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At very high energies, the partons in the nuclear wavefunction form a color glass condensate. Since the oc-
cupation number of partons in the color glass condensate is large, classical methods can be used to compute
multi-particle production in the initial instants of a high energy heavy ion collision. Non-perturbative expres-
sions are derived relating the distributions of produced partons to those of wee partons in the wavefunctions of
the colliding nuclei. The time evolution of components of the stress–energy tensor is studied and the impact
parameter dependence of elliptic flow is extracted. We discuss the space-time picture that emerges and interpret
the RHIC data within this framework.

I Introduction

At the Relativistic Heavy Ion Collider (RHIC), beams of
Gold ions collide at center of mass energies of

√
sNN = 200

GeV/nucleon. The goal is to create briefly an equilibrated
state of quarks and gluons called the quark gluon plasma and
to study its statistical properties [1], in particular its change
of phase to hadronic matter. It was understood very early
on that the likelihood of creating this novel state of mat-
ter depended crucially on the initial conditions for the colli-
sion [2, 3, 4, 5]. There are several time scales in the problem
and the appropriate values of these are determined by the
initial conditions.

It was also understood very early on that the initial con-
ditions for high energy collions are determined by the “wee
partons” (partons that carry a very small fractionx of the
nuclear momentum) in the wavefunctions of the colliding
nuclei [2]. This is because, in the language of quantum me-
chanics, smallx refers to Fock components of the nuclear
wavefunction that contain a large number of partons (mostly
gluons) [6]. In a nuclear collision, these virtual excitations
of the vacuum go on-shell and are therefore responsible for
multi-particle production. Thus an understanding of smallx
physics is essential to any formulation of a theory of heavy
ion collisions.

The problem of initial conditions is a difficult one be-
cause the behavior of the wee partons is mysterious and de-
fies our naive intuition. For instance, wee partons are long
wavelength excitations of the vacuum but they last for very
short times1. The large coherence length of the excitations
is also why a probabilistic picture of multi-particle produc-
tion (as implemented, for instance, in parton cascade mod-

els) must fail at high energies.

A traditional view is that the physics of wee partons
is intrinsically non-perturbative-for example, multi-particle
production is believed to be determined by non-perturbative
excitations, called Pomerons, with vacuum quantum num-
bers [8, 9]. It is believed that Pomerons could be constructed
in perturbation theory (the BFKL Pomeron [7]) but the sta-
tus of that approach is at present unclear [10]. An alterna-
tive, increasingly popular, viewpoint is that smallx physics
is weak coupling physics. This approach is motivated by the
idea of saturation [11], namely, that at smallx the density
of partons could be sufficiently large that recombination and
screening effects are significant enough to halt the growth
of parton distributions2. The large parton density pro-
vides a semi-hard scale-the saturation scaleΛs- that controls
the running of the QCD coupling constant- thereby making
weak coupling methods feasible. Another consequence of
this approach is that smallx physics is classical because the
occupation number of partons is∼ 1/αS(Λs) >> 1 [13].

Both of these ideas, the weak coupling due to high
parton densities and the applicability of classical methods
can be cast in the framework of an effective field the-
ory (EFT) [13] which treats partons at largex as static
sources of color charges for the to partons at smallx.
For a large nucleus, from the central limit theorem, these
sources of color charge are Gaussian weights,P [ρ] =
exp

(
− ∫

d2xt
1

Λ2
s
Tr(ρ2)

)
where the color charge charge

density squared per unit area,Λ2
s, interestingly, is the sat-

uration scale we mentioned previously. The classical theory
for a single nucleus is solvable analytically and the distri-
butions of partons computed [14]. What isad hoc in the

1This is why, from the uncertainity principle, one needs very high energies to probe these excitations.
2For a discussion of an alternative “final state” saturation scenario, see Refs. [12]
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classical picture is the separation between static sources and
dynamical fields. Remarkably, a Wilsonian renormaliza-
tion group procedure has been developed which quantifies
this separation of scales inx in a systematic way JIMWLK.
The structure of the classical field is preserved under evo-
lution; it is the weight functionP [ρ] in the effective action
that obeys a renormalization group equation. The saturation
scale (whose validity extends beyond the Gaussian model)
now acquires energy dependence-it is a functionΛs(x) of
x. The analogy of the EFT to spin glasses, and the high oc-
cupation number of fields with the momenta peaked atΛs

suggests that matter in this state is a Color Glass Conden-
sate (CGC)[13, 16, 17].

Our focus in this talk is on applying the Color Glas Con-
densate to nuclear collisions. In the following section, we
will outline the classical formalism for nuclear collisions.
In section 3, we will apply this formalism to compute en-
ergy and number distributions of the gluons produced in a
heavy ion collision. To study non-central collisions, we will
have to consider collisions of non-identical nuclei and that
will require we impose stringent constraints on color neu-
trality at the nucleon level. These improvements allow us to
discuss elliptic and radial flow as well. In the final section
we will discuss an interpretation of the RHIC data and shall
conclude with brief outline of open problems and potential
solutions in the classical approach.

II Classical formalism for nuclear
collisions

The classical EFT was first applied to the study of collisions
of large nuclei by Kovner, McLerran and Weigert [18]. The
model, as applied to nuclear collisions, may be summarized
as follows. The colliding nuclei are idealized to travel along
the light cone The high-x and the low-x modes in the nu-
clei are treated separately. The former corresponds to va-
lence quarks and hard sea partons and are considered re-
coilless sources of color charge. Each of the large Lorentz-
contracted nuclei (for simplicity, we will consider only col-
lisions of identical nuclei) now has a Gaussian distribution
of their color charge densityρ1,2 in the transverse plane.
The varianceΛs of the color charge distribution is the only
dimensionful parameter of the model, apart from the linear
size of the nucleus. For central impact parameters,Λs can be
estimated in terms of single-nucleon structure functions [?].
It is assumed, in addition, that the nucleus is infinitely thin in
the longitudinal direction. Under this simplifying assump-
tion, the resulting gauge fields are explicitly boost-invariant.

The small x fields are then described by the clas-
sical Yang-Mills equationsDµFµν = Jν with the
random sources on the two light cones:Jν =∑

1,2 δν,±δ(x∓)ρ1,2(rt). The two signs correspond to two
possible directions of motion along the beam axisz. As
shown by Kovner, McLerran and Weigert (KMW) [18], low-

x fields in the central region of the collision obey source-
less Yang-Mills equations (this region is in the forward light
cone of both nuclei) with the initial conditions in theAτ = 0
gauge given byAi = Ai

1 + Ai
2 andA± = ± ig

2 x±[Ai
1, A

i
2].

Here the pure gauge fieldsAi
1,2 are solutions of (??) for each

of the two nuclei in the absence of the other nucleus.
In order to obtain the resulting gluon field configuration

at late proper times, one needs to solve the YM-equations
with the above mentioned initial conditions. Since the lat-
ter depends on the random color source, averages over dif-
ferent realizations of the color sources must be performed.
KMW showed that in perturbation theory the gluon num-
ber distribution by transverse momentum (per unit rapidity)
suffers from an infrared divergence and argued that the dis-

tribution must have the formnk⊥ ∝ 1
αs

(
Λs

k⊥

)4

ln
(

k⊥
Λs

)
for

k⊥ À Λs. The log term clearly indicates that the perturba-
tive description breaks down fork⊥ ∼ Λs.

A reliable way to go beyond perturbation theory is to re-
formulate the EFT on a lattice by discretizing the transverse
plane. The resulting lattice theory can then be solved numer-
ically to all orders in the color charge densitiesρ1 andρ2.
The lattice Hamiltonian is formulated inAτ = 0 gauge. The
real time gluodynamics of gauge fields can then be studied
by solving Hamilton’s equations on the lattice. We shall not
dwell here on the details of the lattice formulation, which is
described in detail in Ref. [20, 21]. We will first consider, for
simplicity, collisions of uniform, cylindrical nuclei. Keep-
ing in mind thatΛs and the linear sizeL of the nucleus3

are the only physically interesting dimensional parameters
of the model [16], we can write any dimensional quantity
q as Λd

sfq(ΛsL), whered is the dimension ofq. All the
non-trivial physical information is contained in the dimen-
sionless functionfq(ΛsL). We can estimate the values of
the productΛsL which correspond to key collider experi-
ments. Assuming Au-Au collisions, we takeL = 11.6 fm
(for a square nucleus!) and estimate the saturation scaleΛs

to∼ 1.4 GeV for RHIC and≈ 2.2 GeV for LHC [24].
Also, we have approximatelyg = 2 for energies of in-

terest. The rough estimate is thenΛsR ≈ 45 (for RHIC
andΛsR ≈ 72 for LHC. Since the gluon distribution in nu-
clei is not known to great precision, there is a considerable
systematic uncertainty in these estimates. We find that, this
uncertainity notwithstanding, the dependence of our results
onΛsR is rather weak in the broad regime of interest.

The assumption of uniform, cylindrical nuclei is clearly
not realistic since nuclear matter is not uniformly distributed
in a nucleus. Therefore, in general, we expect the satura-
tion scale to vary from point to point in the transverse plane,
namely,Λs ≡ Λs(xt). Furthermore, since the initial condi-
tions for a heavy ion collision at a fixed energy can be varied
by varying the centrality of the collisions, it will be impor-
tant to extend our previous considerations to collisions of
finite nuclei. The most important consideration in this case
is that the color charge of the quark and gluon fields in a nu-
cleus remain confined inside its radius. That this is the case

3L is the length scale for a cylindrical nucleus;L2 = πR2 whereR is the radius of the nucleus.
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is not a natural consequence of our picture and additional
constraints have to be imposed on the color charge distribu-
tions of the sources to ensure that the classical gluon fields
do not “leak” outside the nucleus [24]. These constraints,
termed Color Neutral I and Color Neutral II in the follow-
ing, respectively require that the monopole and dipole com-
ponents of the source color charge density be set to zero.
The results from these color neutrality constraints will be
contrasted below with those from the global color charge
constraint (namely, only the color charge density integrated
over the entire nucleus is set to zero) imposed in our earlier
studies.

III Energy and Number distributions
of produced gluons

The classical formalism has been applied to study classical
gluon production arising from the “melting” of the Color
Glass Condensate. The energy and number distributions
were initially computed numerically for central collisions
of uniform cylindrical nuclei and the dependence of these
quantities onΛs was determined [21, 22]. The initial simu-
lations were performed for an SU(2) gauge theory [21, 22].
These simulations were extended to an SU(3) gauge theory
in Ref. [23]. Recently, these distributions have been ob-
tained for an SU(3) gauge theory for finite nuclei with re-
alistic initial conditions [24].
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Figure 1. (a)ετ/Λ3
s as a function ofτΛs for ΛsR = 83.7. (b)

ετ/Λ3
s as a function ofΛsa for ΛsR = 83.7 (squares) and 25(cir-

cles), wherea is the lattice spacing. Lines are fits of the form
a− bx.
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Figure 2. Transverse momentum distribution of gluons, normal-
ized to the color degrees of freedom,n (kT ) = f̃n/(N2

c − 1) (see
Eq. (2)) as a function ofΛSR for SU(3) (squares) and SU(2) (dia-
monds). Solid lines correspond to the fit in Eq.(3).

For the transverse energy of gluons, we obtain the rela-
tion

1
πR2

dET

dη
|η=0 =

1
g2

fE(ΛsR)Λ3
s, (1)

The functionfE is determined non-perturbatively as fol-
lows. In Fig. 1(a), we plot the Hamiltonian density, for
a particular fixed value ofΛsR = 83.7 (on a 512 × 512
lattice) in dimensionless units as a function of the proper
time in dimensionless units. We note that in the SU(3) case,
as in SU(2),ετ converges very rapidly to a constant value.
The form ofετ is well parametrized by the functional form
ετ = α + β exp(−γτ). HeredET /dη/πR2 = α has the
proper interpretation of being the energy density of pro-
duced gluons, whileτD = 1/γ/Λs is the “formation time”
of the produced glue.

In Figure 1(b), the convergence ofα to the contin-
uum limit is shown as a function of the lattice spacing in
dimensionless units for two values ofΛsR. In Ref. [21],
this convergence to the continuum limit was studied exten-
sively for very large lattices (up to1024 × 1024 sites) and
shown to be linear. The trend is the same for the SU(3) re-
sults. Thus, despite being further from the continuum limit
for SU(3) (due to the significant increase in computer time),
a linear extrapolation is justified. We can therefore extract
the continuum value forα. We find fE(25) = 0.537 and
fE(83.7) = 0.497. The RHIC value likely lies in this range
of ΛsR. The formation timeτD = 1/γ/Λs is essentially the
same for SU(2)-forΛsR = 83.7, γ = 0.362 ± 0.023. As
discussed in Ref. [21], it is∼ 0.3 fm for RHIC and∼ 0.13
fm for LHC (takingΛs = 2 GeV and4 GeV respectively).

We now combine our expression in Eq. (1) with our
non-perturbative expression for the formation time to ob-
tain a non-perturbative formula for the initial energy density,
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ε = 0.17
g2 Λ4

s. This formula gives a rough estimate of the ini-
tial energy density, at a formation time ofτD = 1/γ̄/ΛsR
where we have taken the average value of the slowly varying
functionγ to beγ̄ = 0.34.

To determine the gluon number per unit rapidity, we first
compute the gluon transverse momentum distributions. The
procedure followed is identical to that described in Ref. [22]
-we compute the number distribution in Coulomb gauge,
∇⊥ · A⊥ = 0. In Fig. 2(a), we plot the normalized gluon
transverse momentum distributions versuskT /Λs with the
valueΛsR = 83.7, together with SU(2) result. Clearly, we
see that the normalized result for SU(3) is suppressed rel-

ative to the SU(2) result in the low momentum region. In
Fig. 2(b), we plot the same quantity over a wider range in
kT /Λs for two values ofΛsR. At large transverse momen-
tum, we see that the distributions scale exactly asN2

c − 1,
the number of color degrees of freedom. This is as expected
since at large transverse momentum, the modes are nearly
those of non–interacting harmonic oscillators. At smaller
momenta, the suppression is due to non-linearities, whose
effects, we have confirmed, are greater for larger values of
the effective couplingΛsR.

The SU(3) gluon momentum distribution can be fitted
by the following function,

c
1

πR2

dN

dηd2kT
=

1
g2

f̃n(kT /Λs) , (2)

wheref̃n(kT /Λs) is

f̃n =

{
a1

[
exp

(√
k2

T + m2/Teff

)
− 1

]−1

(kT /Λs ≤ 3)

a2 Λ4
s log(4πkT /Λs)k−4

T (kT /Λs > 3)
(3)

d

with a1 = 0.0295, m = 0.067Λs, Teff = 0.93Λs, and
a2 = 0.0343. At low momenta, the functional form is
approximately that of a Bose-Einstein distribution in two
dimensions even though the underlying dynamics is that
of classical fields. The functional form at high momen-
tum is motivated by the lowest order perturbative calcula-
tions [19, 18, 26].

Integrating our results over all momenta, we obtain for
the gluon number per unit rapidity, the non-perturbative
result, 1

πR2
dN
dη |η=0 = 1

g2 fN (ΛsR)Λ2
s. We find that

fN (83.7) = 0.3. The results for a wide range ofΛsR vary
on the order of10% in the case of SU(2).

For realistic nuclei, these non-perturbative relations are
less simple. One can parametrize our results for the gluon
number with the more general relation

dNg

dη
= fN (b)

∫
d2xT

Λ2
s(b, xT )

g2
, (4)

where Λs(b, xT ) is the local saturation scale defined to
be Λ2

s(b, xT ) = C · ρ̃(b, xT )/2, where ρ̃ is the partici-
pant density at a particular position in the transverse plane,
and C is the color charge squared per nucleon. When
Λs(b, xT )=constant, as for cylindrical uniform nuclei, one

recovers the form of the expressions in Refs. [22, 23]. The
color charge squared in the center of the nucleus isΛ2

s0 =
C · ρ̃(0, 0)/2, soΛ2

s(b, xT ) = Λ2
s0ρ̃(b, xT )/ρ̃(0, 0). One can

then re-write the previous equation as

dNg

dη
=

fN (b)
g2

Λ2
s0

ρ0
Npart(b), (5)

where ρ0 = ρ̃(0, 0) = 4.321fm−2 and Npart =∫
d2xT ρ̃(b, xT ).

In Tables I and II, we show the calculated SU(3) results
for two values of the saturation scale in the center of the
nucleus: Λs0 = 1.41 andΛs0 = 2.32 GeV respectively.
In the tables,b is an impact parameter (in units of fm) and
Npart is a number of participants at that impact parame-
ter. The latter is calculated using a Woods-Saxon nuclear
density profile. We list in the tables our results, as a func-
tion of impact parameter, forg2Ng; the number of produced
gluons andg2Eg; the transverse energy of produced gluons
in GeV multiplied by the value of the strong coupling con-
stant squaredg2, evaluated (to one loop order) at the average
value of the saturation scale (denoted in the tables asQs(b))
for that impact parameter.

Table I.Λs0 = 1.41 GeV. In the calculation, lattice size of256 × 256 and nuclear radius of 64 in lattice units is used. All
dimensionful scales are in GeV units unless otherwise stated.

b(fm) Npart g2Ng g2Eg Λ(b) Qs(b) fN (b)
0.000 377.89 1628.68 2725.40 1.1777 1.0836 0.3695
3.150 321.35 1309.83 2170.08 1.1545 1.0563 0.3484
4.725 263.33 1035.84 1663.88 1.1234 1.0197 0.3359
6.300 199.11 760.95 1182.02 1.0741 0.9623 0.3249
7.875 136.47 515.61 751.902 0.9993 0.8758 0.3152
9.450 81.21 295.76 384.004 0.8876 0.7487 0.3004
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Table II.Λs0 = 2.32 GeV. In the calculation, lattice size of512 × 512 and nuclear radius of 128 in lattice units is used. All
dimensionful scales are in GeV units unless otherwise stated.

b(fm) Npart g2Ng g2Eg Λ(b) Qs(b) fN (b)
0.000 377.89 3768.00 9198.736 1.9517 2.0355 0.2867
3.150 321.35 3061.59 7492.084 1.9132 1.9866 0.2757
6.300 199.11 1808.89 4183.888 1.7800 1.8185 0.2610
7.875 136.47 1215.17 2636.300 1.6560 1.6636 0.2522
8.367 118.17 1042.54 2243.692 1.6060 1.6017 0.2514
9.450 81.21 699.95 1411.900 1.4708 1.4356 0.2411

IV Elliptic Flow

The azimuthal anisotropy in the transverse momentum dis-
tribution has been proposed as a sensitive probe of the hot

and dense matter produced in ultra-relativistic heavy ion col-
lisions [27]. A measure of the azimuthal anisotropy is the
second Fourier coefficient of the azimuthal distribution, the
elliptic flow parameterv2. Its definition [28] is

c

v2 = 〈cos(2φ)〉 =

〈
p2

x − p2
y

p2
x + p2

y

〉
=

∫ π

−π
dφ cos(2φ)

∫
pT dpT

d3N
dypT dpT dφ∫ π

−π
dφ

∫
pT dpT

d3N
dypT dpT dφ

. (6)

d

The first measurements of elliptic flow from RHIC,
at center of mass energy

√
sNN , have been reported re-

cently [29]. Hydrodynamic model calculations provide
good agreement, for large centralities, and for particular ini-
tial conditions and equations of state, with the measured
centrality dependence of the data. The agreement at smaller
centralities is less good, perhaps reflecting the breakdown of
a hydrodynamic description in smaller systems. Hydrody-
namic models are also in excellent agreement with thept de-
pendence of the unintegrated elliptic flow parameterv2(pt)
up to 1.5 GeV/c at mid-rapidity [30]. However, above1.5
GeV, the experimental distribution appears to saturate, while
the hydrodynamic model distribution continues to rise. It
has been argued recently that jet quenching might explain
this saturated behavour ofv2(pt) [31]. We should also note
here that hadronic transport model calculations underesti-
mate the RHICv2 data[29, 32].

We will now apply the classical Yang–Mills approach to
compute the elliptic flow generated in a nuclear collision. As
previously, we assume boost invariance–the lattice Hamilto-
nian is the Kogut-Susskind Hamiltonian in 2+1-dimensions
coupled to an adjoint scalar field inAτ = 0 gauge [20].
In our earlier work, periodic boundary conditions were im-
posed to compute the space–time evolution of the gauge
fields after the collision [21, 22, 23]. Since, as discussed
previously, elliptic flow is a consequence of an initial spa-
tial anisotropy, periodic boundary conditions are inadequate
and open boundary conditions are required. This technical
improvement has been implemented in the work described
here.

The rest of the numerical procedure is as discussed in
our previous work [20, 21, 22, 23]. For each configuration

of color charges sampled forΛ2
s, we solve Hamilton’s equa-

tions on the lattice for the gauge fields and their conjugate
canonical momenta. We compute the space-time evolution
of the components of the Stress–Energy tensor, in particular,
the two transverse components of the pressureT xx andT yy

as well as the energy densityT 00.
In order to calculatev2 within our model, we apply

the cooling method which was proposed in our previous
work [22]. There we obtained, for the total number of classi-

cally produced gluons, the equationN =
√

8
π

∫∞
0

dt√
t
V (t)

whereV (t) is the potential energy for a system of free har-
monic oscillators as a function of thecooling time t. It is
clear that the gluon number defined in this manner is gauge
invariant. Forv2, one can similarly prove that

v2 =

∫∞
0

dt√
t
(T xx(t)− T yy(t))
∫∞
0

dt√
t
V (t)

. (7)

As in the case of the gluon number, this expression is gauge
invariant.

We now turn to our results [25]. In Fig. 3, we plotτ Txx,
τ Tyy and the proper timeτ times the energy densityτ ε, in
dimensionless units as a function ofτ , also in dimensionless
units, for a particular value ofΛs0R and impact parameter
b. We observe thatτ Txx and τ Tyy increase very rapidly
at very early times and then decreases quickly as well, be-
fore saturating at a much later time. Their magnitudes are
the same right after the collision but begin to differ shortly
thereafter generating an anisotropy. Note thatτε too rises
nearly as rapidly but has a smaller maximum value before
relaxing to its asymptotic value. The asymptotic values of
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τ Txx andτ Tyy differ from each other (and fromτ ε). Also,
interestingly, the energy densityε at late times equals the
sum of the two componentsTxx andTyy of the pressure in
the transverse plane. All of the described behavior is generic
for all values ofΛs0R.

Our interpretation of the results presented in Fig. 3 is
as follows. The componentsTxx andTyy of the pressure
are spatial gradients of the gauge fields. Even at the earliest
times, the gauge fields decrease sharply to the edges of the
“almond” characterizing the initial spatial anisotropy. One
therefore gets a finite contribution toTxx andTyy. Since the
initial decrease in the gauge fields at the edges is similar in
thex andy directions, the values ofTxx andTyy should be
similar in magnitude; indeed, Fig. 3 demonstrates that this is
the case. Subsequently, the strong non–linear interactions of
the gauge fields smooth out their spatial dependence. Even-
tually, the interactions die off and the system free streams
in the transverse plane. This is confirmed by the fact that
ε ∼ Txx + Tyy at late times.
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18.5 with the impact parameterb/2R = 0.6 Lattice size128×128
andR = 32 are used in the calculation.
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We now turn to our result for the impact parameter de-
pendence ofv2. In Fig. 4, we plotv2 (computed using the
definition in Eq. (7)) versusnch/nmax.

We note, as anticipated, thatv2 increases with increasing
impact parameter. The rationch/nmax is computed self-
consistently within the model. For very peripheral colli-
sions, we expect that the predictions of the model are unre-
liable since a hard sphere nuclear matter distribution should
be replaced by a Wood-Saxon distribution in this regime.
The absolute prediction of the model with the data gives
about half of the observedv2. The rest of the anisotropy
must be generated at later times- presumably by hydrody-
namic flow. Interestingly, the dependence ofv2 on Λs0R is
rather weak. For a fixed impact parameter, a prediction of
the model is that asΛs0R → ∞, we would have the classi-
cal contribution to the elliptic flow go to zero:v2 → 0. This
is because increasingΛsR is equivalent to increasingR and
therefore reducing the initial anisotropy. This again contra-
dicts the trend in the RHIC data suggesting that the late time
dynamics is important for the elliptic flow. The momentum
distributionv2(pt) has also been computed in Ref. [25]. The
shape and the magnitude of this distribution also disagrees
with the RHIC data.

V The CGC and RHIC data

The classical formalism discussed here is applicable only in
the initial instants of a nuclear collision. It is inapplicable
once the occupation numberf << 1. Moreover, the fi-
nal states observed are hadrons while the CGC predicts only
the initial distribution of gluons. Subsequent interactions
may lead to a thermalized Quark Gluon Plasma. The pos-
sibility that the CGC thermalizes has been discussed exten-
sively [33]. It was argued recently that for asymptotic values
of the saturation scale (Λs → ∞) the CGC matter does in-
deed thermalize [34]. For realistic values of the saturation
scale, the situation is unclear.

We will assume here, minimally, that gluonic matter
formed from the CGC interacts very strongly in the trans-
verse plane at early times and then free streams. Since the
typical momentum of the gluons (∼ Λs) is large than the
hadronization scale (∼ ΛQCD), the gluons may further frag-
ment independently before hadronizing. Invoking parton-
hadron duality at hadronization then enables us to compare
our results to the data.

From the numerical simulations described previously we
find that if we fit the total hadron multiplicity at

√
sNN =

130 GeV (directly equating initial num. of gluons=final
num. of hadrons) we find that we obtain a value ofEt/N
that’s proportional toΛs and significantly larger than the ob-
served value (see Tables 1 & 2). Within the framework of
the model, it is clear why this is the case–the CGC overesti-
mates the contributions from highpt > Λs-this is more pro-
nounced inEt since it is a more ultraviolet sensitive quan-
tity. A more careful treatment of this regime will reduce the
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global ratio ofEt/N . One still expect thatEt/N to be sig-
nificantly larger than the measured number. NowEt/N is
not a conserved quantity and will reduce due to both inde-
pendent fragmentation of the gluon “mini-jets” or hydrody-
namic flow or both. Which of these is correct will become
clearer once more RHIC data is available.

Kharzeev and Nardi [35] have shown that
saturation+parton-hadron duality reproduces the central-
ity dependence of the RHIC data. Further, Kharzeev and
Levin [36] have shown that the rapidity and energy depen-
dence of the RHIC data (going from

√
sNN = 130 GeV

to
√

sNN = 200 GeV) is predicted accurately in the same
scenario. Schaffner-Bielich et al. [37] have shown that the
RHICpt data in a large kinematic region show anmt scaling
consistent with saturation. (The saturation scale extracted
from themt scaling of thept spectra at different centralities
reproduces the centrality dependence of the RHIC data.)
The flaw in the ointment is thev2 data discussed here which
disagrees with the RHIC data-this suggests the importance
of final state processes and the possible thermalization of
produced matter.

On a theoretical level, several improvements can be
made to the picture presented here. Firstly, it would be
interesting to study the effect of rapidity dependence on
the gauge fields -is the system stable under rapidity depen-
dent perturbations? Another interesting, if much more dif-
ficult, problem is to match the classical field simulations to
a kinetic approach when the occupation numbers fall below
unity. This would be the appropriate time at which parton
cascade type simulations would be relevant [38]. Finally,
how does one extend the renormalization group treatment of
the single nucleus problem to that of two nuclei. Despite the
formidable challenges, we believe that the QCD based clas-
sical formalism presented here is a concrete step towards a
theory of high energy heavy ion collisions.
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