up the follow-
ing problem: how do we know if “... companies such as Proctor and
Gamble ...” is talking about two companies {Proctor, Gamble} or a
single company whose name is Proctor and Gamble? Their idea is
to use Pointwise Mutual Information (PMI) to measure the associ-
ation between Proctor and Gamble. This is similar to our approach
discussed in Section 2.3.3, where we note that the frequency of
Proctor and Gamble as one term is much higher than the frequency
of Proctor appearing alone. Compared with their work, our ap-
proach is more general since we are not limited to PMI. In fact,
we can take advantage of any existing knowledge we have already
learned. For example, if we know we are talking about “cartoons”
(the super-concept, which is the context of an isA extraction) , it



is more likely that Tom and Jerry should be treated as a single in-
stance rather than two instances {Tom, Jerry}.

2.2 Problem Definition
In this paper, we present our iterative learning framework in the

setting of extracting isA pairs from web documents. Unlike state-
of-the-art information extraction methods that rely on discovering
additional syntactic patterns for obtaining new knowledge, our it-
eration uses a fixed set of syntactic patterns (Hearst patterns), and
relies on using existing knowledge to understand more text, and
acquire more knowledge.

From a sentence that matches any of the Hearst patterns, we want
to obtain

s = {(x, y1), (x, y2), ..., (x, ym)}

where x is the superordinate concept (or super-concept), and {y1,
· · · , ym} are its subordinate concept (or sub-concept). For exam-
ple, from the sentence

“... in tropical countries such as Singapore, Malaysia, ...”2

we derive s ={(tropical country, Singapore), (tropical country,
Malaysia)}.

Natural languages are rife with ambiguities, and syntactic pat-
terns alone cannot deal with the ambiguity. Here are some exam-
ples (found in our corpus):

EXAMPLE 2. Example sentences.

1) ... animals other than dogs such as cats ...

2) ... classic movies such as Gone with the Wind ...

3) ... companies such as IBM, Nokia, Proctor and Gamble ...

4) ... representatives in North America, Europe, the Middle East,
Australia, Mexico, Brazil, Japan, China, and other countries ...

If we rely on syntactic patterns alone, 1) dogs will be extracted as
the super-concept, not animals; 2) nothing is extracted since Gone

with the Wind is not a noun phrase; 3) Proctor and Gamble are
treated as two companies; 4) North America, Europe, and the Mid-

dle East are mistakenly extracted as countries.

2.3 The Framework
Our framework focuses on understanding. In many cases, se-

mantics is required to supplement the syntax for correct extraction.
As the iterations progress, we acquire more and more knowledge.
Using the knowledge, we can have a better understanding of the
semantics, which adds to the power of our extraction framework.

Specifically, we propose an iterative learning process. In each
round of information extraction, we accumulate knowledge for
which we have high confidence to be correct. We then use this
knowledge in the next round to help us extract information we
missed previously. We perform this process iteratively until no
more information can be extracted.

More specifically, let Γ denote the knowledge we currently have,
i.e., the set of isA pairs that we have discovered. For each (x, y) ∈
Γ, we also keep a count n(x, y), which indicates how many times
(x, y) is discovered. Initially, Γ is empty. We search for isA pairs in
the text, and we use Γ to help identify valid ones among them. We
expand Γ by adding the newly discovered pairs, which further en-
hances our power to identify more valid pairs. Table 3 summarizes
important notations used throughout this paper.

2The underlined term is the super-concept, and the italicized terms
are its sub-concepts.

Notation Meaning
Γ the set of isA pairs extracted from the corpus

(x, y) an isA pair with super-concept x and sub-concept y
n(x, y) # of times (x, y) is discovered in the corpus

s a sentence that matches any of the Hearst patterns
Xs candidate super-concepts of sentence s
Ys candidate sub-concepts of sentence s

xi a concept x with sense i

T i
x a local taxonomy with root xi

P(x, y) plausibility of the isA pair (x, y)
T (i|x) typicality of the instance i given the concept x
T (x|i) typicality of the concept x given the instance i

Table 3: Notations

Algorithm 1: isA extraction

Input: S, sentences from web corpus that match the Hearst
patterns

Output: Γ, set of isA pairs
1 Γ← ∅;
2 repeat

3 foreach s ∈ S do

4 Xs, Ys ← SyntacticExtraction(s) ;
5 if |Xs| > 1 then

6 Xs ← SuperConceptDetection(Xs, Ys,Γ);
7 end

8 if |Xs| = 1 then

9 Ys ← SubConceptDetection(Xs, Ys,Γ);
10 add valid isA pairs to Γ;

11 end

12 end

13 until no new pairs added to Γ;
14 return Γ;

Algorithm 1 outlines our method at a high level. It repeatedly
scans the set of sentences until no more pairs can be identified.
Procedure SyntacticExtraction finds candidate super-concepts Xs

and candidate sub-concepts Ys from a sentence s. If more than one
candidate super-concepts exist, we call procedure SuperConcept-

Detection to reduce Xs to a single element. Then, procedure Sub-

ConceptDetection filters out unlikely sub-concepts in Ys. Finally,
we add newly found isA pairs to the result. Due to the new results,
we may be able to identify more pairs, so we scan the sentences
again. We describe the three procedures in detail below.

2.3.1 Syntactic Extraction

Procedure SyntacticExtraction detects candidate super-concepts
Xs and sub-concepts Ys in a sentence s.

As shown in sentence 1) of Example 2, the noun phrase that
is closest to the pattern keywords may not be the correct super-
concept. Therefore, Xs should contain all possible noun phrases.
For sentence 1), we identify candidate super-concepts as X1) =
{animals, dogs}. As in some previous work [12, 27], we fur-
ther require that every element in Xs must be a noun phrase in
plural form. As a result, for the sentence “... countries other than
Japan such as USA ...”, the set of candidate super-concepts contains
“countries” but not “Japan”.

It is more challenging to identify Ys. First, as shown in sen-
tence 2), sub-concepts may not be noun phrases. Second, as shown
in sentence 3), delimiters such as “and” and “or” may themselves
appear in valid sub-concepts. Third, as shown in sentence 4), it
is often difficult to detect where the list of sub-concepts begins or
ends. Therefore, we adopt a rather conservative approach at this
stage by including all potential sub-concepts into Ys.

Based on the Hearst pattern in use, we first extract a list of candi-
dates by using ‘,’ as the delimiter. For the last element, we also use



“and” and “or” to break it down. Since words such as “and” and
“or” may or may not be a delimiter, we keep all possible candidates
in Ys. For instance, given sentence 3) in Example 2, we have Y3) =
{IBM , Nokia, Proctor, Gamble, Proctor and Gamble}.

2.3.2 Super-Concept Detection

In case |Xs| > 1, we must remove unlikely super-concepts from
Xs until only one super-concept remains. We use a probabilistic
approach for super-concept detection.

Let Xs = {x1, · · · , xm}. We compute likelihood p(xk|Ys) for
xk ∈ Xs. Without loss of generality, we assume x1 and x2 have
the largest likelihoods, and p(x1|Ys) ≥ p(x2|Ys). We compute the
ratio of likelihood r(x1, x2) as follows and then we pick x1 if the
ratio is above a threshold:

r(x1, x2) =
p(x1|Ys)

p(x2|Ys)
=

p(Ys|x1)p(x1)

p(Ys|x2)p(x2)

Since the list of candidate sub-concepts are well know as coor-

dinate terms in the literature, which means they are equally im-
portant under the super-concept, we assume sub-concepts in Ys =
{y1, · · · , yn} are independent given the super-concept, and have

r(x1, x2) =
p(x1)

∏n

i=1 p(yi|x1)

p(x2)
∏n

i=1 p(yi|x2)

We compute the above ratio as follows: p(xi) is the percentage of
pairs that have xi as the super-concept in Γ, and p(yj |xi) is the
percentage of pairs in Γ that have yj as the sub-concept given xi is
the super-concept. Certainly, not every (xi, yj) appears in Γ, espe-
cially in the beginning when Γ is small. This leads to p(yj |xi) = 0,
which makes it impossible for us to calculate the ratio. To avoid this
situation, we let p(yj |xi) = ϵ where ϵ is a small positive number,
when (xi, yj) is not in Γ.

As an example, from sentence 1) in Example 2, we obtain X1) =
{animals, dogs} by syntactic extraction. Intuitively, the likeli-
hood p(animals|cats) should be much higher than p(dogs|cats)
in a large corpus, since it is very unlikely for sentences like “... dogs
such as cats ...” to exist, while sentences like “... animals such as

cats ...” are quite common. As a result, the ratio r(animals, dogs)
should be large, and “animals” will be picked as the correct super-
concept.

However, the above approach cannot find new super-concepts.
Consider the sentence “... domestic animals other than dogs such

as cats ...”. If we have not seen many sentences with “domestic an-
imals” and “cats” together, it is not possible to infer “domestic an-
imals” as a possible super-concept. However, common knowledge
tells us that domestic animals are also animals. Since Γ has the pair
(animals, cats), we can also derive a large likelihood p(domestic

animals|cats), and pick “domestic animals” as the super-concept.
In general, for any candidate super-concept x in Xs that is not in Γ,
we strip the modifier of x and check the remaining (more general)
concept in Γ again. This helps us harvest more specific concepts
from the corpus and improve the recall.

2.3.3 Sub-Concept Detection

Assume we have identified the super-concept Xs = {x} from a
sentence. The next task is to find its sub-concepts from Ys. In our
work, sub-concept detection is based on features extracted from
the sentences. Due to lack of space, here we only focus on the most
important features, derived from the following two observations.

OBSERVATION 1. The closer a candidate sub-concept is to the

pattern keywords, the more likely it is a valid sub-concept.

In fact, some extraction methods (e.g., [27]) only take the clos-
est one to improve precision. For example, in sentence 3) of Exam-
ple 2, IBM most likely is a valid sub-concept because it is right after

pattern keywords such as, and in sentence 4), China most likely is
a valid sub-concept as it is right before the pattern keywords and

other.

OBSERVATION 2. If we are certain a candidate sub-concept at

the k-th position from the pattern keywords is valid, then most

likely candidate sub-concepts from position 1 to position k− 1 are

also valid.

Here, the position of a candidate sub-concept is numbered with
respect to its closeness to the pattern keywords. For instance, in
sentence 3) of Example 2, the first sub-concept is IBM, the second
sub-concept is Nokia, and so on, while in sentence 4), the first sub-
concept is China, the second sub-concept is Japan, and so on.

Based on Observation 2, our strategy is to first find the largest
scope wherein sub-concepts are all valid, and then address the am-
biguity issues inside the scope.

Specifically, we find the largest k such that the likelihood p(yk|x)
is above a threshold, where yk is the candidate sub-concept at the
k-th position from the pattern keywords. If, however, we cannot
find any yk that satisfies the condition, then we assume k = 1, pro-
vided that y1 is well formed (e.g., it does not contain any delimiters
such as “and” or “or”), because based on Observation 1, y1 is most
likely a valid sub-concept.

For example, in sentence 4), we may correctly decide that the list
of valid sub-concepts ends at Australia, if the likelihood of Aus-

tralia is much larger than the likelihoods of later candidates the

Middle East, Europe, and North America.
Then, we study each candidate y1, · · · , yk. For any yi where

1 ≤ i ≤ k, if yi is not ambiguous, we add (x, yi) to Γ if it is not
already there, or otherwise we increase the count n(x, yi). If yj is
ambiguous, that is, we have multiple choices for position j, then
we need to decide which one is valid.

Assume we have identified y1, · · · , yj−1 from position 1 to po-
sition j − 1 as valid sub-concepts, and assume we have two candi-
dates3 at position j, that is, yj ∈ {c1, c2}. We compute the likeli-
hood ratio r(c1, c2) as follows and then we pick c1 over c2 if the
ratio is above a threshold:

r(c1, c2) =
p(c1|x, y1, · · · , yj−1)

p(c2|x, y1, · · · , yj−1)

As before, we assume y1, · · · , yj−1 are independent given x and
yj , and have:

r(c1, c2) =
p(c1|x)

∏j−1
i=1 p(yi|c1, x)

p(c2|x)
∏j−1

i=1 p(yi|c2, x)

Here, p(c1|x) is the percentage of pairs in Γ where c1 is a sub-
concept given x is the super-concept, and p(yi|c1, x) is the likeli-
hood that yi appears as a valid sub-concept in a sentence with x as
the super-concept and c1 as another valid sub-concept.

As an example, consider sentence 3) in Example 2. We have
multiple choices for the third candidate, namely Proctor and Gam-

ble and Proctor. Intuitively, the likelihood for Proctor and Gamble

is much larger than Proctor, since the chance that Proctor itself
appears as a valid company name is quite low (i.e., it is very un-
likely that we can encounter sentences like “... companies such

as Proctor ...”). Therefore, p(Proctor and Gamble|companies),
p(IBM|Proctor and Gamble, companies), and p(Nokia|Proctor and

Gamble, companies) should all be larger than their counterparts
involving Proctor. As a result, the ratio r(Proctor and Gamble,
Proctor) should be large, and we thus pick “Proctor and Gamble”
as the correct sub-concept.

3As before, if we have more than two candidates, we pick the two
with the largest likelihoods.



3. TAXONOMY CONSTRUCTION
The previous step produces a large set of isA pairs. Each pair

represents an edge in the taxonomy. Our goal is to construct a
taxonomy from these individual edges.

3.1 Problem Statement
We model the taxonomy as a DAG (directed acyclic graph). A

node in the taxonomy is either a concept node (e.g., company),
or an instance node (e.g., Microsoft). A concept contains a set
of instances and possibly a set of sub-concepts. An edge (u, v)
connecting two nodes u and v means that u is a super-concept of
v. Differentiating concept nodes from instance nodes is natural in
our taxonomy: Nodes without out-edges are instances, while other

nodes are concepts.
The obvious task of creating a graph out of a set of edges is the

following: For any two edges each having a node with the same

label, should we consider them as the same node and connect the

two edges? Consider the following two cases:

1. For two edges e1 = (fruit, apple), e2 = (companies, apple),
should we connect e1 and e2 on node “apple”?

2. For two edges e1 = (plants, tree), e2 = (plants, steam turbine),
should we connect e1 and e2 on node “plants”?

The answer to both of the questions is obviously No, but how do
we decide on these questions?

Clearly, words such as “apple” and “plants” may have multiple
meanings (senses). So the challenge of taxonomy construction is to
differentiate between these senses, and connect edges on nodes that
have the same sense. We further divide the problem into two sub-
problems: i) Group concepts by their senses, i.e., decide whether
the two plants in the 2nd question above mean the same thing; and
ii) group instances by their senses, i.e., decide whether the two ap-

ples in the 1st question mean the same thing. We argue that we
only need to solve the first sub-problem, because once we correctly
group all the concepts by different senses, we can determine the
meaning of an instance by its position in the concept hierarchy, i.e.,
its meaning depends on all the super-concepts it has.

We attack the problem of taxonomy construction in two steps.
First, we identify some properties of the isA pairs we have obtained.
Second, based on the properties, we introduce two operators that
merge nodes belonging to the same sense, and we build a taxonomy
using the operators we defined.

3.2 Senses
Let xi denote a node with label x and sense i. Two nodes xi and

xj are equivalent iff i = j . For an edge (x, y), if (xi, yj) holds,
then (xi, yj) is a possible interpretation of (x, y). We denote this
as (x, y) |= (xi, yj). Given an edge (x, y), there are 3 possible
cases for interpreting (x, y):

1. There exists a unique i and a unique j such that (x, y) |=
(xi, yj). For example, (planets, Earth). This is the most
common case.

2. There exists a unique i and multiple j’s such that (x, y) |=
(xi, yj). For example, (objects, plants).

3. There exists multiple i’s and multiple j’s such that (x, y) |=
(xi, yj). This case is very rare in practice.

Finally, it is impossible that there exist multiple i’s but a unique
j such that (x, y) |= (xi, yj).

3.3 Properties
We reveal some important properties for the isA pairs we obtain

through the Hearst patterns. In our discussion, we use the following
sentences as our running example.

EXAMPLE 3. A running example.

a) ... plants such as trees and grass ...

b) ... plants such as trees, grass and herbs ...

c) ... plants such as steam turbines, pumps, and boilers ...

d) ... organisms such as plants, trees, grass and animals ...

e) ... things such as plants, trees, grass, pumps, and boilers ...

PROPERTY 1. Let s = {(x, y1), · · · , (x, yn)} be the isA pairs

derived from a sentence. Then, all the x’s in s have a unique sense,

that is, there exists a unique i such that (x, yj) |= (xi, yj) holds

for all 1 ≤ j ≤ n.

Intuitively, it means that sentences like “... plants such as trees

and boilers ...” are extremely rare. In other words, the super-
concept in all the isA pairs from a single sentence has the same
sense. For example, in sentence a), the senses of the word plants in
(plants, trees) and (plants, grass) are the same. Following this prop-
erty, we denote isA pairs from a sentence as {(xi, y1), · · · , (x

i, yn)}
by emphasizing that all the x’s have the same sense.

PROPERTY 2. Let {(xi, y1), · · · , (x
i, ym)} denote pairs from

one sentence, and {(xj , z1), · · · , (x
j , zn)} from another sentence.

If {y1, ..., ym} and {z1, ..., zn} are similar, then it is highly likely

that xi and xj are equivalent, that is, i = j.

Consider sentences a) and b) in Example 3. The set of sub-
concepts have a large overlap, so we conclude that the senses of
the word plants in the two sentences are the same. The same thing
cannot be said for sentences b) and c) as no identical sub-concepts
are found.

PROPERTY 3. Let {(xi, y), (xi, u1), · · · , (x
i, um)} denote pairs

obtained from one sentence, and {(yk, v1), · · · , (y
k, vn)} from an-

other sentence. If {u1, u2, ..., um} and {v1, v2, ..., vn} are similar,

then it is highly likely that (xi, y) |= (xi, yk).

This means the word plants in sentence d) has the same sense
as the word plants in sentence a), because their sub-concepts have
considerable overlap. This is not true for sentence d) and c). For
the same reason, the word plants in sentence e) could be interpreted
as the sense of plants in a) and c) at the same time.

3.4 Node Merging Operations
Based on the three properties, we can immediately develop some

mechanisms to join the edges by end-nodes of the same sense.
First, based on Property 1, we know that every super-concept in

the isA pairs derived from a single sentence has the same sense.
Thus, we join such isA pairs on the super-concept node (see Fig-
ure 1). We call the taxonomy obtained from a single sentence a
local taxonomy. A local taxonomy with root xi is denoted as T i

x.
Second, based on Property 2, given two local taxonomies rooted

at xi and xj , if the child nodes of the two taxonomies demonstrate
considerable similarity, we perform a horizontal merge (see Fig-
ure 2).

Third, based on Property 3, given two local taxonomies rooted at
xi and yk, if xi has a child node y, and the child nodes of the two
taxonomies demonstrate considerable similarity, we merge the two
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taxonomies on the node y. We call this a vertical merge, and it is
illustrated in Figure 3(a).

A special case for vertical merge is illustrated in Figure 3(b).
Both T 1

B and T 2
B are vertically mergeable with T i

A, as the child
nodes of T 1

B and T 2
B having considerable overlap with the child

nodes of T i
A. However, the child nodes of T 1

B and T 2
B do not have

considerable overlap, so it is still possible that they represent two
senses. The result is two sub-taxonomies as shown in Figure 3(b).

A
i

B DC

B
1

C D

A
i

B
1

DC

C D

TA
i

TA
i

TB
1

TB
1

(a) Single sense alignment

A
i

B DC

B
1

C D

B
2

E

A
i

B
1

C D

B
2

E

E DC E

F

F F

F

TA
i

TA
i

TB
1

TB
1

TB
2

TB
2

(b) Multiple sense alignment

Figure 3: Vertical merge

3.5 Similarity Function
Suppose we use Child(T ) to denote the child nodes of a local

taxonomy T . Given two local taxonomies T1 and T2, a central
step lying in both the horizontal and vertical merge operations is
to check the overlap of Child(T1) and Child(T2). In general, we
can define a similarity function f(A,B) such that two sets A and B
are similar (denoted as Sim(A,B)) if f(A,B) ≥ τ(A,B), where
τ(A,B) is some prespecified threshold function.

However, the choice of f(A,B) is not arbitrary. Similarity de-
fined in a relative manner, such as the Jaccard metric, can often lead
to unreasonable results. Consider the following example:

Let A = {Microsoft, IBM, HP}, B = {Microsoft, IBM, Intel},
C = {Microsoft, IBM, HP, EMC, Intel, Google, Apple}, and sup-
pose that the super-concept of A, B, and C is “IT company”. Let

J(X,Y ) = |X∩Y |
|X∪Y |

be the Jaccard similarity of X and Y . Then

J(A,B) = 2
4
= 0.5, while J(A,C) = 3

7
= 0.43. If we set the

similarity threshold to be 0.5, then A and B are deemed to be sim-
ilar, while A and C are not. As a result, horizontal merge can be
applied to A and B, but not to A and C. This is absurd since A is
a subset of C.

We thus focus on f(A,B) measured by the absolute overlap of
A and B. Furthermore, with respect to Property 2 and 3, the more
overlapping evidence we have, the more confident we are in per-
forming the merge operations. Therefore, we require f(A,B) to
conform to the following property:

PROPERTY 4. If A, A′, B, and B′ are any sets s.t. A ⊆ A′

and B ⊆ B′, then Sim(A,B)⇒ Sim(A′, B′).

The simplest way then may be to define f(A,B) = |A∩B| and
let τ(A,B) equal to some constant δ. Under this setting, we have
f(A′, B′) ≥ f(A,B). Hence f(A,B) ≥ δ ⇒ f(A′, B′) ≥ δ,
namely Sim(A,B)⇒ Sim(A′, B′).

3.6 The Algorithm
Algorithm 2 summarizes the framework of taxonomy construc-

tion. The whole procedure can be divided into three stages, namely,
the local taxonomy construction stage (line 3-5), the horizontal

grouping stage (line 6-10), and the vertical grouping stage (line 11-
19). We first create a local taxonomy from each sentence s ∈ S.
We then perform horizontal merges on local taxonomies whose root
nodes have the same label. In this stage, small local taxonomies
will be merged to form larger ones. Finally, we perform vertical
merges on local taxonomies whose root nodes have different labels.

Algorithm 2: Taxonomy construction

Input: S: the set of sentences each containing a number of isA

pairs.
Output: T : the taxonomy graph.

1 Let T be the set of local taxonomies;
2 T ← ∅;

3 foreach s = {(xi, y1), ..., (x
i, yn)} ∈ S do

4 Add a local taxonomy T i
x into T ;

5 end

6 foreach T i
x ∈ T , T j

x ∈ T do

7 if Sim(Child(T i
x), Child(T j

x)) then

8 HorizontalMerge(T i
x, T

j
x);

9 end

10 end

11 foreach T i
x ∈ T do

12 foreach y ∈ Child(T i
x) do

13 foreach Tm
y ∈ T do

14 if Sim(Child(T i
x), Child(Tm

y )) then

15 V erticalMerge(T i
x, T

m
y );

16 end

17 end

18 end

19 end

20 Let the graph so connected be T ;
21 return T ;

In Algorithm 2, we perform horizontal grouping before vertical
grouping. This order is not necessary. As Theorem 1 dictates, any
sequence of merge operations eventually lead to the same taxon-
omy. However, as Theorem 2 suggests, the total number of merge
operations is minimized when horizontal grouping is done before
vertical grouping, which is more desirable.

THEOREM 1. Let T be a set of local taxonomies. Let Oα and

O
β be any two sequences of horizontal and vertical merge opera-

tions on T . Assume no further operations can be performed on T
after O

α or O
β . Then, the final graph after performing O

α and

the final graph after performing O
β are identical.



PROOF. Suppose that after O
α and O

β , the resulting sets of
local taxonomies are T α and T β , and the final graphs are Gα and
Gβ , respectively.

(I) We first show that T α = T β . Since the set of local tax-
onomies is only affected by horizontal merge operations, and each
horizontal merge operation only affects local taxonomies with the
same root label, it is sufficient to show that for any two local tax-
onomies T1 and T2 in the original T such that T1 and T2 are rooted
at xi and xj respectively, T1 and T2 are merged after Oα if and
only if they are merged after Oβ .

If T1 and T2 are merged after Oα, then either 1) Child(T1) and
Child(T2) are similar, or 2) after certain operation Oα

i , there exist
some T ′

1 with root xi and T ′
2 with root xj such that Child(T1)

⊆ Child(T ′
1), Child(T2) ⊆ Child(T ′

2), and also Child(T ′
1) and

Child(T ′
2) are similar.

In case 1), T1 and T2 will also be merged after Oβ . We can prove
this by contradiction. Suppose that T1 and T2 are not merged after

O
β , then let T

β
1 and T

β
2 be the local taxonomies in T β with root

xi and xj such that Child(T1) ⊆ Child(T β
1 ) and Child(T2) ⊆

Child(T β
2 ). Since Child(T1) and Child(T2) are similar, then

according to Property 4, we have Child(T β
1 ) and Child(T β

2 ) are

similar. As a result, T
β
1 and T

β
2 could be merged by appending

another horizontal merge operation after Oβ , which contradicts to
the definition of Oβ .

In case 2), we can prove that Child(T ′
1) ⊆ Child(T β

1 ) and

Child(T ′
2) ⊆ Child(T β

2 ) by contradiction. Consider the situation

if Child(T ′
1) ̸⊆ Child(T β

1 ). Let the horizontal merge operations
that lead T1 to T ′

1 be Oα
i1

, ..., Oα
ik

. Without loss of generality, we
can suppose there is some 1 ≤ j ≤ k such that the local taxon-

omy T
j
1 after Oα

ij
is the first one with Child(T j

1 ) ̸⊆ Child(T β
1 )

(so Child(T j−1
1 ) ⊆ Child(T β

1 )). Assuming we merge T
j−1
1 (let

T 0
1 = T1) and another local taxonomy T ′ in the operation Oα

ij
, then

Child(T ′) and Child(T j−1
1 ) are similar. Property 4 then implies

that Child(T ′) and Child(T β
1 ) are also similar, which means they

could be merged by appending another horizontal merge operation
after Oβ , a contradiction. Therefore we must have Child(T j

1 ) ⊆

Child(T β
1 ), and by applying the same reasoning with induction

on j, we can conclude that Child(T k
1 ) ⊆ Child(T β

1 ), namely

Child(T ′
1) ⊆ Child(T β

1 ). Similarly, we can prove Child(T ′
2) ⊆

Child(T β
2 ). But since Child(T ′

1) and Child(T ′
2) are similar, again

according to Property 4, we have Child(T β
1 ) and Child(T β

2 ) are

similar, which implies that T
β
1 and T

β
2 could be further merged, a

contradiction again.
Therefore, if T1 and T2 are merged after Oα, they should also

be merged after Oβ . The other direction can be proved exactly in
the same way, by interchanging the superscripts of α and β. Hence
we can now conclude that T α = T β .

(II) Our next goal is to show that each link in Gα between roots
of local taxonomies in T α should also appear in Gβ , between the
same two elements in T β , and vice versa. Suppose (xi, ym) is
such a link in Gα, and let T3 and T4 be the corresponding local
taxonomies in T α with root xi and ym, respectively, with y ∈
Child(T3). Since T3 and T4 are both merged from a set of orig-
inal local taxonomies in T , there is some vertical merge opera-
tion to link T ′

3 and T ′
4 with root xi and ym, where Child(T ′

3) ⊆
Child(T3), Child(T ′

4) ⊆ Child(T4), and also Child(T ′
3) and

Child(T ′
4) are similar, with y ∈ Child(T ′

3). But then, according
to Property 4, Child(T3) and Child(T4) are similar. Since both

T3 and T4 are in T β as well (we have proved that T α = T β), they
must have been linked after Oβ . Otherwise we can now append an
additional vertical merge operation after Oβ to link them, which is

a contradiction. Again, the other direction could be proved exactly
in the same way, by interchanging the superscripts of α and β.

Since the resulting graph Gα and Gβ are nothing more than a set
of local taxonomies and the interlinks between their roots, we con-
clude that Gα and Gβ are the same by combining (I) and (II).

THEOREM 2. Let O be the set of all possible sequences of op-

erations, and let M = min{|O| : O ∈ O}. Suppose O
σ is the

sequence that performs all possible horizontal merges first and all

possible vertical merges next, then |Oσ| = M .

PROOF. We prove the theorem in two steps. In the following,
given an operation sequence O, we use HO and VO to denote the
set of all the horizontal and vertical merge operations within O,
respectively.

(I) First, we show that, for any two operation sequences Oα and
O

β , |HOα | = |HOβ |. Note that, since each horizontal merge op-
eration merges exactly two local taxonomies into one new larger
local taxonomy, the number of local taxonomies decreases by ex-
actly 1 after each horizontal merge operation. Since the original
set T of local taxonomies beforeOα andOβ are the same, and ac-
cording to Theorem 1, the resulting set T ′ of local taxonomies after
Oα and Oβ are also the same, we hence have |HOα | = |HOβ | =
|T ′| − |T |.

(II) Next, we claim that for any vertical merge operation in VOσ

which links two local taxonomies T σ
1 and Tσ

2 in T σ , with roots xi

and ym respectively, there will be at least one vertical merge oper-
ation within any operation sequence O that merges two local tax-
onomies T1 and T2, with roots xi and ym, such that Child(T1) ⊆
Child(Tσ

1 ) and Child(T2) ⊆ Child(Tσ
2 ). Let the taxonomy

graph resulting from O
σ and O be Gσ and G, respectively. Since

T σ
1 and T σ

2 will also appear in the resulting set of local taxonomies
after O, and since Tσ

1 and Tσ
2 are linked in Gσ , they should also

be linked in G according to Theorem 1. Therefore, there must be
some vertical merge operations in VO that does this merge. What’s
more, each different link in Gσ will have a different counterpart in
G. Thus we can conclude that |VOσ | ≤ |VO|. Also note that we
could not always have |VOσ | = |VO| (see Example 4).

Based on (I) and (II), we have |Oσ| = |HOσ |+|VOσ | ≤ |HO|+
|VO| = |O|, for any operation sequence O, which completes the
proof of the theorem.

EXAMPLE 4. Consider the local taxonomies T 1
A, T 2

A, T 1
B and

T 2
B shown in Figure 4(a). The final graph obtained by merging

these four is shown in Figure 4(e). If we first perform two hori-

zontal merges on T 1
A and T 2

A, as illustrated in Figure 4(b), then we

only require one additional vertical merge operation to achieve the

final graph. However, if we perform two vertical merges first, then

we still need two additional horizontal merges to obtain the final

graph, as illustrated in Figure 4(c) and 4(d).

3.7 Related Work
Automatic taxonomy construction has been extensively studied

in the literature [6, 28, 8, 21, 32, 35, 26]. Early work [6, 28, 8] fo-
cused on inducing closed-domain taxonomies, or extending exist-
ing open-domain taxonomies such as Cyc [21] and WordNet [32].
The former results in a small taxonomy confined in a specific do-
main, and the latter enriches the taxonomy by adding more named

entities. In other words, only the number of instances increases,
not the number of concepts and the isA relationships between the
concepts. More discussion can be found in [26].

Creating open-domain taxonomies from scratch is generally be-
lieved to be more challenging than the above tasks. The most no-
table work toward this effort is WikiTaxonomy [26] and YAGO [35].
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Both of them attempt to derive a taxonomy4 from the Wikipedia
categories. Although these work reported high precision (not sur-
prising due to the much cleaner data from Wikipedia), they have
two fundamental limitations. First, Wikipedia categories are the-

matic topics used to classify Wikipedia articles, which are quite dif-
ferent from the terminology of concepts referred to by taxonomic
definition. For instance, WikiTaxonomy contains “concepts” such
as “history of Athens” or “geology of Canada”, which are really
topics and not concepts or categories. Second, the coverage of the
taxonomies completely relies on the coverage of Wikipedia, which
is still limited compared with Freebase or Probase.

To the best of our knowledge, there is no existing work on au-
tomatically inducing taxonomies in web scale similar to the effort
of this paper. Prominent web-scale information extraction systems
like KnowItAll [12] and TextRunner [2] extract the isA pairs from
the web pages, but come short of constructing a taxonomy from
these pairs with distinction on senses of the concepts.

4. A PROBABILISTIC TAXONOMY
Knowledge is not black and white. Removing all uncertainties

is not only impossible but also harmful. Our philosophy is to live
with noisy data and make the best use of it. In this section, we pro-
pose a probabilistic framework to model the knowledge in Probase.
This framework essentially consists of two components: the joint
probability of an isA pair, also known as the plausibility; and the
conditional probability between a concept and its instances, also
known as the typicality.

4.1 Plausibility

4YAGO is actually a more general ontology with taxonomic infor-
mation included.

For every claim E in Probase we use p(E) to denote the prob-
ability that it is true. In many cases, there is no clear distinction
between true and false; and in almost all cases, information from
external data sources is unreliable, inconsistent, or erroneous. We
therefore interpret p(E) as the plausibility of E. In this paper, we
focus on isA relationships, that is, each claim E is a claim of an isA

relationship between x and y, and p(E) = P(x, y).
To derive p(E), we regard external information as evidence for

E. Specifically, assume E is derived from a set of sentences or ev-
idence {s1, · · · , sn} on the Web. Assume each piece of evidence
si is associated with a probability pi that reflects the belief or con-
fidence of the evidence. Here, we adopt the simple noisy-or model.
A claim E is false iff every piece of evidence in s1, · · · , sn is false.
Since different sentences are extracted from different web pages,
which are independently created by different people, we assume
evidence is independent, and have

P(x, y) = 1− p(Ē) = 1− p(

n∧

i=1

s̄i) = 1−
n∏

i=1

(1− pi). (1)

More sophisticated models (such as the Urns model [11]) can be
used for plausibility. Due to lack of space, we focus our discussion
on the noisy-or model. The model has good extensibility. It is easy
to integrate new evidence, including negative evidence. A negative
evidence claims that A is not a B, which effectively reduces the
plausibility on the claim that A is a B. Example negative evidence
includes the part-of relationship, e.g. “B is comprised of A, C,

and ...” Incorporating a negative evidence si with probability pi
into plausibility is straightforward. We simply replace the factor
1− pi with pi in Eq. (1).

A remaining issue is how to derive pi for evidence si. We con-
sider two factors. First, pi may depend on the type of the informa-
tion source (e.g. we consider evidence coming from the New York
Times to be more credible than those from a public forum). Second,
pi may depend on how confident the information extraction process
is when it identifies evidence si in the text. In our work, we char-
acterize each si by a set of features Fi, such as: i) the PageRank
score of the page from which si is extracted; ii) the Hearst pattern
used in si; iii) the number of sentences with x as the super-concept;
iv) the number of sentences with y as the sub-concept; v) number
of sub-concepts in si; vi) position of y in si; and so on. Then, as-
suming independent features, we can apply Naive Bayes to derive
pi. Specifically, we have

pi = p(si|Fi) =
p(si) ·

∏
f∈Fi

p(f |si)∑
s∈{si,s̄i}

p(s) ·
∏

f∈Fi
p(f |s)

. (2)

To learn the model, we use WordNet to build a training set.
Given a pair (x, y), if both x and y appear in WordNet, and there is
a path from x to y in WordNet, then we consider (x, y) as a positive

example; if both x and y appear in WordNet, but there is no path
from x to y, then we consider (x, y) as a negative example.

4.2 Typicality
Intuitively, a robin is more typical of the concept bird than is os-

trich, while Microsoft is more typical of the concept company than
is Xyz Inc.. However, in all existing taxonomies, instances inside
a concept are treated equally typical. For example, the company

concept in Freebase contains about 79,000 instances without a way
to measure their typicality. Information about typicality is essential
to many applications, such as those introduced in Section 1.

In this paper, we propose a typicality measure. Typicality exists
in two directions: probability of an instance given a concept T (i|x)
(a.k.a. instantiation); and probability of a concept given an instance
T (x|i) (a.k.a. abstraction). We focus on the former here and the
latter can be computed by Bayes rule in straightforward manner.



T (i|x) depends on two factors: i) the number n(x, i) of evidence
that supports the claim (x, i); and ii) the plausibility P(x, i) of the
claim (x, i), as defined in Eq. (1). We then define the typicality of
i to x as:

T (i|x) =
n(x, i) · P(x, i)∑

i′∈Ix
n(x, i′) · P(x, i′)

, (3)

where Ix is the set of instances of the concept x.
One problem is that, besides the direct pair (x, i), i may also be

an instance of a concept y which is a sub-concept of x. For exam-
ple, besides the claim that Microsoft is an instance of the concept
company, there are also claims in Probase that Microsoft is an in-
stance of the concept IT company and big company. These claims
should also be regarded as additional evidence that Microsoft is a
typical company.

To incorporate these indirect evidence as well, we refine Eq. (3)
to be:

T (i|x) =

∑
y∈D(x) P̃(x, y) · n(y, i) · P(y, i)

∑
i′∈Ix

∑
y∈D(x) P̃(x, y) · n(y, i′) · P(y, i′)

, (4)

where P̃(x, y) is the plausibility that y is a sub-concept or descen-

dant concept of x, i.e., there exists at least one path from x to y. We
use D(x) to denote all the sub-concepts and descendant concepts

of x. In particular, x ∈ D(x) and we define P̃(x, x) = 1.

The remaining issue is to compute P̃(x, y). Formally, let Pxy

be the event that there is at least one path from x to y. Suppose
Parent(y) is the set of direct super-concepts of y. For each z ∈
Parent(y), let Pz be the event that y is a direct sub-concept of z
and there is at least one path from x to z, i.e. Pz = Pzy ∧ Pxz .
Assuming independence of Pzy and Pxz , we have

p(Pz) = p(Pzy∧Pxz) = p(Pzy)·p(Pxz) = P(z, y)·p(Pxz). (5)

Furthermore, assuming independence of Pz for z ∈ Parent(y),
we then have

p(Pxy) = p(
∨

z∈Parent(y)

Pz) = 1− p(
∧

z∈Parent(y)

P̄z)

= 1−
∏

z∈Parent(y)

(1− p(Pz)). (6)

Substituting Eq. (5) into Eq. (6), we obtain

P̃(x, y) = p(Pxy) = 1−
∏

z∈Parent(y)

(1− P(z, y) · P̃(x, z)) (7)

Algorithm 3 describes a dynamic programming approach to com-
pute {P̃(x, y)}. It traverses the taxonomy in a top-down fash-

ion. Each time it computes some P̃(x, y) at line 10, the required

P̃(x, z)’s are guaranteed to have been computed. Deriving typical-

ity from P̃(x, y) is straightforward and thus not illustrated here.

4.3 Related Work
Probabilistic approaches have been leveraged in some previous

work [28, 32, 12, 2, 36]. In [28] and [32], frameworks based on sta-
tistical learning are used in taxonomy induction. In KnowItAll [12]
and TextRunner [2], classifiers are used to assign confidence scores
to the isA pairs extracted. Our work differs from these in two as-
pects. First, in previous work, probabilities are only used during

the extraction or taxonomy induction stage, while the final output
taxonomy is still deterministic. For instance, the confidence scores
used in KnowItAll and TextRunner only serve the purpose of fil-
tering incorrect isA pairs. Second, although the confidence scores
in KnowItAll and TextRunner may share some similarity with the
plausibility we defined here, the semantics of their scores are not

Algorithm 3: Computing P̃(x, y)

Input: T : the taxonomy
Output: Γ = {P̃(x, y)}: where there exists a path from x to y

1 Γ← ∅;
2 k ← 1;

3 L1 ← concepts of T with no parents;

4 while Lk ̸= ∅ do

5 foreach y ∈ Lk do

6 if Parent(y) = ∅ then

7 add P̃(y, y) = 1 to Γ;
8 else

9 foreach x ∈ Ancestor(y) do

10 P̃(x, y) =

1−
∏

z∈Parent(y)

(1− P(z, y) · P̃(x, z));

11 add P̃(x, y) to Γ;

12 end

13 end

14 end

15 k ← k + 1;

16 Lk ← concepts of T that are not in ∪k−1
i=1 L

i but with all

parents in ∪k−1
i=1 L

i;

17 end

18 return Γ;

clear. Furthermore, our focus on modeling typicality is novel and
never explicitly addressed before. Although [36] leveraged scor-
ing formulas (still during the induction phase) with a bit overlap
in semantics as our typicality definition, their formulas are not ap-
plicable to general taxonomies, since they heavily rely on infor-
mation specific to Wikipedia. They also did not take uncertainty
(e.g., plausibility) into consideration, which we think is necessary
for any automatic taxonomy inference framework. The effective-
ness of the typicality in practical text understanding tasks has been
demonstrated by our recent work [34, 39, 37].

5. EXPERIMENTAL EVALUATION
The proposed taxonomy inference framework was implemented

on a cluster of servers using the Map-Reduce model. We used 7
hours and 10 machines to find all the isA pairs, and then 4 hours and
30 machines to construct the taxonomy. We also host Probase in a
graph database system called Trinity [29, 30]. Due to space con-
straints, only highlights of the results are provided. Readers are re-
ferred to http://research.microsoft.com/probase/

for complete experimental results.
We extract 326,110,911 sentences from a corpus containing

1,679,189,480 web pages. To the best of our knowledge, the scale
of our corpus is one order of magnitude larger than the previously
known largest corpus [27]. The inferred taxonomy has 2,653,872
distinct concepts, 16,218,369 distinct concept-instance pairs, and
4,539,176 distinct concept-subconcept pairs (20,757,545 pairs in
total). Next we analyze the characteristics of the concept space and
the isA relationship space of Probase, and briefly evaluate several
applications that leverage typicality in conceptualization.

5.1 Concept Space
Given that Probase has more concepts than any other taxonomies,

a reasonable question to ask is whether they are more effective
in understanding text. We measure one aspect of the effective-
ness here by examining Probase’s concept coverage on web search
queries. We define a concept to be relevant, if it appears at least
once in web queries. We analyzed Bing’s query log from a two-
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Figure 6: Taxonomy coverage of the top 50 million queries

year period, sorted the queries in decreasing order by frequency,
and computed the number of relevant concepts in Probase and four
other general-purpose taxonomies, namely WordNet, WikiTaxon-

omy [26], YAGO, and Freebase, with respect to the top 50 million
queries. Figure 5 shows the result.

In total, 664,775 concepts are considered relevant in Probase,
compared to only 70,656 in YAGO. User web queries has a well-
known long-tail distribution. While a small number of basic con-
cepts (e.g., company, city, country) representing common sense
knowledge appear very frequently in user queries, web users do
mention other less known concepts. Probase does a better job at
capturing these concepts in the long tail and hence has a better
chance of understanding these user queries.

We next measure the taxonomy coverage of queries by Probase.
A query is said to be covered by a taxonomy if the query contains at
least one concept or instance within the taxonomy.5 Figure 6 com-
pares the coverage of queries by Probase taxonomy against four
other taxonomies. Probase outperforms the others on the coverage
of top 10 million to top 50 million queries. In all, Probase covers
40,517,506 (or, 81.04%) of the top 50 million queries.

We further measure concept coverage, which is the number of
queries containing at least one concept in the taxonomy. Figure 7
compares the concept coverage by Probase against the other four
taxonomies. Again, Probase outperforms all the others. Note that,
although Freebase presents comparable taxonomy coverage with
Probase in Figure 6, its concept coverage is much smaller.

In summary, with a larger concept space, Probase exhibits stronger
ability in capturing the semantics implied in user queries. It is then
expected that Probase can be a useful tool in interpreting these
queries. Recent work [39] further demonstrates the effectiveness
by leveraging Probase in query interpretation.

5.2 isA Relationship Space
There are two kinds of isA relationships in Probase: the concept-

subconcept relationship which are the edges connecting internal
nodes in the hierarchy, and the concept-instance relationship which
are the edges connecting a leaf node.

Table 4 compares the concept-subconcept relationship space of
Probase with the other taxonomies. The level of a concept is de-
fined to be the length of the longest path from it to a leaf node
(i.e. an instance). Table 4 shows that even with an order of mag-

5We say “cover” to mean that the taxonomy contributes to the un-
derstanding of the query as it understands at least one term in the
query.
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nitude larger number of concepts, Probase still has a comparable
hierarchical complexity to the other taxonomies. The exception is
Freebase which exhibits trivial values on these measured metrics
because it has no isA relationship among its concepts at all.

# of isA
pairs

Avg # of
children

Avg # of
parents

Avg
level

Max
level

WordNet 283,070 11.0 2.4 1.265 14
WikiTaxonomy 90,739 3.7 1.4 1.483 15
YAGO 366,450 23.8 1.04 1.063 18
Freebase 0 0 0 1 1
Probase 4,539,176 7.53 2.33 1.086 7

Table 4: The concept-subconcept relationship space

We also compare Probase and Freebase on the concept-instance
relationships. We choose Freebase since it is the only existing
taxonomy with comparable scale on instance space (24,483,434
concept-instance pairs). We define concept size to be the number
of instances directly under a concept node.

Figure 8 compares distributions of concept sizes in Probase and
Freebase. While Freebase focuses on a few very popular concepts
like “track” and “book” with over two million instances, Probase
has many more medium to small sized concepts. In fact, the top
10 concepts in Freebase contain 17,174,891 concept-instance pairs,
or 70% of all the pairs it has. In contrast, the top 10 concepts in
Probase only contain 727,136 pairs, or 4.5% of its total. Therefore,
Probase provides a much broader coverage on diverse topics, while
Freebase is more informative on specific topics. On the other hand,
the instances of large concepts in Freebase like book are mostly
from specific web sites like Amazon, which can be easily merged
into Probase.

To estimate the correctness of the extracted isA pairs in Probase,
we create a benchmark dataset of 40 concepts in various domains
(see Table 5). The concept size varies from 21 instances (for air-

craft model) to 85,391 (for company), with a median of 917. Bench-
marks with similar number of concepts and domain coverage have
also been reported in information extraction research [25]. For each
concept, we randomly pick up to 50 instances/subconcepts and ask
human judges to evaluate their correctness.

Figure 9 shows the result. The average precision of all pairs in
benchmark is 92.8%, which outperforms precision reported from
other previous notable information extraction frameworks like Know-
ItAll [12] (64% on average), NELL [7] (74%) and TextRunner [2]
(80% on average). It is not fair to directly compare our results with
Wikipedia-based frameworks like WikiTaxonomy [26] (86%) and
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Figure 9: Precision of extracted pairs

Concept (# of Instances) Typical Instances

actor (3466)
Tom Hanks, Marlon Brando,
George Clooney

aircraft model (21)
Airbus A320-200, Piper PA-32,
Beech-18

airline (1221) British Airways, Deltae
airport (790) Heathrow, Gatwick, Stansted
album (1938) Thriller, Big Calm, Dirty Mind

architect (882)
Frank Gehry, Le Corbusier,
Zaha Hadid

artist (57482) Picasso, Bob Dylan, Madonna

book (8628)
Bible, Harry Potter,
Treasure Island

cancer center (55)
Fox Chase, Care Alliance,
Dana-Farber

celebrity (8381)
Madonna, Paris Hilton,
Angelina Jolie

chemical
compound (308)

carbon dioxide, phenanthrene,
carbon monoxide

city (9632) New York, Chicago, Los Angeles
company (85391) IBM, Microsoft, Google
digital camera (64) Canon, Nikon, Olympus
disease (8784) AIDS, Alzheimer, chlamydia
drug (5417) tobacco, heroin, alcohol
festival (3039) Sundance, Christmas, Diwali
file format (698) PDF, JPEG, TIFF
film (13402) Blade Runner, Star Wars, Clueless
food (4875) beef, dairy, French fries

football team (59)
Real Madrid, AC Milan,
Manchester United

game publisher (99) Electronic Arts, Ubisoft, Eidos
internet protocol (168) HTTP, FTP, SMTP
mountain (832) Everest, the Alps, the Himalayas

museum (2441)
the Louvre, Smithsonian,
the Guggenheim

olympic sport (62) gymnastics, athletics, cycling

operating system (86)
Linux, Solaris,
Microsoft Windows

political party (254) NLD, ANC, Awami League
politician (953) Barack Obama, Bush, Tony Blair
programming
language (520)

Java, Perl, PHP

public library (39) Haringey, Calcutta, Norwich
religion (1115) Christianity, Islam, Buddhism

restaurant (4546)
Burger King, Red Lobster,
McDonalds

river (3050) Mississippi,the Nile, Ganges

skyscraper (121)
the Empire State Building,
the Sears Tower, Burj Dubai

tennis player (46)
Maria Sharapova, Andre Agassi,
Roger Federer

theater (632) Metro, Pacific Place, Criterion
university (2048) Harvard, Stanford, Yale
web browser (232) Internet Explorer, Firefox, Safari
website (3487) YouTube, Facebook, MySpace

Table 5: 40 Benchmark concepts and their typical instances
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YAGO [35] (95%), whose data sources are much cleaner. Never-
theless, only YAGO has a better overall precision than Probase.

We also examined each iteration of the extraction framework.
Figure 10 shows the accumulated number of isA pairs and concepts
extracted after each round of iteration. Both curves grow up quickly
in the first several rounds and then saturates as the bootstrapping
process converges. An interesting phenomenon is that the largest
gain actually occurs in the second round instead of the first one.
This is because in the first round, the ambiguity in many sentences
cannot be resolved given a growing but limited Γ. In the second
round, we can leverage a more comprehensive Γ to extract more
pairs from those previously unsolved sentences.

Figure 11 further shows the average precision of the isA pairs
extracted for the 40 benchmark concepts after each round of itera-
tion. The precision decreases slightly from 97.3% as the iteration
goes on. The main reason for the decrease is that, as the itera-
tion proceeds, although the number of correct pairs in Γ increases,
so does the number of incorrect ones. This can cause problems
in super-concept detection. For example, consider the sentence
“... non-caged animals other than dogs such as cats, wolves, fish

...”. It is possible that at one point Γ contains both the pair (dogs,
cats) and (non-caged animals, dogs). Going forward, as the fre-
quency of (dogs, cats) increases, the frequency of (non-caged an-
imals, cats) may remain unchanged due to the rare occurrence of
“non-caged animals” in corpus. Therefore it is possible for the
likelihood ratio r(dogs, non-caged animals) to exceed the thresh-
old after some time, and then the algorithm will mistake “dogs”
as the correct super-concept. Consequently, other incorrect pairs
like (dogs, wolves) and (dogs, fish) will be introduced in Γ, which
further degrades the precision.

5.3 Applications
Typicality has also been leveraged in several recent Probase-

enabled applications, such as taxonomy keyword search [9], se-



mantic web search [39], short text understanding [34, 38], and un-

derstanding web tables [37]. The reported results show that, the
typicality modeled in Section 4.2 can help to either address impor-
tant problems not touched before [39, 37], or enhance performance
for approaches on existing text understanding tasks (e.g., [34]).
We next briefly describe four of these applications: semantic web

search [39], information extraction, short text understanding [34]
and understanding web tables [37]. They illustrate how typical-
ity is used in the two kinds of conceptualization tasks outlined in
Section 1, i.e., instantiation and abstraction, respectively.

5.3.1 Applications in Instantiation

Semantic Web Search. As shown in Section 5.2, more than
80% of Web searches contain concepts and/or instances that can be
found in Probase. This gives Probase a good advantage in inter-
preting user intents. Consider the following search queries: i) ACM

fellows working on semantic web; and ii) database conferences in

asian cities. The user intents of these queries are clear. However,
current keyword-based search engines cannot deliver good results
as they return pages with exact, word-for-word matches for phrases
such as “ACM fellows”, “database conferences”, and “asian cities”.

We build a novel semantic search prototype to handle these se-
mantic queries [39]. Due to the large coverage on concepts in
Probase, we can easily identify the concepts within user queries.
We then rewrite the queries by substituting the concepts with their
most typical instances by typicality scores. For example, we can
replace database conferences with SIGMOD, VLDB, ICDE, etc.,
and replace Asian cities with Beijing, Singapore, Tokyo, etc.. The
refined queries become SIGMOD in Beijing, etc. Since there are
many possible combinations of two instances for the two concepts,
we use word association [39] between instances and key words to
determine the best pair of instances for substitution. Our evalu-
ation shows that, on average, about 80% of the returned results
from those rewritten queries are considered as relevant by users,
compared with less than 50% of those results from searching the
original queries on Google or Bing.

Information Extraction. In [25], Pasca et al. have developed
a weakly-supervised framework that can harvest attributes of con-
cepts from Web text. Although this approach has good performance
and scalability, it requires a set of “seed” instances and attributes
for each concept, which must be manually selected. Probase over-
comes this difficulty by automatically selecting instances with high
typicality scores as seeds [37]. Figure 12 compares the precision
of the top 20 attributes so obtained, on 31 concepts for which the
precision is reported in [25]. On average, we achieve 88.3% preci-
sion, which is comparable to the average 86.2% precision reported
in [25]. However, by leveraging Probase, we make the extraction
procedure fully automatic.

5.3.2 Applications in Abstraction

Short Text Understanding. Understanding short text (e.g. web
search, tweets, anchor texts) is important to many applications. Sta-
tistical approaches such as topic models [3] treat text as a bag of

words, and discover latent topics from the text. However, finding
latent topics is not tantamount to understanding. A latent topic is
represented by a set of words, consisting of no explicit concepts.
Further more, bag-of-words approaches typically do not work well
for short texts which do not have enough signals.

Probase enables machines to conceptualize from a set of words
by performing Bayesian analysis based on the typicality T (x|i).
For example, given a word India, the machine can infer its most

typical concepts such as country or region. Given two words, In-

dia and China, the most typical concepts become Asian country

or developing country, etc. Adding another word, Brazil, the top
concepts may become BRIC or emerging market, etc. In a re-
lated work [34], we generalize this conceptualization approach to
general terms (not just words that are instances). We then cluster
twitter messages based on conceptual signals (and their typicality
scores) provided by Probase. We represent each tweet as a vector
with its most typical concepts as features, and perform K-means
clustering. The results outperform all existing approaches such as
LDA [3].

Understanding Web Tables. There are billions of tables on
the Web, and they contain much valuable information. Tables are
relatively well structured, which means they are easier to under-
stand than text in natural languages. With the help of Probase, we
are able to unlock the information in such tables, and the infor-
mation, once understood, is used to enrich Probase [37]. T (x|i)
is used to infer the typical concept and hence the likely header of
a given column of instances in a table. Instances that are not al-
ready in Probase are then added in under the inferred concept. Our
evaluation shows 96% precision on this task in average.

6. CONCLUSION
In this paper, we presented a framework which automatically in-

ferences an open-domain, probabilistic taxonomy from the entire
web. This taxonomy, to the best of our knowledge, is currently
the largest and the most comprehensive in terms of the number of
concepts included. Its probabilistic model allows the integration of
both precise and ambiguous knowledge and even tolerates incon-
sistencies and errors which are common on the Web. More impor-
tantly, this model enables probabilistic inference between concepts
and instances which will benefit a wide range of applications that
require text understanding.
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