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Abstract

Breakdown of wave transport due to strong disorder is a universal phenomenon

known as Anderson localization (AL). It occurs because of the macroscopic

population of reciprocal multiple scattering paths, which in three dimensional

systems happens at a critical scattering strength. Intensities on these random

loops should thus be highly increased relative to those of a diffusive sample. In

order to highlight localized modes of light, we exploit the optical nonlinearities

of TiO2. Power dependent and spectrally resolved time of flight distribution

measurements in transmission through slabs of TiO2 powders at various tur-

bidities reveal that mostly long loops are affected by nonlinearities and that the

deviations from diffusive transport observed at long times are due to these

localized modes. Our data are a first step in the experimental investigation of the

interplay between nonlinear effects and AL in 3D.
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1. Introduction

Anderson localization (AL) of quantum mechanical waves such as electrons in atomic lattices

containing impurities was predicted more than 50 years ago [1] to account for the metal–
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insulator transition [2] observed at finite impurity densities. The analogous phenomenon of AL

of classical waves such as light has been intensively studied since the mid 80s [3–6]. These

studies underlined the fundamental nature of AL which originates from constructive

interference of waves scattered along multiple scattering paths corresponding to localized

modes, a phenomenon that should occur for any wave scattered in any sufficiently disordered

medium. Quantum and classical localization essentially always take place for 1D and 2D

systems [7] as demonstrated experimentally e.g. for microwaves [8, 9], light [10, 11] and cold

atoms [12, 13]. In 3D, AL is physically more intriguing, but also more challenging to observe.

This is due to the fact that 3D localization occurs only above a critical scattering strength [7, 14]

which may be difficult to reach experimentally depending on the nature of the wave and the

scattering material. In addition, the experimental observation of localized classical waves may

also be obscured by several artifacts. For instance absorption in the bulk can easily lead to

experimental signatures similar to AL [15, 16] and settling questions concerning such artifacts

requires long and careful studies [17]. Other factors include leakage through the sample

boundaries [18] or resonant scattering [19, 20]. So far, experimental evidence for 3D AL

excluding these systematics has been obtained for visible light [21, 22], ultrasound [23] and

ultracold atoms [24–26].

A careful quantitative study of bulk localizing samples is required to test simultaneously

several long-standing key predictions concerning localized states and the localization transition

[7]. On the one hand, this entails the observation of a slow-down of diffusion, using time-

resolved measurements, by probing either the total transmission or spatially resolved intensity

profiles. This has been achieved recently for sound waves [23] and visible light [21, 22], where

the spatially resolved measures are such that the influence of absorption can be fully neglected

[27]. In the optical 3D localization experiment, this allowed for a direct determination of the

localization length which revealed its scaling with the samples’ turbidity and provided a clear

signature of the localization transition [22]. In addition, the shape of the spatial intensity

distribution shows an exponential rather than a Gaussian profile, as predicted [10, 24], see

supplementary material of [22]. On the other hand, one expects a great increase in the

fluctuations of transmitted intensities of single speckles, because of a strong overpopulation of

localized modes [11, 28], visible e.g. in a skewed (non-Rayleigh) intensity distribution, which

have been observed in 3D experiments on ultrasound [23], but are only fully described for quasi

1D systems [29, 30].

In this work we take advantage of the nonlinear optical response of titania particles as

scatterers to emphasize intensity dependent effects. The interplay between AL and nonlinear

effects (NL) is a field of growing theoretical interest [31–33], but NL-experiments were

reported so far only for a few 2D systems [6, 10, 11, 34]. One may anticipate that the positive

Kerr nonlinearity of TiO2 [35–37] is significantly excited by the contribution of

macroscopically populated localized modes, with a noticeable influence on the detected time

of flight signals (TOF) from 3D slabs. This is analogous to the recent second harmonic study on

AL in ZnO nanorod mats [11] and to random lasing from closed recurrent scattering loops in

3D [28]. In this work we use the frequency shifts incurred by these nonlinear effects in

combination with stimulated Raman scattering [37] to highlight localized modes. Note that due

to the macroscopic population of these modes above a critical turbidity, we expect a qualitative

difference in the excitation of nonlinear effects as a function of turbidity, analogous to the

strong Raman laser emission observed above threshold in multiply scattering BaSO4

powders [38].
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Measuring wavelength-resolved TOF distributions in transmission we find increased non-

exponential long time tails at wavelengths above and below the incident wavelength. The latter

blue shifted signals exclude simple fluorescence contributions. Consistent with our non-

frequency resolved earlier data [21, 22] the deviations from classical TOF scale with turbidity
−

kl( *) 1 as is expected for AL transition. Here, k denotes the wavevector and l* the transport

mean free path. The values of the localization lengths thus obtained quantitatively agree with

those from measurements of the time dependent spatial intensity profiles [22] over the entire

kl*-range covered. The experimental study reported here thus complements our earlier non-

wavelength-resolved results to study intensity distributions in our samples and is consistent with

the observation of optical AL modes in 3D samples at elevated turbidities < <kl(2.4 * 5)

[39, 40]. Note that the value of the critical turbidity in this case is consistent with the Ioffe-

Regel criterion which estimates a kl* of order unity for the transition to occur. However, there

are no numerically accurate predictions for the value of the critical turbidity.

2. Methods

In order to be able to see the slow-down of the light diffusion we use a pulsed laser system

consisting of a frequency doubled Nd:YVO4-laser with output power of 18W pumping a

Titanium–Sapphire oscillator, which subsequently pumps a frequency doubled OPO. We get a

pulsed output of 1W at 590 nm with a repetition rate of 76MHz and a pulse duration of ≈250

fs. Furthermore, the central wavelength of the pulses can be tuned between 550 and 650 nm. We

reduce the repetition rate with a pulse picker to be able to take data for time intervals longer

than the repetition time of 13.2 ns. We operate the TOF measuring card (by B&H) at a total scan

time of typically 20 ns with 1024 channels time resolution. The detector used was a hybrid

photo multiplier HPM-100-40 (from B&H) avoiding the typical after-pulsing in standard

photomultipliers thus increasing the time resolution. The samples consist of TiO2 nanoparticles

with a particle diameter ranging between 170 and 245 nm and polydispersities between 25 and

45%, which are commercially available from DuPont. The TiO2 particles are in the rutile crystal

structure for samples R700 (diameter 245 nm, polydispersity 45%) and R104 (diameter 230 nm,

polydispersity 25%), which has a refractive index of 2.7. In one of our samples, a one-to-one

mixture of anatase (refractive index 2.5, diameter 170 nm, polydispersity 45%) and rutile (R104

sample) nanoparticles was made (R104AA) in order to decrease the turbidity. Since the

intensity of the light transmitted through the sample is very low typical spectral resolution

techniques like interference spectrometers would either imply very long measurement times,

thereby drastically reducing the signal-to-noise ratio, or they would fail because of the

insufficient intensity. Therefore, instead, we use a set of interference band pass filters with

bandwidths of 10 nm around a central wavelength indicated in figure 2 positioned between the

sample and the detector.

3. Power dependent and spectrally resolved time of flight distribution

The nonlinear optical properties of TiO2 are well known (see e.g. [35–37]). They give rise to

significant power dependent spectral broadening as revealed from near infrared transmission

measurements on monomode titania waveguides [37], which are mostly due to stimulated

Raman scattering providing a nonlinear, as well as inelastic response. In our samples, which
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consist of rather irregularly shaped polydisperse TiO2-particles (for a picture see [21]) there are

no strict symmetry rules for the different NL-effects and hence many of them may occur and

mix along the multiple scattering paths. We do expect, however, a power dependent spectral

broadening qualitatively similar to [37]. The inset of figure 1 shows the dependence of the total

time integrated transmission on the incident laser power for a sample with inverse turbidity

=kl* 2.7 (R700, rutile). For all samples discussed here kl* was obtained from the width of the

coherent backscattering cone [41–43]. Within error bars the total transmission increases linearly

with incident power indicating that overall, nonlinear effects are rather weak, of order 10−5 or

less. However, the time resolved data (see footnote 5) shown in figure 1 reveal a clear upturn of

the long time tail which increases with increasing power. The upturn at long times is associated

with the onset of AL [21] because the deviation from classical diffusion (indicated by the

continuous line) strongly increases with increasing turbidity (figure 1 and [21]). Figure 1 shows

that the upturn is clearly weaker for the essentially non-localizing sample R104AA than for the

localizing sample R700. Both the long time intensity upturn at fixed incident power and its

power dependence become weaker with increasing kl*, i.e. when moving away from the AL-

transition. When the incident power is varied by five orders of magnitude, the intensity of the

long-time tail is enhanced by less than a factor of three for both samples. This shows that while

nonlinear effects are significant, they are weak. They manifest themselves primarily in the long

time upturn, or slowing down of the decay, in TOF which was associated with AL [21]. While

Figure 1. Power dependence of the time resolved and time integrated (inset) optical
transmission. Inset: total transmission for sample R700 with =kl* 2.7, L = 1.25mm.
Time resolved transmission5 for (top) sample R700 with =kl* 2.7, L = 0.93mm,
(bottom) sample R104AA with =kl* 5.7, L = 1.00mm at different incident intensities
with ≈ −I 1 GWm0

2. The continuous lines indicate the analytical solution of the

classical diffusion equation for a slab with the indicated sample parameters convoluted
with time dependent detector response function. The R104AA-data are down-shifted by
one decade for clarity.
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due to the diffusive spreading of the power density through the sample, nonlinear effects are

a priori more likely to occur near the front surface, our data imply that they are also more likely

within the localized modes in the bulk because of the higher intensity of these modes, consistent

with [11]. NL effects can thus be used to enhance signatures of high intensity transmission

modes in TOF more clearly. This is particularly important because in our samples the overall

fraction of photons in the upturn, i.e. ‘delayed’ by AL is very small compared to the classically

diffusing photons, even for high turbidities. In order to connect these high intensity

transmission modes with AL in 3D systems, it is important to study the turbidity dependence,

where these modes should only appear above a critical turbidity. This turbidity dependence is

discussed in detail below.

We now turn to the spectrally resolved data. Figure 2 shows results of TOF measurements

for a sample with rather modest turbidity ( =kl* 5.7) compared to one with high turbidity

( =kl* 2.7) taken at fixed incident wavelength λ = 590 nm, fixed incident power ≈ −
I 1GWm0

2

and different spectral shifts indicated by the center wavelength λBP of the band pass filter

inserted between sample and detector. Given that these are data at a fixed incident intensity, we

here mainly probe inelastic component, which we associate with the nonlinear stimulated

Figure 2. Time of flight distributions for fixed incident wavelength λ = 590inc nm

( ≈ −I 1 GWm0
2) at different detected spectral shifts as indicated by the central

wavelength of the bandpass filter λBP for sample R700, ( =kl* 2.7, L = 0.93mm) and

sample R104AA ( =kl* 5.7, L = 0.94mm). The latter data are down-shifted by 4
decades for clarity.

5
TOF data shown here correspond to raw transmission counts for a time span determined to reach 65536 counts

in the highest bin. They are not deconvoluted with respect to the laser pulse dark count levels and temporal

response of detector.
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Raman scattering [37]. Contributions from direct coupling to e.g. phonons, while unlikely given

the intensity dependent measurements of figure 1, can not be excluded in these data.

The TOF data shown were corrected for the different optical densities of the band pass

filters at the central wavelengths and the detector dark noise subtracted so that they show the

relative wavelength dependent transmission3. In both samples the overall transmission is

highest at the incident wavelength and the spectrally shifted intensities rapidly decrease with

increasing frequency shift away from λ. This illustrates that the major part of the transmitted

light has undergone elastic scattering and classical diffusion, even for =kl* 2.7. In the less

turbid sample the shape of the TOF signal does not significantly depend on the detected

frequency and essentially agrees with classical photon diffusion (see figure 3). However, from

figure 2 it is evident that the more turbid (localizing) sample shows much higher upturns at long

times relative to the transmission peak than the less turbid (non-localizing) sample. This can

also be seen when looking only at the elastically scattered light, which is separately shown for

clarity in figure 3. The relative upturn increases with increasing frequency shift rather

independent on the sign of the shift which basically excludes simple fluorescence contributions.

Note also that the observed spectral broadenings are qualitatively consistent with the power

dependent nonlinearities and stimulated Raman scattering reported for titania waveguides [37].

While a quantitative account of the observed frequency shift in terms of nonlinear processes

remains a challenging issue for our granular powders, the fact that the frequency shifted

nonlinear upturn increases strongly with decreasing kl* indicates that above a critical turbidity,

long-lived modes are more highly populated, exciting nonlinear effects more strongly. This is

consistent with a picture of AL, where after the transition to localization AL-modes are strongly

populated [44], which have a relatively increased intensity, as has been found in [23]. These

high intensity modes can then more strongly excite e.g. stimulated Raman scattering leading to

a strong increase in frequency shifted TOF contributions.

It should be noted that figure 2 also shows that the inelastic contribution does not exceed

the elastic contribution, as was claimed recently to argue against a signature of localization in

the saturation of the width of the photon distribution at long times [39]. Therefore, this direct

sign of AL can still be observed when only studying the non-frequency shifted part, shown in

figure 3. In addition, the figure shows the elastic contribution of the temporal increase of the

width of the photon distribution as determined in [22], where a clear saturation can be seen [40].

This shows that the late time modes are spatially localized even in the elastic case. Considering

the TOF data in figure 2, one can see that the strong classically scattered light, which is

diffusing as well as absorbed, overrides and therefore hides the long time tail when the bandpass

filter is set close to the incident wavelength. Here it is important to note that absorption still

plays a role in TOF measurements and this absorption can dominate the decay modes. However,

when selecting the inelastic contribution by frequency shifted detection, this diffusing and

absorbing part is largely suppressed4 thus highlighting the long time tail due to AL, which is

directly seen in the spatially resolved measurements, where absorption is canceled out of the

experiment.

3
The wavelength dependence of the photo multiplier can be neglected.

4
The leakage of the elastically scattered light at λ = 590 nm through the different band pass filters is quantified by

their optical density BP560 nm (4.1), BP570 nm (4.4), BP580 nm (2.3), BP590 nm (0.4), BP600 nm (1.1),

BP610 nm (2.8) , BP620 nm (4.1)
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Figure 3. (a) Time of flight distributions for fixed incident wavelength λ = 590inc nm

with bandpass filter set to the incident wavelength. For sample R700, ( =kl* 2.7,
L = 0.93mm) and sample R104AA ( =kl* 5.7, L = 0.94mm). These data are also part of
figure 2. Continuous lines like figure 1. (b) The width of the photon distribution as
determined in [22], but with an added bandpass filter set to the incident wavelength for
R700 ( =kl* 2.7, L = 0.86mm).
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The same conclusion can be drawn from another experiment (figure 4) were we varied the

turbidity kl1 * by varying the incident wavelength for a single given sample (R700). The

increase in refractive index of rutile with decreasing wavelength leads to a significant reduction

of kl* from 3.7 to 1.9 (linear interpolation), shown in the inset to figure 4. Note that here we are

changing kl* in a completely independent way from the experiment above, such that effects of

sample quality, pressure induced fluorescence, etc can be ruled out. When changing kl* this

way by a factor close to two, the corresponding long time upturn relative to the classical

diffusive signal changes by about two orders of magnitude which is spectacular (see figure 5 for

the excess signal Ξ (see footnote 6) in the long time tail). At the same time, the photon diffusion

constant D0 merely changes by 50% as directly seen from the small shift of the maximum of the

TOF curves and from the data shown in figure 5(a). This comparatively small change of D0 is

consistent with the modest change in kl*. These observations clearly indicate critical behavior

of the upturn in the vicinity of a transition to AL. The kl*-range of the critical behavior is in

quantitative agreement with the observations of spectrally unresolved TOF [45] and the time

resolved transmission profiles [22]. Finally, we can look at the spectral shifts of the TOF data

for these experiments. This is shown in figure 5(b), where we plot TOF data at three different

incident wavelengths, corresponding to three different values of kl* = 3.5, 2.6 and 2.2 with a

corresponding spectral filter below the incident wavelength as given in the figure legend. We

observe the same trend of a strong increase of the spectral shifts at long times with decreasing

kl*. Note that the data for kl* = 2.6 correspond to one of the curves shown in figure 2 (R700).

Thus, the observations reported here show conclusively that below a critical value of kl*,

long photon paths become increasingly populated. This is shown by the increased frequency

shifts at long times, which only appear at low kl* and at long times, where we varied kl* in two

Figure 4. Time of flight distributions for various incident wavelengths λinc without band

pass filter behind the sample. Sample R700, ( =kl* 2.7, L = 0.98mm), ≈ −I 1 GWm0
2.

Inset: wavelength dependence of the inverse turbidity kl*.
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independent ways with quantitatively comparable results. These results are similar to previous

evidence for AL based on the direct determination of the width of the diffusing photon

distribution [22]. This, we believe, rules out an alternative interpretation of our data, which

would not show a critical turbidity [39, 40].

4. Conclusion

In conclusion we have measured photon time of flight distributions in transmission through

optically thick slabs ( ≫L l*) of powders of TiO2 as function of incident power, incident

wavelength and detected wavelength. This allowed to vary the turbidity kl1 * in two

independent ways, either by the wavelength dependence of the scattering cross section or by the

packing fraction. We find deviations of the time of flight distribution from classical diffusion at

long times which show that photons with long transit times spend significantly more time inside

the sample than expected from classical diffusion. The number of these ‘delayed’ photons

dramatically increases with increasing turbidity. The scaling of this deviation with the turbidity

kl1 * signals a progressive slowing down of photon diffusion with time at long times consistent

with the transition to AL. The nonlinear optical response of TiO2 provides a significant spectral

broadening which, combined with the nonlinear increase of the number of ‘delayed’ photons

with incident laser power, allows to strongly enhance the contributions of localized modes to

the TOF signals, thus allowing the use of nonlinearities as a probe for the skewed intensity

distribution in localized modes at long times.

Figure 5. (a) Dependence of the classical photon diffusion constant D0, as obtained
from a fit to classical diffusion, and a quantification Ξ

6 of the excess of photons at long
times on the sample turbidity kl1 *. Data are for the sample described in figure 3(b).
Time dependence of the spectrally shifted excess for different turbidities. The plot
shows TOF distributions for three different experiments determining the spectral shifts
corresponding to values of =kl* 3.5 (red), 2.6 (orange) and 2.2 (green). Data are for the
sample described in figure 2 (R700).

6
The excess of the signal is quantified by the time integral of the ratio of the TOF data and the diffusive fit over a

time window of 2 τmax to 3.5 τmax : ∫Ξ =
τ

τ

T t T t t( ) ( )d
2

3.5

fit
max

max
.
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While the nonlinear effects as well as the fraction of detected photons from within the

localized modes are still small compared to the overall classically diffusing photons in our

samples the coupling between the nonlinear effects and AL will be of great interest in the future.

For instance, it has been discussed that the critical point of AL changes in nature in the presence

of negative nonlinearities [33]. In the case of positive nonlinearities, as is the case in TiO2,

localization may be enhanced [10, 32], which may also explain the fact that in our experiments

the critical value of kl* is somewhat higher than the usually expected value of =kl 1c
* [14]. This

however remains to be studied in future investigations.
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