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Abstract

City-scale mass gatherings attract hundreds of thousands of pedestrians. These

pedestrians need to be monitored constantly to detect critical crowd situations at an

early stage and to mitigate the risk that situations evolve towards dangerous

incidents. Hereby, the crowd density is an important characteristic to assess the

criticality of crowd situations.

In this work, we consider location-aware smartphones for monitoring crowds

during mass gatherings as an alternative to established video-based solutions. We

follow a participatory sensing approach in which pedestrians share their locations on

a voluntary basis. As participation is voluntarily, we can assume that only a fraction of

all pedestrians shares location information. This raises a challenge when concluding

about the crowd density. We present a methodology to infer the crowd density even

if only a limited set of pedestrians share their locations. Our methodology is based on

the assumption that the walking speed of pedestrians depends on the crowd density.

By modeling this behavior, we can infer a crowd density estimation.

We evaluate our methodology with a real-world data set collected during the Lord

Mayor’s Show 2011 in London. This festival attracts around half a million spectators

and we obtained the locations of 828 pedestrians. With this data set, we first verify

that the walking speed of pedestrians depends on the crowd density. In particular, we

identify a crowd density-dependent upper limit speed with which pedestrians move

through urban spaces. We then evaluate the accuracy of our methodology by

comparing our crowd density estimates to ground truth information obtained from

video cameras used by the authorities. We achieve an average calibration error of

0.36 m–2 and confirm the appropriateness of our model. With a discussion of the

limitations of our methodology, we identify the area of application and conclude that

smartphones are a promising tool for crowd monitoring.

Keywords: crowd sensing; pedestrian behavior; crowd density estimation;

participatory sensing; smartphone

1 Introduction

City-scale mass gatherings attract hundreds of thousands of attendees. On  April ,

an estimated number of . million spectators congregated in London for the wedding of

PrinceWilliam andCatherineMiddleton []. Around million people gathered on May

 in Buenos Aires to attend several concerts and street art parades celebrating the Bi-

centennial of theMay Revolution []. Up to million people got together inMadrid, Spain

for a parade celebrating the success of the Spanish national football teamwinning the 

FIFA World Cup []. Such events with many visitors but with a restricted area and com-
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plex architectural configurations like narrowings and intersections bear the risk of dan-

gerous crowd incidents [, ]. It is therefore a top priority for organizers of such events

to maintain a high level of safety and to minimize the risk of crowd incidents. Hereby,

guidelines on planning help minimize the risk by deploying adequate safety measures [,

]. The raise of pedestrian simulation tools has enabled the identification of critical loca-

tions where dangerous crowd behaviorsmay emerge [, ]. Simulation tools help to design

and proactively deploy crowd control mechanisms before mass gatherings to mitigate the

risk of dangerous crowd incidents. However, despite a proper preparation, the behavior of

the crowd during an event remains highly unpredictable [, ]. Hence, emerging critical

crowd situations need to be detected at an early stage in order to mitigate the risk of a

situation evolving towards a dangerous incident. Crowd density, i.e. the number of people

per unit area, has been identified as one important measure to assess the criticality of a

situation [, ] and there is a need to obtain this information during an event [].

In our ongoing research effort, we want to turn pedestrians’ smartphones into a reliable

sensing tool for measuring the crowd density during city-wide mass gatherings. In a pre-

vious study [], we introduced a participatory sensing system for crowd monitoring by

tracking the location of attendees of mass gatherings via their smartphones. Attendees of

such a mass gathering can download a smartphone App to record the user’s location at

regular intervals. This information is collected from all App users and used to infer the

users’ current spatial distribution. Tomotivate as many attendees as possible to download

the App and share their locations, the App offers a set of features including an interactive

festival program and maps of the venue as an incentive to all. Nevertheless, by following

a participatory sensing approach, we expect only a fraction of all attendees to participate

and hence, the location of only a limited set of pedestrians is known. Therefore, the ex-

planatory power of the obtained distribution is limited as these numbers do not provide

direct evidence of the actual crowd density.

In this work, we address this challenge and present a methodology to infer the crowd

density by tracking the locations of a subset of all event attendees. Ourmethodology relies

on a calibration approach that provides a relation between the distribution of App users

and the crowd density. Hereby, we make use of the characteristic that pedestrians exhibit

a distinct behavior which depends on the crowd density in the vicinity. By assessing the

behavior of the App users and applying our model, we obtain a crowd density estimation.

Evaluation of our approach is performed with a real-world data set collected during the

Lord Mayor’s Show  in London, a festival attracting around half a million spectators.

We use this data set to confirm the suitability of our methodology and evaluate the ac-

curacy of our crowd density estimation by comparing our results to results from video

footage obtained from CCTV cameras. We conclude our work by addressing the limita-

tions of our methodology and identifying next steps.

2 Related work

This section discusses related work. Section . introduces crowd characteristics relevant

to assess the criticality of a situation during mass gatherings. Section . compares tech-

nologies and methods to measure such crowd characteristics with a focus on crowd den-

sity.

http://www.epjdatascience.com/content/2/1/5
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Table 1 Chart of crowd density

Dynamics Density [m–] Behavior and risk

Standing 7.1 Critical crowd density for static crowds

Walking 0.43 Stream of pedestrians can maintain normal walking speed and avoid one another

2 Walking speed is reduced

3.57 Involuntary contact is experienced between people

5.55 Potentially dangerous crowd forces begin to develop

Chart derived from the findings of Fruin [23] to assess the criticality of a crowd density. The density of a static crowd can

exceed the density of a moving crowd before a critical values is reached.

2.1 Crowd characteristics to assess the criticality of a situation during mass

gatherings

Various empirical studies have analyzed crowd behaviors during mass gatherings and

identified critical, potentially dangerous situations: A focus in literature has been the in-

vestigation of human stampedes [–]. Stampedes often occur if people start to rush

towards a common target. Congestions, or clogging, at narrowings and counter flow of

pedestrians have been identified as critical situations in which stampedes may occur [,

]. Irregular pedestrian flow is an additional risk which may cause turbulent motions in

a crowd []. Johansson et al. [] identified the transition from smooth pedestrian flow

to stop-and-go waves as a warning sign of a critical situation.

Based on such observations, researchers have identified different crowd characteristics

that may indicate potentially critical situations. One of the most important crowd char-

acteristic is the local crowd density. Au et al. [] report that one of the key aspects in

developing and maintaining a crowd safety system is to identify areas where crowds build

up. Areas where people are likely to congregate need careful observation during an event

to provide crowd safety. Nicholson et al. [] state the need for accurate crowd density

estimation to correctly asses the criticality of a situation. Crowd density is also observed

by police forces during the management of mass gatherings. Table  shows a chart derived

from the findings of Fruin [] to assess the criticality of a situation of a situation during

a mass gathering.

The local crowd density alone does not allow for a complete assessment of the criticality

of a situation. In addition to crowd density, the intention or behavior of a crowd is required

for a correct situational understanding. As an example, a high crowd density in a static

crowd is less critical than a high crowd density exhibiting counter flow. This distinction is

also evident in Table . A critical crowd density is reached at . m– for a moving crowd.

A static crowd, however, can exceed this value before a critical density is reached.Helbing

et al. [] introduce a measure that incorporates this aspect. They call this measure crowd

pressurewhich is given as the local velocity variancemultiplied by the local crowd density.

In their work, they identified that crowd pressure can be seen as an early warning sign for

critical crowd situations. They identified an increased crowd pressure value right before

dangerous crowd turbulence emerges.

2.2 Monitoring crowds

Nowadays, video-based crowd monitoring tools are widely deployed. Gong et al. [] re-

view the state-of-the-art of vision-based systems for crowd monitoring. They conclude

that currently deployed systems suffer from poor scalability to crowded public spaces

due to deployment complexity and manually judging the criticality of a situation from
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the footage. Further, manuallymonitoringmultiple video streams simultaneously requires

lots of training for a person. To overcome these limitations, police forces use helicopters

to gain an instantaneous overview andmen in the field to obtain detailed information [].

Recent developments such as multi-camera networks to fuse information from multi-

ple cameras and computer vision algorithms to automaticallymonitor crowds canmitigate

these issues. Jacques et al. [] review state-of-the-art techniques. Hereby, the authors dif-

fer between object-based approaches and holistic approaches. In object-based approaches,

single individuals are detected and tracked individually. Relevant information is fused to

analyze group behaviors. As an example, Mehran et al. [] use the social-force model

introduced by Helbing et al. [] to infer crowd patterns from pedestrian tracks. Object-

based approaches have been used by Johansson et al. [] investigate crowd behaviors

during the Hajj in Makkah. Steffen et al. [] presented approaches for inferring crowd

densities and other crowd behaviors based on pedestrian trajectories.

Holistic approaches do not rely on tracking individuals but follow a top-down method-

ology inwhich the crowd is considered as a single entity. These approaches obtain coarser-

level information such as crowddensity, the flowof the crowd and crowd turbulence but no

local, individual-specific information. As an example,Krausz et al. [] developed an opti-

cal flow-based method for an automatic detection of dangerous motion behaviors includ-

ing congestions during mass gatherings. They used their method to study video-footage

recorded during the Love Parade disaster of  in Duisburg, Germany where  visi-

tors died in a stampede. By comparing the two approaches, the authors of [] write that

while object-level analysis tends to producemore accurate results, the identification of in-

dividuals is challenging in high density crowds due to clutter and occlusion which makes

it difficult to obtain an accurate estimation of the crowd density.

Despite the recent advances of computer vision and pattern recognition techniques, un-

til now, it remains challenging to obtain an automated global situation awareness dur-

ing mass gatherings from video footage []. Using alternative technologies for observing

crowds has recently found interest in the research community. Hereby, thanks to their pro-

liferation, mobile devices like smartphones have increasingly been considered as a viable

tool for monitoring the behavior of a crowd. These sensor-rich devices offer various ways

to obtain information about the whereabouts of their users and hence allow for monitor-

ing the physical behavior of them []. By combining information from many people, the

behavior of a collective can be monitored.

To infer crowd conditions like those mentioned in Section ., the location of atten-

dees of a mass gathering is required. There are different approaches to determine a smart-

phone’s location which can broadly be divided into two classes: in-network localization

and on-device localization. The in-network location methods utilize the fact that at any

given time, a smartphone is connected to a cell tower in a network. The informationwhich

device is connected to which cell tower is being stored centrally in a database and updated

constantly. Since the location of each cell tower is known, a position estimation of the

mobile devices can be obtained. For on-device localization methods, on the other hand,

the location is derived directly on the users’ smartphones by means of GPS positioning,

WiFi-fingerprinting or other comparable approaches []. The in-network localization

approaches have the advantage that the locations of all subscribed devices are routinely

being logged by the network operators. Thus, location information from a large number

of devices can be obtained without any user interaction (and permission). Popular meth-
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ods for obtaining in-network location estimation include the recording of network band-

width usage by detecting how much communication is going on in a particular location.

Calabrese et al. [] used this measure to investigate crowd dynamics in the city of Rome.

The obtained measure is an aggregated number which is highly dependent on communi-

cation behavior and is not necessarily correlated to the actual number of individuals in that

location. Another method to capture in-network location information is to use Call Data

Records (CDRs) [, ]. A single CDR tuple is generated for every voice call and Short

Message Service (SMS) transaction and consists of the sender and receiver numbers to-

gether with a timestamp and the cell ID the sender is situated in. This data is routinely be-

ing collected by every network operator for operational and billing purposes. While being

useful for many studies, CDR-based location data faces several limitations. Firstly, CDRs

are sparse in time because they are generated only when a transaction occurs and not at

fixed periodic intervals. Hence, as long as no communication takes place, a smartphone’s

location is not being revealed. Secondly, they are coarse in space as they record locations

at the granularity of a cell tower sector resulting in a location uncertainty of around 

meters [].

Methods to obtain on-device location information include GPS positioning and WiFi/

GSM-fingerprinting []. With these approaches a location accuracy of up to  m can be

obtained for GPS and around  m for WiFi-based positioning, respectively [, ]. A

further advantage is that in contrast to in-networkmethods, location updates of a user can

be recorded at regular intervals and not sporadically, event-driven as in the case of CDRs.

This makes it much simpler to extractmovement trajectories and is less situational-biased

as opposed to if positions are only recorded if communication is going on. Koshak et al.

[] use GPS positioning to track pedestrian movements in a crowded area in Makkah.

With a post-event evaluation, they identified critical zones by evaluating the crowd flow

obtained from the collected GPS updates. There are other means to track the location

of smartphone users and estimate a crowd density. As an example, Versichele et al. []

present an approach where Bluetooth beacons are placed in the environment in order to

track smartphone users during a city-wide festival. The authors conduct a post-event eval-

uation to understand the spatial commuting pattern of the festival visitors. While Blue-

tooth can provide a fine-grained position estimation, it requires beacons placed in the

environment to observe pedestrians and hence, people are only tracked at specific loca-

tions around deployed beacons. The work of Bandini discusses in [] opportunities and

challenges of different technologies for tracking pedestrians in crowded situations. Ta-

ble  summarizes our literature review by listing different technologies and methods the

assessment of the crowd density.

We conclude that determining the location of a person on a mobile device using GPS

or any other localization approach can provide a much more accurate location estimation

compared to in-network approaches. On-device localization methods also have advan-

tages over vision-based approaches as limitations such as occlusion or the limitations in

low-light conditions are inexistent and that the whole venue space can easily be covered.

However, on-device localization approaches face a big challenge: In contrast to in-network

methods, the location is determined on a user’s smartphone. To collect this information,

a user has to deliberately share it. This requires a dedicated piece software running on the

device.

http://www.epjdatascience.com/content/2/1/5
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Table 2 Overview of technologies andmethods for crowd density assessment

Sensor modality Class Method Reference

Video Holistic Optical flow [19]

Fractal dimension [41]

Pixel counting [42]

Machine learning [43]

Object-based Trajectories [22, 28]

Supervised classification [44]

Unsupervised clustering [45]

Social force model [26]

Smartphone In-network CDR [32, 33]

Network bandwidth usage [31, 46]

On-device Trajectories [14, 38]

Other Bluetooth beacons [39, 47]

Overview of technologies and methods to automatically to assess crowd density. Different video-based approaches have

been investigated, a selection of methods is given here. Thanks to the location-awareness of modern smartphones, they

have increasingly been considered as an alternative platform for crowdmonitoring.

We present in the next section methods to infer crowd characteristics from location

information as provided by smartphones. Afterwards, in Section , we will address the

implications on-device localization approaches face by requiring people to run a piece of

software on the smartphones. We then present our method to mitigate the influence.

2.3 Measures of local crowd characteristics and their relation

.. Crowd density and speed of the crowd

The density and speed of a crowd are important local characteristics to assess the criti-

cality of a crowd situation. In this section, we present methods to derive these measures

from position information of pedestrians and discuss their relation.

Local crowd density Johansson et al. [] introduce the notation of local density ρ(�r, t).

The local density is determined by considering the location �ri of all pedestrians i at time t

and is given as:

ρ(�r, t) =


πR

∑

i

exp
[

–
∥

∥�ri(t) – �r
∥

∥


/R

]

, ()

where R is the kernel radius and defines the smoothing around the location �r.

Local crowd speed The local crowd speed is calculated in an analogous fashion as the

crowd density []. To obtain a crowd speed value v, a weighted mean function is applied

on the speed measures of the pedestrians around the location �r. Hence, the local speed is

given as

v(�r, t) =

∑

i vi exp[–‖�ri(t) – �r‖/R]
∑

i exp[–‖�ri(t) – �r‖/R]
, ()

where vi is the speed of pedestrian i at location �ri and time t. Again, R is the kernel radius.

.. The fundamental diagram: relation between crowd density and speed

The influence of the crowd density on the walking speed of pedestrians has been inves-

tigated intensively for the purpose of dimensioning pedestrian facilities with respect to

http://www.epjdatascience.com/content/2/1/5
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Figure 1 Weidmann’s fundamental diagram. Plot of the density-speed relation according to Weidmann’s

fundamental diagram function of Equation 3 [48].

comfort and safety. For low crowd density situations, pedestrians will be able to maintain

free flow speed and are not interrupted by their neighbors. However with increasing den-

sity, the speed will decrease as the influence of the neighboring pedestrians force speed

adjustments. This is similar to the situations in vehicular traffic []. This speed-density

relationship is termed Fundamental Diagram. Weidmann [] was one of the first to look

at this relationship for pedestrians and proposed an analytical description from empirical

data. He proposed to describe the relation between local density and speed as follows:

v(ρ) = v

{

 – exp

[

–γ

(



ρ
–



ρmax

)]}

, ()

where v = . ms– is the free speed at low densities (free flow), ρmax = . m– the

maximal pedestrian density from which onward movement is not possible anymore and

γ = . m– a fit parameter. Figure  shows a plot of the fundamental diagram given

by Equation  and the listed parameters. The work of Weidmann stimulated successive

contributions focusing on verifying and understanding this relationship. Several reports

focus on the influence of various architectural configurations [, ], different crowd

patterns [] as well as demographics and cultural aspects [, ] on the fundamental

diagram. Other works use the fundamental diagram to model pedestrian behaviors [–

], investigate microscopic behavior patterns [] and discuss and compare variations

found across fundamental diagrams from different works [, ]. By comparing the re-

sults with other empirical data sets, it was found that the fundamental diagram is highly

cultural dependent and needs to be adjusted for different venues. Weidmann’s equation

relies on fitting the fundamental diagram’s analytical function to the recorded data set.

Johansson addresses this issue in [] and presents a generalized model. It relies on mea-

surable parameters only and not on arbitrary fit parameters. Johannson showed that the

model fits for different data sets. It can be tuned to follow existing models derived from

various empirical data sets. Hence, the methods is believed to be sufficiently generic to

be applied to various real-life situations. Johannson’s method only relies on the maximum

local crowd density and the free speed of pedestrians in unrestricted conditions. Both

http://www.epjdatascience.com/content/2/1/5
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parameters are highly cultural and demographic specific and hence are expected to vary

significantly for different events. Nevertheless, the parameters are measurable and can be

determined based on values from literature, expert knowledge or empiricalmeasurements

[, ].

3 Considering App users as probes to infer crowd characteristics

3.1 Challenges in participatory sensing systems

Section . discusses the advantages of on-device localizationmethods for tracking pedes-

trians and identifies a major challenge: In contrary to in-network approaches, people have

to deliberately share their position information. This requires a dedicated piece of software

running on a user’s smartphone. At first sight, such an approach may appear undesirable,

as it can be assumed that the majority of people is not willing to install such an appli-

cation and constantly send their current position to a remote server for various reasons,

including privacy concerns and energy considerations. In the case of amass gathering, this

may imply that only a fraction of all attendees would run such an application and many

would opt for not having their location tracked. However, in a preceding study, we verified

that people are willing to share privacy-sensitive location information if they receive some

benefits or if they realize that sharing such information is for their own good and safety

[]. Thus, we believe such an approach is still viable and promising by following a par-

ticipatory sensing scheme where users are motivated to deliberately share their location

information by providing them with incentives and making it very transparent what the

data is being used for. In [] we introduce the concept of a smartphone App that tracks

pedestrian’s movements and offers attendees of a mass gathering a set of features which

users regard as useful to them, e.g. an interactive program guide, a map superimposing the

location of points of interest, or background information about the mass gathering. Dur-

ing the event, users of the App can receive location-dependent messages from the police.

Through the users’ smartphones, the police can inform users situated in a particular area

with targeted information on how to behave in case of an emergency.

3.2 Considering App users as probes

Even by deploying an attractive App to reach a large user base, we can only expect to

receive position information from a fraction of all event attendees. Our concept to infer

crowd conditions by only tracking a limited number of event attendees is to consider the

App users who share data as so called probes and extrapolate crowd information based

on their behaviors. This is comparable to approaches in zoology where scientists monitor

schools of fish or packs of mammals by equipping some of the members with tracking

sensors to monitor and study interaction patterns and conclude about the whole group’s

social behavior and habitats. Following such an approach imposes a set of assumptions

which we will discuss in the following:

. Unknown ratio of App users: The ratio of event attendees using the App at any

given moment is unknown. While the absolute number of App users is known, it is

usually not possible to obtain the exact number of event attendees at a certain point

in time.

. Spatial distribution of App users corresponds to the distribution of event:

Throughout the whole event we consider a spatial distribution of App users that

corresponds to the spatial distribution of event attendees. This means that among

http://www.epjdatascience.com/content/2/1/5
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the event attendees, the App users are equally distributed. This is important, as it

helps us to discover trends. While it does not allow us to directly infer how many

people resist at one location, we can identify that a certain percentage of users, and

hence event attendees, situates themselves in a given area.

. Natural behaviors and interaction patterns: App users behave naturally and interact

with the environment and other persons in a similar way as non-App-users. Hence,

the averaged behavior of the App users at one specific location corresponds to the

averaged behavior of the event attendees in this area. By accepting this assumption,

we can infer certain crowd characteristics at a given location even if not every

person is being tracked. We simply infer the behavior by considering the behavior of

the App users. This is possible because pedestrians in crowds are likely to mimic the

behavior of the neighboring pedestrians, e.g. by adjusting their walking speed and

direction [, ]. By looking at a single individual, this assumption may not hold as

a person may always decide independently on their behavior, e.g. stand still, walk in

another direction, etc. However, by averaging over the App users, we assume that

the averaged App user behavior corresponds to that of the crowd at a given location.

The more pedestrians participate and share their location, the more reliable we can con-

clude about occurring crowd characteristics. However, the obtained App user distribution

does not reflect the actual crowd density. In the following section, we briefly cover the data

collection platform and present the data set used for evaluation. Afterwards, we verify the

assumptions introduced in this section and focus on the density-speed relation in our data

set. Based on the obtained findings, in Section . we present our methodology to auto-

matically infer a crowd density estimation from the collected position data and evaluate it

against ground truth information obtained from video footage.

4 Data collection framework and data set

4.1 CoenoSense data collection framework

To collect location updates from pedestrians, we developed a generic App for mobile de-

vices which can be tailored to a specific mass gathering and provides the users with event-

related information and features. These features are designed to be attractive and useful

during the event to reach a large user base. While a user’s smartphone is running the App,

the current location of the device is sampled at  Hz using the integrated GPS sensor. Such

a high sampling rate was chosen to capture as much of the motion dynamics as possible.

Besides the user’s current location, the recorded GPS information also reveals the current

velocity and heading direction of a user. This information is logged too. The recorded data

is periodically sent a server running the CoenoSense framework. CoenoSense is a data col-

lection backend infrastructure to collect and store arbitrary context information received

from potentially thousands of mobile devices simultaneously. It allows for real-time pro-

cessing of the collected data.

To ensure a user’s privacy, data is sent anonymously and our App offers users full control

over data sharing and data recording. It can be disabled by the user at any time.

4.2 Data set

We deployed the App and the CoenoSense platform during the Lord Mayor’s Show 

which took place in London on November the th between  am and  pm. The Lord

Mayor’s Show is a street parade in the City of London, the historic core of London and

http://www.epjdatascience.com/content/2/1/5
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the present financial centre. The App offers a festival program, a map indicating points of

interest and additional background information about the event. In collaboration with the

event organizers, we event’s official iPhoneApp anddistributed it for free. It was advertised

on the Lord Mayor’s Show website and available through Apple’s iTunes App store.

GPS location updates were collected between : on November th and : the

same day and only if a user was in a specific geographical area around the venue the event

takes place.

Within the collaborationwith the event organizers and police forces, we obtained access

to the CCTV video footage recorded during the Lord Mayor’s Show. These are the same

video recordings as used by the police to monitor the event. We consider this footage as

ground truth information and is used in the following sections to verify our assumptions

and evaluate our methods. We used video footage from four cameras placed at different

locations. These locations have been identified by the police as being critical with respect

to occurring crowd behaviors. For each camera, we defined an area of approximately  m

within which the crowd density is being extracted.

5 Empirical findings

In this section, we report on various spatio-temporal behavior properties that can be dis-

covered in our data set. We start by investigating general statistics and put a special focus

on aspects which help to support the assumptions stated in Section .. Afterwards, we

focus on the density-velocity relation.

5.1 Spatio-temporal distribution of App users

Wecollected a total of ,, location updates from  different users. During the pa-

rade, location updates fromup to  users were received simultaneously, at any one time.

On average, , location updates were recorded per user. This corresponds to a running

time of . minutes. A few users sharedmore than , samples which requires them

to run the application for more than . hours. Figure  shows this by illustrating the dis-

tribution of time the application was running for each user. To understand the temporal

usage pattern, Figure  shows the number of active users throughout the event. The axis of

abscissae represents the time of the day. The axis of ordinate indicates the number of active

users that share location updates at each point in time. Periods in which important event-

related activities took place are indicated with a colored background. The first procession

happens between : and : (Interval (a)). After a break, the second procession takes

place between : and : (Interval (b)). Before the end of the event, a firework dis-

play takes place between : and about : (Interval (c)). Figure  shows the spatial

usage pattern. Superimposed is a heat map representation of the spatial distribution of the

collected data samples throughout the whole event. The heatmap visualizes the density of

the reported location updates. The more data has been collected at a location, the ‘hotter’

(i.e. more yellow) it is colored. From this plot we can deduce that data collection is not

uniform across space but concentrated to specific areas. These areas correspond to the

locations in which event-related activities took place. However, in this plot, temporal in-

formation is lost. It does not allow to distinguish whether there is a high concentration of

pedestrians for a short time or a few users stationary for a long time. To better understand

spatio-temporal dynamics, Figure  shows the heat maps of four different time intervals.

Hereby, Figure (a) shows the distribution of reported locations during the first proces-

sion (Interval (a)), Figure (b) during the second procession (Interval (b)) and Figure (c)

http://www.epjdatascience.com/content/2/1/5
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Figure 2 Distribution of time the application was running for each user. The distribution of time the

application was running for each user. During the parade, location updates from up to 244 users were

received simultaneously, at any one time. On average, 4,719 location updates were recorded per user. This

corresponds to a running time of 78.65 minutes. A few users shared more than 10,000 samples which requires

them to run the application for more than 2.7 hours.

Figure 3 App users over time. Number of App users during the Lord Mayor’s Show 2011. Colored intervals

represent event-related activities. The first procession takes place between 11:00 and 12:30 (Interval (a)). The

second procession takes place between 13:00 and 14:30 (Interval (b)). The firework display takes place

between 17:00 and 17:30 (Interval (c)). About the event: A new Lord Mayor of the City of London is appointed

every year and this public parade is organized to celebrate his inauguration. The Lord Mayor participates in a

procession from the City of London to the Royal Courts of Justice in the City of Westminster. As in the Middle

Ages, he is accompanied by military displays, marching bands, acrobats, dancers, displays of pomp and

charity and symbols of London’s ancient strength and resolve. The annual one-day event attracts about half a

million spectators each year and is one of the City’s longest established and best known annual events dating

back to 1535. The event starts at 11:00 and the processional route goes from the Mansion House via Bank, St.

Paul’s Cathedral and Fleet Street to the Aldwych; the tail of the procession will reach the Royal Courts at about

12.30. There is a short break during the ceremony, then the whole procession sets off again at 13:00 to take

the new Lord Mayor back to Mansion House. The procession finally ends at about 14:30 when the last floats

reach the City.
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Figure 4 Heat map of user distribution.Map of the data recording zone. Superimposed is a heat map

representation of the distribution of all recorded location updates. The ‘hotter’ an area is colored (i.e. the more

yellow it is), the more data points have been colected in this area. It is visible that more data has been

collected around locations where event-related activities took place.

Figure 5 Spatio-temporal distribution of users. Spatio-temporal distribution of user: (a) Distribution of

users during the first procession between 11:00 and 12:30 (Interval (a)); (b) Distribution during the second

procession between 13:00 and 14:30 (Interval (b)); (c) Distribution during the firework display between 17:00

and 17:30 (Interval (c)); (d) Distribution during the break between 14:30 and 17:00. It is visible that people

amass along streets where the processions take place and around the river basin during the fireworks. During

the break, however, the accumulation is much lower and concentrated around bus and metro stations.

during the firework display (Interval (c)). Figure (d) shows the distribution of reported

locations during the break between : and :. Although temporal information is

not present, these heat maps reveal an expected spatial distribution of event attendees:

people amass along streets where the processions take place and around the river basin

during the fireworks. During the break, however, the accumulation is much lower and

concentrations around bus and metro stations are visible.
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Figure 6 Velocity distribution. Velocity distribution of the collected samples. The orange region indicates

the unrestricted walking velocity range of pedestrians in urban spaces [64].

5.2 Velocity distribution

App users do not necessarily walk around by foot but may travel by any means of avail-

able transportation. By recording a user’s location, the GPS sensor also provides the cur-

rent velocity the device travels. Figure  shows the velocity distribution of the collected

data. The orange-colored area indicates the walking velocity range of pedestrians in urban

spaces. The mean value is . ms– with a variance of . ms– according to Willis et al.

[]. Walking velocity is affected by cultural influences, demographics and even time of

the day and weather conditions. However, these influences lie within the indicated area.

The plot reveals that the majority of the collected samples were recorded at a velocities

between  ms– and  ms– while only a few data samples were recording at higher veloc-

ities. In the following, we are interested in pedestrian dynamics and hence, unless stated

otherwise, we only consider data samples where the corresponding velocity lies between

 ms– ≤ v≤ . + . ms– (=. ms–).

5.3 Relation between user density and crowd density

We assume that the spatial distribution of App users corresponds to the actual spatial dis-

tribution of event attendees (Assumption ). This implies that for a given point in time, the

ratio of App users to event attendees is constant for every location. To verify this assump-

tion, we compare the actual crowd density at a specific location to the App user density at

the same location. The crowd density is obtained from video footage recorded by CCTV

video cameras (see Section .). We use recordings from three different locations and for

each of these locations defined an area of approximately  m within which the pedestri-

ans are manually counted at certain points in time. Given these counts, the crowd density

ρCrowd is obtained by dividing the number of peopleN in the area by the size A of the area.

Hence:

ρCrowd =
N

A
. ()

The corresponding user density ρUser is obtained from the GPS location data using Equa-

tion . Figure (a) shows a scatter plot of the (ρUser,ρCrowd)-tuples. In total, we obtained

 density tuples.
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Figure 7 User density (GPS) vs. crowd density (CCTV). (a) Scatter plot of (ρUser ,ρCrowd)-tuples. This data

was obtained throughout the whole event at three distinct locations. The green fit line indicates the linear

regression. (b) influence of the kernel radius R of Equation 1 on the correlation coefficient r of the linear

regression.

To fulfill Assumption , we assume a linear relation between ρCrowd and ρUser. With

a linear regression analysis, we can assess the quality of the linear relation. The linear

regression is depicted in Figure (a). The user density ρUser depends on the kernel ra-

dius R of Equation . To understand the influence, we vary the kernel radius R between

 m < R <  m. Figure (b) depicts the influence of the kernel radius on the correlation

between the crowd density and the user density. We obtain a low correlation coefficient

for small values of R. The correlation coefficient increases to a maximum of r = . for

R =  m followed by a decline for larger values of R. The observed behavior can be ex-

plained in the following way: This variation is getting smoothed out for larger values of R

as the area to determine the density is increased. Hence, small variations in the number

of available sample points do not affect the density estimation as greatly resulting in lower

variations. By exceeding some value of R, the considered area is so large that the estimated

density does not capture the local variation anymore. Local variations are smoothed out

and large deviations between the user density and the crowd density can be observed. This

causes a drop in the correlation coefficient.

A further error might be introduced by the localization errors due to sub-optimal GPS

fixes in urban spaces, where often only a limited number of GPS satellites are visible at

the street level. It has been shown in [] that this error is lower than  m for % of all

samples recorded in urban spaces and that the median error is  m.

5.4 Behavioral similarity with respect to density

We assess whether Assumption  holds by comparing a user’s own velocity to the velocity

of their neighbors. For this we determine a user’s location and velocity and compare it to

the crowd velocity at this location. We calculate the crowd velocity at the user’s location

using Equation  without including the user’s own velocity. The velocity difference �vk is

given by the difference between the user’s velocity and the crowd velocity. Hence,

�vk =

∣

∣

∣

∣

vk –

∑

i∈{N\k} |�vi| exp[–‖�ri(t) – �r‖/R]
∑

i∈{N\k} exp[–‖�ri(t) – �r‖/R]

∣

∣

∣

∣

, ()
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Figure 8 Walking speed similarity. Relation between the difference of a user’s velocity and the velocity of

the crowd in their vicinity in dependence of the crowd density. Plot (a) shows the relation for a kernel radius

of R = 10 m and (b) for R = 55 m, respectively. The plots depict that for low densities, the mean value is around

0.3 ms–1 which corresponds to the variance in pedestrian walking velocity in unrestricted environments [64].

The differences decay towards 0 by increasing the crowd density.

Figure 9 Histogram of density-speed tuples. Histogram of the density-velocity relation of our data set the

kernel radii (a) R = 10 m and (b) R = 55 m, respectively. The plots depict a two-dimensional histogram of all

obtained density-velocity tuples (logarithmic scale). The color values indicate the occurrence frequency of a

tuple. It is observable that the walking velocity covers the whole range from 0 ms–1 up to a maximal value for

a given density. This upper limit is depends on the crowd density and decays for larger crowd densities.

with vk the velocity of user k andN the set of all users.We calculate the velocity difference

at each time step for each user together with the local density at that location. The two

plots in Figure  show the obtained relationship by plotting the velocity difference versus

the user density. Plot (a) is obtained with a kernel parameter of R =  m and (b) with R =

 m, respectively. We see that in both cases, for small densities, the mean value is around

. ms– which corresponds to the variance in pedestrian walking velocity in unrestricted

environments []. Additionally, a trend can be observed that the velocity differences tend

to get smaller for larger densities. This supports Assumption .

5.5 The fundamental diagram: relation between density and velocity

We want to investigate towards which extent the density-velocity relation found in our

data set corresponds to existing fundamental diagrammodels. Figure (a) and Figure (b)

show a histogram of the density-velocity relation for a kernel radius of R =  m and R =

 m, respectively. To obtain these plots, we divided time into intervals of one second and
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calculated for each interval t and for each user that was active in this interval the local

density ρ(�r, t) using Equation  and the crowd velocity v(�r, t) using Equation . The plots

depict a two-dimensional histogram of all obtained density-velocity tuples (logarithmic

scale). The color values indicate the occurrence frequency of a tuple. The two plots reveal

some general aspects of the density-velocity relation found in our data sets:

• both plots exhibit a clear trend that with higher densities, the velocity range decreases;

• for low densities, the whole walking velocity range between ms– and .ms– is

observed;

• low velocity values can be observed for all densities.

By comparing the obtained results to the density-velocity relation discussed in Sec-

tion .., we see that our data does not look like the plot of the function provided by

Weidmann. Our data is scattered across a region as opposed to the bijective mapping of

the fundamental diagram. This difference can be explained as follows: The model derived

byWeidmann assumes that the pedestrians want to reach a target location. This assump-

tion is not given in our situation. Not every pedestrian has a target location to reach and

might decide to walk with his own pace or even decides to stand still. Thus, we can ob-

serve walking velocities covering the whole range from  ms– up to a maximal value for

a given density. It is, however, observable that this maximal value depends on the crowd

density and decreases for higher densities. Therefore, we can conclude that the crowdden-

sity value at a given location imposes a restriction on the maximal walking velocity that is

possible.

5.6 Calibration of crowd density estimates

Based on the findings deduced in the previous section, we introduce and evaluate a

methodology to estimate a crowd density from the spatial distribution of App users. Our

method relies on Assumption . Section . shows the existence of a linear relation be-

tween the crowd density and the user density. By knowing the parameters of the linear

regression, a crowd density can be estimated from the user density. The regression pa-

rameters, however, are unknown. Thus, a calibration method is required to obtain these

parameters.

.. Calibrating the spatial distribution of App users to obtain crowd density estimates

By using Equation , we obtain a local user density ρUser from the spatial distribution of

App users. Making use of the linear relation, we obtain a local crowd density estimation

ρ̂Crowd from the measured local user density ρUser:

ρ̂Crowd(�r, t) =
m

k
ρUser(�r, t) +

q

k
, ()

where m, q and k are unknown regression parameters and depend on the ratio of App

users to event attendees.

Section .. presents Weidmann’s analytical equation to model the fundamental dia-

gram (Equation ). This equation describes the crowd speed as a function of the crowd

density. It can be transformed so that the crowd density is a function of the crowd speed:

ρCrowd(�r, t, v) =
γ · ρmax

ρmax · ln( –v
v(�r,t)–v

) + γ
with v(�r, t) �= v. ()
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The speed of the crowd v(�r, t) is obtained using Equation . Hence, we can obtain a

crowd density estimates ρ̃Crowd by combining Equation  and Equation . The parameters

ρmax and v are cultural dependent and can be taken from literature (e.g. [, , ]). The

fitting parameter γ , however, remains unknown.

For a given time at a given location, Equation  and Equation  should provide the same

crowd density estimates ρ̂Crowd and ρ̃Crowd. Hereby, Equation  considers the local user

density and Equation  the local crowd speed. We define an error measure e:

e =
(

ρ̂User(�r, t) – ρUser(�r, t)
)

()

with

ρ̂User(�r, t)
()
=

k · ρ̂Crowd(v) – q

m
=
k · ρ̃Crowd(v) – q

m

()
=

k·γ ·ρmax

ρmax·ln(
–v

v(�r,t)–v
)+γ

– q

m
, m �= . ()

The missing calibration parametersm, q and γ can now be found by minimizing the error

e with a least square method. The minimization criteria we used is

S(m,q,γ ) =

N
∑

i=

[

ρ̂User(m,q,γ , v,k) – ρUser

]
. ()

.. Modeling the fundamental diagram from the recorded density-speed information

With the previous approach, we can obtain the optimal calibration parameters m and q

by using Weidmann’s equation to fit the user density to the corresponding crowd speed.

However, the density-speed tuples do not represent the fundamental diagramwell as there

is a great amount of variation in the walking behavior of pedestrians (Section .). We

found in our data set that pedestrians walk with a speed between  ms– and a density-

dependent upper limit. We consider this upper limit as the speed with which pedestrians’

walking behavior gets restricted by the surrounding crowd. Increasing the personal walk-

ing speedwould conflict with the social forces acting on a pedestrian []. Our assumption

is that pedestrians walking with the upper limit speed for a given density behave according

to the fundamental diagram. Hence, we perform a calibration with only these upper limit

values. To obtain the upper limit values, we introduce τ (ρ), the .-percentile value. τ (ρ)

is the threshold speed for a given density ρ for which % of all measured speed values

are smaller. Figure  shows again the frequency plot of the (ρUser(�r, t), v(�r, t))-tuples to-

gether with the .-percentile values τ (ρ). These percentile values τ (ρ) can now be used

to minimize Equation  to obtain the calibration parameters m and q. The green curve

in Figure  shows the calibrated fundamental diagram. Hereby, we set ρmax = . m–

(According toWeidmann []) and v = . ms– (according toWillis et al. for UK []).

Table  lists the calibration parameters obtained by ourminimization process for different

kernel radii R.

.. Evaluation of the calibration methodology

To gain insight into the accuracy of our calibrationmethodology, we calibrate all user den-

sity measure ρUser where a CCTV-based reference crowd density is available. This is the
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Figure 10 Threshold speed and fitted fundamental diagram. Histogram of the user density-speed tuples

(gray) and the 0.99-percentile values τ (ρ). The green line is a plot of the fundamental diagram fitted through

these 0.99-percentile points by following our calibration method.

Table 3 Overview of calibration parameter

R m q γ k

10 550 0 1.6 1.7

15 624 0.1 1.1 1.4

20 757 0 0.6 1.5

25 1,176 0.1 0.6 1.9

30 1,262 0.2 0.5 1.7

35 618 0.1 0.5 0.7

40 1,972 0.3 0.5 1.9

45 1,312 0.2 0.5 1.1

50 1,339 0.2 0.5 1.0

55 1,177 0.2 0.5 0.8

Calibration parameters obtained through our calibration method for different kernel radii.

same data as used in Section .. We compare the outcome to the CCTV-based refer-

ence data. Ideally, the estimated crowd density ρ̂Crowd obtained from the calibrated App

user distribution should be identical to the observed crowd density ρCrowd from the video

footage. We apply a linear regression trough the data tuples to understand the calibration

accuracy. Figure  shows the linear regressions for different kernel radii. A perfect regres-

sion would correspond to the diagonal axis.We see that all regressions are situated around

the diagonal axis.

We perform a residual analysis to assess the appropriateness of the chosen model.

A residual is defined as follows:

ǫ = ρ̂Crowd – ρCrowd. ()

Figure (a) is a plot of the residuals for the kernel radii R =  m and R =  m depen-

dent on the crowd density. Figure (b) shows the normal probability plot. The normal

probability plot helps to determine whether or not it is reasonable to assume that the ran-

dom errors in a statistical process can be assumed to be drawn from a normal distribution.

The normal probability plot shows a strongly linear pattern.With a linear regression fitted

through the data (dashed lines), we obtain a correlation coefficient of . for R =  m

and . for R =  m, respectively. These correlation coefficients indicate that there are
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Figure 11 Calibration regression. Linear regressions of the calibrated crowd densities ρ̂Crowd and the

crowd densities ρCrowd obtained from video footage. Results are shown for different kernel radii R. A perfect

regression would correspond to the diagonal axis. Additionally, the figure also shows the scatter plot of the

calibrated data points for the case of R = 55 m.

Figure 12 Residual analysis. (a) Residual plot of the estimated crowd density to the actual crowd density for

the two kernel radii R = 10 m and R = 55 m. (b) The normal probability plot of the residuals. The good linearity

of the regression supports the chosen model. (c) The histogram of the residuals shows a normal distribution.
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Table 4 Correlation coefficient and calibration error

R [m] r σ (RMSE) [m–]

10 0.56 0.54

15 0.66 0.46

20 0.71 0.51

25 0.75 0.46

30 0.78 0.41

35 0.80 0.37

40 0.81 0.35

45 0.82 0.34

50 0.83 0.35

55 0.83 0.36

Results of the crowd density calibration method by comparing the obtained crowd density estimates to ground truth

information extracted from CCTV video footage. The density estimates rely on the kernel radius R which is used to determine

the user density. Results for different values of R are listed. The correlation coefficient r indicates how well the crowd density

estimates correlate to the ground truth measures. The crowd density estimation error σ is the average estimation error.

only minor deviations from the line fit to the points on the probability plot. Hence, the

chosen model appears to be suitable to model the data. This finding is also supported

by the histogram depicted in Figure (c) which shows that the residuals have a normal

distribution.

To understand howwell we can estimate the crowd density from the distribution of App

users, we determine the overall calibration error by calculating the root mean squared

error (RMSE) σ as follows:

σ =

√

∑N
i (ρCrowd – ρ̂Crowd)

N

=

√

∑N
i (ρCrowd – (m

k
· ρUser +

q
k
))

N
. ()

Table  lists σ for different kernel radii. The table also lists the obtained correlation coeffi-

cients r of a linear regression through the actual crowd density ρCrowd and the estimation

ρ̂Crowd.

Given all these findings, we conclude:

• The residual analysis reveals that the error is normal distributed which suggests that

the chosen model fits the data well and that the error is not introduced by the model

but inherently present in the data,

• we achieve a correlation coefficient of r = . for R = m and r = . for R = m,

respectively. This implies that there is some predicting power for obtaining a crowd

density estimation, and

• the calibration error is σ = .m– for R = m and σ = .m– for R = m,

respectively.

6 Conclusion

A participatory sensing approach for crowd monitoring faces a major limitation: Partici-

pation is based on a voluntary base. Regardless of the incentivization strategy, we expect

that only a small fraction of all attendees of a mass gathering is being tracked. This makes

it challenging to conclude about the crowd density. This work addressed this limitation.

We presented a methodology which allows to infer a crowd density even if only a small
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number of crowdmembers is being tracked. The principle behind ourmethodology is that

the walking speed of pedestrians depends on the crowd density. Bymeasuring the location

and speed, we can calibrate the distribution of tracked pedestrians to the distribution of

all attendees of a mass gathering using the fundamental diagram. With this, we can infer

crowd density estimates.

We used a data set recorded during a city-scale mass gathering to evaluate our method-

ology. We compared crowd density estimates to ground truth information obtained from

video footage: For a kernel radius of R =  m, the average calibration error is . m–.

Further, a correlation coefficient of . indicates that a linear relation between the crowd

density and the user density can be assumed. The residual analysis revealed that themodel

fits the data well.

Besides these results, the work presents another finding: We could verify that the walk-

ing speed of pedestrians depends on the crowd density. Hereby, we found a similar rela-

tion between the speed of a crowd and the density as related work suggests. In particular,

we identified a crowd density dependent upper limit speed with which pedestrians move

through urban spaces. These upper speed limit values follow existing fundamental dia-

gram models closely.

There are several factors to consider:

• The reason for not reaching a higher correlation coefficient than the maximum value

of r = .might stem from the unequal spatial distribution of App users and event

attendees at certain time steps. However, there are also other factors: It was

sometimes difficult to count the correct number of attendees in the predefined area

from the video footage as some pedestrians were occluded by others. Therefore, the

crowd density extracted from the video is also error-prone.

• We obtained the highest correlation coefficient and lowest calibration error for a

kernel radius R = m. This is a large radius to infer local characteristics. We believe

this is due to the sparsity in our data set. We were tracking less than % of all

attendees. A smaller kernel radius could provide more accurate local crowd

information [] but would require a much larger user base. Providing more attractive

incentives, making the App available on different mobile platforms and having a good

advertisement campaign in place could stimulate a higher participation.

• We obtained best results with a radius of m. This seems to be like a big area to

cover for monitoring crowd. However, as we use a Gaussian weighting scheme to

calculate our measures, the influence of the users decays rapidly the further away they

are from the center of the circle. Further, we believe that this radius can be smaller by

having a larger ratio of App users.

The location sampling rate of  Hz was chosen to capture as much of the pedestrian dy-

namics as possible. However, such a high sampling rate is very energy consuming. Besides

privacy considerations, also the heavy battery consumption of such an App might have a

detrimental effect on participation. Therefore, it is important to incorporate an efficient

energy conserving sampling strategy. This can be achieved by lowering the sampling fre-

quency but also by only reading location updates from GPS if needed. Hereby, low-power

acceleration sensors can help to determine if a user is stationary or not and only switch

on the GPS if motion is being detected.

Another important issue that has not been addressed in this work is to obtain a confi-

dence measure giving indication about the reliability of the inferred crowd density. It may
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be that due to a small percentage of users compared to the total number of attendees, the

inferred crowd density may even become null. Hereby, a plausibility check e.g. by compar-

ing the active number of users to a roughly estimated number of attendees by the security

personnel could give confidence about the inferred crowd density.

This work is one of the first addressing the challenges arising by crowd sensing through

a participatory sensing approach with smartphones. We believe the results are promis-

ing to stimulate successive contributions. In particular, we see the following next steps to

investigate some of the aspects not addressed in this work:

• We evaluated our approach on data from only one mass gathering. To generalize the

findings, our method has to be applied to data collected during different mass

gatherings and the results have to be compared. The type of the gathering and cultural

aspects may have an influence.

• A sensitivity analysis investigating the relation between the ratio of App users and the

accuracy of crowd density estimation helps to understand how many pedestrian need

to be tracked to obtain a significant estimation accuracy.

• An evaluation of the online performance of our method reveals the required amount

of data to estimate a crowd density. The required amount of data is closely connected

to the required amount of pedestrians. These two aspects should be investigated

jointly.

• We used the analytical model of Weidmann to represent the fundamental diagram. As

noted in Section .., other models exist which consider additional information. The

suitability of alternative models for our calibration method remains to be investigated.

• A possible demographic bias in our App usage was not taken into consideration.

However, such factors influence the behavior of pedestrians. Considering the age or

gender distribution or the cultural background could further tune the model

parameters.

• We did not consider to include spatial characteristics into our model. As the behavior

of pedestrians depends on the architectural configuration, such information could be

considered to increase the estimation accuracy.

This work shows on the example of crowd density that a participatory sensing approach

can give insight into crowd characteristics and provide information relevant to assess the

criticality of a situation during city-scale mass gatherings. Given our results and the many

advantages of on-device localization (localization accuracy, user control over privacy,mul-

titude of sensor modalities, low deployment cost, etc.), we suggest that smartphones are a

viable tool for crowd monitoring.
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