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Abstract

This study presents results of mapping three-dimensional (3-D) variations of the
electrical conductivity in a depths range from 400 to 1200 km using six years of
magnetic data from the Swarm and CryoSat-2 satellites as well as from ground
observatories. The approach involves the 3-D inversion of matrix Q-responses
(transfer functions) that relate spherical harmonic coefficients of external
(inducing) and internal (induced) origin of the magnetic potential. Transfer
functions were estimated from geomagnetic field variations at periods ranging
from 2 to 40 days. We study the effect of different combinations of input data
sets on the transfer functions. We also present a new global 1-D conductivity
profile based on a joint analysis of satellite tidal signals and global
magnetospheric Q-responses.

Keywords: Electromagnetic induction; Three-dimensional conductivity models;
Matrix Q-responses; Inversion; Time-varying magnetic field; Magnetospheric
ring-current source; Satellite data; Observatory data

1 Introduction

Understanding 3-D physical properties of the Earth’s mantle on a global scale is

an outstanding problem of modern geophysics. There exist only two direct methods

that can determine the distribution of physical properties in the mantle: seismic and

electromagnetic (EM) methods. Seismic tomography provides a variety of global 3-D

velocity models (Debayle and Ricard , 2012; Lekic and Romanovicz , 2011; Ritsema

et al., 2011; Schaeffer and Lebedev , 2013, among others), but the interpretation

of seismic velocities alone leads to ambiguities. Additionally, seismic velocities are

only weakly sensitive to the hydrogen content (Buchen et al., 2018; Fei et al., 2017;

Schulze et al., 2018, among others).

The goal of EM sounding methods is to identify spatial variations of the electrical

conductivity in the Earth’s interior. Since the conductivity is sensitive to tempera-

ture, chemical composition and hydrogen content (Karato and Wang , 2013; Khan,

2016; Yoshino, 2010, among others) its knowledge helps understanding the Earth’s

origin as well as its past evolution and recent dynamics. Constraining the 3-D

conductivity distribution in the mantle is conventionally performed by means of

Geomagnetic Depth Sounding (GDS). Until now GDS studies most often rely on

the long-period variations of magnetic field of magnetospheric origin coming from
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a global network of geomagnetic observatories. From these data local C-responses

(Banks, 1969) (see appendix 1 of this paper explaining the concept) are estimated

at a number of periods and then inverted for mantle conductivity. There are nu-

merous studies (Chen et al., 2020; Khan et al., 2011; Munch et al., 2018; Schultz

and Larsen, 1990; Zhang et al., 2020, among others) that performed 1-D inversions

of local C-responses at a number of locations in order to detect lateral variations

in the mantle conductivity.

In addition, a few semi-global (Koyama et al., 2006, 2014; Shimizu et al., 2010;

Utada et al., 2009) and global (Kelbert et al., 2009; Li et al., 2020; Semenov and Ku-

vshinov , 2012; Sun et al., 2015) 3-D mantle conductivity models have been derived

by means of an inversion of local C-responses. A few comments on the recovered

3-D models are relevant at this point. First, due to limited frequency band, local

C-responses, and thus models based on them have limited sensitivity in the crust

and upper mantle (Grayver et al., 2017; Kelbert et al., 2008; Püthe and Kuvshinov ,

2014). Second, the family of 3-D models produced until now are rather divergent.

This discrepancy is mostly due to the inherent strong non-uniqueness of the inverse

problem arising from spatial sparsity and irregularity of data distribution, limited

period range, and inconsistency of the assumed external field model, which is based

on a too simplistic assumptions about the geometry of the magnetospheric ring

current. Indeed, there has long been evidence for a more complex structure and

asymmetry of the magnetospheric source (Balasis and Egbert , 2006; Luhr et al.,

2017; Olsen and Kuvshinov , 2004, among others).

To overcome the former problem, Püthe et al. (2014) introduced a new type of

transfer functions (TFs) that are capable of handling sources of arbitrary com-

plexity. These TFs relate the expansion coefficients describing the source globally

with a locally measured magnetic (or/and electric) field, hence these TFs are re-

ferred to as global-to-local (G2L) TFs. Guzavina et al. (2019) and Munch et al.

(2020) estimated and inverted “vertical magnetic” G2L TFs at several continen-

tal geomagnetic observatories in terms of local 1-D conductivity distributions and

revealed noticeable lateral variations in mantle conductivity. Note that the term

“vertical magnetic” stresses the fact that G2L TFs under consideration relate the

global expansion coefficients to the local vertical magnetic field component.

However, regardless of whether local C-responses or global-to-local transfer func-

tions are used, the spatially uneven distribution of observatories with only a few

stations in oceanic regions precludes obtaining a cogent global 3-D model of man-

tle conductivity of uniform lateral resolution from observatory data. In contrast

to ground-based data, satellite-borne measurements provide better spatio-temporal

data coverage. With the Swarm satellite constellation mission (Olsen and Flobergha-

gen, 2018), the possibility of obtaining global images of 3-D mantle heterogeneities,

especially in oceanic regions, was considered as attainable. Bearing this in mind,

mapping 3-D electrical conductivity of the Earth’s mantle has been identified as

one of the scientific objectives of the Swarm satellite mission.

A major challenge when working with satellite data is the fact that, due to con-

stantly moving platform, one cannot use the local response or global-to-local trans-

fer functions concepts discussed above. Instead, in the course of the Swarm mission

preparation, two alternative approaches, both based on an inversion of the induced
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coefficients of a spherical harmonic (SH) expansion of the magnetic potential due to

signals of magnetospheric origin, have been developed. Both the time-domain (Ve-

limsky , 2013) and the frequency-domain (Püthe and Kuvshinov , 2013) approaches

yield promising results in 3-D model studies. However, a 3-D inversion of internal

coefficients has an inherent shortcoming since it requires a precise description of the

magnetospheric source, i.e. good knowledge of the time series of the inducing SH co-

efficients. However, in reality the source is inevitably determined with uncertainty.

This may lead to artefacts in resulting 3-D mantle conductivity images.

Püthe and Kuvshinov (2014) presented the concept of an alternative 3-D inverse

solution that alleviates this problem. The inversion scheme is based on an analysis of

array of transfer functions, hereinafter denoted as Q-matrix or matrix Q-response.

The frequency-dependent Q-matrix relates external (inducing) and induced SH co-

efficients of the magnetic potential describing the signals of magnetospheric origin

(Olsen, 1999). This scheme avoids complications with actual description of the

source. Only the geometry of the source, namely the specific set of SH terms that

are significant for its description, is assumed apriori (in analogy with the plane

wave source geometry assumption in magnetotellurics). Data analysis also allows

the researchers for a direct estimation of uncertainties, which can be incorporated

into the inversion scheme. Moreover, the approach permits the use of intermittent

data, e.g. data from different satellite missions that are separated in time.

In this paper we implement the matrix Q-responses concept to constrain the 3-D

mantle conductivity distribution using six years of satellite and observatory mag-

netic data. Most of the satellite data come from the Swarm mission but we also

exploit magnetic data from the Cryosat-2 satellite. As shown by Olsen et al. (2020),

platform magnetometer data like those from CryoSat-2 are a highly valuable aug-

mentation to data from dedicated geomagnetic missions like CHAMP and Swarm.

As we will see, Cryosat-2 data indeed allows us to improve the determination of

inducing and induced SH coefficients discussed above.

The paper is organized as follows. In the “Data” section we shortly describe the

ground-based and satellite magnetic data used in this study. In the “Methodol-

ogy” section we discuss the concept of matrix Q-responses and explain how these

responses are numerically predicted. Estimation of matrix Q-responses requires in

its turn retrieving time series of SH inducing and induced coefficients which is ex-

plained in the “Estimating inducing and induced coefficients” section. Derivation

of experimental matrix Q-responses from the recovered time series is presented in

the “Estimating matrix Q-responses” section. In the “Obtaining background 1-D

conductivity model” section we determine global 1-D conductivity profile which

we use as starting and background conductivity distribution during 3-D inversion.

The “Obtaining 3-D conductivity models” section provides details of 3-D inverse

solution and presents the results of the inversion. A summary and final remarks

are given in the “Concluding remarks” section. Finally in the “Outlook” section

we discuss potential ways to improve the recovery of 3-D conductivity structures in

the mantle. The paper also contains four appendices detailing some aspects of the

paper.
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2 Data

2.1 Observatory data

Hourly means of three components of magnetic field (vector data) from 161 world-

wide distributed geomagnetic observatories for the period 25 November 2013 to 31

December 2019 were utilized for estimation of time series of SH inducing and in-

duced coefficients. The observatory data had been checked for trends, jumps, spikes

and other errors (Macmillan and Olsen, 2013). Figure 1 shows the locations of these

observatories.

Figure 1 Location of 161 ground magnetic observatories used in this study.

2.2 Satellite data

Most of the satellite data come from the Swarm mission. The data include vector

magnetic field measurements decimated to one minute sampling rate from two of

the three Swarm satellites, namely Alpha and Bravo, for the same time interval as

for the observatory data. Data from the third satellite, Charlie, that flies nearby

Alpha are not included into the analysis since this data set would be significantly

redundant to that from Alpha, at least from the GDS perspective. Additionally, we

used 5 years (25 November 2013 to 31 December 2018) of calibrated one minute

data from the CryoSat-2 satellite (Olsen et al., 2020). Note that satellites move

with a speed of ∼ 7.7 km/s, and thus one minute temporal sampling corresponds

to ∼ 460 km spatial interval.

3 Methodology

3.1 Concept of matrix Q-responses

We begin by stating Maxwell’s equations in the frequency domain

1

µ0
∇× ~B = σ ~E +~jext, (1)

∇× ~E = iω ~B, (2)

where ~B ≡ ~B(~r, ω) and ~E ≡ ~E(~r, ω) are the Fourier transforms of the magnetic

and electric fields, respectively; ~r = (r, ϑ, ϕ) with r, ϑ and ϕ being distance from
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Earth’s centre, colatitude and longitude; and ω = 2π/T is angular frequency with

T as period. ~jext ≡ ~jext(~r, ω) is the Fourier transform of an impressed (extraneous)

source current density. σ(~r) is the conductivity distribution in the media and µ0

is the magnetic permeability of free space. This formulation neglects displacement

currents, which can be ignored in the considered period range of hours and longer.

Also note that we adopted the Fourier convention

f(t) =
1

2π

∞
∫

−∞

f̃(ω)e−iωtdω. (3)

In a source-free region above the conducting Earth, but below the region enclosed

by the current ~jext (in our case the magnetosphere), Eq. (1) reduces to ∇× ~B = 0.

Therefore, ~B is a potential field and can be written as a gradient of a scalar magnetic

potential V , i.e.

~B = −∇V. (4)

Since ~B is solenoidal, i.e. ∇ · ~B = 0, V satisfies Laplace’s equation ∇2V = 0, and

can be represented as sum of external (inducing) and internal (induced) parts,

V = V ext + V int, (5)

where both parts are expanded in series of spherical harmonics (SH):

V ext(~r, ω) = a
∑

n,m

εmn (ω)
( r

a

)n

Y m
n (ϑ, ϕ), (6)

V int(~r, ω;σ) = a
∑

k,l

ιlk(ω;σ)
( r

a

)−(k+1)

Y l
k(ϑ, ϕ). (7)

Here, a = 6371.2 km is Earth’s mean radius, εmn (ω) and ιlk(ω;σ) are the SH coef-

ficients of the inducing and induced parts of the potential, respectively, and Y m
n is

the spherical harmonic of degree n and order m,

Y m
n (ϑ, ϕ) = P |m|

n (cosϑ)eimϕ, (8)

with P
|m|
n (cosϑ) being the Schmidt quasi-normalized associated Legendre function

of degree n and order |m|. For brevity, we will use the convention

∑

n,m

=

Next
∑

n=1

n
∑

m=−n

and
∑

k,l

=

Nint
∑

k=1

k
∑

l=−k

, (9)

where Next and Nint are the maximum degree of inducing and induced coefficients,

respectively. Further note that in Eq. (7) we explicitly specify that V int and ιmn
depend on subsurface conductivity σ, and in Eqs. (6)-(7) we use different indices for

external (inducing) and internal (induced) coefficients to account for the Earth’s 3-D

conductivity distribution. In contrast, for a 1-D Earth model (that is, conductivity
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depends only on depth), every inducing coefficient produces exactly one induced

coefficient of the same degree and order, and these coefficients are linearly related

through the scalar Q-response defined as

ιmn (ω;σ) = Qn(ω;σ)ε
m
n (ω). (10)

Further, Qn is independent of the order m (e.g Bailey , 1969) and can be calculated

analytically using appropriate recurrence formulas. Based on the Srivastava (1966)

formalism, Parkinson (1983) presents such formulas for layered spherical Earth’s

model with piece-wise constant conductivity. There also exist recursions for other

layered Earth’s models, for example, for a conductivity distribution that obeys a

power law within each layer (cf. Kuvshinov and Semenov , 2012).

It follows from Eqs. (4)-(10) that the magnetic field above or on the surface of

the Earth (r ≥ a) can be written as

Br(~r, ω;σ) = −
∑

n,m

εmn (ω)

[

n
( r

a

)n−1

− (n+ 1)Qn(ω;σ)
(a

r

)n+2
]

Y m
n (ϑ, ϕ), (11)

~BH(~r, ω;σ) = −
∑

n,m

εmn (ω)

[

( r

a

)n−1

+Qn(ω;σ)
(a

r

)n+2
]

∇⊥Y
m
n (ϑ, ϕ). (12)

Here ~BH = (Bϑ, Bϕ) and ∇⊥ denotes the angular part of the gradient, i.e.

∇⊥ = ~eϑ
∂

∂ϑ
+ ~eϕ

1

sinϑ

∂

∂ϕ
, (13)

with ~eϑ and ~eϕ as the unit tangential vectors of the spherical coordinate system.

In case of a 3-D conductivity distribution, every inducing coefficient εmn generates

an infinite series of induced coefficients ιlk; thus we can write

ιlk(ω;σ) =
∑

n,m

Qlm
kn(ω;σ)ε

m
n (ω), (14)

where the Qlm
kn forms a two-dimensional array of transfer functions we refer to as

“matrix Q-response” or “Q-matrix” (Olsen, 1999). The magnetic field above or on

the surface of Earth reads

Br(~r, ω;σ) = −
∑

n,m

εmn (ω)
[

n
( r

a

)n−1

Y m
n (ϑ, ϕ)

−
∑

k,l

(k + 1)Qlm
kn(ω;σ)

(a

r

)k+2

Y l
k(ϑ, ϕ)

]

, (15)

~BH(~r, ω;σ) = −
∑

n,m

εmn (ω)
[ ( r

a

)n−1

∇⊥Y
m
n (ϑ, ϕ)

+
∑

k,l

Qlm
kn(ω;σ)

(a

r

)k+2

∇⊥Y
l
k(ϑ, ϕ)

]

. (16)
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3.2 Modeling matrix Q-responses

A 3-D inversion of observed (i.e. estimated from the data) matrix Q-responses in-

volves multiple computations (predictions) of these responses for given 3-D conduc-

tivity models. This requires solving numerically Maxwell’s equations (1)-(2), and

thus an elaboration on the form of current density term ~jext. Since we work with

the magnetospheric ring current as a source we can assume that the source current

flows in a thin shell of infinitesimal radius a+ δr as δr → 0 (that is, just above the

Earth’s surface), and the shell is surrounded by an insulator. Then ~jext collapses

to the sheet current density ~Jext. Since the current density is a solenoidal field, one

can write ~Jext in the form of a stream function Ψ

~Jext = −~er ×∇⊥Ψ, (17)

where ~er is the unit radial vector, and × stands for the vector product. The stream

function Ψ can be expanded in terms of the coefficients εmn as (Schmucker , 1985)

Ψ = −
1

µ0

∑

n,m

2n+ 1

n+ 1
εmn (ω)Y m

n (ϑ, ϕ). (18)

By substituting Eq. (18) into Eq. (17) the sheet current density ~Jext reads

~Jext =
1

µ0

∑

n,m

2n+ 1

n+ 1
εmn (ω)~er ×∇⊥Y

m
n (ϑ, ϕ). (19)

Note that ~Jext described by Eq. (19) produces exactly the external magnetic field
~Bext at the surface of the Earth (see Appendix G of Kuvshinov and Semenov (2012)

for details). In particular, Bext
r at the surface of the 3-D Earth’s is obtained from

Eq. (15) as

Bext
r (~ra, ω) = −

∑

n,m

nεmn (ω)Y m
n (ϑ, ϕ), (20)

and correspondingly, the induced part of the radial component at the surface of the

3-D Earth reads

Bint
r (~ra, ω;σ) =

∑

n,m

εmn (ω)
[

∑

k,l

(k + 1) Qlm
kn(ω;σ)Y

l
k(ϑ, ϕ)

]

, (21)

where ~ra = (a, ϑ, ϕ). We can further define

Bm,ext
n,r (~ra, ω) = −n Y m

n (ϑ, ϕ), (22)

Bm,int
n,r (~ra, ω;σ) =

∑

k,l

(k + 1) Qlm
kn(ω;σ)Y

l
k(ϑ, ϕ) (23)

as the inducing and induced parts of the radial component (at r = a) generated

for a given 3-D conductivity distribution by spherical harmonic sources with unit

amplitude εmn (ω) = 1, namely

~jmn = δ(r − a+)
1

µ0

2n+ 1

n+ 1
~er ×∇⊥Y

m
n (ϑ, ϕ). (24)
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Since Bm,int
n,r = Bm

n,r − Bm,ext
n,r , we compute (predict) the matrix Q-responses by

making use of the orthogonality of the spherical harmonics Y l
k

Qlm,pred
kn (ω;σ) =

1

(k + 1)
∥

∥Y l
k

∥

∥

2

∫

Ω

(

Bm
n,r(~ra, ω;σ)−Bm,ext

n,r (~ra)
)

Y l∗

k (ϑ, ϕ)dΩ. (25)

Here Ω is the complete solid angle, dΩ = sinϑdϑdϕ, Y l∗

k denotes complex conju-

gation of Y l
k , and

∥

∥Y l
k

∥

∥

2
is the squared norm of the spherical harmonic Y l

k . For

calculating Bm
n,r in a given 3-D conductivity model we utilize the global EM for-

ward solver x3dg (Kuvshinov , 2008) which numerically solves the corresponding

Maxwell’s equations

1

µ0
∇× ~Bm

n = σ ~Em
n +~jmn , (26)

∇× ~Em
n = iω ~Bm

n , (27)

using the integral equation (IE) approach with contracting IE kernel (Pankratov

and Kuvshinov , 2016). The mathematical machinery underlying the x3dg solver is

extensively described in Kuvshinov and Semenov (2012).

Determination of responses from magnetic field observations consists of two stages:

(i) time series of SH coefficients of inducing and induced parts of the magnetic

potential are determined from the satellite and observatory data and (ii) matrix Q-

responses are estimated from these time series. The following two sections provide

details of each stage.

4 Estimating inducing and induced coefficients
First, the core, lithosphere and ionosphere magnetic field, as given by the Compre-

hensive Inversion (CI; Sabaka et al., 2018) are subtracted from the vector magnetic

field data. The residual field variations in the period range between a few days and

a few months are assumed to contain the signals of magnetospheric origin. Subtrac-

tion of ionospheric signals allowed us to use both day and night residual data, thus

substantially increasing the amount of available data.

Data poleward of ±55◦ geomagnetic latitude were heavily down-weighted by a

factor 0.01 sin(ϑ) to suppress the negative influence of auroral ionospheric currents.

Time series of SH inducing and induced coefficients were then estimated from the

three components of magnetic field using its real-valued representation that reads

Br(~r, t) = −

Next
∑

n=1

n
∑

m=1

n [qmn (t) cosmϕ+ smn (t) sinmϕ]
( r

a

)n−1

Pm
n (cosϑ)

+

Nint
∑

k=1

k
∑

l=1

(k + 1)
[

glk(t) cos lϕ+ hl
k(t) sin lϕ

]

(a

r

)k+2

P l
k(cosϑ), (28)

Bϑ(~r, t) = −

Next
∑

n=1

n
∑

m=1

[qmn (t) cosmϕ+ smn (t) sinmϕ]
( r

a

)n−1 ∂Pm
n (cosϑ)

∂ϑ

−

Nint
∑

k=1

k
∑

l=1

[

glk(t) cos lϕ+ hl
k(t) sin lϕ

]

(a

r

)k+2 ∂P l
k(cosϑ)

∂ϑ
, (29)
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Bϕ(~r, t) =

Next
∑

n=1

n
∑

m=1

m [qmn (t) sinmϕ− smn (t) cosmϕ]
( r

a

)n−1

Pm
n (cosϑ)

+

Nint
∑

k=1

k
∑

l=1

l
[

glk(t) sin lϕ− hl
k(t) cos lϕ

]

(a

r

)k+2

P l
k(cosϑ), (30)

where qmn , smn and glk, h
l
k stand for the inducing and induced coefficients, respec-

tively, that are determined in the geomagnetic dipole coordinate system. Since it

is assumed that the signals under consideration are governed by dynamics of the

distant magnetospheric ring current which mostly flows in (geomagnetic) equatorial

plane, the dominant coefficients in the above expansions are of degree 1 and order

0. These coefficients were estimated in 1.5 hours time bins, roughly corresponding

to a single satellite orbit. The remaining coefficients were estimated in time bins of

6 hours in order to improve the spatial resolution and avoid overfitting. With these

settings, the coefficients for the j-th time (either 1.5 or 6 hours) bin are estimated

by solving the following minimization problem

∑

t∈Dj

∑

α∈{r,θ,φ}

∣

∣

∣
w(~r)

[

Bobs
α (~r, t)−

{

Bext
α (~r) +Bint

α (~r)
}

]
∣

∣

∣

2

−→
qj ,sj ,gj ,hj

min,

j = 1, 2, ..., N, (31)

where Bext
α and Bint

α correspond to the terms with
Next
∑

n=1

n
∑

m=1
and

Nint
∑

k=1

k
∑

l=1

summation,

respectively, in Eqs. (28)-(30) and qj , sj ,gj ,hj are vectors of estimated coefficients.

For example, for qj , it reads

qj = (q01,j , q
1
1,j , ...q

Next

Next,j
)T , (32)

where the superscript T denotes the transpose of a vector. The notation t ∈ Dj

means that we take all available measurements in time bin, Dj , which reads

Dj ≡ [tj −∆t/2; tj +∆t/2], tj = (j − 1/2)∆t, j = 1, 2, ..., N, (33)

where ∆t is either 1.5 or 6 hours. The absence of dependence on time t in Bext
α and

Bint
α in Eq. (31) implies that we assume that coefficients do not vary within a time

bin Dj . Note also that for satellite data ~r ≡ ~r(t), since satellite moves in time. The

weights in Eq. (31) are defined as follows

w(~r) =

{

1 |90◦ − ϑGM | ≤ 55◦GM

0.01 sin(ϑ) |90◦ − ϑGM | > 55◦GM

(34)

Our choice of Next is based on the following consideration. Since the magnetospheric

ring current is located a few Earth’s radii away from the Earth, its hypothetical

small-scale structures are filtered out when the signal approaches the Earth and

low orbit satellites such as Swarm and CryoSat-2. In view of this, Next = 2 appears

a reasonable option. The choice of Nint is mostly constrained by spatio-temporal

coverage of input data sets. Our statistical analysis (not shown here) indicates that
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we can determine coefficients up to degree Nint = 3. Therefore, we need to estimate

Next(Next + 2) + Nint(Nint + 2) = 23 coefficients for every time bin. Since the

problem (31) is linear with respect to the coefficients, we used a Huber-weighted

robust regression method (Aster et al., 2018) to solve the minimization problem

(31).

Figure 2 presents the determined time series of inducing and induced coefficients

up to degree Next = 2. Note that the sixth-year time series were recovered using

Swarm and observatory data only, since CryoSat-2 data were not available for us

at the time of this study. We observe that the dominant coefficients are of degree 1

and order 0. Additionally, in agreement with theory, the induced coefficients are a

fraction of the inducing coefficients. Further, we would like to study the influence

of different input data sets on the quality of the recovered time series. We tried five

data combinations

• Observatories,

• Swarm

• Swarm + CryoSat-2

• Swarm + Observatories

• Swarm + CryoSat-2 + observatories.

We calculated multiple squared coherency (MSC) between inducing and induced

coefficients for all combinations. Frequency-dependent real-valued MSC is a measure

that assesses the extent to which the output signal (in our case time series of induced

SH coefficients of a given degree k and order l) can be predicted from all input signals

(in our case eight time series of inducing SH coefficients), using the assumed linear

model stated by Eq. (14). MSC varies between 0 and 1, and for ideal linear system it

is equal to one. Thus, the higher MSC the higher the correlation between inducing

and induced coefficients. In the absence of systematic biases and correlated noise, the

higher MSC would indicate the statistically more reliable estimates of coefficients.

Figure 3 shows the MSC for all combinations of the data sets. Justification of

the choice of the period range for which we estimated MSC is given in the next

section. Further note that in order to make the time-domain and frequency domain

presentations consistent, we use a complex-valued notation for the time series of

coefficients in the remainder of the paper. In this notation, vector magnetic field is

given as

Br = −Re
[

∑

n,m

nεmn (t)
( r

a

)n−1

Y m
n (ϑ, ϕ)−

∑

k,l

(k + 1)ιlk(t)
(a

r

)k+2

Y l
k(ϑ, ϕ)

]

, (35)

~BH = −Re
[

∑

n,m

εmn (t)
( r

a

)n−1

∇⊥Y
m
n (ϑ, ϕ) +

∑

k,l

ιlk(t)
(a

r

)k+2

∇⊥Y
l
k(ϑ, ϕ)

]

, (36)

where εmn and qmn , smn are related as

εmn = (qmn − ismn )/2, m > 0; εmn = (q|m|
n + is|m|

n )/2, m < 0; ε0n = q0n, (37)

and similarly ιlk can be written via glk and hl
k as

ιlk = (glk − ihl
k)/2, l > 0; ιlk = (g

|l|
k + ih

|l|
k )/2, l < 0; ι0k = g0k. (38)
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Figure 2 Time series of estimated inducing (blue) and induced (red) coefficients up to degree
Next = 2. Note the different y-axis ranges on the plots.

It is seen from the figure that MSC is highest when both satellite and observa-

tory data sets are used to calculate MSC. MSC obtained using only observatory

data is noticeably lower than MSC derived entirely from satellite data. Likewise
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MSC estimated from the Swarm and CryoSat-2 data sets combination is higher

than MSC obtained using only Swarm data. However, adding observatory data to

the Swarm or Swarm + CryoSat-2 data levels the difference. With this exercise

we aimed to demonstrate that satellite data are indeed indispensable for better

separation/description of inducing and induced coefficients.

Finally, we note that the highest MSC is observed for the coefficient ι01, as ex-

pected. The lowest MSC is obtained for the coefficient ι02; this is probably due to

the fact that the major part of the variance in n = 2 m = 0 coefficients is due

to annual and seasonal variability (cf. Figure 2) which is outside of the considered

period range.
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Figure 3 Multiple squared coherencies between a given induced coefficient, ιl
k
and eight inducing

coefficients, εmn obtained using different combinations of input data sets. Note different y-axis
range in the plot for the term ι0

1
.

5 Estimating matrix Q-responses

The Q-matrix is estimated row-wise for a given k and l and at a given frequency ω

by solving a minimization problem

Nsec
∑

i=1

∣

∣

∣
ιlk,i −Ql

kEi

∣

∣

∣

2

−→
Ql

k

min, (39)

where Ql
k stands for the row elements of Q-matrix, i.e.

Ql
k(ω) = (Ql−1

k−1(ω), Q
l 0
k 1(ω), ..., Q

l Next

kNext
(ω)), (40)
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and the vector Ei contains estimates of the time spectra (for a given frequency ω)

of all inducing coefficients at i-th segment of the full time time series, i.e.

Ei(ω) = (ε−1
−1,i(ω), ε

0
1,i(ω), ..., ε

Next

Next,i
(ω))T , (41)

Similarly, ιlk,i is an estimate of the time spectra of the individual induced coefficient

at the i-th segment of the corresponding full time series. The length of the time

segments depends on ω and in general is a multiple of the associated period P =

2π/ω. Short segments increase Nseg, but in turn also increase the spectral leakage.

We found a segment length of 3P to be an optimal value in practice. Furthermore

the time segments overlap to improve statistical efficiency and are tapered before

performing the Fourier transform to further decrease the spectral leakage (e.g. Chave

and Jones, 2012). Since the problem (39) is linear with respect to elements of Ql
k,

we used the Huber-weighted robust regression method (Aster et al., 2018) to find

the minimizing estimate. The uncertainties of the estimates are calculated by using

the jack-knife approach. Repeating regression analysis for each k and l pair we

eventually obtained the estimates for all, Next(Next + 2)×Nint(Nint + 2) = 8× 15,

elements of Q-matrix and their uncertainties.

We note here that the matrix Q-responses are estimated at log-spaced periods.

The shortest period was chosen to be two days to avoid the influence of differ-

ent ionospheric sources. The longest period is constrained by the length of the

time-series. For a reliable statistical estimate, the number of time segments must

significantly exceed the number of dependent variables, Next. In our case, we have

6 years of data and Next = 8. Using segments with a length of 3P , an overlap of 50

percent, and requiring the number of segments to be at least 4Next, the maximum

period at which we can estimate matrix Q-responses is ≈ 40 days.

Figure 4 shows estimated “diagonal” matrix Q-responses. Since diagonal responses

are dominant, they are the most well resolved components. Additionally, Figure 4

shows the “upper limit” responses from the perfectly conducting Earth model (see

details in the “Q-responses for two simplistic conductivity models of the Earth”

appendix), as well as the “best fit” responses from the recovered 3-D model (will

be discussed later in the paper).

6 Obtaining background 1-D conductivity model

As we already discussed in the “Introduction” section, with magnetic field variations

of magnetospheric origin one can constrain the 3-D conductivity distribution at

depths approximately between 400 and 1600 km. Due to the non-linearity and non-

uniqueness of the inverse problem, the choice of the background 1-D model within

and outside this depth range is crucial for obtaining plausible 3-D conductivity

distribution. In this section, we will obtain the background 1-D model that will be

used as a starting and background model during inversion of matrix Q-responses.

The present section, in its methodological part, closely follows the scheme outlined

by (Grayver et al., 2017). It is based on a joint quasi 1-D inversion of the magnetic

signature of oceanic tidal signals and “magnetospheric” Q-responses. Here the term

“quasi” is used to stress the fact that during 1-D inversion the 3-D forward modeling

operator is exploited to account for the effects arising from laterally-variable oceanic
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Figure 4 Estimated “diagonal” (dominant) matrix Q-responses (circles and triangles with error
bars). Also shown are the “upper limit” responses from a perfectly conducting Earth model
(dashed lines), and the responses from the recovered 3-D model (solid lines). Real and imaginary
parts of the responses are depicted by blue and red colors, respectively.

bathymetry and sediment thickness. The 3-D forward modeling operator used to

estimate these effects has already been introduced in the previous section. We also

note here that the oceanic tidal signals are included into our analysis in order to

constrain the conductivity in the upper mantle (depths between 10 and 400 km).

6.1 Determination of the M2agnetic tidal signal

The tidally generated flow of the electrically conductive seawater in Earth’s main

magnetic field produces electric currents in the oceans, which in turn produce EM

field in the subsurface. The magnetic field measured on the coast, at the sea bot-

tom and with satellites thus contain information about the subsurface electrical

conductivity. In contrast to the conventional EM sources of ionospheric and mag-

netospheric origin (which are inductively coupled with the Earth due to the insu-

lating atmosphere between the source and the Earth), the unique characteristic of

the motion-induced electric currents in the oceans is its galvanic coupling with the

oceanic lithosphere. This enhances the sensitivity to resistive subsurface structures

(Schnepf et al., 2015; Velimsky et al., 2018) since the induced fields are influenced

by the toroidal (galvanic) part of the primary tidal EM field. Despite small am-

plitude (a few nT), tidal magnetic signals due to the semi-diurnal lunar M2 tide

(of period of 12 hours and 25 min) have been reliably extracted from magnetic

satellite measurements using the Comprehensive Inversion (CI) approach based on

a simultaneous estimation of the different contributions (in the core, lithosphere,

ionosphere, etc.) and selection of data for geomagnetic quiet periods (Sabaka et al.,

2015, 2020, 2016). The radial component, BM2
r , of the M2 magnetic tidal signal was
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synthesized from the estimated M2 SH coefficients, τmn , at mean satellite altitude

(h = 430 km) on a 2◦ × 2◦ grid. The expansion of the M2 signal in the CI model is

based on a potential representation given by

V M2(~r, t) = Re

[

eiωM2ta

18
∑

n=1

n
∑

m=−n

τmn

(a

r

)n+1

Y m
n (ϑ, ϕ)

]

, r ≥ a. (42)

The upper panel of Figure 5 shows the magnitude of the observed (i.e. synthesized

from the estimated SH coefficients) M2 radial magnetic field component.

6.2 Estimating dominant Q-response

As already discussed, the n = 1 and m = 0 term is largest in a SH expansion of the

signals of magnetospheric origin. To derive a global 1-D conductivity profile we use

the corresponding diagonal elements of the matrix Q-response, namely the response

that relates the inducing ε01, and induced, ι01, coefficients. Hereinafter we call those as

the “dominant” Q-response. To estimate this response we first estimate time series

of inducing and induced coefficients up to spherical harmonic degrees Next = 2 and

Nint = 3, respectively (see Section “Estimating inducing and induced coefficients”).

Since the model we work with consists of a surface thin layer of laterally-variable

(2-D) conductance on top of a 1-D conductivity structure (cf. Figure 6), the problem

becomes intrinsically 3-D and requires the implementation of Eq. (14) to estimate

the desired Q00
11. To this end we solve the minimization problem

Nsec
∑

i=1

∣

∣

∣
ι01,i −Q0

1Ei

∣

∣

∣

2

−→
Q0

1

min, (43)

where

Q0
1(ω) = (Q0−1

1−1(ω), Q
0 0
1 1(ω), ..., Q

0Next

1Next
(ω)). (44)

As discussed in the “Estimating inducing and induced coefficients” section, six years

of magnetic data allows us to estimate Q00
11 up to periods of ≈ 40 days. In addition,

and together with Q00
11, we estimate seven responses: Q0−1

1−1, Q
0 1
1 1, ..., Q

0 2
1 2. However,

the amplitude of these responses are much smaller than Q00
11. Therefore, in order to

utilize longer periods, we resort to the “univariate” minimization problem

Nsec
∑

i=1

∣

∣

∣
ι01,i −Q00

11ε
0
1,i

∣

∣

∣

2

−→
Q00

11

min . (45)

This allows us to estimate Q00
11 up to periods of about one year. To verify the

validity of this approach we also performed an estimation of Q00
11 using Eq. (43)

and compared the results in the period range where both responses overlap (2 - 30

days). The observed difference (not shown here) between both uni-variate and multi-

variate responses are negligible, thus reaffirming the use of a uni-variate approach

for estimating Q00
11. Circles with error bars in Figure 8 depict the estimated Q00

11

(the results shown with solid lines will be explained later).
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Figure 5 Top and middle: Global maps of magnitudes of the observed and predicted (modeled)
M2 radial magnetic field component. Predicted fields are obtained using the “joint” 1-D
conductivity profile shown in Figure 7. Bottom: Residuals, i.e. magnitude of the difference
between observed and predicted M2 radial magnetic field. Values are shown for a mean satellite
altitude of h = 430 km.

6.3 Modeling tidal signals and the dominant Q-response

Joint inversion of magnetic tidal signals and Q00
11 responses requires their multi-

ple prediction for a given conductivity model. To accurately predict (calculate)

magnetic fields/responses due to tidally-induced oceanic or magnetospheric electric
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Figure 6 Model parametrization adopted in “Obtaining background 1-D conductivity model”
section. The model consists of a top-most thin shell of laterally-varying conductance (right) and a
number of laterally-homogeneous conductivity layers underneath (left).

currents, it is essential to account for the conductivity of non-uniform oceans (Ku-

vshinov , 2008). To this end, we added a thin shell of laterally-variable conductance

(corresponding to oceans and continents) on top of a 1-D mantle conductivity model

(Figure 6). As discussed in the “Modeling matrix Q-responses” section, we calculate

the EM field by using the global EM forward code x3dg (Kuvshinov , 2008), which

numerically solves Eqs. (1)-(2).

The extraneous current density, ~jext, induced by the tidal forces, is confined to

the ocean and given by

~jext(~ra) = σs(~ra)
[

~v(~ra)× ~Bmain(~ra)
]

, (46)

where ~ra = (a, ϑ, ϕ), and ϑ, and ϕ are geographic colatitude and longitude, respec-

tively, σs is the depth-averaged conductivity of seawater, ~Bmain is Earth’s main

(core) magnetic field, ~v = ~u/h, h is the height of the water column and ~u is the

depth-integrated seawater velocity of the M2 tidal mode. ~Bmain is calculated using

the World Magnetic Model (Chulliat et al., 2015), ~u is taken from the HAMTIDE

ocean tidal model (Taguchi et al., 2014), and σs is derived from ocean salinity and

temperature data given by the World Ocean Atlas 2009; see Grayver et al. (2016)

for more detail about the individual terms of Eq. (46) and their uncertainties.

In case of Q00
11(ω;σ), the extraneous source is given by a sheet current density,

parameterized using a single Y 0
1 = cosϑ spherical harmonic. Following Eq. (24) it

reads

~J0,ext
1 =

3

2µ0
~er ×∇⊥Y

0
1 (ϑ, ϕ) =

3

2µ0
sinϑ~eϕ. (47)

Once the corresponding radial component of the magnetic field, B0,pred
1,r , is computed

at Earth’s surface, Q00,pred
11 (ω;σ) is obtained as

Q00,pred
11 (ω;σ) =

3

8π

∫

Ω

B0,pred
1,r (~ra, ω;σ) cosϑdΩ +

1

2
, (48)
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where ϑ and ϕ are geomagnetic colatitude and longitude, respectively. To obtain

Eq. (48) we used Eqs. (22) and (25) with

‖Y m
n ‖ =

[

∫

Ω

Y m
n (ϑ, ϕ)Y m∗

n (ϑ, ϕ)dΩ
]

1
2

. (49)

6.4 Joint stochastic 1-D inversion of tidal signals and dominant Q-responses

We consider a 1-D conductivity model consisting of M = 46 layers of fixed thick-

nesses (see first column in Table 1) and a core of fixed conductivity of 105 S/m. We

aim at estimating the conductivity values σ1, σ2, · · · , σM by solving a non-linear

inverse problem, formulated as the minimization task

φd(m) + λφr(m) −→
m

min, (50)

where φd is the data misfit, λ and φr is a regularization parameter and a regular-

ization term, respectively, and m = [lnσ1, lnσ2, · · · , lnσM ] is the vector of model

parameters. Solving the logarithm of conductivity ensures positivity of the argu-

ments. The data misfit in Eq. (50) reads

φd(m) =
1

N1D

N1D
∑

i=1

∣

∣Q00,pred
11 (ωi,m))−Q00,exp

11 (ωi)
∣

∣

2

[

δQ00,exp
11 (ωi)

]2 +

1

Ngrid

Ngrid
∑

j=1

∣

∣BM2,pred
r (~rj , ωM2,m)−BM2,exp

r (~rj , ωM2)
∣

∣

2

[

δBM2
r (~rj , ωM2)

]2 . (51)

where ωi correspond to periods between 1.5 and 150 days with number of frequencies

N1D = 27, and ~rj = (a + h, ϑj , ϕj) are 2◦ × 2◦ grid points, with number of grid

points Ngrid = 90 × 180. We do not have experimental estimates for δBM2
r , but in

order to make the second term dimensionless and compatible with the first term

we introduce δBM2
r (~rj , ωM2) = 0.1 nT. As discussed by Grayver et al. (2017) and

Munch et al. (2020), normalizing with the numbers of actual measurements (N1D

and Ngrid) is an important aspect that helps equalize the contribution of different

input data sets.

The regularization term reads

φr(m) =

M
∑

i=1

|lim|
pm , (52)

where li is the regularization operator of the i-th model parameter. In our implemen-

tation it approximates the first derivative with respect to the model parameters; in

other words it corresponds to the differences in log-conductivities between neighbor-

ing layers. The scalar pm controls the norm of the regularization term; by varying

pm one retrieves different regularization norms, ranging from a smooth L2-norm

(pm = 2) to the structurally sparse L1-norm (pm = 1) solutions. The regularization

parameter λ was determined by means of an L-curve analysis (Hansen, 1992). pm

was set to 1.5 which provides a good balance between sharp conductivity contrasts

and smooth models (Grayver and Kuvshinov , 2016).
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The minimization problem described by Eq. (50) is solved by means of a global

stochastic optimization technique (Covariance Matrix Adaptation Evolution Strat-

egy (CMAES); Hansen and Ostermeier (2001)). The details of the CMAES algo-

rithm used in our inversion are described in Grayver and Kuvshinov (2016).

Figure 7 shows mantle conductivity models estimated by inverting the dominant

Q-responses and tidal radial magnetic field separately and jointly. The obtained

models generally follow previous results (Grayver et al., 2017), demonstrating that

joint inversion allows us to resolve the conductivity of the upper mantle, the mantle

transition zone, and the lower mantle. Table 1 lists the estimated (layered) 1-D con-

ductivity model along with the 95 % confidence interval for each layer. The middle

Table 1 Depths (to the top of the layers), thicknesses, conductivities and 95 % confidence intervals
of the recovered “joint” 1-D (layered) conductivity model. Note that 1-D model starts from the depth
of 1 km; this is because the layered 1-D model is overlain by a thin (of 1 km thickness) shell of
laterally-variable conductance.

Depth (km) Thickness (km) Conductivity (S/m) Lower bound (S/m) Upper bound (S/m)
1 10 0.00032 0.00015 0.00069
11 12 0.00032 0.00016 0.00065
23 15 0.00034 0.00016 0.00070
38 15 0.00039 0.00017 0.00091
53 13 0.00050 0.00018 0.00138
66 15 0.00073 0.00024 0.00223
81 15 0.00116 0.00037 0.00370
96 17 0.00203 0.00068 0.00602
113 20 0.00374 0.00155 0.00905
133 23 0.00701 0.00306 0.01606
156 25 0.01293 0.00511 0.03273
181 30 0.02182 0.00956 0.04978
211 35 0.03137 0.01531 0.06429
246 35 0.04030 0.02118 0.07668
281 40 0.04775 0.02331 0.09783
321 40 0.05626 0.02849 0.11108
361 40 0.06939 0.03300 0.14594
401 40 0.09014 0.04158 0.19539
441 50 0.13698 0.06509 0.28830
491 60 0.25818 0.12804 0.52059
551 50 0.55871 0.26782 1.16554
601 60 0.98034 0.56960 1.68726
661 70 1.13267 0.67351 1.90487
731 70 1.17502 0.71936 1.91933
801 80 1.19377 0.74119 1.92270
881 100 1.21470 0.73511 2.00719
981 100 1.22527 0.72305 2.07633
1081 110 1.24674 0.71139 2.18497
1191 110 1.30836 0.67681 2.52924
1301 100 1.49968 0.76569 2.93726
1401 100 1.89385 0.86980 4.12354
1501 100 2.46800 1.12520 5.41326
1601 100 3.18402 1.48421 6.83058
1701 100 3.84989 1.80636 8.20526
1801 100 4.19080 1.90199 9.23387
1901 100 4.32177 1.92951 9.68005
2001 100 4.37388 1.91005 10.01588
2101 100 4.38075 1.74362 11.00642
2201 100 4.36998 1.53189 12.46614
2301 100 4.37026 1.41580 13.49000
2401 100 4.38499 1.26547 15.19443
2501 100 4.38851 1.13948 16.90154
2601 100 4.37654 1.04112 18.39754
2701 100 4.37371 0.99958 19.13727
2801 90 4.37127 0.99070 19.28740

panel in Figure 5 shows a map of the magnitude of the predicted (modeled) M2

radial magnetic field at mean satellite altitude of h = 430 km. This predicted field
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Figure 7 Mantle conductivity models obtained by inverting the dominant Q-responses and M2

tidal radial magnetic field separately and jointly. Gray lines show 95 % confidence interval for the
“joint” model.

is obtained using the estimated “joint” 1-D profile shown in Figure 7. Comparing

estimated and predicted fields we conclude that they match remarkably well. The

bottom panel of this figure shows a global map of residuals, i.e. the magnitude of

the difference between the predicted and the observed M2 radial magnetic field,

which is small in most regions of the world.

Finally, the solid curves in Figure 8 present predicted dominant Q-responses cal-

culated using the “joint” 1-D profile of Figure 7. We see that predicted responses

agree very well with the data-based responses at all periods.



Kuvshinov et al. Page 21 of 37

Figure 8 Estimated (circles) dominant Q-responses and their uncertainties (error bars), and
model predictions (solid curves). Predictions are for the 1-D profile obtained by jointly inverting
the dominant Q-responses and tidal radial magnetic field (cf. Figure 7). Positive and negative
values correspond to real and imaginary parts of the Q-response, respectively.

7 Obtaining 3-D conductivity models

7.1 Concept of the 3-D inversion

Similar to the 1-D inversion described in the previous section, we formulate the 3-D

inverse problem as a minimization task described by Eq. (50), where the data misfit

φd(m) reads

φd(m) =

N3D
∑

i=1

∑

k,l

∑

n,m

∣

∣

∣
Qlm,pred

kn (ωi,m)−Qlm,exp
kn (ωi)

∣

∣

∣

2

[

δQlm,exp
kn (ω)

]2 . (53)

Here ωi correspond to periods between 2 and 37.25 days with number of frequencies

N3D = 17. The model vector m contains the 3-D conductivity distribution structure

of the Earth’s mantle that we want to determine, the parameterization of which will

be specified in the next section. The form of the regularization term φr(m) depends

on the desired level of smoothness and model parameterization, as discussed later

in the paper.

In contrast to 1-D inversion where we were able to invoke a stochastic optimization

technique – and thus to quantify the uncertainty of the obtained 1-D model – for the

3-D inversion we exploit a deterministic approach owing to the high computational

cost of the problem. Due to the non-linearity of EM inverse problems, iterative

descent methods (e.g. Nocedal and Wright , 2006) are typically the methods of choice

for deterministic inversions. These methods require a computation of the gradient

of the penalty function φ with respect to the model parameters, i.e.

∇φ =

(

∂φ

∂m1
,
∂φ

∂m2
, ...,

∂φ

∂mNm

)⊤

. (54)
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While the gradient of the regularization term is easily calculated analytically, cal-

culation of the data misfit gradient is more challenging. The straightforward option

– a brute-force numerical differentiation – requires extremely high computational

loads and is approximate by nature. A much more efficient way to rigorously cal-

culate the gradient of the misfit is provided by an adjoint source approach, see e.g.

Pankratov and Kuvshinov (2010a). It allows the calculation of the misfit gradient

for the price of only a few additional forward calculations (i.e. numerical solutions

of Maxwell’s equations) excited by a specific (adjoint) source. Each inverse problem

setting requires explicit formulas for the adjoint source. The corresponding formulas

for our inverse problem are presented in the appendix “Constructing adjoint source

to calculate the misfit gradient”.

7.2 Numerical implementation

The derivations presented so far neither depend on the choice of the forward solver

(which numerically solves Maxwell’s equations (1)-(2) for a given conductivity model

and a given source) nor on the optimization method used to solve the inverse prob-

lem. In this section, we describe how we numerically implement the inversion con-

cept outlined in the previous section.

For the forward computations, the 3-D conductivity structure σ is discretized at

a spherical grid consisting of nr × nϑ × nϕ volume cells; the conductivity in each

cell is assumed to be constant.

The most expensive part – in terms of computational loads – of our forward

solution (based on IE approach) is the calculation of Green’s tensors. However,

these tensors depend on the chosen 1-D background conductivity, but not on the

3-D conductivity distribution in the model (Kuvshinov and Semenov , 2012). This

gives a possibility to make the inversion algorithm much more computationally

efficient by isolating the computation of Green’s tensors from the rest of the forward

calculations, such that it does not need to be repeated in each iteration of the

optimization procedure. A parallelization with respect to N3D frequencies and to

Next(Next + 2) elementary sources ~jmn has been implemented to further optimize

the computational load.

The inversion domain is divided into Nr layers of possibly variable thicknesses,

which do not necessarily coincide with the nr layers used for the forward modelling.

Since our data are transfer functions relating SH coefficients of the magnetic poten-

tial, it is most natural to also parameterize the model domain in terms of spherical

harmonics, as done previously by e.g. Kelbert et al. (2008). Within each layer the

conductivity is thus defined as a finite sum of spherical harmonics up to a cut-off

degree L, i.e. the number of model parameters Nm is given by Nm = Nr(L + 1)2.

Derivation and a detailed description of this parameterization is presented in the

appendix “Parametrization of the inversion domain”.

As mentioned in section “Concept of the 3-D inversion” we stabilize the inversion

with a regularization term φr. A parametrization with spherical harmonics auto-

matically yields a smooth solution. Due to the low cut-off degree L, an additional

natural regularization is included in the parametrization. Further smoothing is per-

formed by multiplication of the coefficients by a factor l(l + 1). Radial smoothing,

i.e. regularization across layer boundaries, was omitted in this study.
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An inversion is usually initiated using strong regularization. Once the convergence

rate flattens, the value of the regularization parameter λ is decreased, and the results

obtained with the previous λ are used as starting model. This gradual adaptation

of the amount of regularization constrains the solution to be close to the global

minimum in every stage of the iterative inversion process. This, in turn, facilitates

convergence and prevents stepping into a local minimum.

To minimize the penalty function our inversion code offers the option to choose be-

tween several popular optimization methods: non-linear conjugate gradients, quasi-

Newton and limited-memory quasi-Newton (LMQN). Our tests (not shown here)

revealed that the LMQN method is superior to other methods in terms of computa-

tional cost. Our implementation of the method follows Nocedal and Wright (2006).

The iterative formula for updating the model vector m is

m(k+1) = m(k) − α(k)H(k)(∇φ)(k), (55)

where H(k) is an approximation to the inverse Hessian matrix, updated at every

iteration k, using the limited-memory Broyden-Fletcher-Goldfarb-Shanno formula

(e.g., Nocedal and Wright , 2006). The step length α(k) is computed by an inexact

line search and chosen to satisfy the Wolfe conditions (Nocedal and Wright , 2006).

7.3 Results of 3-D inversion

As discussed earlier matrix Q-responses were estimated in the period range between

2 and 37.25 days. This means – following the skin depth concept (e.g., Weidelt ,

1972) – that with these responses we constrain the 3-D conductivity distribution at

mid-mantle depths. Specifically, we search for conductivity variations in the depth

range between 410 and 1200 km. We parametrize the 3-D conductivity distribution

at these depths by three spherical layers of 260, 230, and 300 km thickness. The

thickness and position of the first layer was chosen to coincide with the mantle

transition zone (depths 410 – 670 km) where seismic studies show compositional

changes. The thicknesses of the two lower layers are taken to be compatible with

those used in other global 3-D EM inversions (Kelbert et al., 2009; Semenov and

Kuvshinov , 2012; Sun et al., 2015). To remain compatible with the cut-off degree

for the induced SH coefficients, the conductivity in the mantle was parameterized

by spherical harmonics up to degree three.

The nonuniform layers are embedded in a (fixed) background 1-D conductivity

profile obtained in the “Obtaining background 1-D conductivity model” section.

To account for the effects of the nonuniform distribution of oceans and conti-

nents we included in the model a thin surface layer describing laterally-variable

conductance (cf. the right panel of Figure 6).

Forward calculations were performed on a 5◦×5◦ lateral grid; results of our model

experiments (not shown here) indicate that higher spatial resolution does not lead to

improved results since the matrix Q-responses are estimated up to very low degree

and for periods longer than 2 days.

Figure 9 shows the final 3-D model. The model show significant deviations of

conductivity from the global 1-D conductivity profile in the Pacific Ocean region,

particularly at depths between 410 and 670 km. Following many inversion runs,
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410 km - 670 km

670 km - 900 km

900 km - 1200 km

670 km - 900 km

-1 0 1

Figure 9 Estimated 3-D conductivity model. Conductivities are shown as log10
σ3D
σ1D

where σ1D

stands for the 1-D background conductivity.
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which entailed testing different model parameterization (in terms of number of layers

and cut off degree of SH expansion) and different number of Q-matrix elements

included in the inversion, the “Pacific Ocean” anomaly appeared to be a robust

feature. However, we would like to stress that the 3-D model is poorly constrained

in polar regions where the data are heavily downweighted when estimating inducing

and induced coefficients. By purpose we do not compare our model with the global

3-D models obtained from ground-based (observatory) data (Kelbert et al., 2009;

Semenov and Kuvshinov , 2012; Sun et al., 2015) since these models are inconclusive

in the Pacific Ocean due to the lack of ground-based data in this region.

8 Concluding remarks

This paper presents methodological developments and results related to detect-

ing three-dimensional (3-D) variations of the electrical conductivity at mid-mantle

depths (410 – 1200 km) using six years of Swarm, CryoSat-2 and observatory mag-

netic field data. As far as we know this is one of the first endeavors to image 3-D

mantle conductivity from space. The reader is referred to the paper of Velimsky and

Knopp (2020) in the same issue where an alternative 3-D model based on different

inversion concept is presented and discussed.

Our approach relies on the estimation and inversion of matrix Q-responses. These

responses relate spherical harmonic coefficients of inducing and induced parts of the

magnetic potential. The limited spatio-temporal resolution of the data allows us to

estimate time series of SH inducing and induced coefficients only up to degrees 2

and 3, respectively. This, by the nature of the case, restricts the lateral resolution

of the resulting 3-D conductivity models.

The presented results show significant deviations of conductivity from 1-D conduc-

tivity profile in the Pacific Ocean region. Many inversion settings were investigated

in order to test the robustness of this feature. These included varying model param-

eterization and number of Q-matrix elements included in the inversion. We refrain,

however, from speculation on the origin of this anomaly, noting that the agreement

between estimated and predicted responses is not fully satisfactory for many el-

ements of the Q-matrix. This is in particular due to the fact that the estimated

responses occasionally take unrealistic values, indicating that the determination of

time series of SH inducing and induced coefficients is far from perfect and requires

further improvement. In the “Outlook” section we discuss how the global 3-D EM

mapping of mantle conductivity could be advanced.

We also obtained a new 1-D conductivity profile that is global for depths larger

than 400 km (since based on the inversion of global long-period Q-responses) but

semi-global (i.e. confined to the oceans) at shallower depths (since based on an

inversion of tidal signals). As expected, this new 1-D profile is close to that obtained

by Grayver et al. (2017) where a similar approach was used, although utilizing

different input data sets. Bearing in mind that this approach: (i) is most consistent in

terms of proper accounting for the ocean effect and including magnetospheric source

terms other than P 0
1 , and (ii) allows for constraining the 1-D electrical structure

of the mantle throughout its full depth range, we recommend the use of the 1-

D conductivity profile presented here or in (Grayver et al., 2017) instead of that

obtained by Kuvshinov and Olsen (2006); Püthe et al. (2015).
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9 Outlook

In spite of continuous and dedicated efforts, the difficult task of global 3-D determi-

nation of mantle conductivity structures remains a challenging problem. We discuss

below some potential ways to improve the determination of 3-D structures on a

global scale.

9.1 Alternative approaches to estimate time series of inducing and induced coefficients

As seen in section “Estimating matrix Q-responses”, many elements of the Q-matrix

are poorly resolved. The most probable reason for this is an imperfect estimation of

the inducing and induced coefficients. Note again that the induced coefficients are

responsible for 3-D conductivity effects, and one 3-D effect that strongly influences

the results but cannot be properly addressed by the “separation” (Gauss) method

exploited in this paper is the so-called ocean induction effect (Kuvshinov , 2008).

Recall that the Gauss method is based on a simultaneous analysis of radial and

horizontal magnetic field components. Given deficient spatio-temporal distribution

of observatory and Swarm data, with Gauss method one is able to recover only low

SH coefficients both in the inducing and induced parts. But induced radial magnetic

field requires higher SH degrees for its proper description, since this component is

strongly affected by the (localized) ocean effect.

There exists an alternative approach to isolate the inducing part of the signals

from the induced part. It exploits the pre-computed EM fields/responses induced

by “elementary” extraneous currents in an a-prior model of known conductivity;

commonly this model includes oceans and continents of laterally-variable conduc-

tance underlain by a layered (1-D) medium. This approach has been routinely used

for the last two decades to retrieve the inducing part of the signals in the frequency

domain. In particular, the concept was used in analyses of ground-based (Guzavina

et al., 2019; Koch and Kuvshinov , 2015; Kuvshinov et al., 1999, among others) and

satellite (Chulliat et al., 2016; Sabaka et al., 2013, 2015, 2020, among others) mag-

netic data of ionospheric origin (assumed to be mostly periodic). It was also used

for analysis of aperiodic ground-based data of magnetospheric origin (Honkonen

et al., 2018; Munch et al., 2020; Olsen and Kuvshinov , 2004; Püthe and Kuvshinov ,

2013; Püthe et al., 2014). Note that the latter studies aimed to explore the spatio-

temporal evolution of the induced EM field, and time-domain results in these studies

were obtained by converting the frequency-domain results into the time domain by

means of a Fourier transform.

In the context of this study we are interested in isolating inducing and induced

parts of (aperiodic) signals of magnetospheric origin. This prompts a two-step pro-

cedure for retrieving time series of the corresponding SH coefficients. The procedure

is based on the fact that the magnetic horizontal components are much less influ-

enced by 3-D effects compared to the radial component (Kuvshinov , 2008). Thereby,

by analyzing the horizontal magnetic components and assuming an a-prior Earth’s

conductivity model, one determines time series of inducing coefficients. Note, that to

account for time-domain induction effects in satellite data the FT approach hardly

works, since satellites move in space. But retrieving the inducing coefficients can

be done directly in the time domain using a concept of impulse responses (Svetov ,

1991). We notice here that as applied to geomagnetic field modelling this concept
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was already used by Maus and Weidelt (2004); Olsen et al. (2005); Thomson and

Lesur (2007) but invoking a simplified setting, assuming a 1-D conductivity and

a magnetospheric source described by one single spherical harmonic. With the re-

trieved time series of external (inducing) SH coefficients, one determines in a second

step the induced coefficients by analyzing the magnetic radial component only. Effi-

cient implementation of this two-step approach is discussed in Grayver et al. (2020).

9.2 Exploiting data from non-dedicated satellite missions

In the context of 3-D EM induction studies we strive for a precise and detailed

description of the spatio-temporal structure of inducing and induced signals. From

this perspective, the ideal geomagnetic satellite mission would consist of a large

number of low Earth orbiting (LEO) satellites (in polar, circular orbits) uniformly

separated in local time (that is, in longitude). This configuration allows for detect-

ing both latitudinal and longitudinal variability of the signals. The more satellites,

the higher the resolution of the recovered inducing and induced signals, in time and

space. The existing dedicated Swarm constellation mission comprises two satellites

(Alpha and Bravo) with varying local time separation between zero and six hours,

thus limiting detection of longitudinal variability of the signals. Olsen et al. (2020)

and Stolle et al. (2020) used data collected by the CryoSat-2 and GRACE-FO

satellites, respectively, and demonstrated that platform magnetometers do provide

valuable geomagnetic field measurements, given that vector magnetic field can be

properly calibrated. These platform magnetometers are present onboard many LEO

satellites, as a part of their attitude control system. In this study, we used calibrated

CryoSat-2 data in addition to Swarm and observatory data, and observe that these

data indeed improve the recovery of the aforementioned signals. However, improve-

ment by adding data from one single satellite is limited. Obviously, more data from

LEO satellites in orbits with different local times are necessary for a substantial

improvement; for instance, usage of duly calibrated data from satellites like the

Iridium-Next and Spire constellation could be promising.

Another opportunity are dedicated satellite constellations with low-inclined satel-

lites (e.g., Hulot et al., 2020) which will enable researchers to better characterize

the complex spatio-temporal nature of the ionospheric and magnetospheric signals.

9.3 Multi-response, multi-source and multi-resolution global 3-D imaging

The 3-D results presented in this paper rely on an analysis of magnetic field varia-

tions of periods longer than one day, generated by the magnetospheric ring current.

As the penetration depth of EM field depends on periods, these variations are sen-

sitive to depths greater than 400 km. To constrain 3-D conductivity distribution

at shallower depths the analysis of EM field variations at periods shorter than one

day are required. In the period range of daily variations (4 to 24 hours) these vari-

ations are primarily periodic and the dominating source in this period range is the

(mid-latitude) ionospheric current system forced by solar heating of the ionosphere

(Yamazaki and Maute, 2017). Variations at periods shorter than 4 hours – which

are mostly aperiodic – also originate in the ionosphere, and can be spatially ap-

proximated by a vertically incident plane wave of arbitrary polarization, at least at

mid-latitudes (Chave and Jones, 2012). Analysis of variations in a period range as
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wide as practicable would provide an opportunity for imaging the 3-D conductivity

structures of the Earth throughout its full depth range – from the crust down to

the lower mantle. However, this is a challenging task, because it requires combining

transfer functions from sources of different morphology, specifically, long-period (a

few days to a few months) matrix Q-responses, daily (4 to 24 hours) and long-

period global-to-local transfer functions (Guzavina et al., 2019; Püthe et al., 2014),

and shorter period (a few minutes to 3 hours) magnetotelluric (MT) responses – tip-

pers (Morschhauser et al., 2019). The latter three (local) responses are estimated

from ground-based data, whereas the (global) matrix Q-responses are estimated

from satellite (and observatory) data. As discussed above, the satellite-based ma-

trix Q-responses allow for a global 3-D imaging of mid-mantle conductivity but at

rather low (continental-scale) lateral resolution. Ground-based data allow for higher

resolution 3-D imaging of the Earth’s mantle in regions with a dense net of contin-

uous observation sites (like in Europe and China), or temporary long-term (like in

Australia (Koch and Kuvshinov , 2015)) observations. However, bearing in mind an

overall very irregular spatial distribution of the ground based magnetic sites (with

substantial gaps in oceanic regions), a proper determination of a global 3-D man-

tle conductivity model of (uniform) high-resolution is hardly feasible. The above

considerations suggest a multi-resolution approach to global 3-D imaging. Specif-

ically, at a first step a low-resolution baseline global 3-D conductivity model at

mid-mantle depths is obtained by inverting matrix Q-responses. Wherever possible,

large-scale regional 3-D conductivity models in the full depth range are obtained by

joint inversion of MT tippers and global-to-local transfer functions. As for oceanic

regions, one can decipher local one-dimensional (1-D) conductivity profiles beneath

island observatories. The final step of the discussed approach is a compilation of

the retrieved global, regional and local models in a global multi-resolution model,

for instance, as done by (Alekseev et al., 2015).

So far we discussed the work utilizing only magnetic field data, and confined to

onshore observations as ground-based data. However, as discussed earlier, there is

an overall deficiency of geomagnetic data in oceanic regions. Data from sea-bottom

long-term (with measurement period from a few months to a few years), large-scale

MT surveys (Baba et al., 2010, 2017; Suetsugu et al., 2012, among others) can fill,

at least partly, this spatial gap. A rather exhaustive summary of available sea-

bottom MT data sets is presented in (Guzavina, 2020). From these data one can

estimate and invert both MT responses (impedance and tipper) and “daily band”

global-to-local TFs. It is noteworthy that with sea-bottom long-term MT data it is

possible to estimate not only “vertical magnetic” global-to-local TFs, but also TFs

relating SH expansion coefficients with local horizontal electric and magnetic fields

(Guzavina, 2020). Finally, sea-bottom MT data generally comprise detectable tidal

signals (Schnepf et al., 2014) which also can be used for constraining conductivity

distribution in the lithosphere and upper mantle (Zhang et al., 2019).

In addition one can expand the database for EM sounding of the deep Earth with

long-period MT data from a few continental-scale MT projects, such as EarthScope

(Schultz , 2010), AusLAMP (Chopping et al., 2016) and SinoProbe (Dong and Li ,

2010).

Finally, multi-year continuous observations of electric field, number of which

around the world is constantly growing (Blum et al., 2017; Fujii et al., 2015; Wang
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et al., 2020) is another promising source of data for the probing deep structures of

the Earth.
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Appendix A: Conventional local transfer functions used in GDS

Following Appendix H of (Kuvshinov and Semenov , 2012) frequency-domain EM field at the surface of the 1-D

Earth can be written as

~EH(~ra, ω;σ) = −
1

µ0

∑

n,m

2n + 1

n + 1
ε
m
n (ω)

iωµ0aZn(a, ω;σ)

iωµ0a − nZn(a, ω;σ)
er × ∇⊥Y

m
n (ϑ, ϕ), (56)

Br(~ra, ω;σ) =
∑

n,m

(2n + 1)nε
m
n (ω)

Zn(a, ω;σ)

iωµ0a − nZn(a, ω;σ)
Y

m
n (ϑ, ϕ), (57)

~BH(~ra, ω;σ) = −
∑

n,m

2n + 1

n + 1
ε
m
n (ω)

iωµ0a

iωµ0a − nZn(a, ω;σ)
∇⊥Y

m
n (ϑ, ϕ). (58)

Here Zn is an impedance of underlying 1-D section, ~ra = (a−, ϑ, ϕ) and a− means that r tends to the surface of

the Earth, r = a, from below. Hereinafter we will omit but imply the dependence of the fields and responses on ω

and σ. Also we note that Zn depends on r; thus we explicitly write in the above equations that it is calculated on

the surface of the Earth. Zn is connected with the Cn-response as

Zn = −iωµ0Cn. (59)

Cn has a dimension of length and real part of Cn reflects the depth of penetration of EM field into the Earth

(Weidelt, 1972). Eqs. (56)-(58) allows us to obtain formulas used in Geomagnetic Depth Sounding

1 If the source is described by a single spherical harmonic Y m
n and m 6= 0 (and the Earth’s model is 1-D),

then – as it is seen from Eqs. (57) - (58) – the Cn-response can be estimated from the local measurements

of magnetic field as

Cn =
a

n(n + 1)

∂P
|m|
n
∂ϑ

P
|m|
n

Br

Bϑ

, (60)
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or/and

Cn =
1

sinϑ

ima

n(n + 1)

Br

Bϕ

. (61)

2 If – along with the magnetic field – the electric field is measured, then – as it is seen from Eqs. (56) and

(58) – the Cn-response can be estimated as

Cn = −
1

iω

Eϕ

Bϑ

, (62)

or/and

Cn =
1

iω

Eϑ

Bϕ

. (63)

3 Formulas (60)-(63) can be useful, for example, when EM field variations due to (ionospheric) Sq source are

investigated. Recall that daily Sq variations are assumed to be periodic, and thus they can be represented

via their time harmonics with frequencies ωp = 2πp
P , p = 1, 2, ..., where P = 24 hours. For p-th time

harmonic the dominant source term is Y p
p+1 (cf. Schmucker (1999)), and thus from the local measurements

of Sq field one can estimate Cp+1 at frequencies ωp.

4 If the source is described by a single spherical harmonic Y m
n , but m = 0, then Bϕ = 0, and thus only

formulas (60) and (62) are valid. In particular, when the source is described via harmonic Y 0
1 ≡ cosϑ then

Eq. (60) degenerates to

C1 = −
a

2
tanϑ

Br

Bϑ

. (64)

5 If the source is described via a number of spherical harmonics then measuring EM field at a single site is not

sufficient to determine the Cn response(s). In this case the least squares fitting of Br and one or both

components of horizontal magnetic field ~BH at a number of sites (observatories) allows for estimating the

responses (Schmucker , 1999).

6 If we assume that Zn depends weakly on the degree n and – to a first approximation – is equal to Z1, and

if, in addition to magnetic field the tangential gradients of the magnetic field are measured (or estimated),

then even in the case when the source is described by a number of spherical harmonics the C1-response can

be estimated from single site measurements of magnetic field and their gradients as

C1 = −a
Br

∇⊥ · ~BH

, (65)

where ∇⊥· is an angular part of divergence operator. To obtain Eq. (65) we used the following equations

Br ≈ Z1(a, ω)
∑

n,m

(2n + 1)nǫ
m
n (ω)

1

iωµ0a − nZn(a)
Y

m
n (ϑ, ϕ), (66)

∇⊥ · ~BH =
∑

n,m

(2n + 1)nǫ
m
n (ω)

iωµ0

iωµ0a − nZn(a)
Y

m
n (ϑ, ϕ). (67)

The latter equation is obtained using equality

∇⊥ ·
(

∇⊥Y
m
n

)

= ∇
2
⊥Y

m
n = −n(n + 1)Y

m
n , (68)

where ∇2
⊥ is an angular part of Laplacian operator.

7 Finally the continuity of magnetic field through the Earth’s surface allows us to relate “global” Cn (at the

surface of the Earth) and Qn. By equating Eqs. (57) and (11), the latter with r = a, we obtain

Cn =
a

n + 1

1 − n+1
n Qn

1 + Qn

. (69)

and

Qn =
n

n + 1

a − (n + 1)Cn

a + nCn

. (70)
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Appendix B: Q-responses for two simplistic conductivity models of the Earth

It is instructive to explore the behavior of Qn for the Earth’s model of uniform conductivity

σ ≡ σu. (71)

It can be shown (Parkinson, 1983) that for this Earth’s model Qn is given by

Qn(ω;σ) = −
n

n + 1

Jn+3/2(ka)

Jn−1/2(ka)
, (72)

where Jp is Bessel’s function of p-th order, and (propagation) constant k is

k =
√

iωµ0σu. (73)

Let us look at the behaviour of Qn for large k. Due to Eq. (73) this gives us an information how Qn behaves at

high frequencies or/and for high conductivity of the Earth. Using asymptotic for spherical Bessel functions for large

value of argument (Abramowitz and Stegun, 1964) one obtains

Qn ≈
n

n + 1
, ka ≫ 1. (74)

By substituting Eq. (74) into Eq. (11) we have

Br = 0, ka ≫ 1. (75)

Note that the latter result is valid for a sphere of any radius, and thus one can obtain an expression for Qn for the

following simplistic 1-D conductivity Earth’s model which consists of insulating “mantle” of thickness h and perfect

conductor underneath

σ ≡

{

0 a > r > a − h

∞ 0 < r < a − h
(76)

Using the fact that Eq. (11) is now valid for r ≥ a − h, and that Br = 0 due to Eq. (75) one obtains that

Qn =
n

n + 1

(a − h

a

)2n+1
. (77)

From the latter equation it follows that for the model described by Eq. (76), Qn is a real-valued quantity which does

not depend on ω. This, in particular, means that in time domain the inducing and induced coefficients are related as

ι
m
n (t) = Qnε

m
n (t). (78)

This model is in a routine use by external field researchers since it allows them to account for EM induction in a

rather simple manner. Note that in case of any Earth’s model with finite 1-D conductivity distribution the relation

between the inducing and induced coefficients in time domain reads as a convolution, i.e.

ι
m
n (t;σ) =

t
∫

−∞

Qn(t − τ ;σ)ε
m
n (τ)dτ. (79)

The reader can find more details on time-domain modeling of magnetic fields and responses in (Grayver et al.,

2020).

Appendix C: Constructing adjoint source to calculate the misfit gradient

The content of this and the next appendix closely follows material presented in (Püthe and Kuvshinov , 2013).

In this appendix we are interested in estimating gradient of the misfit (53) with respect to model parameters.

Taking the total derivative of the data misfit in Eq. (53) yields

dφd(m) = 2Re

{N3D
∑

i=1

∑

k,l

∑

n,m

[

Qlm,pred
kn (ωi,m) − Qlm,exp

kn (ωi)
]∗

[

δQlm,exp
kn (ωi)

]2
dQ

lm,pred
kn (ωi,m)

}

.
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Since Qlm,pred
kn is given by eq. (25), the only term left to derive is dQlm,pred

kn . We first note that, by taking the

derivative of eq. (25), we obtain

dQ
lm,pred
kn = c

l
k

∫

Ω

dB
m
n,rY

l∗

k (ϑ, ϕ)dΩ, (80)

where we define

c
l
k =

1

(k + 1)
∥

∥Y l
k

∥

∥

2
. (81)

The critical element in eq. (80) is the total derivative of the radial component of the magnetic field, dBm
n,r . To

investigate this element, let us first define the operator Gej(~jext) as the “electric field solution” of Maxwell’s

equations (1)-(2) for the current source ~jext, i.e. ~E ≡ ~Ej = Gej(~jext). Analogously, the operator Gbj(~jext)

represents the “magnetic field solution” of Maxwell’s equations (1)-(2). Note that these operators are universal and

do not depend on the type of code solving the forward problem.

In a similar way, we can define the operator Geh(~hext) as the electric field solution of an alternative formulation

of Maxwell’s equations,

1

µ0

∇ × ~B
h

= σ ~E
h
, (82)

∇ × ~E
h

= iω ~B
h
+ µ0

~h
ext

, (83)

where ~hext describes a distribution of magnetic dipoles. Pankratov and Kuvshinov (2010a) showed that this

formulation can be transformed into the more common representation of Maxwell’s equations with a current source,

cf. Eqs. (1)-(2). The formulation given by Eqs. (82)-(83) is however convenient in context of the adjoint approach,

as will become clear later. An important property of the operators Gej , Geh and Gbj are their reciprocity relations

(Pankratov and Kuvshinov , 2010b):

〈

G
ej

(~a),~b
〉

=
〈

~a,G
ej

(~b)
〉

, (84)
〈

G
eh

(~a),~b
〉

=
〈

~a,G
bj
(~b)

〉

, (85)

where

〈~a,~b〉 =

∫

R3

~a(~r) ·~b(~r)dv (86)

denotes a complex-valued bilinear scalar product. In a spherical coordinate system,

〈~a,~b〉 =

∫

R3

(arbr + aϑbϑ + aϕbϕ) dv. (87)

Let us now consider Maxwell’s equations (1)-(2) in an Earth’s model with infinitesimally changed conductivity

σ + dσ, yielding electric and magnetic fields ~E + d~E and ~B + d ~B, respectively

1

µ0

∇ × ( ~B + d ~B) = (σ + dσ)(~E + d~E) +~j
ext

, (88)

∇ × (~E + d~E) = iω( ~B + d ~B). (89)

Further, subtracting Eqs. (1)-(2) from Eqs. (88)-(89) we obtain

1

µ0

∇ × d ~B = (σ + dσ)d~E + dσ ~E, (90)

∇ × d~E = iωd ~B. (91)

Using the operators defined above, we can rewrite Eq. (90) as

1

µ0

∇ × d ~B = σd~E + dσG
ej

(~j
ext

). (92)
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Note that we neglected the second order quantity dσd~E. Eqs. (92) and (91) constitute a set of Maxwell’s equations

for the infinitesimal fields d~E and d ~B excited by the “source” dσGej(~jext). Using the operator representation a

second time, we obtain an expression for d ~B

d ~B = G
bj

(

dσG
ej

(~j
ext

)
)

. (93)

So far, we did not make any assumptions about the external source current ~jext. We are interested in magnetic

fields excited by elementary spherical harmonic source described by Eq. (24). This yields the special case of Eq.

(93),

d ~B
m
n = G

bj
(

dσG
ej

(~j
m
n )

)

. (94)

Making use of reciprocity relation (85) and the definitions above, Eq. (80) can be rewritten in operator form:

dQ
lm,pred
kn = c

l
k

∫

S

dB
m
n,r(a, ϑ, ϕ)Y

l∗

k (ϑ, ϕ)ds

= c
l
k

∫

R3

d ~B
m
n (~r)~er(~r)Y

l∗

k (ϑ, ϕ)δ(r − a)dv

=

∫

R3

G
bj

(

dσG
ej

(~j
m
n )

)

~h
l
k(~r)dv

=
〈

G
eh

(~h
l
k), dσG

ej
(~j

m
n )

〉

, (95)

where

~h
l
k(~r) = c

l
kY

l∗

k (ϑ, ϕ)~er(~r)δ(r − a) (96)

is a fictitious magnetic source, consisting of radial magnetic dipoles distributed along Earth’s surface with weights

that are equal to clkY
l∗

k .

Substituting the last line of Eq. (95) into Eq. (80) yields

dφd(m) = 2Re







N3D
∑

i=1

∑

n,m

〈

G
eh

(~u
m
n ), dσG

ej
(~j

m
n )

〉







, (97)

with

~u
m
n =

∑

k,l

[

Qlm,pred
kn (ωi,m) − Qlm,exp

kn (ωi)
]∗

[

δQlm,exp
kn (ωi)

]2
~h

l
k. (98)

With the definition of the bilinear scalar product (87), we can use Eq. (97) to obtain the elements of the data misfit

gradient

∂φd

∂ms

= 2Re

{N3D
∑

i=1

∑

n,m

∫

Vj

(

E
um
n

r E
m
n,r + E

um
n

ϑ E
m
n,ϑ + E

um
n

ϕ E
m
n,ϕ

)

dv

}

∂σj

∂ms

. (99)

Here ~Eum
n = Geh(~um

n ) and ~Em
n = Gej(~jmn ), or in other words, ~Eum

n and ~Em
n are the “electric field” solutions

of Maxwell’s equations (82)-(83) and (26)-(27), respectively. This representation implies a model built from

elementary volume cells Vj each having a piece-wise constant conductivity σj . The last term in Eq. (99),

∂σj/∂ms, depends on the model parameterization (cf. Pankratov and Kuvshinov (2010a)); note that the Einstein

summation convention is implied for j. If the model parameters directly represent the conductivities of each cell, i.e.

ms = σs, then ∂σj/∂ms = δsj , where δsj is Kronecker’s delta. Eq. (99) demonstrates the essence of the adjoint

approach: in order to calculate the gradient of the data misfit, only one (per frequency and elementary source)

additional forward modelling with excitation by the adjoint source ~um
n is required.

Appendix D: Parametrization of the inversion domain

As we discussed in the main text, the inversion domain is divided into Nr layers of possibly variable thicknesses; Nr

is not necessarily equal to nr (i.e. the number of laterally heterogeneous layers relevant for forward modelling), as

we might only be interested in recovering the distribution of conductivity in specific layers. However, the layer

boundaries coincide with those of the forward modelling domain.
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When inverting matrix Q-responses, that relate inducing and induced SH coefficients, it seems natural to also

parametrize the inverse domain in terms of spherical harmonics, as previously done by e.g. Kelbert et al. (2008).

Within each layer, conductivity is thus defined as a finite sum of spherical harmonics up to a cut-off degree L. The

number of model parameters is then given by Nm = Nr × (L + 1)2.

The conductivity of each cell is first normalized as

s(ri, ϑi, ϕi) =
log10 σ(ri, ϑi, ϕi) − cb

ca
, (100)

where ca > 0 and cb > 0 are chosen such that mk ∈ [−1, 1] based on assumptions about minimum and maximum

conductivities in the mantle. Solving Eq. (100) for σ yields

σ(ri, ϑi, ϕi) = 10
s(ri,ϑi,ϕi)ca+cb , (101)

We then expand s for each layer by spherical harmonics,

s(ri, ϑi, ϕi) = g
0
0(ri) +

L
∑

l=1

g
0
l (ri)P

0
l (cosϑi)

+

L
∑

l=1

l
∑

m=1

[g
m
l (ri) cosmϕi + h

m
l (ri) sinmϕi]P

m
l (cosϑi). (102)

The model vector m is accordingly composed of the coefficients of the SH expansion

m = [g
0
0(r1), g

0
1(r1), ..., g

L
L(r1), h

L
L(r1), g

0
0(r2), g

0
1(r2), ..., g

L
L(r2), h

L
L(r2), ...

g
0
0(rNr ), g

0
1(rNr ), ..., g

L
L(rNr ), h

L
L(rNr )]

⊤
. (103)

Its constituents can be derived from Eq. (102) by making use of the orthogonality of the spherical harmonics, i.e.

g
m
l (ri) =

1
∥

∥Pm
l

∥

∥

2

∫

Ω

s(ri, ϑ, ϕ)P
m
l (cosϑ) cosmϕdΩ, (104)

h
m
l (ri) =

1
∥

∥Pm
l

∥

∥

2

∫

Ω

s(ri, ϑ, ϕ)P
m
l (cosϑ) sinmϕdΩ, (105)

where ‖Pm
l ‖2 is the squared norm of the associated Legendre polynomial Pm

l .

In “Constructing adjoint source to calculate the misfit gradient” appendix, we presented a formula (Eq. 99) to

compute the partial derivative of the data misfit φd with respect to the model parameters. The equation includes

the factor ∂σk/∂mj and for spherical harmonic parametrization, this term is calculated as

∂σk

∂mj

=
∂σk

∂sk

∂sk

∂mj

, (106)

∂σk

∂sk
= ln 10ca10

skca+cb , (107)

∂sk

∂mj

=

{

cosmjϕk

sinmjϕk

}

P
mj
lj

(cosϑk). (108)

Note that mj on the left-hand side of Eq. (108) denotes a model parameter, while on the right-hand side, it denotes

the order of the spherical harmonic for this model parameter.
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