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SUMMARY 

The prediction of the far-field radiation patterns of antennas 

from measurements made in the near field has been an area of consider

able interest. This research concerns a new method for determining the 

far-field pattern of an antenna from probe compensated near-field meas

urements over the surface of a right circular cylinder enclosing the 

antenna. The method is derived by expanding the radiated fields in 

cylindrical wave expansions and using the Lorentz reciprocity theorem 

to solve for the field radiated by the antenna from the probe output 

voltage. It is shown rigorously that the antenna pattern can be deter

mined independently of the characteristics of the measurement probe pro

vided that certain calibration data for the probe are known. A method 

for determining these data from the measured far field of the probe is 

described. 

Since the measurement of the near field of any antenna potentially 

requires the accumulation of a large amount of data, the problem of spa

tial sampling is of great practical importance. This problem is dis

cussed for the cylindrical measurement surface and lower bounds are 

established for the axial and polar angle sample intervals on the 

cylinder. It is specifically assumed that the antenna is not a high-Q 

or supergain structure. 

The theory is verified experimentally by calculating the far-

field patterns of a test antenna from measured near-field data. The 
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near-field measurements on the test antenna are presented for four cases 

corresponding to different orientations and positions of the antenna 

inside the measurement cylinder and to different near-field probes. The 

far-field patterns of the test antenna are calculated for each case and 

compared to the measured far-field patterns of the antenna. 

The computational process required to evaluate the far-field 

patterns is complex and requires numerical techniques. Specifically, 

the calculations are centered around an application of the Fast Fourier 

Transform algorithm to evaluate the necessary integrals and summations. 

Detailed descriptions of the methods used in ~he pattern calculations 

are given, and an example pattern from the literature is computed to 

verify them. 
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CHAPTER I 

INTRODUCTION 

1.1 Definition of the Problem 

This research concerns the problem of the determination of the 

far-field pattern of an antenna from measurements made on the near 

field radiated by the antenna. A new method is developed to determine 

the far-field pattern of an antenna from near-field measurements made 

with a probe over the surface of a right circular cylinder enclosing 

the antenna. It is shown that the pattern can be determined independ

ently of the characteristics of the measurement probe. Although the 

choice of the probe is arbitrary, certain a priori information must be 

known about it in order to compensate for1 Its effect on the measurements. 

The required probe information is specified and a method for determining 

it is described. 

An important consideration in the experimental implementation of 

any near-field measurement scheme is that of spatial sampling. This 

problem is discussed for the cylindrical measurement surface. Sample 

spacings are developed for antennas which are not high-Q structures. 

The method is verified, experimentally by calculating far-field 

patterns of a test antenna from measured near-field data. The far-field 

patterns are calculated from near-field data obtained with the test 

antenna in different orientations inside the measurement cylinder and 

with different near-field probes. The calculated far-field patterns are 
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compared to the experimentally determined far-field patterns of the test 

antenna. 

1.2 Origin and History of the Problem 

The prediction of the far-field radiation patterns of antennas 

from measurements made in the near field has been an area of considerable 

interest (1-11). This is particularly true in the case of microwave 

antennas for which the distance to the far field exceeds the dimensions 

of available antenna test ranges. Another case of interest is the 

determination of far-field patterns from measurements made in the low-

noise environment of anechoic chambers. The ability to predict far-

field patterns from near-field measurements allows the use of smaller 

and less expensive anechoic chambers. 

Early work in this area involved an application of the aperture 

field method described by Silver (12). More recent and promising tech

niques have involved modal expansions of the antenna fields. A tech

nique involving the plane wave spectrum expansion described by Clemmow 

(13) has been used by Kerns (1) and Joy and Paris (2) to predict the 

far-field pattern from near-field data measured over the surface of a 

plane located in front of the antenna. The far field is expressed as a 

two-dimensional Fourier transform of the field over the measurement 

plane. A rigorous technique was used to compensate for the effects of 

the measurement probe. 

A similar method has been described by Hamid (3) in which the 

two-dimensional autocorrelation function of the near field over a plane 

located in front of the antenna is determined. The far-field power 
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pattern is then computed as the two-dimensional Fourier transform of 

this autocorrelation function. No provision was made for compensating 

for the probe effects. 

Although the plane-wave spectrum is invaluable for theoretical 

work, it does present some problems experimentally. First, the plane 

over which the field must be measured is of infinite extent. Any actual 

measurements must be restricted to a finite portion of this plane. Thus 

there is an uncertainty in any results due to the field over that part 

of the plane which is not measured. Second, the plane wave expansion is 

valid for only one hemisphere of space. This is a disadvantage when the 

radiation pattern is desired in all directions. 

Brown and Jull (4) have described and experimentally verified a 

technique based on a two-dimensional cylindrical wave expansion in which 

the field is represented as a Fourier series in the polar angle <p. 

Although this method can be used to ob~:ain a full 360° pattern around 

the antenna, it is limited to two-dimensional problems for which there 

is no dependence on the z-coordinate. Thus any practical applications 

would be restricted to flared beam antennas having broad vertical pat

terns . In such cases, measurements would be made at a distance such 

that the vertical pattern is fully developed. A probe compensation 

scheme was also described and tested for which the plane wave spectrum 

response of the probe must be known. 

Jull (5) has described an additional technique in which the far 

field is expanded as a series of derivatives of the near field. Again 

the expansion assumes no variation with the z-coordinate and has the 
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same restrictions mentioned above. A :>robe compensation technique was 

described using the approximate plane wave expansion for a particular 

probe. 

Jensen (6) has described a method fcr obtaining the far field 

from the near field measured over a sphere enclosing the antenna. A 

probe compensation method was also described. However, neither was 

experimentally tested. Indeeds Jensen (6) implies that the method does 

not seem to be suitable for practical purposes unless an ideal probe is 

used. 

James and Longdon (7) have described a method for obtaining the 

far-field spherical wave expansion of an arbitrary antenna from measure

ments of the radial component of the electric and magnetic fields over a 

sphere enclosing the antenna. A disadvantage of this method is the 

rapid rate at which the radial fields decrease with distance from the 

antenna. In addition, the method requires the use of two measurement 

probes, one for the electric field and one for the magnetic field. No 

probe compensation method was described. 

The general problem of far-field prediction applies to acoustics 

as well as electromagnetics. The close connection between the two 

results from the fact that the sinusoidal steady state acoustic pressure 

field external to a transducer also satisfies the homogeneous Helmholtz 

equation (14). This problem has been of particular interest in pre

dicting the far-field radiated noise of submarines (15). Another area 

has been in the calibration of sonar transducers from measurements made 

in the near field (16). 



5 

A problem of great importance in the measurement of electromag

netic fields is that of sampling. This problem can be broken into two 

parts: the sampling density problem aid probe compensation. It has 

generally been assumed that sampling distances on the order of a wave

length are sufficient to characterize a field (17). Actually, the spa

tial rate of change of the fields over any surface is determined by the 

nature of the sources illuminating that surface and the distance sepa

rating the sources from the surface. It is well known that the near 

field of an antenna can vary rapidly with distance, especially in those 

cases where the fields are highly reactive. In contrast, the far field 

does not change appreciably over distances subtending an angle less than 

the half-power beamwidth. 

The required sampling density for any electromagnetic field is 

also a function of the numerical integration metnod used to calculate 

the far field from the sampled near-field data. Brunstein, et al. (18), 

have compared the sampling densities required to calculate the radiation 

pattern of a particular aperture with a cylindrically symmetric illumi

nation function using two different numerical integration schemes. 

Using a technique described by Ludwig (17), the required sampling 

density was 1.5 points per square wavelength, while a technique described 

by Rusch (19) required an equivalent 25 points per square wavelength. 

The Rusch method is actually a one-dimensional integral applied to sur

faces possessing cylindrical symmetry. Thus the actual density was 5 

points per linear wavelength. 



6 

In calculating the radiation patterns of multilayered radomes 

illuminated by a pyramidal horn, Paris (20) found that a sampling 

density of 2.2 5 points per square wavelength gave acceptable results. 

Joy and Paris (2) found that a sampling density of 9 points per square 

wavelength gave accurate results in the calculation of the far-field of 

a parabolic reflector from samples taken on a plane located 10 wave

lengths in front of the reflector aperture. In this case, Fast Fourier 

Transform techniques were used to calculate the far field. 

Regardless of the sampling density used, the accuracy of any 

calculated far field depends on the accuracy of the measured samples. 

Since the ideal probe is not physically realizable, any test antenna 

used to measure the near field will have an output proportional to a 

weighted average of the field over its effective aperture. Thus the 

ability to compensate for the effects of a non-ideal probe is an impor

tant consideration in any near-field measurement scheme. 

The probe compensation problem has been solved by Kerns (1) when 

the measurement surface is a plane and the plane wave spectrum response 

of the probe is known. Joy and Paris (2) have demonstrated excellent 

agreement between calculated and measured patterns using this scheme. 

Brown and Jull (4) have solved the probe compensation problem when the 

probe is used to measure two-dimensional cylindrical fields on a circle 

containing the source. It was assumed that the probe response could be 

represented by a two-dimensional plane wave spectrum. Jensen (6) has 

solved the probe compensation problem when the measurement surface is a 

sphere enclosing the source,. It was assumed that the probe response 
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could be represented by a spherical wave expansion. The method was not 

tested experimentally. In fact, the author stated that the method for 

obtaining an exact solution is unsuitable for practical purposes. 
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CHAPTER II 

THEORETICAL BASIS 

2.1 Introducti on 

In this chapter the mathematical background for the problem of 

determining the far field of an antenna from probe compensated near-

field measurements on a cylinder containing the antenna is developed. 

First, a derivation of the three-dimensional cylindrical wave spectrum 

of a radiating field is presented. It is shown that the cylindrical 

wave spectrum of the field radiated by any antenna can be determined 

uniquely from a knowledge of the tangential field on a cylinder com

pletely enclosing the antenna. The far-field approximation to the 

cylindrical wave spectrum is then developed using the method of steepest 

descent to evaluate the necessary integrals. 

In cases of practical interest, the measurement of the near field 

of an antenna must be done with a probe which has non-ideal characteris

tics. That is, the ourput of the probe is not proportional to a single 

vector component of the measured field at a point but to a weighted 

average of all vector components over some finite area. The output of 

an arbitrary probe, when it is used to measure the field of an arbitrary 

antenna, is derived as a function of the cylindrical wave spectrum of 

the field radiated by the antenna and the cylindrical wave spectrum of 

the field radiated by the proJbe when it is used as a transmitter. It 

is then shown that the cylindrical wave spectrum of the antenna can be 
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obtained from the output of the probe when it is used to measure the 

tangential electric field on the surface of a cylinder enclosing the 

antenna. The results are then speciali.zed to obtain the-far field 

radiated by the antenna. 

In general, the measurement of the near field of an antenna 

requires a potentially large amount of data. Thus the problem of spatial 

sampling is one of great practical importance. A spatial sampling cri

terion for a cylindrical measurement surface containing an antenna is 

developed. It is assumed that the antenna is not a high-Q or supergain 

structure. 

2.2 The Cylindrical Wave Expansion 
of an Electromagnetic Field 

In this section, a derivation of the cylindrical wave spectrum of 

the field radiated by an antenna Is developed. A solution for the mag

netic vector potential function is first found for a region of space 

containing no free-charge density. This solution is next used to obtain 

the corresponding solutions for the electric and magnetic field intensi

ties . It is then shown that the cylindrical wave spectrum of the field 

radiated by any antenna can be obtained from a knowledge of the tangen

tial electric (or magnetic) field intensity on the surface of a cylinder 

containing the antenna. 

In any region of space containing no free-charge density, the 

sinusoidal steady state form of the vector magnetic potential function 

satisfies the differential eauation 
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V2A + k2A = 0 (2-1) 

2 2 
where k = u ]ia - jcoya. A general solution to this equation can be 

obtained by using a technique described by Stratton (21) in which A is 

expressed as a linear combination of the three independent vectors 

M = Vxaijj (2-2) 

N = ̂  V*N (2-3) 
K 

L = Vip (2-4) 

where a i s any cons tant un i t vec to r and I)J i s a s c a l a r funct ion which 

s a t i s f i e s the d i f f e r e n t i a l equation 

V 2 ^ + k 2 i | j = 0 ( 2 - 5 ) 

It follows trivially that M, N and L satisfy Equation (2-1) sub

ject to Equation (2-5). In addition, it follows that M is related to N 

and L by 

;* *"* A 1 "̂  / 
M = Lxa = T- 7xN (2-6) 

K 

Since M and N are both defined as the curl of a vector, they are 
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solenoidal vector fields. Since L is defined as the gradient of a 

scalar, it is a conservative vector field. 

In a given coorcinate system, solutions for M, N and L may be 

obtained by first solving Equation (2-5) in that system. In the present 

case, a solution is desired as a function of the cylindrical coordinates 

(r,cj),z) illustrated in Figure 1. By the method of separation of vari

ables, it can be shown (22) that a particular solution to Equation (2-5) 

in cylindrical coordinates is 

t\(r^)Z) = Z
:-(Ar)ejnV'jhz, 1 = 1,2,3,4 (2-7) 

nh n 

where n i s any i n t e g e r , h i s any r e a l number, A i s given by 

A ---• / k 2 - h 2 ( 2 - 8 ) 

and where Z (Ar) are the cylindrical Bessel functions 
n 

ZX(Ar) = J (Ar) (2-9) 
n n 

Z2(Ar) = I (Ar) (2-10) 
n n 

Z3(Ar) = H(l)(Ar) = J (Ar) + jY (Ar) (2-11) 
n n n n 

Z4(Ar) = H(2)(Ar) = J (Ar) - jY (Ar) (2-12) 
n n n n 
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*-y 

Figure 1. Coordinate System Definitions 
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- * • 

In the present case, a solution for A is desired which is valid 

in the region external to a cylinder containing all sources. In order 

->-
for A to satisfy the radiation condition for large r, it follows that 

the large argument asymptotic expansion of the circular cylinder func

tion must represent surfaces of constant phase which propagate in the 

positive radial direction. The only one of these four functions which 

satisfies this condition is :he Hankel function of the second kind 

(2) 
H (Ar). The large argument asymptotic expansion for this function is 

(23) 

H(2)(Ar) ~ j n + * fir*'*** (2-13) 
n T Ti'Ar 

For A real, it can be seen that this equation represents phase propaga

tion in the positive r direction. With this choice for Z (Ar), the 
n • 

function IJJ becomes 

A(r,4>,z) = H ( 2 )(Ar)e j nV j h z (2-14) 
nh n 

Examination of Equation (2-14) reveals the form of the linear 

-* -> Hi-

comb inat ion of the vectors M, N and L for the general solution to Equa

tion (2-1). There are two Independent parameters, n and h, over which 

the linear combination must be formed. Since n is an integer, the 

combination must be in the form of a sun over all n. Since h is any 

real number, it follows that the combination must be in the form of an 

-> 
integral over all real h. Thus the general solution for A is 
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co oo 

A(r,cj>,z) = ^- I / [ a (h)M+, ( r , * , z ) + b (h)*T, ( r , 4> ,z ) ( 2 - 1 5 ) 
1 oa L J n nh n nh 
j n=— °° ~°° 

+ d ( h ) L ^ h ( r , f > z ) ] d h 

where a (h), b (h) and c (h) are scalar amplitude weighting functions. n n n ^ t> e> 

The factor -— has been chosen to simplify the resulting expression for 

-> 
the electric field intensity E. 

Solutions for the electric and magnetic field intensities can be 

obtained from the solution for A with the familiar relations 

H = - VxA (2-16) 
U 

E = -^- 7xH (2-17) 
jcoe 

where it has been assumed that the conductivity a is zero in the region 

of interest. V/ith the aid of Equations (2-2) through (2-4) and Equation 

(2-6), it follows that E and H are given by 

E = V f [a (h)M4, + b (h)N4, ]dh (2-18) 
L • n nh n nh n = -00 _00 

H = J— y / [a (h)}\ + b (h)M4, ]dh (2-19) icoy L J n nh n nh 
J j^r _oo _oo 

The absence of the vector L in the solutions for E and H also follows 

- > • 

from the fact that L has non-zero divergence. Thus it cannot be used to 
-> -y -y -v 

represent E or H in a source-free region since V*E = V*H = 0. 
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Although the constant unit vector a in Equation (2-2) may be 

chosen arbitrarily, it is convenient to choose it so that M has no z-

component. If Equation (2-2) is rewritten in the form 

M = Vijjxa (2-20) 

it can be seen that the choice a = z makes this true. It follows from 

Equations (2-2) and (2-3) that the solutions for M and N can be written 

t \ = m V J n V j h z (2-21) 
nh nh 

N1 = n1 ein*e-jhz (2-22) 
nh nh 

where 

dz
1 

m\ -• r & Zi(Ar) - 1 ~ - (2-23) 
nh r n 3r 

9 Z 2 
& = -r ^ - S . + J 2*1 z^Ar) + £ V

 z i«r) (2-24) 
nh k 8r kr n k n 

With the introduction of Equations (2-21) and (2-22) into Equa

tion (2-18), it follows that the electric field intensity can be written 

£ = I ejn* / [a (h)m\ + b (h)t\le~Jhzah (2-25) 
L ^ n nh n nh 
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->4 
where m . represents a solution which ;.s transverse electric to the z-

nh r 

direction or (TE) and n , represents one which is transverse magnetic 
z nh 

to the z-direction or (TM)^. On any cylinder on which r is constant, 

each scalar component of this equation is in the form of a Fourier 

series in <f> and a Fourier integral in z. Thus it follows that the 

inverse relationship 

a (h)m , + b (h)n , n nh n nh 
1 f f vt \ ~^

n
§ Jnz 

— — } j E(rl9<j>,z)e
 e 

L'-TT -00 - 7 T 

d<()dz (2-26) 

must exist, where r is the radius of the cylinder. 

It follows that Equation (2-26) can be solved for a (h) and b (h) 
n n 

if it is separated into its scalar components and the resulting equations 

-> 
solved simultaneously. However, only two components of E need be known 

since there are only two quantities to be determined. If the two com

ponents are chosen to be E and E on the cylinder, the resulting equa

tions are 

a (h) 
n 

3H 
(2) 

dr 
+ b (h) 

n 
nh „(2),. , 
;— H (Ar) 
kr n = I (2-27) 

b (h) 
n 

^H ( 2 )(Ar) 
k n 

(2-28) 

where 

<p I 

, -jrtdi j h z , , , 
z)e J Y e J dcf>dz 

4-TT - 0 0 - 7 T 

( 2 - 2 9 ) 
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oo 7T 

/ / E ( r T ^ , z ) e - j n V h z d c J > d : 
'Z , 2 J J Z 1 

4-TT - 0 0 - T T 

( 2 - 3 0 ) 

These e q u a t i o n s can be s o l v e d s i m u l t a n e o u s l y t o y i e l d 

- I n h l 
a (h ) = 

n 

3 i \ 
H ( 2 ) ( A r ^ A*r_ ^ 

n 1 1 9r 
1 

H ( 2 ) ( A r . ) 
n 1 

( 2 - 3 1 ) 

b n ( h ) = 72 
— H U r 1 ) 
k n 1 

( 2 - 3 2 ) 

Thus it follows that a knowledge of the tangential electric field inten

sity on the surface of a cylinder containing all sources is sufficient 

to determine the fields at all points external to the cylinder. A solu

tion involving the tangential magnetic field on the cylinder follows 

similarly. 

In order to use Equations (2-31) and (2-32), the tangential field 

on the cylinder must be either known a priori or measured with an ideal 

probe. A new method for determining the functions a (h) and b (h) from 
n n 

measurements on the cylinder with an arbitrary probe is developed in 

Section 2.4. The method assumes only that the cylindrical wave expan

sion of the field radiated by the probe, when it is used as a transmit

ter, is known. 
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2.3 The Far-Field Approximation to 
the Cylindrical Wave Expansion 

In the previous section, a general expression for the electric 

field intensity external tc a closed surface containing all sources was 

developed. In general, the evaluation of this expression is a formi

dable task. However, a considerable simplification results if the field 

is to be evaluated in the far-field region of the source. In this sec

tion, the far-field approximation to the cylindrical wave expansion 

given by Equation (2-25) is developed. First, the Hankel functions 

which appear m the cylindrical wave vectors m and n are replaced 

by their large argument asymptotic, expansions• The integral in Equation 

(2-25) is then be evaluated using the method of steepest descent. The 

far field is then shown to be a spherical transverse electromagnetic 

field. 

"•4- -*4 
For large r, the cylindrical wave vectors m . and n . which are to J nh nh 

defined in Equations (2-23) and (2-24-), can be simplified considerably 

(2) 
if the Hankel function H (Ar) and its partial derivative with respect 

n r t-

to r are replaced by their large argument asymptotic expansions. The 

(2) 
large argument asymptotic expansion for H (Ar) has been given in Equa-

n 8H ( 2 ) 

tion (2-13). The corresponding expansion for — — — can be obtained by 

taking the partial derivative of this equation with respect to r to 

yield 

3H ( 2 ) 

n .Ti-H. /2A -]Ar ,n OQ, 

— — ] /-— e (2-33) 
dr / Tir 
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-3/2 
where the term involving r v " has been neglected for large r. The 

-+4 +4 
resulting expressions for the cylindrical wave vectors m , and n are 

-+4 2-n-k f2k -jAr 
nh tf" / ~ e J"x (2-34) 

J / TTr 

^ = -(rh-zA) t^L fiL e^
Ar (2-35) 

nh k / Trr 

Substitution of these expressions into the equation for the 

->-
general solution for E yields 

r— °° °° 

E = i* M I "^'^ / A*C;jan(h) (2-36) 
n=-oo _oo 

- i (rh-zA)b (h)]e~ jAre" jhzdh 
k n 

where A = /k 2 -h 2 . This equation can be simplified by making the change 

in variables 

h = ksina (2-37) 

and by converting the far-field point to spherical coordinates with the 

transformations 

r = Rsinfl (2-38) 

z = Rcos6 (2-39) 
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The r e s u l t i s 

CO 

- g •• , > D e J T / [c^]a k s i n a ( 2 - 4 0 ) 
TrRsm0 ^ i n n=-°° C 

,- . w ,, . *n 3/2 -jkRsinCa+e), 
- (rsma-zcosa)b (ksmajjcos a e da 

n 

where C is the contour illustrated in Figure 2. 

The integral in the above expression is evaluated in Appendix A 

using the method of steepest descent. The resulting expression for the 

electric field intensity is shown to be 

OO 

+ -2ksin6 -jkR r .n indv" ,. „, ,. . _ N 
E = — — e J ) i eJ r[d>a (kcos0) (2-41) 

R L n 
n = -°° 

j(rcos0-zsin9)b (kcos0)] 
n 

Since 0 = rcos0 - zsin0, this equation can be separated into the 

spherical components 

E„ = 0 ( 2 - 4 2 ) 
K 

oo 

- J 2 s i n 0 - j kR v .n, ,, „v ind> , „ , „N 

EA = -^— e J ) i b ( k c o s 0 ) e J y ( 2 - 4 3 ) 
0 R L n 

n = -co 
oo 

_ -2sin0 -jkR r ,n ,, n x ind) /0 , , N 
E^ = n e ) 1 3. (kcos0)eJ ^ (2-44) 
$ R ^ n 

Thus the far-field electric field intensity is transverse to the radial 

direction, as would be expected, 
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Im(oi) 

A 

-TT/2 

ik C 

Re (a) 
TT/2 

Figure 2. The Contour of Integration C 
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Comparison of Equations (2-18) and (2-19) reveals that the far-

field magnetic field intensity can be obtained from the solution for the 

electric field intensity by simply interchanging the amplitude weighting 

functions a (h) and b (h) and by including the multiplicative factor 

-k/jcoy. The resulting expressions are 

HR = 0 (2-45) 

He = - ! t ( 2 . 4 6 ) 

H = —- (2-47) 

where n = /y/£ . Thus the far-field magnetic field intensity is also 

transverse to the radial direction and is related to the solution for E 

by the vector equation 

S = M (2-48) 

Since both E and H have no radial components and are mutually perpen

dicular, the far field comprises a spherical transverse electromagnetic 

field. 

Examination of the foregoing solutions shows that the far field 

is determined only by those values of a (h) and b (h) for which 

-k < h < k since |kcos6| < k. Thus it can be concluded that the part of 

the near field for which | h,' > k represents evanescent waves in the 
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vicinity of the antenna. These waves represent reactive energy storage 

which in no way influences the far-field structure except to the extent 

that they are necessary to support a particular current distribution on 

the antenna. In Section 2.5 a spatial sampling criterion is developed 

for the near field on the surface of a cylinder enclosing the antenna. 

In that section, it will be assumed that the reactive energy stored out

side the cylinder is negligible. This assumption will be shown to be 

true for any antenna which is not a high-Q or supergain structure. 

2 A The Determination of the Far Field of an Antenna 
from Probe Compensated Near-Field Measurements 

on a Cylinder Containing the Antenna 

In this section a new method will be developed to obtain the far 

field of an antenna from probe compensated near-field measurements over 

the surface of a cylinder containing the antenna. It will be shown that 

the far field of the antenna can be calculated independently of the 

receiving properties of the probe.. The only information which will be 

assumed about the probe is a knowledge of the cylindrical wave expansion 

of its radiated field, when used as a radiator. It will then be shown 

that the required information can be obtained knowing only the far field 

radiated by the probe over a sphere containing it. 

In Figure 3, let the surface X be a cylinder of radius r that 
a a 

contains an arbitrary test antenna connected to signal generator A. It 

has been shown that in the region r > r the field radiated by this 
a 

antenna can be expressed as 
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Figure 3. Geometry for the Probe Compensation Derivation 
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CO CO 

E ( r ,4> ,z ) = I / [ a C h ) S \ ( r , c | > 9 z ) ( 2 - 4 9 ) 
a i. J r i nh 

J ^ H —CO - . 0 0 

+ b ( h ) S \ ( 'r,<().z)]dh 
n nh , r ' 

00 00 

H (r scf),z) = T - S - 7 / [b ( h ) K \ ( r s < } > , z ) ( 2 - 5 0 ) 
a -luii *- -* n nh 

J J^~_.O0 —CO 

+ a ( h ) 5 \ ( r , o , z ) ] d h 
n nh 

Let this field be incident on a probe antenna whose reference origin 0' 

is located at the point (r , <f> ,z ), as shown in Figure 3. Let the probe 

be connected via a waveguide feeder to signal generator B. The field 

radiated by the probe when generator B is activated can be expressed as 

00 CO 

L\ ( r \ ( j ) ' , z ' ) = I j [a (n)M4 ( r ! , < j > ' 9 z ' ) ( 2 - 5 1 ) 
m = _ c o -co 

+ d m ( n ) N ^ ( r ' , ( j ) ' , z ' ) ] d n 

oo oo 

H K ( r ' , ^ , z ' ) = ^ - - J / [d (n)M4 ( r \ < J > ' , z ' ) ( 2 - 5 2 ) 
b ncop L J m mn 

] J J = —CO —CO 

+ c (n )N 4 (rf,<f>' , z ' ) ] d n 
m mn 

where (r',<j>',z') are measured with respect to 0 l . 

Denote the field scattered by the test antenna when generator B 

- > - * • . 

is activated by E and H . These can be written m the form J as as 



26 

00 CO 

.+4 
E (r ,c j ) ,z) = V / [:a (n)M (r ,c j ) ,z) ( 2 - 5 3 ) 

a s L J ms mri 
J]Q= —00 —CO 

+ b ( n ) N ( r , ( j ) , z ) ] d n 
ms mri 

oo co 

"as(r'*'2)
 -J^ If C b

m s ( ^C ( r ' * ' z ) (2"54) 

rn— — °° -co 

->4 
+ a ( n ) N C r , < J ) , z ) ] d n 

ms mri 

Similarly, the field scattered by the probe when generator A is acti

vated can be written 

CO OO 

E, ( r \ < j > ' , z ' ) = I J [ c (h)M*J, ( r f , < f > ' , z ' ) ( 2 - 5 5 ) 
b s ^ J ns nh 

n=—°° —°° 

+ d (h)if*. ( r ' , ^ ' s z ' ) ] d h 
ns rih 

oo oo 

H, ( r ' ,<J>\z ?) = ~ I j [d ( h ) M J 4 , ( r ' , ( ( ) ' , z ' ) ( 2 - 5 6 ) 
bs icou ^ ns nh 

u -j^ ——oo _oo 

+ c ( h ) N \ ( r ' ,cf)' , z ' ) ] d h 
ns nh 

In the following analysis, it will be assumed that there are no multiply 

scattered fields between the antenna and the probe so that the total 

scattered field is given by Equations (2-53) through (2-56). 

It is desired to solve for the voltage induced across the 

terminals of generator B when only generator A is activated. After 
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solving for this voltage, it will be shown that the far field of the 

test antenna can be calculated from this voltage when its amplitude and 

phase are known as functions of <t> and z over the cylinder of radius 
o o 

r . It will be assumed that the cylindrical wave expansion of the field 

radiated by the probe when generator B is activated is known. A numer

ical method is developed in Section 3.3 for obtaining this information 

from the measured far field of the probe antenna. Also, without loss of 

generality, it will be assumed that generator B is matched to the wave

guide feeder for the probe antenna. 

In Figure 3 let V be the volume bounded by the surfaces X , X , 

and X , where X is the cylinder of radius r , X, is the surface lying 

just outside the shield enclosing generator B and cutting the waveguide 

feeder for the probe at S1 , and X is the sphere of infinite radius. 
r ]} 00 r 

Since there are no source currents in V by assumption, it follows from 

the Lorentz reciprocity theorem (2M-) that 

6 [(E +£ )x(HutH ) - (E, +i )x(H +H, )]-nda = 0 (2-57) 
•L a bs b as b as a bs 

L +L +h 

1 2 °° 

where all multiply scattered terms have been neglected. The Lorentz 

theorem is the basis for all calculations of the output of a receiving 

antenna in the presence of a transmitting antenna (12). The integrand 

of this expression vanishes identically over the shield enclosing gen-

- * • - » -

erator B and over X (24). Also, E, = 0 and H. = 0 over S. by virtue 
00 bs bs b 

of t h e i r d e f i n i t i o n . Thus Equation (2-.c7) y i e l d s 
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j> (E x H , - £ x H ) - ( - r ) d a t 6 (E xH -E xH ) - ( - r ) d a ( 2 - 5 8 ) 
i a b b a * a as as a 

1 1 

+ 6 (£ xH, -E, xH )*(-r)da + 6 (E, xH -E xH )-(-r)da 7 bs b b bs r bs as as bs 
Zl Ll 

+ f [E x(it +H )-(£ +E )xH ]-(-xf)da = 0 
^ a b as b as a 
Sb 

The integrand of the fourth integral in thi-s expression involves 

products of the scattered fields. If it is assumed that the scattered 

fields are small compared to the incident fields, this term can be 

neglected. In the integral over S , it will be assumed that the con-

" * • - * • 

tribution of the scattered terms E and H is negligible, so that in 
as as 

-> -> ,. *> -> -> ,, ->-
this integral E. + E = E, and H, + H ~ H, . With these assumptions, to b as b b as b ^ 
Equation (2-58) reduces to 

j> (E xH, - £ xH ) » ( - r ) d a + 6 (E XH -E XH ) - ( - r ) d a ( 2 - 5 9 ) 
J a b b a J a as as a 

1 1 

+ $ (E, XH, -E, XH ) - ( - r ) d a + / (E xH, -E,xH ) - ( - x ' ) d a J b s b b b s J a b b a 

= 0 

Let the four integrals in the above expression be denoted by I 

I„, I , and I , respectively. To evaluate I , it will be assumed ini

tially that the fields are of the form 

E (r,cf>,z) = a (h)$\, (r ,<f> .z) + b (h)N4, (r ,<J> ,z) (2-50) 
a n nh n nh ' ' 
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H (r,cj>,z) = - 3 - [b (h)8*J. <r,<fr,2.) + a (h)N^, (r,^z)] (2-61) 
a ]coy n nh n nh 

£ (rT ,<f>' ,z') = c (n)M4 (rSfjZ 1) + d (n)N4" (r\cf>',z?) (2-62) 
b m mn m mn 

iiCr' ,4>T,z') = ~ - [d ;n)M4 (r' ,cK ,zT) (2-63) 
b j coy m mn 

+ c ( n ) ^ (r1 ̂ '.z')] 
m mn 

After I is evaluated for these fields, The result must be summed in m 

and n and integrated in n and h to obtain the final value of the 

integral. 

With the vector translation theorems developed in Appendix B, 

the origin for E and H is first changed from 0' to 0. The result is 

+ " 5 (?) ^ o j n Z n 
E, (rs<J>,z) = I (-l)V'f (Ar )e ° e ° (2-64) 
b . u m+£ o 

* [c (n)# 0 (r,^,z) + d (n)N . (r,<j>sz)] m —£n m — 5,ri 

H, (r,4>,z) = - ) (-1) H ,n(Ar )e e (2-65) 
-J P,--_oo 

x [d MM1, (r.^.,z) + c (n)N1. (r,<J),z)] 
m -ir\ • m -Hr\ 

where A = /k2-n2 . With the substitution of these expressions and the 

-> -> 
ones for E and H into the integrand for I" , this integral becomes 

a a 1 
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'1 jwy 

°° , , j£<|) inz °° -n 

£ = -« 
m+£" o 

-°° -TT L-

fa (h)d (n) (2-66) 
*> T-i m n m 

r±4 *3 
+ b (h)c (n)j (M (r,<|),z)xM_- (r,<fr,z) + N (r , < M ) * N _ (r,<f>,z)) 

n' m J K' nh -£r] nh •£n 

+ [a (h)c (n)+b (h)d (n)l (M4,(r,c}),z)xN1
0 (r,4>,z) 

n m n m ; v nh •£n 

±4 +1 
+ Nnh(r,(j),z)xM_£Ti(r,(()sz)J •rr dcbdi 

From the orthogonality properties ot the cylindrical wave vectors 

developed in Appendix C, it follows that the terms involving the products 

•+H ->1 ~ ->4 ->i , 

M xN „_ *r and N xM nn «r have zero contribution to the above integral. 
nh -£h nh -£h 

The remaining terms can be evaluated with the aid of Equations (C-3) and 

(C-4) . The result is 

1 °° n / r,\ j£^ j M Z 
I~-^l (-l)V U r )e ° e ° (a (h)c (n) 
1 icoy . ̂  m+£ o ^ n m 

£-_oo 

(2-67) 

,47rA 6 fi h ) , ) H
( 2 )( A r ) 

n m ' k n£ -n 1 n 1 

+ J (Ar.)H(2)f(Ar, )] 
-n I n 1 

The term in the brackets can be simplified with the aid of the identity 

(2) ' (AiOH^'UiO - J (Ar1)H
C2)'(Ar1) = L l p ^ 

-n 1 n 1 -n 1 n 1 Trkr 
(2-68) 

Thus In reduces to 
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I = i l ^ _ H ( 2 ) ( A r )e ° e ° 5{n+h)'[a (h)c (n)+b (h)d (n)l (2-69) 
1 ooy n+m o v « ^ n m n m 

which is independent of r . When this expression is summed over all m 

and n and integrated over all h and n, the result is 

. = 8TTA 

'1 ojy 

2 °° jric 

I e 
n = -°° 

v (2) 
i (h) ) c (-h)H^;(Ar ) 
n " m n+m o 

m= -00 

(2-70) 

,(2) + b (h) y d (-h)H^;(Ar ) 
n L m n+m o 

m-_oo 

- jhz 
Jdh 

where the sampling property of the impulse function 6(n+h) has been used 

to eliminate the integral in n. 

The integrals I and I in Equation (2-59) can be shown to vanish 

identically. First, that 1 = 0 can be shown as follows: substitution 

- > • * • - * • - » -

of the cylindrical wave expansions for E , H , E , and H results m 
a a as as 

the expression 

I 
k 

0 0 7T [ — 

2 j w p / / 
•7T "— 

'a ( h )b (n )+a ( r i )b (h ) l 
- n ms ms n } ( 2 - 7 1 ) 

x ( M ^ h ( r ^ , z ) x ^ n ( r , ^ , z ) + N ^ h ( r , 4 ) , z ) x N ^ n ( r , ( | ) 5 z ) ] 
mn mn 

+ k(h)^(n)+bn(h)bTTiQ(n)} (^h<r^Jz)xN^(r,(j),z) 
n ms n ms mn 

+ N ^ ( r , c ( > , z ) x ^ ( r . , * , z ) ] T r , d4>dz 
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where the final result is to be summed over m and n and integrated in r\ 

and h. From the vector orthogonality properties developed in Appendix 

C, it follows as in the expression for I that the terms involving the 

products M xM *r and N , xN *r have zero contribution to I_ . Examma-
nh mn nh mn 2 

tion of Equations (C-3) and (C-M-) shows that the contribution of the 

->i4 ->4 ~ , ->-4 ->-4 
term M *N *r is exactly cancelled by that of the term N xM *r. Thus 

nh mn J J nh mn 

it follows that I is identically zero. 

To show that I_ is zero, the origin for the vector functions 
3 ° 

appearing in its integrand is first changed from 0' to 0 with the aid of 

the vector translation theorems developed in Appendix B. The resulting 

-> -> . . 
expressions for E and H, have been given m Equations (2-64) and (2-65). 

-> -> 
Those for E^ and H, are 

bs bs 

(2),. , ^'o 
E, (r,cj>,z) = I H^:(Ar )e 
bs . u n+i o 

3hz, 

l = -oo 

c (h)M1., (r,cf>sz) (2-72) 
ns -lh T 

t d (h)N1., (r,c|),z) 
ns -lh 

u °° (n\ Ji* J^Z 
r TT( 2), . x

 J o o R (r,c|>,z) = -A- J H k^(Ar )e ° e 
bs icou . u n+i o J_~ —00 

(2-73) 

d (h)M1,, (r,(f),z) + c (h)N1., (r,<f>,z) 
ns -lh ns -lh 

- ? - - » • 

When these expressions and those for E, and ft are substituted into the 

integrand of I , the result i;: 
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00 CO • « /„x , « ^ j(i+£)<j> j ( h + n ) z 

I , = J - I I ( - l ) 1 + V 2 ) ( A r )H(2 (AT )e ° e ° (2-74) 
3 iuu . L

 n
 L m+i o n+£ o 

co 7T 

— CO _ 7T 

x / / K c ^ ) d ( h ) + d ( n ) c ( h ) ) p T . (r5cf),z)xM J ' . , ( r , ( J ) ,z) 

+ N 1 . ( r , (}) 5z)xN 1
n , ( r ; c j ) ,z ) ) + (c ( n ) c (h )+d ( n ) d ( h ) ] 

- i n -&h ; ^ m ns m ns ; 

x (M . ( r ,4>,z)xN ( r , ( j ) ,z ) 
- i n , Y -£b 

7>1 
+ N . (r,t j) ,z)xM . ( r , $ , a ) ) 

•*- J_T] X/ I l 

• r r dcf>dz 

As in the case for I , it follows from the vector orthogonality 

properties developed in Appendix C that the terms involving the products 

->1 ->1 ~ ->1 ->1 
M . xM n1 «r and N . xN nl *r have zero contribution to the integral for 
-in -&h -in -&h fo 

I . Also, it follows from Equations (C-3) and (C-M-) that the contribu

tion of the term M . XN . P is exactly cancelled by that of the term 
-in -£h 

•>l ->1 . . . 
N . xM *r. Thus 1^ is identically zero. 
-in -ih 3 J 

The integral for I will be evaluated assuming that the waveguide 

feeder for the probe antenna will support only the dominant TE mode. 

(This is not a restrictive assumption, for the same result will be 

obtained assuming any other mode or combination of modes. Only the final 

constant of proportionality will differ,) The assumed transverse fields 

in the waveguide are of the form 

E ,(x',y\z') - Kccs ^— e:,3x? (2-75) 
az' " ' a 
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u ( r t r\ K TTy' ]3x' , s 

H . (x' ,y ' z ' ) = —— cos -=£— e (2-76 J 
ay' Z a 

w 

E^ ,(x"5y',z
r) = cos -^- e 3 B X (2-77) 

bz' a 

H, ,(x',y',z') = i cos 2£l e~j3x' (2-78) 
by' Z a 

w 

where 3 is the propagation constant in the waveguide, a is the width of 

the waveguide, and Z is the wave impedance. The fields have been 
w 

normalized so that the electric field at the center of the waveguide has 

unit magnitude when generator B alone is activated. 

When these expressions are substituted into the integrand of I, 

the result is 

"4 

b a. 
2~ 2* 

I, = - — / / 2 c o s 2 -^L d x ' d y ' ( 2 - 7 9 ) 
4 L '

 J a 
w b a 

~2 " 2 

abK 
Z 

w 

Since t h e v o l t a g e i nduced a c r o s s t h e o u t p u t impedance of g e n e r a t o r B 

when o n l y g e n e r a t o r A i s a c t i v a t e d i s p r o p o r t i o n a l t o K, t h e e x p r e s s i o n 

f o r I w i l l be w r i t t e n 

I u = -C |~- v ( r ,4) , z ) ( 2 - 8 0 ) 
4 Z c o o 

w 

where C is the constant of oroportionality and v(r ,d> ,z ) is the 
r o o o 

voltage induced. 
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It follows from the previous results that Equation (2-57) 

reduces to 

u r, ,2 =° incb c 

n ab , . 8^A v or 
C — v(r ,$ sz ) = ) e / 

Z o o o wu L J 

w n = -°° -c 

i (h) V c (-h)H(2)(Ar ) (2-81) 
n u m n+m o 

n = _co 

+ b (h) V d (-h)H(2)(Ar ) 
n L rn n+m o 

n = -°° 

-jhz 
dh 

The voltage induced across the probe 1>ad will be normalized by choosing 

3 2 
the constant of p r o p o r t i o n a l i t y C = 32'T Z k /touab . With t h i s choice 

w 
the normalized voltage becomes 

v(W '̂ = ~XJ i e 

4rr k n = -co 

r(2) 

mr_co 

+ b (h) T d (-h)Ĥ '/(Ar ) 
m=-

a (h) J c (-h)H^(Ar ) (2-82) 
n u m n+m o 

— CO 

-i -jhz^ (2) 
'n+m' o dh 

Examination of this equation reveals tha~ v(r , d> ,z ) is in the 
o o o 

form of a Fourier series in ds and a Fourier integral in z . Thus it 
o o 

follows that the equation has an inverse which Is given by 

( 2 ) ( 2 ) 
a (h ) V c ( - h ) t T ; ( A r ) + b (h ) V d ( - h ) H ^ ( A r ) 

n u m n+m o n u m n+m o 
m=-°° m-- 0 0 

( 2 - 8 3 ) 

2 co 7j •jn<J> j h z 
/ / v ( r ,cf) , z )e 

, 2 J J o ' ' o ' o 
A -00

 -IT 

e dd> dz 
o o 

This expression is the desired result. It relates the cylindrical wave 
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amplitude weighting functions a (h) and b (h) of an arbitrary antenna to 

the two-dimensional Fourier transform of the output voltage v(r ,6 , z ) 
o o o 

of a probe when the measurement surface1, is a cylinder of radius r . 

If the cylindrical wave amplitude weighting functions for the 

probe antenna are known, it can be seen that the above expression can be 

solved for a (h) and b (h) -orovided two independent measurements of 
n n 

v(r , 6 ,z ) are made. Let v'(r , d> ,z ) represent the voltage output of 
o T o o o o o ^ to 

the probe antenna when it is rotated 90° .about its longitudinal axis. 

If the rotated probe cylindrical wave amplitude weighting functions are 

denoted by c'(n) and d'(n), the above equation becomes 
m m 

00 

a (h) V c*(-h)H(2)(Ar ) + b (h) ) d'(-h)H(2}(Ar ) (2-84) 
n u m ntm o n u m n+m o 

m=-°° m--00 

2 °° TT -jn<j) jhz 
= —z- f { v'(r ,<J) ,z )e " e dcj) dz 

.2 ; ; o o' o o o 
A -°° -7T 

When this equation and Equation (2-83) are solved simultaneously, it is 

found that the functions a (h) and b (h) are given by 
n n 

a (h) = 
2 

A A (h) m~-°° n 

: (h) I d'(-h)H(2)(Ar ) (2-85) 
n u m n+m o 

(2) 
- I'(h) V d (-h)IT '(Ar ) 

n u m n-m o 
j^r-oo 

b (h) = 
2 

A2A (h) 
n 

I'(h) T c (-h)H(2)(Ar ) (2-86) 
n u m n+m o 

- m--^ 
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- I (h) ^ c'(-h)H(2)(Ar ) 
n u m n+m o 

m=-co 

where 

00 TT -jn? U n z 

I (h) = [ [ v(r ,d> ,z )e e d<t dz 
n J J 0 0 0 0 0 

-00 - ^ 

00 TT -jncj) jhz 
I/(h) = / / v'(.r »<f> ,z )e ° e ° dcĵ dz 

0 0 o o o 

(2-87) 

(2-88) 

A (h) = n T c (-h)H(2)(Ar ) u m n+m o 
m=-°° m=-oo 

(2) 
d'(-h)HV J(Ar ) 
m n+m o 

(2-89) 

I c'(-h)H(2)(Ar ) 
^ m n+m o 

m=-co 

J d (-h)H(2)(Ar ) 
L m n+m o 

m~-°° 

Equations (2-85) through (2-89) form the basis of the method for 

the determination of the far field of an arbitrary antenna from measure

ments made with a probe on a cylinder containing the antenna. By using 

these equations to determine the cylindrical wave amplitude weighting 

functions a (h) and b (h), the far fielc. cf the antenna can be determined 
n n 

from Equations (2-43) and (2-44). Since the far field is determined 

from only those values of a (h) and b (h) for which -k < h < k, it fol-
n n 

lows that the cylindrical wave amplitude weighting functions of the probe 

need be known only for arguments inside this interval. Thus the speci

fication of the far field radiated by the probe is sufficient to calcu

late the probe compensated far field of the test antenna. In the next 
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chapter a numerical method is described for obtaining the cylindrical 

wave amplitude weighting functions for the probe antenna from its 

measured far field over a sphere containing the probe. Also, a numeri

cal solution based on the Fast Fourier Transform algorithm is developed 

for the probe compensated far field of the test antenna. 

2.5 Spatial Sampling on the Cylinder 

Since the measurement of the near field of any antenna over some 

surface enclosing the antenna potentially requires the accumulation of 

a large amount of data, the problem of determining an optimum spatial 

sampling rate is one of great practical importance. Sampling rates 

which are too high result in The acquisition of more data than are 

necessary to characterize a given near field, while rates that are too 

low result in data which may be meaningless, In this section, the a 

priori determination of a refisonable sampling rate on a cylinder enclos

ing the antenna is discussed. Specifically, high-Q antennas, such as 

supergain antennas, will be excluded from, the discussion since no a 

priori upper bound on the required sampling rate for such antennas can 

be specified. The exclusion of this class of antennas is not restric

tive in most cases since thay are rarely if ever encountered in practice. 

To establish a sampling criterion for the near field on a cylin

der enclosing an antenna, the variation of the field with the coordi

nates on the cylinder can be studied by examination of the cylindrical 

wave expansions developed in Section 2.2. It was shown that each com

ponent of the field on a cylinder can be written in the form of a Fourier 

series in the azimuth angle <j> and a Fourier integral in the axial 
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distance z. Thus it follows that the results of the sampling theory of 

Fourier transform analysis can be used to establish a sample spacing 

criterion on the cylinder if upper bounds on the angular harmonic n 

and the wavenumber h can be determined. An examination of the antenna 

quality factor, or Q, is one means of establishing these bounds. 

The Q of an antenna is an important parameter which can be 

related to the effect of the antenna size on gain, bandwidth, and 

efficiency. A high Q means that a large amount of reactive energy is 

stored in the near field of the antenna. This implies large currents on 

the antenna structure, high ohmic losses., a narrow bandwidth, and 

extreme frequency sensitivity. Although it is difficult in general to 

relate the antenna Q to the degree to which it is a supergain structure, 

it has been shown that a supergain antenna is necessarily a high-Q 

antenna (25). Thus the exclusion of high-Q antennas from the discussion 

will also exclude supergain antennas. 

The Q of an antenna which has been tuned to resonance by the 

addition of a reactive element is defined as (26) 

Q = 2ajmax{W
r ,W6} (2-90) 

m e . . . 
where W and W are the time average magnetic and electric energies 

stored in the near field of the antenna and P is the total power radi

ated by the antenna. If the Q of a single cylindrical wave with mode 

indices n and h is defined as 
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2wmax{WIT' ,Wev } 

Q . = _a_J*L. (2-91) 
nh P , 

nh 

it follows from Equation (2-90) that the Q of an antenna which radiates 

a spectrum of cylindrical waves is given by the linear combination 

00 00 

^ -1 ' nh' nh nh 
n — — oo —oo 

Q = ~ ~ Z — (2-92) 
2 / |C , | P , dh u ' ' nh nh 

I — „_00 — OQ 

where C is the complex amplitude of tie cylindrical wave with mode 

indices n and h. This equation is simply a weighted average of the 

i 1 2 Q , over all n and h, where the weighting factors are C , P n . nh t> b ' nh' nh 

Collin and Rothschild (26) have evaluated P n and Q , for a 
nh nh 

single cylindrical wave radiated by an ideal, loss-free antenna of 

radius a. The term "ideal, loss-free antenna of radius a" was original

ly defined by Chu (27) as one having no energy storage for R < a, where 

R is the spherical radial distance from the center of the smallest sphere 

of radius a completely enclosing the antenna. In the present case, it is 

interpreted as an antenna for which there is no energy storage for r < a, 

where a is the radius of the smallest cylinder completely enclosing the 

antenna. The Q for this ideal antenna must be less than or equal to 

that for any other loss-free antenna fitting into the cylinder r = a, 

since any field for r < a can only add to the energy storage. 
The expressions for P . and Q . for (TE) and (TM) cylindrical 

nh nh z z 
waves are identical and are given by (26) 
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P , = 2 ( k ~ h ) ( 2 - 9 3 ) 
nh LOV 

Q , = l k \ ( 2 & + [ ( n 2
+ l - A 2 a 2 ) ( J 2

+ Y 2 ) ] ( 2 - 9 4 ) 

- [ ( n + 1 ) J -AaJ J 2 - [ ( n t l ) Y -AaY . ] 2 

n n+1 n n+1 

2 2 ^ 
where h < k and the argument of the Bessel functions is Aa = (k -h )2a. 

For h > k, P , = 0 and Q , is undefined. 
nh nh 

i,2 u 2 

k -h 
h 2 

Collin and Rothschild (26) have shown that the quantity 

7T 

Q . = — P ,Q , increases very rapidly when n becomes larger 
nh toe nhxnh J r J & 

than Aa. Since this term, aside from the factor — , appears in the 

numerator of the general expression for Q in Equation (2-92), it follows 

that Q can become large if C , is not small, for n > Aa. Since A < k for 

real h, it follows that the highest significant angular harmonic in the 

cylindrical wave expansion of the fields of an antenna which is not a 

high-Q structure is N = ka. If a is taken to be the radius of the 

smallest sphere completely enclosing the antenna, this result agrees 

with the conclusions reached by Chu (27) and Harrington (25) in study

ing the physical limitations of antennas using spherical wave expansions 

In general, however, the radius of the smallest cylinder completely 

enclosing an antenna is less than or equal to the radius of the smallest 

sphere, the two being equal if the antenna is oriented so that its long

est dimension is perpendicular to the axis of the cylinder. 

A sample spacing criterion for tie azimuth angle ^ on a cylinder 

enclosing an antenna can be obtained by applying the Nyquist sampling 
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criterion of Fourier transform theory to the above result. If N is the 

maximum angular harmonic in the cylindrical wave expansion of a given 

field, then it follows that the maximum singular separation between 

adjacent samples is 

A4» = ^ (2-95) 

In this case N must be chosen as the smallest integer greater than ka, 

where a is the radius of the smallest cylinder completely enclosing the 

antenna. 

The above limit on N has been verified by Ludwig (28) for a par

ticular antenna. He has shown that over 99.9 per cent of the total 

power radiated by a circular aperture horn is contained in spherical 

waves with angular harmonics )nJ < ka, where a is the radius of the 

smallest sphere containing the aperture. Since a is a function of the 

location of the origin of the sphere with respect to the center of the 

aperture, he was able to elegantly demonstrate the variation of the max

imum significant angular harmonic with the radius of the sphere by 

varying the position of the origin. Since both cylindrical wave and 

spherical wave expansions are in the form of a Fourier series in the 

azimuth angle tf>, it follows that his results are directly applicable to 

cylindrical wave expansions for this particular antenna for which the 

radius of the smallest cylinder completely enclosing the antenna is the 

same as the radius of the smallest sphere. 
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A z-sample spacing criterion follows in a similar manner. Collin 

and Rothschild (26) have shown that the term P ,Q , in Equation (2-92) 
n h nh 

2 2 i*> 
increases rapidly for n £ (k -h ) a. Thus it follows that C , must 

i \ i n h i 

be small for h > k — . This implies that the highest significant 
a 

wavenumber in the cylindrical wave expansion of the field of an antenna 

which is not a high-Q structure is |h| < k. It follows that the maximum 

z-sample spacing on the cylinder is given by the Nyquist spacing 

Az = f (2-96) 
k 

It is interesting to compare the two sample spacing criteria 

which have been developed. If the measurement cylinder is the smallest 

cylinder completely enclosing the antenna, then it follows that the arc 

length on the cylinder separating adjacent sample points when sampling 

in the azimuth direction is 

As = aA<fc (2-97) 

This is the same as the z-sample spacing with the exception that As > Az 
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when sampling on a cylinder of radius greater than a. 

Although the sample spacing criteria defined by Equations (2-9 5) 

and (2-96) are useful, they are in no way absolute, for it is impossible 

to predict a priori an exact cutoff harmonic for n and an exact cutoff 

wavenumber for h in the cylindrical wave expansion of the fields radi

ated by a given antenna. In practice, more conservative sample spacings 

have been used. For example, Collin and Zucker (29) state that the 

maximum order angular harmonic in the cylindrical wave expansion of the 

field radiated by an aperture on a cylinder is approximately 2ka, where 

a is the radius of the cylinder. This would lead to a sample spacing in 

the <f) direction of one-half that specified by Equation (2-95). Joy and 

Paris (2) have obtained excellent results in the calculation of the far-

field patterns of reflector antennas using a sample spacing of A/3 on a 

plane located in front of the antenna. This spacing effectively'allows 

for a 50 per cent error in the A/2 criterion. In the actual measurement 

of the near field of an antenna, therefore, the sample spacings speci

fied by Equations (2-95) and (2-96) should be used as guidelines in 

determining the sample spacing between measurement points. In most 

instances, the sample spacings chosen can be easily verified experi

mentally on the near-field antennai range,. 
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CHAPTER III 

NUMERICAL CONSIDERATIONS 

3,1 Introduction 

The numerical approach taken to solve for the far field of the 

test antenna used in the experimental phase of the research is described 

in this chapter. The numerical work centers around the application of 

the Fast Fourier Transform (or FFT) algorithm to evaluate the necessary 

integrals and to sum the final Fourier series for the far field of the 

antenna. The use of the FFT for far-field calculations requires careful 

choice of sample rates in order for the calculated field to lie in the 

visible region of space. A technique cf near-field data processing has 

been developed which makes it possible to control the region of visible 

space in which the calculated field lies. 

To compensate for the effects of the measurement probe in the far-

field calculations, it is necessary to know the cylindrical wave ampli

tude weighting functions in the cylindrical wave expansion of the field 

radiated by the probe when it is used as a transmitter. A numerical 

method is described for determining these functions from the measured 

far field of the probe over the surface of a sphere containing it. 

The chapter is concluded with a test of the computer algorithms. 

A far-field pattern of an aperture on a conducting cylinder is calcu

lated and shown to be identical to results found in the literature. 
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3.2 Method of Evaluating the Far 
Field from Measured Data 

In Section 2.3 it was shown that: over the surface of a sphere of 

radius R, the far-field electric field intensity radiated by an antenna 

can be written in the form 

E (0,<f>) = jsine I j b (kcos0)eJ 9 (3-1) 
n=-°° 

oo 

E ,(6,<j0 = sine I jna, (kcose)e3n9 (3-2) 

n=-« 

-ikR 

where the constant factor -2k /R has been suppressed in each equa

tion. In these equations a (h) and b (h), where h = kcos6, are the 
n n 

- > - * • 

amplitude weighting functions of the cylindrical wave vectors M and N, 

respectively, in the cylindrical wave expansion of the field radiated 

by the antenna. In Section 2.4 an analytical method was developed to 

solve for these weighting functions from the voltage output of a probe 

when it is used to measure the near field of the antenna over the sur

face of a cylinder enclosing the antenna. In this section a numerical 

solution for a (h) and b (h) is developed which is based on this method. n n c 

The numerical evaluation of Equations (3-1) and (3-2) for the far field 

of the antenna is then described. 

Aside from the factors involving the amplitude weighting functions 

of the probe when it is used as a transmitter, it was shown in Section 

2.4 that the solution for a (h) and b (a) requires the evaluation of the 
n n ^ 

integrals 



47 

00 TT -jn<j> jhz 
I (h) = / / v ( r ,<p , z . ) e " ° e ° d f dz (3-3) 
n J J o o o o o 

- ° ° -7T 

00 TT -jn<J) jhz 
I ' ( h ) = / / v ' ( r ,6 5z >e ' ° e ° dd> dz (3-4) 
n J J o o o o o 

_oo - T , -

where v(r ,<b ,z ) and v'(r ,d> ,z ) represent the output voltage of the o o o o o o £ r t> 

probe on the measurement cylinder of radius r . The primed function is 

used to denote the probe output after it is rotated 90° about its longi

tudinal axis. 

Let the measurement cylinder be divided into a lattice of points 

with coordinates (r ,nA4>,mAz) where 0 < n < N-l, 0 < m ^ M-l, and M and 

N are positive integers. To exactly evaluate Equations (3-3) and (3-4) 

from the output voltages of the probe at these points, two conditions 

must be satisfied. First, v and vT must be zero when z < 0 or 

z > (M-l)Az. Second, v and vf must have no angular harmonic n greater 

than ir/A(f> and must be wavenumber limited in h to a maximum wavenumber 

less than or equal to TT/AZ. The first condition cannot be met with any 

radiating structure. However, if the test antenna is aligned in the 

cylinder so that it does not radiate appreciably in the ±z direction, 

it can be met approximately if M is chosen large enough. The second 

condition can be met if the test antenna is not a high-Q structure and 

the sample intervals A<£ and Az are chosen in accordance with the sam

pling criteria discussed in Section 2.5. Assuming these conditions are 

met, the integrals for I (h) and I (h) can be evaluated most efficiently 
n n 

with a two-dimensional Fast Fourier Transform (or FFT) algorithm (30). 
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The FFT is an algorithm in which the computations are performed 

"in place," i.e., the two-dimensional input data arrays v(r ,nA<J),mAz) 

and v'(r ,nA(J),mAz) are replaced by the output arrays I (mAh) and I'(mAh) 

after the calculations are completed. As described by Cochran (30) the 

output values of the integers m and n are 

5- < m < ~ - 1 (3-5) 
Z /L 

| < n < i - l (3-6) 

and Ah is given by 

Ah :; ~ (3-7) 
MAz 

Since the far-field expressions for E_ (6, «f>) and E (0,$) are evaluated at 
v 9 

h = kcos0, the values of 8 corresponding to h = mAh are given by 

) := cos 
m 

m A 

MAz 
(3-8) 

Since it is impossible to measure the near field over a complete 

cylinder enclosing an antenna, the present method for determining the 

far field of the test antenna is most suitable when applied to antennas 

which radiate predominantly in the annular region about 0 = — defined by 

9 < 6 < T T - 0 . In order for all 0 defined by Equation (3-8) to lie 
c c m J ^ 

in this interval, it follows that Az must satisfy 
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Az = 7T-V- (3-9) 
2cos6^ 

However, for 8 5^0, this condition violates the z-sample spacing cri

terion discussed in Section 2.5. One solution to this problem is to 

choose Az smaller than that specified by Equation (3-9) and to ignore 

the calculations for 8 ^ 8 and 9 > IT - 9 . This is not a very effi

cient solution since it reduces the resolution of the calculated fields 

for 0 < 0 < TT - 0 . The decrease in resolution can be overcome by 
c c J 

augmenting the near-field data arrays with zeroes, thereby increasing M. 

Although this is an acceptable solution, it is inefficient for it 

increases computer storage requirements, increases computation time, and 

does not make full use of the FFT computations. 

An alternate solution to the above problem is to first "smooth" 

the near-field data in such a way that it can be resampled by numerical 

interpolation with the sample spacing specified by Equation (3-9). The 

"smoothing" operation can be accomplished efficiently with the FFT 

algorithm. First, the near-field data arrays are transformed in z so 

that on output the wavenumber spacing is that specified by Equation 

(3-7). Second, all elements in the transformed arrays are set equal to 

zero for all m such that 

i MAz 
m > -r— cos0 (3-10) 

A c 

Finally, the data arrays are inverse transformed to create the "smoothed" 

arrays. This operation is equivalent to that of filtering the data with 
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an ideal "low-pass filter" with a cutoff wavenumber given by 

h = ~ cose (3-11) 
c A c 

After the "smoothing" operation, the near-field data arrays are 

wavenumber limited in z such that the Nyquist sample spacing is that 

given by Equation (3-9). Thus the arrays can be resampled in z using 

numerical interpolation with the sample spacing specified by Equation 

(3-9). In order to preserve "in place'' calculations, the interpolated 

arrays can directly replace the original arrays during the computations. 

Since the interpolation process will extract fewer than M samples in z, 

it is necessary to set equal to zero some of the elements of the original 

arrays after the interpolation. It can be shown that these zeros will 

not affect the accuracy of the subsequent FFT operations. Instead, the 

resolution will be improved on output since all M values of 6 

will lie in the interval 6 < 0 < TT - .0 , 
c c 

After the evaluation of I (mAh) and I'(mAh), the cylindrical wave 

amplitude weighting functions a (mAh) and b (mAh) can be solved for 

using Equations (2-85) and (2-86). The evaluation of the coefficients 

in these equations which are determinec by the probe will be discussed 

in Section 3.3. Since a (mAh) and b (mAh) are both linear combinations 
n n 

of I (mAh) and I'(mAh), the computations can again be performed "in 

place." Thus on output, the original data arrays will contain the set 

of cylindrical wave amplitude weighting functions from which the far 

field of the test antenna can be evaluated. 
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The calculation of the far-field electric field intensity radi

ated by the test antenna can be achieved by performing the summations 

indicated by Equations (3-1) and (3-2). Again, this can be done most 

efficiently with the FFT algorithm. However, each a (mAh) and b (mAh) 
n n 

.n . .n+1 . 
must be multiplied by the factors i smfl and i sin.0 , respectively, 

before the FFT can be used to perform the summations. Since the calcu

lations are performed "in place" the output arrays will be the far-field 

components E^(6 ,d> ) and E,(6 ,d> ) where 
^ 6 m n d> m n 

2nTT 
0 < n S N-l (3-12) 

= cos 
-1 

mcos6 

(M/2) 
M M 
2 < tn s 2 

(3-13) 

The complete calculations are summarized in the flow-diagram of Figure 

4. 

3.3 Evaluation of the Probe Compensation Coefficients 

To evaluate Equations (2-85) and (2-86) for the amplitude 

weighting functions in the rylincrical wave expansion of the far field 

radiated by the test antenna, it is necessary to know the amplitude 

weighting functions in the expansion of the field radiated by the probe. 

Since it is necessary to know these functions only for wavenumbers such 

that |h| < k, it is possible to obtain them from a knowledge of the far 

field radiated by the probe when it is connected to a signal source. In 

this section, a numerical procedure is developed for obtaining the 

necessary probe information from the measured far field of the probe. 
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Figure 4. Flow-Diagram for the Far Field Evaluation 
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Two near-field probes were used In the experimental phase of the 

research, one an open-end WR-90 waveguide and the other a WR-90 wave

guide terminating in a pyramidal horn with a 5.7° E-plane half-angle 

flare and a 15.7° H-plane half angle flare. The aperture dimensions of 

the two probes were 1" x 0.5" and 1.88" x 0.81", respectively. The two 

probes had been calibrated at 9.68 GHz for use with the near-field range 

at Georgia Tech (2). The calibration data consisted of the measured 

amplitude and phase of the far-field components E (6,<j>) and E (0,<j)) of 

the probes over a sector of a sphere defined by 30° < 0 < 150° and 

-60 < cj> < 60 . The step sizes in the far-fie lei data were A0 = 5° and 

A<j> = 1°. 

Since it is necessary to resolve the measured probe data into 

Fourier series in the azimuth angle (J), some upper limit on the maximum 

angular harmonic for each probe must be established. This can be done 

by using the criterion established by Harrington (25) that the maximum 

angular harmonic is N = ka, where in this case a is the radius of the 

smallest sphere completely enclosing the aperture of the probe. At 9.68 

GHz, it follows that the smallest integer greater than ka for each probe 

is N = 3 for the open-end waveguide anc. N = 6 for the small horn. 

Let the probe antenna be oriented as shown in Figure 5. The far-

field electric field intensity radiated by the probe can be expressed as 

N 
EQ(e,$) = jsin© T 1nd Ckcos0)e:]n<1, (3-14) 
0 T *-.. J n 

n=-N 
N 

E (8,<j>) = s i n 8 V j n c (kcosQ)ejn<p ( 3 - 1 5 ) 
9 XT n 

n=-N 
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Figure 5. Coordinate System for the Probe Antenna 
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where c (h) and d (h), with h = kcos0, are the amplitude weighting 

->- -> 
functions for the cylindrical wave vectors M and N, respectively, in 

the expansion of the field radiated by the probe. If the probe is 

rotated 90° in the right-hand sense about the x-axis, the far-field 

electric field intensity radiated by the rotated probe can be expressed 

as 

N 

E'(6,<j>) = j s i n e I f d ' ( k c o 3 6 ) e ] n ( | ) ( 3 - 1 6 ) 

n=-N n 

N . 
E!(e,<|>) = s i n e Y j 1 1 c H k c o s ^ e ^ ( 3 - 1 7 ) 

4> XT n 

r n=-N 

where c'(h) and d'(h) are defined similarly. In order to compensate for 

the effects of the probe in calculating the far field of the test anten

na, it is necessary to know c (h), d (h). c'(h), and d'(n) with the 
J n ' n ' n n 

argument h = -kcos8 where 6 is the elevation angle for the far field 
m m 

of the test antenna and is defined in Equation (3-13). 

Since Equations (3-1*0 through (3-17) are In the form of a 

Fourier series in $, the amplitude weighting functions for a particular 

value of 6 can be obtained by numerically evaluating the Fourier inver

sion integral from the measured fields. For example, the solution for 

d (kcos0) is 
n 

dn(kcose) = — — / ::6(e,4>)e~
:n(f) d^ (3-18) 

2TTj sin0 -7! 

This solution, however, cannot be used since the measured far field of 
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the probe is known only for -60° < $ < 60°. The approach which has been 

taken for this research was to perform a least squares curve fit of 

Equations (3-14) through (3-17) to the measured probe data. 

For example, it can be shown that Equation (3-14) approximates 

the measured EQ(8,<£) in the least squares sense if the d (kcos9) satisfy 0 n 

the system of equations 

N sin(m-n)cj) , <$>j_ _. , 
V d (kcose) -7 r — - = — — 4 / Efl(0,<|>)e

 i m d0 (3-19) 
n = -N 1 2j sin 6 -<K 

where -N < m < N. The d (kcosO) for the test probes were obtained by 
n 

solving this system of equations with the Gauss-Jordan method for solv

ing simultaneous equations. The integral, on the right of Equation 

(3-19) was evaluated from the measured data by using the trapezoidal 

rule for numerical integration with a step size of 1° and <j> " 60°. The 
solutions for d (kcos0) were obtained for -N < n < N and 30° < G < 150° 

n 

with a step size in 0 of 5°. 

Solutions for c (kcosG), d'(kcos6), and c'(kcos0) were obtained 
n n n 

for each probe in the same way. However, for the case of the rotated 

probe functions, it was necessary to solve for E'(6,<|)) and E!(0,4>) from 

the measured E (0,<jO and E (0,40. The necessary transformations are 

E (£,Ocos6 sin(f> - E (£,C)cos<j> 
E^(0,<}>) = — — -^- O-20) 

/l - sin*'-0 sin26 

E (£,c)cos<i> + E U,?)COS0 sin0 
E!(6,<J>) = — ^ (3-21) 

/l - sin20 sin2d> 
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where 

/ l - s i n 2 6 sin2cj) 
t a n £ = ( 3 - 2 2 ) 

- s i n 9 sincb 

t a n c = , c°sd - ( 3 - 2 3 ) 
s i n e cosd» 

In using these equations, E (£,£) and E (£,£;) were obtained by numerical 

interpolation of the measured values. 

The amplitude weighting functions for the probe enter into the 

solutions for a (h) and b (h) given by Equations (2-85) and (2-85) in 
n n 

the form of summations over the angular harmonics of the probe. The 

(2) 
coefficients in the summations are the Hankel functions H (Ar ) where 

n+m o A = /k2-h2 and m is the angular harmonic of the probe. In the calcula

tion of the far field of the test antenna, it is necessary to evaluate 

a (h) and b (h) at h = kcos6. Thus, in this case, the argument of the 

Hankel function is Ar = kr sin0. In the computational phase of the 

research, these functions were evaluated by using a modification of a 

method described by Goldstein and Thaler (31-32). 

3.M- Test of the Computer Algorithms 

To test the computer programs which were written to calculate the 

far field of the test antenna, the far-field pattern of an antenna for 

which the radiation pattern is known has been calculated. The antenna 

chosen for the calculations was a narrow circumferential slot on a con

ducting cylinder. Although there are various methods of synthesizing 
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aperture distributions for a prescribed far-field azimuth pattern, the 

slot excitation was chosen to reproduce a result of Bailin (33) who has 

given extensive data, both tabulated and in curves, for half-wavelength 

circumferential and axial slots on conducting cylinders with radii 

ka = 8 and ka = 12. 

The geometry of the slot on the cylinder is shown in Figure 6. 

The assumed electric field intensity in the aperture of the slot was 

E,(a5cj>sz) = 0 (3-24) 

E (a,(f>,z) = A cos 
z 2*o 

(3-25) 

For the calculations, ka was chosen to be 12, one of the values used by 

Bailin (33). Since no probe compensation could be used with an assumed 

field distribution on the cylinder, the solutions for the amplitude 

weighting functions given by Equations (2--31) and (2-32) were used in 

the computations. Except for the probe compensation coefficients, the 

flow diagram for the computations in this case is identical to that of 

Figure 4-. 

The results of the calculations are shown in Figure 7 where the 

far-field azimuth pattern of both En and E, at an elevation angle of 
6 9 

0 = 30° are displayed. These patterns are identical to those calculated 

by Bailin. 
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Figure 6. Geometry of the Slotted Cylinder 
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CHAPTER IV 

INSTRUMENTATION AND EQUIPMENT 

4.1 Introduction 

The object of this chapter is to describe the equipment used in 

the experimental phase of ~h.e research. The experimental work was per

formed at the Systems and Techniques Department of the Engineering 

Experiment Station at Georgia Tech. The test antenna chosen for the 

research was a ten-element slotted waveguide array which was fabricated 

in the machine shop facilities there. The antenna was designed to 

radiate a Chebyschev pattern in the fa:? field with side-lobe levels of 

-20 dB. Its design is discussed in decail in Section 4-. 2. 

The near-field measurements and the far-field measurements were 

performed on the near-field range and ":he phase center range, respec

tively, at the Systems and Techniques Department. These facilities are 

discussed in Section 4.3 and Section 4 ,4„ 

4.2 The Test Antenna 

The design of the antenna that was used in the experimental phâ se 

of the research is described in this section. The choice of the test 

antenna was based on several considerations. These were ease of con

struction, suitability for a cylindrical near-field measurement surface, 

and predictability of the far-field pattern. The antenna which was 

chosen was a ten-element slotted waveguide array. It was designed to 
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radiate a broadside Chebyschev pattern at 9.375 GHz with sidelobe levels 

of -20 dB. The design of the antenna will be described in two parts. 

First, the Chebyschev array synthesis will be discussed. Second, the 

design of the slotted waveguide will be discussed. The Cheybschev array 

synthesis procedure is described in detail by Collin and Zucker (34). 

Thus the following discussion will serve only to document the most 

important steps in the design. 

Consider a linear array of 2N identical radiators aligned sym

metrically along the z-axis as shown in Figure 8. Let the complex exci

tation coefficient for each element in the array be denoted by a where 

-N < n < -1 or 1 < n < N, and let d be the distance between any two 

adjacent elements in the array. If the array is excited symmetrically 

about z = 0, i.e. a = a , and if all the a are real, it follows that 
-n n n 

the array factor can be written in the form 

N ,- -, 
f(y) = 2 V a cosl(2n-l) J (4-1) 

i=l n I - 2-J 

where 

Y = kdcosG (4-2) 

The Chebyschev array excitation coefficients are obtained by 

equating Equation (4-1) to the Chebyschev polynomial T (bcosy/2) and 

solving for the a , where b > 1 is a parameter. The parameter b is 

related to the reciprocal of the sidelobe level R by the equation 
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Figure 8. Geometry for the Array Factor 
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b = cosh 
cosh R 
2N - 1 

(4-3) 

For the test antenna, a sidelobe level of -20 dB corresponds to a 

value of 10 for R. Thus for a ten-element array, I.e. N = 5, the solu

tion for b is 

b = 1.056 (4-4) 

The foregoing procedure for obtaining a solution has been carried 

out for the case of the test antenna. The solutions for the a were 
n 

found to be 

a = h [9 b - 90 b° t 270 b5 - 315 b7 + 126 b9] (4-5) 

= 1.271 

a2 = h [-30 b3 + 135 b5 - 189 b7 + 84 b9] (4-6) 

= 1.171 

aq = h [27 b5 - 63 o7 + 36 b9] (4-7) 

= 0.988 

a=H [-9 b 7 + 9 b 9] (4-8) 

= 0.755 
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a = % b (4-9) 
0 

= 0.815 

Since it was assumed that all elements are excited in phase, a ten-

element array excited symmetrically according to these coefficients will 

radiate a broadside Chebyschev pattern with -20 dB sidelobe levels. 

The particular slotted waveguide array which was selected for the 

experimental work was a resonant rectangular waveguide array with longi

tudinal slots cut in the broad wall of the guide. The resonant array 

can be designed only for broadside operation and uses a spacing between 

adjacent slots of A /2, where A is the guide wavelength. The guide is 
g g 

terminated in a short circuit a distance of A /4 from the last slot or 
g 

an odd multiple of this distance. The geometry of the array is shown in 

Figure 9. Adjacent slots in the array are offset on opposite sides of 

the centerline in order for the slots to be excited in phase for the 

slot spacing of A /2. 
g 

The equivalent circuit of the resonant array is shown in Figure 

9. If each slot is cut to its resonant length, its equivalent circuit 

is a shunt conductance in the waveguide equivalent circuit. The short 

circuit termination in the waveguide transforms into an open circuit at 

the position of the last slot. Since the slots are spaced A /2 apart, 
o 

the equivalent circuit reduces to a single normalized shunt conductance 

ge given by 

5 
ge = 2 I g i (4-10) 

1-1 
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where g. is the normalized conductance of the ith slot from the center 

of the array. 

The slot conductances are related to the slot excitation coeffi

cients by 

g± = Ka^ (4-11) 

where K is a normalization constant. In order for the slot array to be 

matched to the input guide, K is chosen so that g = 1. In this case, 

the normalized slot conductances g. are given by 

2 
a. 

(4-12) 
2 T a? 
ill X 

The theoretical variation of the conductance of a resonant slot 

with offset distance x is given by 

g = g sin" — (4-13) 
o a 

where a is the internal width of the waveguide. Jasik (35) gives exten

sive graphical data for the normalized slot conductance g as a function 

of the offset distance x at the frequency 9.375 GHz. A curve-fitting 

technique was used to fit Equation (4-13', to these data over the range 

of the slot conductances calculated from Equation (4-12). The resulting 

equation for the offset distance x as a. function of slot conductance g 

was found to be 
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a . -1 
x, = — sm 
I TT 

-1* 
i 

1.191 
(4-14) 

The slotted waveguide array was designed by using Equation (4-14) 

to obtain the required offset distance for each slot from the conduc

tances g. given by Equation (4-12). Once the offset distances were 

determined, the resonant slot lengths u. were obtained for the offset 

distances x. from the graphical data given by Jasik (35). 

The array of slots was cut in the broadwall of a 17.2-inch length 

of WR-90 waveguide with a numerically controlled milling machine to an 

accuracy of 0.001 inch. The generator end of the array was terminated 

in a waveguide flange connected to a Type N coaxial-to-waveguide con

nector. The load end was terminated with an adjustable short which was 

set for a minimum input VSWR at a frequency of 9.68 GHz, the frequency 

at which the measurements were made. The antenna design is summarized 

in Figure 10. 

4.3 The Near-Field Measurement System 

The near-field measurements for the experimental phase of the 

research were made on the indoor near-field antenna range at Georgia 

Tech. Since this facility was designed for near-field measurements on a 

plane in front of a test antenna, the range had to be modified for the 

cylindrical measurement surface. This modification consisted of the 

installation of a rotating platform in front of the planar measurement 

surface on which the test antenna was mounted. The modified near-field 

range and the associated data acquisition equipment are described in 

this section. 
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0.881" _1_ 
16 

' i a . 
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g i 
x . { i n . ) L . ( i n . ) 

l 

1 1 . 2 7 1 0 . 1 5 5 0 . 1 0 6 0 . 4 8 9 

2 1 . 1 7 1 0 . 1 3 2 0 . 0 9 7 0 . 4 8 8 

3 0 . 9 8 8 0 . 0 9 4 0 . 0 8 2 0 . 4 8 7 

4 0 . 7 5 5 0 . 0 5 5 0 . 0 6 2 0 . 4 8 5 

5 0 . 8 1 5 0 . 0 6 4 0 . 0 6 7 0 . 4 8 5 

Figure 10. Summary of the Slot Array Design 
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A diagram of the near-field measurement system is shown in Figure 

11. The RF signal applied to the test antenna was generated by a Varian 

X-13 klystron operating at a frequency of 9.68 GHz. The klystron was 

powered by a NARDA Model 438 klystron power supply. Its output was 

phase-locked to a crystal frequency reference with a FEL Model 133-AK 

klystron frequency synchronizer. The synchronizer was specified to 

c 

maintain a klystron frequency stability of one part in 10 for long-term 

operation. A Microlab/FXB Model X4105 absorption frequency meter con

nected to a Hewlett Packard Model 413C power meter was used to initially 

adjust the klystron to operate at 9.68 GHz. The power meter was subse

quently used to monitor the klystron output level during the course of 

the measurements. 

The test antenna was mounted on a wooden support which was 

securely bolted to the rotating platform of a Scientific-Atlanta Model 

5103-1-L antenna positioner. The output signal from the klystron was 

coupled to the test antenna through a RF rotary joint in the base of the 

antenna positioner with RG 214U coaxial cable, The cable was securely 

taped to the floor and to the antenna nount to prevent phase errors from 

cable movement. 

The antenna positioner was mounted on top of the linear motion 

platform of a Scientific-Atlanta Model K243 near-zone positioning 

system. The axis of rotation of the rotating platform on the antenna 

positioner defined the vertical axis of the measurement cylinder. The 

radius of the measurement cylinder could be adjusted by varying the 

position of the linear motion platform with respect to the probe. 
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The probe antenna was mounted on the rotary probe carriage of the 

near-zone positioning system. The probe carriage position was servo-

controlled and could be remotely positioned to any point on a 100 by 100 

inch vertical plane. A mechanical scissor unit connected the probe car

riage to a stationary point on the frame on the near-zone positioning 

system with RG-21M-U coaxial cable and three rotary joints. This 

arrangement permitted the positioning of the probe to any point on the 

100 by 100 inch plane without changing the amplitude or phase properties 

of the signal path. The probe carriage, the linear motion platform, and 

the test antenna positioner were remotely controlled with a Scientific-

Atlanta Series M-100 positioner control unit. 

The rotary probe carriage permitted rotating the probe about its 

longitudinal axis so that two independent measurements could be made on 

the measurement cylinder. The output of the probe was connected through 

a RF rotary joint at the rear of the probe carriage to permit rotating 

the probe without .flexing the signal cable. 

The probe was initially positioned on the measurement cylinder by 

adjusting its horizontal position until the longitudinal axis of the 

probe intersected the vertical axis of rotation, of the rotating plat

form. The vertical motion capability of the probe was then used to 

position it vertically on the cylinder. The azimuth position of the 

probe on the cylinder was controlled by rotating the test antenna by 

rotating the platform on which it was mounted. 

The metal frame of the near-zone positioning system and the wall 

directly behind the frame were covered with microwave absorbing material. 
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In addition, absorbing material was placed over the klystron and its 

associated hardware to minimize stray radiation. Although the supply 

of additional absorbing material was limited, all metalic objects in the 

vicinity of the near-field range which could not be moved were covered 

with absorber. 

The output signal from the probe was connected to the signal 

input of a Scientific-Atlanta Model 1750 phase amplitude receiver 

through RG 214U coaxial cable. The cable was securely taped along its 

length to prevent flexing. The phase reference signal for the receiver 

was obtained from the output of a directional coupler which was con

nected in series with the klystron output. This signal was connected to 

the receiver through securely taped RG 58 C/U coaxial cable. 

Above 4.1 GHz, the Scientific-Atlanta Model 1750 receiver employs 

externally mounted harmonic crystal mixers to heterodyne the input sig

nals to a 45 MHz first intermediate frequency. The local oscillator for 

the crystal mixers operates in the 2.0-4,1 GHz band. It is advantageous 

to mount the crystal mixers as close as possible to the signal sources 

so that the highest frequency signal transmitted through the RF signal 

cable and rotary joints Is the local oscillator signal. The crystal 

mixer for the signal output from the probe was mounted directly to the 

waveguide to Type N coaxial connector which terminated the probe wave

guide feeder. This mixer was a Scientific-Atlanta Model 14 A-2 coaxial 

mixer. The crystal mixer for the reference channel of the receiver was 

mounted at the output of the directional coupler from which the refer

ence signal was obtained. This mixer was a Scientific-Atlanta Model 

13-8.2 waveguide mixer with a BNC output connector. 
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The near-field data were recorded on a seven-channel Honeywell 

Model 5600 tape recorder. The data consisted of four signals: the 

probe amplitude signal, the probe phase signal, a probe position signal, 

and a voice annotation signal. In order to have a response to d.c, the 

first three signals were recorded utilizing the FM electronics in the 

tape deck. The voice annotation signal was recorded through the analog 

electronics in the tape deck. 

The probe amplitude signal at the output of the Scientific-

Atlanta receiver was a 1000 Hz linear a..c. signal with a dynamic range 

of 60 dB. This signal was rectified and converted to a logarithmic d.c. 

analog signal with a Scientific-Atlanta Model 1S31 synchronous rectifier 

and logarithmic converter before it was recorded on the tape deck. The 

logarithmic compression allowed recording the amplitude signal at levels 

well above the noise level of the tape deck which was 41 dB below the 

reference level of one volt r.m.s. The probe phase signal at the output 

of the receiver was a d.c. analog signal which was recorded directly on 

the tape. 

The near-field measurements were taken by holding the azimuth 

angle <f> of the test antenna constant while moving the probe at constant 

velocity up the measurement cylinder ard simultaneously recording the 

receiver outputs. The azimuth angle was then incremented and the proc

ess repeated until the complete cylinder had been covered. In order to 

know the z position of the probe on the measurement cylinder when the 

recorded data were read from the tape, it was necessary to record a probe 

position signal. This signal was a one-volt d.c. signal obtained from 
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a microswitch mounted on the rear of the probe carriage and connected in 

series with a d.c. voltage source, The microswitch was mounted so that 

it was activated only when the probe carriage was moving vertically past 

a 52.1-inch narrow aluminum plate which was mounted on the rear of the 

probe positioner frame. The length of the plate was chosen to be 128 

one-third wavelengths at 9.68 GHz, The plate was positioned so that the 

microswitch roller was at its center when the probe was centered verti

cally on the antenna. 

M-.4- The Far-Field Measurement System 

The far-field patterns of the test antenna were measured on the 

indoor phase-center range at Georgia Tech. The phase-center range con

sists of a rotating boom on which a receiving antenna can be mounted and 

rotated on a circle of radius 12 feet or less around a stationary trans

mitting antenna. A RF rotary joint in the rotating platform on which 

the boom is mounted permits accurate determination, of the phase and 

amplitude of the received signal as the boom is rotated. A diagram of 

this facility is shown in Figure 12. 

The test antenna was mounted on top of a linear motion platform 

which was mounted on a stationary frame above the rotating platform of 

a Scientific-Atlanta Model 5103-1-L antenna positioner. The linear 

motion platform could be adjusted with two degrees of freedom in the 

horizontal plane so as to make the phase center of the test antenna 

coincide with the vertical axis of rotation of the rotating platform 

beneath. A horizontal boom of approximately 12 feet in length was 

bolted at one end to the rotating platform of the antenna positioner. 
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At the end of the boom, a NARDA Model 640 standard gain horn, which was 

used as a receiving antenna, was mounted on a vertical beam to the same 

height as the test antenna. The output flange of the receiving horn was 

terminated in a Scientific-Atlanta Model 13-8,2 waveguide crystal mixer 

with a BNC output connector. The output of the mixer was connected to 

the RF rotary joint in the base of the antenna positioner with RG 58 C/U 

coaxial cable. The cable was taped along its length to the boom to pre

vent flexing. 

The klystron, its associated equipment., and the phase/amplitude 

receiver described in Section 4.4 were used with the phase center range 

to measure the far-field patterns of the test antenna. The output sig

nal from the klystron was connected to the test antenna with RG 214U 

coaxial cable. The output of the RF rotary joint in the base of the 

antenna positioner was connected to the input of the receiver with the 

same cable. The far-field patterns were recorded on a Scientific-Atlanta 

Series 1540 antenna pattern recorder as the receiving antenna was rotated 

on the boom around the test antenna. The boom position was remotely 

controlled with a Scientific-Atlanta Series 4100 positioner control 

unit. 
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CHAPTER V 

THE EXPERIMENTAL RESULTS 

5.1 Introduction 

The work performed for the experimental part of the research is 

described in this chapter. The near field of the test antenna was 

measured for four different cases. In the first case, the antenna was 

centered vertically in the measurement cylinder and the near field was 

measured with the open-end waveguide probe. In the second case, the 

antenna was translated a distance of A/2 from the center of the cylinder 

and the near field was again measured with the open-end waveguide probe. 

In the third case, the small horn probe was used to measure the near 

field with the antenna centered vertically in the cylinder. In the 

fourth case, the antenna was centered horizontally in the cylinder and 

the near-field was measured with the open-end waveguide probe. Since 

the elevation pattern of the test antenna in the latter case was so 

broad, the near field was measured only on a circle around the antenna. 

Amplitude and phase plots of the measured near-field data are presented 

for each of the four cases in Section 5.2. 

The principal plane elevation and azimuth far-field patterns of 

the test antenna were measured for comparison with the patterns calcu

lated from the near-field data. The measured far-field patterns are 

presented in Section 5.3. 
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The far-field patterns of the test antenna were calculated for 

each of the four near-field measurement cases. The calculated patterns 

are presented in Section 5.4- where they are compared to the measured 

far-field patterns. 

5.2 The Near-Field Measurernents--Four Cases 

The near field of the test antenna was measured on a cylinder of 

radius 12 inches containing the antenna. Before the measurements were 

made, the near-zone positioning system was aligned to ensure that the 

axis of the cylinder was vertical, that the probe moved on a vertical 

line up the cylinder, and that the perpendicular distance from the 

center of the probe aperture to the axis of the cylinder was 12 inches. 

The alignment procedure was repeated before each of the four near-field 

measurement cases. 

To vertically align the axis of the measurement cylinder, a pre

cision level was placed on the rotating platform in Figure 11 on which 

the test antenna was to be mounted, The platform was then slowly 

rotated while observing the bubble in the precision level. The adjust

able feet under the linear motion platform on which the rotating plat

form was mounted were then adjusted to minimize the deviation of the 

bubble as the platform was rotated. With this procedure, it was possible 

to align the vertical axis of the cylinder so that it did not deviate by 

more than 40 seconds of arc as the platform was rotated. This deviation 

was caused by the bearings in the rotating platform and could not be 

eliminated. 
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In order to align the probe positioning system so that the 

probe moved in a vertical line up the .neasurement cylinder, a plumb bob 

was suspended from the end of the probe so that it hung over the crossed 

lines of a sheet of graph paper. The .adjustable feet in the base of the 

probe positioning system were then adjusted until the plumb bob hung 

over the same position on the graph paper when the probe was positioned 

vertically to both the top and bottom of the measurement cylinder. 

The radius of the measurement cylinder was set to 12 inches by 

first clamping a jig to the top of the probe that extended 12 inches out 

from its aperture. The probe was then positioned vertically to the 

center of the measurement cylinder, and a plumb bob was suspended from 

the end of the jig. The plumb bob hung over the crossed lines of a 

sheet of graph paper attached to the top of the rotating platform on 

which the test antenna was to be mounted. The horizontal position of 

the probe and the linear motion platform in Figure 11 on which the 

rotating platform was mounted were then adjusted until the plumb bob 

hung over the same point on tie graph paper when the rotating platform 

was rotated through a full revolution. 

The first three measurements were Taken with the antenna mounted 

vertically in the measurement cylinder. The cylinder was divided into 

32 vertical scans of the probe, each separated by 11.25° in the azimuth 

angle <£ . For each measurement, the horizontal component of the elec

tric field intensity was first measured over the complete cylinder. The 

probe was then rotated 90° about its longitudinal axis and the process 

was repeated for the vertical component of the electric field intensity 
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on the cylinder. For each vertical scan, the probe was first positioned 

vertically to. a point below the lower »nd of the measurement cylinder. 

The tape deck on which the data were recorded and the probe servo-motor 

were then started simultaneously, and the data were recorded as the 

probe moved up the measurement cylinder' at a constant velocity. At the 

end of the scan, the tape deck was stooped and the probe was returned to 

its lower position before the next scan. Each vertical scan took 

approximately 30-35 seconds. 

The fourth measurement was made with the antenna mounted hori

zontally in the measurement cylinder. In this case, the elevation pat

tern of the antenna was so broad that there was little change in ampli

tude of the probe output as it was moved vertically on the measurement 

cylinder. The near field of the antenr.a in this case was measured only 

on a circle around the antenna. Both the vertical and horizontal com

ponents of the near-field electric field intensity were measured on the 

circle . 

The analog near-field data for each of the first three measure

ment cases occupied a full reel of 10 inch magnetic tape recorded at 

7^ inches per second. The fourth measurement required only a small 

fraction of one reel. These data were converted to digital form on a 

Radiation Inc. Model 5020 analog to digital converter. Calibration sig

nals for the conversion were recorded at the beginning of each tape for 

both the amplitude channel and the phase channel. To reduce the play

back time during the data conversion, the playback tape deck was oper

ated at a speed of 15 inches per second. After the data conversion was 
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completed, the digital tapes were processed to obtain 12 8 equally-

spaced samples from each vertical scan of the First three measurement 

cases. For the fourth measurement, the data were processed to obtain 

1024 equally-spaced samples around the measurement circle. 

The near-field data for the first three measurement cases are 

displayed in Figures 13 through 18. The data for the first two cases 

were measured with the open-end waveguide probe. In the first of 

these, the antenna was mounted vertically at approximately the center 

of the measurement cylinder. In the second, the antenna was translated 

horizontally a distance of approximate_".y A/2 from the position of the 

first measurement. The third measurement was made with the small horn 

probe. The antenna was mounted vertically at approximately the center 

of the measurement cylinder as in measurement case one. 

The base coordinates in the three-dimensional plots of Figures 

13 through 18 are the azimuth angle & and height z on the measurement 

cylinder, where -180° < <j> < +180° and -26.05" < z < 26.05". In these 
o o 

figures, the amplitude plots are normalized so that they are In the 

range of 0 to -40 dB. The phase plots are for a phase angle between 

-180° and tl80°. A comparison of the amplitude plot for measurement 

case three to those of cases one and two reveals the effect of the more 

directive small horn probe on the measured data. The measured near-

field amplitude tapers off much more rapidly toward the ends of the 

measurement cylinder than the amplitude measured with the open-end wave

guide probe. 
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Mounted Vertically in the Cylinder 
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Figure 15. Near-Field Amplitude and Phase Patterns of E( 
for Measurement Case Two, Measured with the 
Open-End Waveguide Probe with the Antenna 
Mounted Vertically in the Cylinder 
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Figure 18. Near-Field Amplitude and Phase Patterns of E z 

for Measurement Case Three, Measured with 
the Small Horn Probe with the Test Antenna 
Mounted Vertically in the Cylinder 
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The near-field data for measurement case four are displayed in 

the plots of Figures 19 and 20. The antenna was mounted horizontally 

in this case, and the near field on the circle was measured with the 

open-end waveguide probe. 

5.3 The Far-Field Measurements 

The far-field patterns of the test antenna were measured on the 

phase center range described in Section 4.4. The antenna was mounted 

on a styrofoam support on top of the linear motion platform shown in 

Figure 12. For each pattern the platform was adjusted to reasonably 

center the antenna over the center of rotation of the rotating boom 

which supported the receiving horn. Absorbing material was placed over 

the klystron source and its associated hardware to minimize the effects 

of stray radiation. 

To obtain the elevation pattern , the test antenna was mounted 

horizontally on the linear motion platform. The boom on which the 

receiving antenna was mounted was then rotated over a 180° arc to 

record the far-field vertical elevation pattern for 0 < 0 < 180°. This 

measured pattern is displayed in Figure 21 over the interval 

30° < 6 < 150°. This pattern represents the elevation pattern of the 

far-field (^-component of the electric field intensity radiated by the 

test antenna when it is mounted vertically. The small irregularities 

in this pattern were caused by reflections and stray radiation in the 

room. The cross polarization component radiated by the antenna was so 

low in amplitude that it was not measured. 
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To obtain the azimuth patxern, the antenna was mounted vertically 

on the linear motion platform. The boom on which the receiving antenna 

was mounted was then rotated to record the vertical azimuth pattern for 

-90° < <j> < 90°. To ootain the full 360° pattern, the antenna had to be 

rotated ±90° about its longitudinal ax:_s to separately record the pat

tern for -180° < <j> < -90° and 90° < <f> < 180°. The measured azimuth pat

tern is displayed in Figure 22. This pattern represents the azimuth 

pattern of the far-field ^-component of the electric field intensity 

radiated by the antenna when it is mounted vertically. 

5.4 The Calculated Far -Field Patterns 

The far-field patterns of the test antenna have been computed for 

each of the four near-field measurement cases using the numerical meth

ods developed in Section 3.2. These patterns are displayed in this sec

tion and are compared to the measured far-field patterns. Although they 

were calculated, the cross polarization patterns have been omitted since 

they were so low in amplitude that they could not be interpreted mean

ingfully. 

The three-dimensional far-field patterns calculated for measure

ment cases one through three are displayed in Figures 2 3 through 25. 

The patterns represent the amplitude of the ^-component of the far-field 

electric field intensity radiated by the antenna when it is mounted 

vertically. The base coordinates in these figures are the spherical 

azimuth angle cf>, where -180° < dp < 180°, and wavenumber h = kcos6, where 

0 is the spherical elevation angle and 30° < 0 < 150°. The amplitudes 

of the patterns are normalized so +hat they lie in the range from 0 to 
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Figure 24. The Calculated Far-Field Amplitude Pattern 
of E, for Measurement Case Two 
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Figure 25. The Calculated Far-Field Amplitude Pattern 
of E, for Measurement Case Three 
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-30 dB. It was found that if the patterns were displayed over any wider 

range, they were difficult to interpret in the three-dimensional format. 

The far-field pattern calculated for measurement case four is 

displayed in Figure 26. This pattern represents the amplitude of the 

0-component of the far-field electric field intensity radiated by the 

antenna when it is mounted horizontally. Since the near field in this 

case was measured only on a circle around the antenna, the elevation 

angle in Figure 26 is 0 = 90°. Thus this pattern is to be compared to 

the measured elevation pattern of the antenna, 

The measured far-field patterns and the principal plane elevation 

and azimuth patterns calculated for measurement cases one through three 

have been plotted together for comparison in Figures 27 through 29. It 

is felt that Figures 27, 28(b) and 29(b) represent outstanding agreement 

between the measured and calculated data. The agreement in Figures 

28(a) and 29(a) is not so good in the elevation angle range of 

110° < 0 < 150°. It Is felt that this could have been due to stray 

radiation or reflections in the vicinity of the near-field range, since 

each measurement was performed on different days under possibly differ

ent sets of conditions. 

A problem which was not anticipated was "drop outs" on the play

back tape deck when the near-field data were being converted to digital 

form. When a "drop out" occurred, it caused an "impulse spike" in the 

data with an average level of 50 to 60 dB above the data amplitude. The 

"impulse spikes" of this level were easily located and eliminated from 

the data. An average of one to two were found in each near-field data 
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array. It is not known if the discrepancies observed in Figures 28(a) 

and 29(a) could have been caused by smaller "impulse spikes" which could 

not be differentiated from the data or "drop outs" in the phase channel 

of the tape deck. The phase signal was of a level such that a "drop 

out" in that channel would cause the analog to digital converter to 

saturate at the +180° output level. Thus it was impossible to locate 

any "drop outs" in the phase channel since the phase data were so 

erratic to begin with. 

A comparison of the far-field pattern calculated for measurement 

case four to the measured far-field pattern reveals outstanding agree

ment over the range of angles for which the far-field pattern was meas

ured. The calculated pattern for this case was computed by summing 

harmonics in the azimuth angle <p for orders from 0 to 120. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

It is concluded that the method which has been described to 

obtain the far-field pattern of an antenna from probe compensated near-

field measurements on a cylinder is valid. Although the measurement 

phase of the research was undertaken to experimentally verify the theory, 

it is felt that it has been demonstrated that the method is practical 

from both a measurement and computational viewpoint. 

It is recommended that the problem of near-field sampling be 

studied to determine methods of reducing the amount of data which must 

be measured to calculate accurately the far-field pattern of an antenna. 

This could include measuring the near field only over selected portions 

of the measurement cylinder (such as the circle around the antenna in 

measurement case four), using increased sample spacings, or both. Also, 

it is recommended that the theory be extended to arbitrary near-field 

measurement surfaces, particularly those which lend practicality in an 

experimental implementation. It is felt that the sphere is very attrac

tive in this respect, and that some of the prob„ems which Jensen (6) 

encountered could be overcome if two independent measurements are 

made on the sphere. 

From a measurement viewpoint, it is not recommended that analog 

magnetic tape be used as the recording medium for any near-field 
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measurements. The problems which were encountered with the analog tape 

were many. These could have been avoided by recording the data in 

digital format, a form which easily lends itself to automating the data-

taking process. 
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APPENDIX A 

EVALUATION OF EQUATION (2-40) 

Each scalar component of the integral in Equation (2-4-0) is of 

the form 

I = / f(a)eRS(a) da (A-l) 

C 

This integral can be evaluated for large R using the method of steepest 

descent. This method consists of first" finding the point a on C at 
F o 

which g'(a) = 0. The contour C is then deformed into the path S which 

passes through a and on which Re[g(a)~[ < Re[g(a )] and Im[g(cO] = 

Im[g(a )]. The point a is called the saddle point of the integral and 
o o 

S the steepest descent path. If this path exists, the change in vari

ables 

g(a) = g(aQ) - w
2 (A-2) 

can be made where w is real and a lies on S. Thus the integral can be 

transformed into 

Rg(a ) °° _ 2 , 
T o f ( N -Rw da A /. 0 , 

I = e / f(a) e -T- dw (A-3) 
J dw 

where a Is a function of w defined implicitly by Equation (A-2). 
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The method of steepest descent refers to the first term in the 

asymptotic expansion about R = °° of the integral in Equation (A-3). 

This is shown by Clemmow (36) to be 

Rg(a ) 
I = ± /„ I? , e ° f(a ) (A-4) 

f -2TT "fa^"V 
/Rg"(a ) S ^ o 

where the ambiguity in sign must be resolved by examining 

da 
dw 1 ' a = a 

r~^2— 
= ± J-TT-T (A-5) 

/ g '(a ) 

at the saddle point. The sign in Equation (A-5) must be chosen to make 

da tangent to S at a = a . The corresponding sign is then used in Equa

tion (A-4). 

The function g(a) in the integral to be evaluated is 

g(a) = -jksin(ate) (A-6) 

The saddle point is found by setting g'(a ) = 0, 

'(a ) = -jkcos(a +0) = 0 (A-7) 
o o 

The only solution to this equation which lies on C is 

aQ = | - 6 CA-8) 
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At a , it follows that g(a ) = -jk. 

The region of the complex a-plane for which Re[g(a)] ^ Re[g(a )] 

is defined by the equation 

cos(a +6)sinh a.. < 0 (A-9) 
r 1 

where a = a -f- ja. . This region is the shaded region in Figure 30. The 

steepest descent path must lie in this region to insure convergence of 

the integral. On this path Im[g(a)] = Im[g(a )]. Thus the equation for 

the path is 

sin(a +e)cosh a-. = 1 (A-10) 
r l 

This path is sketched in Figure 30. 

To resolve the sign ambiguity in Equation (A-5), da/dw must be 

calculated at the saddle point. At this point gf'(a ) = jk. Thus, usin^ 

Equation (A-5), da/dw is given by 

[da/dw] _ = ± /— (A-ll) 
a-a / ik 

o 

= ± (1+j) 

Examination of Figure 30 at a - a shows that 
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Figure 30. The Path of Steepest Descent 
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j 8a. da , „ n _,. 

^ = (i + j—i) _r (A-12) dw 8 a dw 
1 

da 

" a + j ) IT 

Since a positive increment in w corresponds to moving along S in the 

positive direction, it follows from Figure 30 that da /dw > 0 at every 

point on S. Therefore, the positive sign in Equation (A-11) must be 

chosen in order for this equation to agree with Equation (A-12). Thus 

for the problem at hand, Equation (A-4) becomes 

r^r~
 Rg(ao} 

I - + / „, , e ° f(a ) (A-13) 
/ g (a ) o 

With the substitution of the above result into Equation (2-40), 

the far-field electric field intensity becomes 

CO 

•± -2ksin0 -jkR v -n jn.d>r- ,n „v ,„ n, * 
E = - e J ) ] eJ T[^a <,kcose) (A-14) 

•j(rcos0-zsin0)b (kcosG)] 

This is the desired expression. 
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APPENDIX B 

VECTOR TRANSLATION THEOREMS FOR 

CYLINDRICAL VECTOR WAVE FUNCTIONS 

In the derivation of the response of a probe used to measure the 

near field of an antenna on a cylinder, it is necessary to be able to 

translate the reference coordinate of the probe to that of the antenna 

being tested. The following is a derivation of the necessary theorems. 

Let the coordinates (r ,6 , z ) be the location of the origin of 
o o o to 

the coordinate system (r',<t>',z') in the coordinate system (r,cj>,z) as 

shown in Figure 31. It is desired to express the cylindrical vector 

wave functions M . (r',d)',z') and N , (r ; , d)' ,z r ) as functions of the 
nh 'T nh *T 

coordinates (r,4>,z). These vectors have been defined previously in 

Section 2.2. 

In the system (r',$',z'J the generating function ip is given by 

iKr\4>\z') = H^2)(Ar')ejn(|)' e" j h z' (B-l) 

This can be expressed as a function of (r,d?,z) by using Graf's addition 

theorem (37) for the Hankel function, which states 

(o\ ^ n i i °° r 0 \ jm(<j>-<|> ) 

H(2)(Ar') = e ~ ^ V H(2)(Ar )J C 
n L n-t-m o m 

m=-°° 

(Ar») - e~^ I H(2)(Ar )J (Ar)e ° (B-2) 

When this is substituted into Equation (B-l), the generating function 
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Figure 31. Coordinate System for the Cylindrical 
Wave Translation Theorems 
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is transformed into 

* = I H ( 2 ) . A . j m*o j h Z o 
H (Ar )e e 
n+m o 

J (Ar)e J e CB-3; 
m 

->4 ->4-
The vectors M , and N . are obtained by the following operations 

nh nh 

on \p 

nh r (B-4) 

N u = A V fxM\ 
nh k nh 

o 
(B-5) 

where the primes denote operations on the primed coordinates (r'j^'jZ1) 

Since the gradient operation is invariant to a coordinate transforma

tion, these become 

^4 
nh 

H ( 2 ) . . . j m * o j h z < 
H (Ar )e e 
n+m o 

Vx 

_J 

A
 T / * \ -]md) -ihz 
zJ (Ar)e J Y e J 

m 
(B-6) 

*l=f I 
o m: 

u(2) , . J o o 
H (Ar )e e 
n+m o 

'xVx 
- T , . , -jmd> -ihz 
zJ (Ar)e J Y e J (B-7) 

-»-l -*1 
With the definitions of M . and :\ , from Section 2.2, these 

nh nh 

e x p r e s s i o n s r e d u c e t o 

r4 ( 2 ) 
M' ( r ' , < f , ' , z ' ) = V ( - i f F P ^ U r )e 

nh L n+m o 
m = - c o 

jmcj) j h z 
° e ° M1 J r , c f > , z ) (B-8) 

-mh 
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-*4 °° ( o \ ~im$ ~hz -»i 
N (r',<J>',z') = £ (-1)m H ̂  ;(Ar )e ° e ° N 1 Jr,<f>,z) (B-9) nn L n+m o -mh 'Y' 

— —CO 

These are the desired translation theorems. They are valid for all 

r < r . 
o 
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APPENDIX C 

ORTHOGONALITY PROPERTIES OF THE 

CYLINDRICAL WAVE VECTORS 

There are four orthogonality properties of the cylindrical wave 

-> ->- . . . 
vectors M and N over a cylinder of constant radius which are useful m 

the evaluation of the Lorentz rec.ipr0ci.t3A integral in Section 2.4. 

These properties are developed below. 

Property A 

00 TT . 

/ / M1 x P • rdcfidz = 0 for a l l rn, n , n, and h (C- l ) 
nh nv] 

This property follows from the fact that the vector M contains 

->i ~H 
no z-component. Thus the product M . x M has only a z-component which 

nh mn 

is zero when scalar-multiplied by the unit vector r. 

Property B 

00 IT 
/ / N1, x N] • rd^dz = 0 for all m, n, n and h (C-2) ; J nh mn 
_oo --ft 

The integrand in Equation (C-2) can be simplified as follows 

N , x NJ * r = NJ • (rxN , ) 
nh mn mn nh 

rec.ipr0ci.t3A
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2 | ^ z \ A r ) Zhxt) - S a i l Z^Ar) Z j (Ar) 
i , ^ n m 1 2 n m k. r k r 

eJ(m+n)(f) e-j (n+h)z 

This is identically zero when integrated with respect to § and z unless 

m = -n and n = -h. However, under these conditions, the term in 

brackets is identically zero since X = A when n = -h. Thus property B 

follows immediately. 

Property C 

[ [ N \ x M ] • rdd>dz = • ZX (Ar)Z D ( A r ) 6 ( n + h ) f o r m = -n (C-3) 
J J nh mn k n --n 
- ° ° - T T 

= 0 otherwise 

The integrand of the above integral can be simplified as follows 

M x MJ • r = -N , • (rxMJ ) 
nh mn nh mn 

2 
AA -I,, w ' j / , x j(rn+n)cf) j(n+h)z 
--,—-Z (Ar)Z J(Ar)eJ eJ 

k n m 

This is zero when integrated with respect to cf> unless m = -n. In this 

case the integral of the exponential term involving <p is 2TT. The inte

gral of the exponential term involving z results in the factor 27r5(n+h) 

Since this is zero for n + h ^ 0, it follows that the substitution 

n = -h can be made in the rest of the expression. Thus property C fol

lows immediately. 
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Property E 

00 TT . . 2 , 3 . . 

/ / M , x N J • rdc{>dz = -^— Z (Ar )Z J (Ar)<S(n+h) f o r m = -n (C-4) 
_oo 1^ nh mn k n -n 

otherwise 

This property follows immediately from property C. 
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