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ABSTRACT
Current surveys may be on the verge of measuring the baryonic oscillations in the galaxy
power spectrum, which are clearly seen imprinted on the cosmic microwave background. It
has recently been proposed that these oscillations allow a ‘standard ruler’ method of probing
the equation of state of dark energy. In this paper we present a new calculation of the number
of galaxies future radio telescopes will detect in surveys of the sky in neutral hydrogen (H I).
We estimate the likely statistical errors if the standard ruler method were to be applied to
such surveys. We emphasize uncertainties in our calculations, and pinpoint the most important
features of future H I surveys if they are to provide new constraints on dark energy via baryonic
oscillations. Designs of future radio telescopes are required to have a large bandwidth (charac-
terized by β, the ratio of the instantaneous bandwidth to the bandwidth required by survey) and
to have the widest instantaneous (1.4 GHz) field of view (FOV) possible. Given the expected
sensitivity of a future Square Kilometre Array (SKA), given that half of its collecting area will
be concentrated in a core of diameter ∼5 km, and given a reasonable survey duration (T 0 ∼
1 yr), we show that there will be negligible shot noise on a power spectrum derived from H I

galaxies out to redshift z � 1.5. To access the largest cosmic volume possible by surveying
all the sky available, we argue that β, T 0 and FOV must obey the relation β FOV T 0 � 10
deg2 yr. A ∼1-yr SKA survey would then contain � 109( f sky/0.5) H I galaxies and provide
constraints on the dark energy parameter w of order �w � 0.01 ( f sky/0.5)−0.5, where f sky is
the fraction of the whole sky observed.

Key words: supernovae: general – cosmological parameters – large-scale structure of Universe
– radio lines: general.

1 I N T RO D U C T I O N

We are now widely believed to have entered an era of precision
cosmology (e.g. Percival et al. 2001; Spergel et al. 2003). It is there-
fore important that all new surveys, and all new equipment designed
to make these surveys, are able to make precision measurements.
These measurements should not only improve on the current con-
straints on the cosmological parameters but also begin to seriously
constrain the equation of state of dark energy and its evolution with
cosmic epoch. These constraints will eventually distinguish between
a cosmological constant and other models for dark energy, such as
quintessence (e.g. Carroll, Press & Turner 1992; Caldwell, Dave &
Steinhardt 1998).

Recently, much effort has been expended to establish the best way
of determining the properties of dark energy. Several methods have
been proposed: the use of Type Ia supernovae to probe the luminos-
ity distance (e.g. Weller & Albrecht 2002); the use of cluster number
counts (Haiman, Mohr & Holder 2001) or counts of galaxies (New-
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man & Davis 2000); weak gravitational lensing (Cooray & Huterer
1999); the Alcock–Paczyński test (Ballinger, Peacock & Heavens
1996); and the cosmic microwave background (CMB; e.g. Douspis
et al. 2003). In this paper we examine one method in particular, the
‘standard ruler’ method based on baryonic oscillations (Eisenstein
2002), as several authors (Blake & Glazebrook 2003; Hu & Haiman
2003; Seo & Eisenstein 2003) have argued that it suffers from a
set of systematic errors that are much less serious than those of the
other methods.

We investigate here the role in dark energy studies of future radio
surveys of neutral hydrogen (H I). Such surveys are likely to reach
full fruition with the proposed next-generation radio synthesis array,
the Square Kilometre Array (SKA; Carilli & Rawlings 2004).

In Section 2 we describe how we would be able to detect H I at
high redshifts with future radio surveys. There are no direct obser-
vations of H I in emission in the high-redshift Universe as the current
radio telescopes used to search for H I in emission are only sensitive
enough to reach redshifts of around 0.2 (Zwaan, van Dokkum &
Verheijen 2001). Nevertheless, we have evidence of large amounts
of high-redshift H I through the damped-Lyα objects seen in ab-
sorption in quasar optical spectra (Storrie-Lombardi & Wolfe 2000;
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Peroux et al. 2001). In Section 3 we use this information to constrain
possible evolutions of the H I mass function and to produce a new
calculation of the number density of H I galaxies to be detected by
future radio telescopes which improve on previous estimates (Briggs
1999; van der Hulst 1999). We compare our ‘best-guess’ evolution-
ary model with other observational constraints in Section 4; fitting
formulae are given in Appendix A.

Having an estimate of what future radio surveys will be able to see
in the 21-cm line of H I in emission, we can see what cosmological
tests we can perform on such data and decide on their pros and cons.
We focus here on probing dark energy with the baryonic oscillations
method but other cosmological experiments are possible (see Blake
et al. 2004; Rawlings et al. 2004). In Section 5 we show that, given
the likely capabilities of future radio telescopes, the optimal survey
would be an ‘all-hemisphere survey’ of all the sky area available. We
then compute what comoving cosmological volume and numbers of
sources are likely to be available in such surveys and we estimate the
accuracy that the baryonic oscillations ‘standard ruler’ method (e.g.
Blake & Glazebrook 2003; Hu & Haiman 2003; Seo & Eisenstein
2003) can give us in measuring the equation of state of dark energy;
this is typically described by the parameter w = p/ρ (Turner &
White 1997), where p is the pressure and ρ c2 is the energy density
of the dark energy component.

In Section 6 we discuss the uncertainties of our approach and
discuss how they might influence the results of the standard ruler
method used. We also discuss how the results would change if dif-
ferent assumptions are made for key features of the future radio
surveys as well as some potential problems in using this method
with future radio survey data.

For this paper we adopt the following cosmological values:
�M = 0.3, �� = 0.7 and h70 = 1. We use the matter power spec-
trum given in Bardeen et al. (1986) with a normalization given by
the Wilkinson Microwave Anisotropy Probe results (Spergel et al.
2003) which corresponds to σ 8 � 0.84. For a given type of matter
x we define �x as being the ratio of the density of x to the critical
density of the Universe today. When we refer to volumes, lengths,
etc., we consider comoving cosmological values unless specified
otherwise.

Unless stated otherwise, if we mention the field of view (FOV) of
a radio telescope/array, we are referring to the instantaneous FOV
this instrument possesses, and can image, at 1.4 GHz. It is vital
to remember that for many radio telescopes the FOV that can be
imaged becomes larger at lower frequencies.

2 P RO S P E C T S F O R F U T U R E R A D I O
S U RV E Y O F H I

2.1 Sensitivity of radio receivers

The ratio of the signal to the noise power in a single-polarization
radio receiver is

(1/2)Aeff S�ν

kTsys�ν
= Aeff S

2kTsys
, (1)

where Aeff is the effective collective area of the telescope (in-
corporating all inefficiencies), S is the flux density, �ν is the
bandwidth and T sys is the system temperature (incorporating all
contributions).

In this paper we scale all limiting sensitivities to that expected
for the SKA. The SKA science requirements (Jones 2004) demand
Aeff/T sys = 2 × 104 m2 K−1 over the frequency range 0.5–5 GHz.
As the discussions in this paper will be limited to H I at redshifts

z � 2 (i.e. frequencies in the range 0.5–1.4 GHz), this means that
we can write the ‘radiometry equation’ for the SKA in a very simple
form:

Slim = 2kTsys

Aeff

√
2�νt

� 100 nJy√
�νt

. (2)

Here, Slim is the rms sensitivity for dual-polarization observations
with the SKA and the

√
2�νt term allows for the increase in sensi-

tivity by averaging independent measurements of the signal-to-noise
ratio.

2.2 Mass detection limit of H I

Neutral hydrogen (H I) will be found in emission with future radio
surveys via the 21-cm line radiation due to the difference in energy
in hyperfine atomic structure (e.g. Field 1958). From atomic physics
we know that the emissivity is

εν = 1

4π
hν12 A12

N2

NH
NHϕ(ν), (3)

where ν 12 and A12 are the rest-frame frequency and Einstein A co-
efficient for this transition, respectively, ϕ(ν) is the line profile of
the 21-cm line, which is considered here as a delta function, and
N H and N 2 are the total number of hydrogen atoms, and number of
atoms in the upper (level 2), respectively.

We can write N 2/N H = (N 2/N 1)/(N 1/N H). The first ratio is
given by N 2/N 1 = (g2/g1) exp(− hν 12/T S), where N 1 is the num-
ber of atoms in level 1 and g1 = 1 and g2 = 3 are the statistical
weights for these levels. T S is the so-called spin temperature and
is an effective temperature resulting from the coupling of the CMB
temperature T CMB and the kinetic temperature T K of the gas. In the
case of the CMB radiation alone, the spin temperature will equal the
CMB temperature. If we have any collisional excitation or scatter-
ing by Lyα photons, the spin temperature will couple to the kinetic
temperature as well as the CMB temperature and will therefore be
a weighted average of both (Rohlfs & Wilson 1999). In cases we
are considering here (dense clouds) we have both the kinetic tem-
perature and the CMB temperature much larger than hν 12 = 0.06 K
and, given that g2/g1 = 3, we have N 2/N 1 � 3.

Observations show that T S can be as large as 300 K in low-redshift
galaxies (Chengalur & Kanekar 2000) and that, in damped-Lyα ob-
jects at higher redshifts, limits on H I absorption lines imply larger
values of T S of the order of 1000 K or more (Kanekar & Chegalur
2003). If we are dealing with H I in emission, we will obtain the
same signal whatever T S; however, the fact that the spin tempera-
ture is higher at higher redshifts is telling us that we are probably
probing a different type of interstellar medium. At high redshift we
are typically probing a warm neutral intergalactic medium that is
present in larger fraction in smaller less dense dark matter haloes
(Young & Knezek 1989). We can safely say that in all cases of our
interest N 2/N H � 3/4.

If we consider a cloud of hydrogen, the monochromatic luminos-
ity we would obtain from this 21-cm line emission will be

Lν =
∫

V

∫
�

εν dV d� = 3

4
hν A12

MH I

mH
ϕ(ν). (4)

So, given the expression for the monochromatic flux density
Sν = L ν(1+z)(1 + z)/[4π D2

L (z)] (Peacock 1999; equation 3.87),
where DL(z) is the luminosity distance to the galaxy, we can inte-
grate equation (4) over frequency to obtain∫

Sνdν = 1

4π

3

4
h A12

MH I

mH

1 + z

D2
L (z)

∫
ν ϕ(ν) dν. (5)
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Therefore, we obtain the expression for the mass corresponding to
the flux seen in our observations

MH I(z) = 16π

3

mH

A12hc

D2
L (z)

1 + z

∫
Sν dV , (6)

where the integral is now over V , the line-of-sight width correspond-
ing to the projected circular velocity of the galaxy. In more useful
units

MH I(z)

M�
= 0.235

1 + z

D2
L (z)

Mpc2

Sν

νJy

V

km s−1
, (7)

noting that the factor of (1 + z) arises as Sν V needs to be multiplied
by ν 12/(1 + z) to produce an integrated line flux.

We have neglected H I self-absorption effects, which means that
the H I mass may be a slight underestimate, but this is likely to be
a problem only when the discs of the largest galaxies seen close to
edge on (Rao, Turnshek & Briggs 1995).

2.3 Sensitivity limits of future radio surveys

The H I Parkes All-Sky Survey (HIPASS; Ryan-Weber et al. 2002)
used channels of velocity width �V = 13 km s−1 and was capable
of detecting typical galaxies out to z � 0.02. It is important that the
�V chosen for an H I survey is not larger than the velocity width
of the object being observed, because this would result in both the
loss of signal-to-noise ratio and the danger of mistaking signal for
interference. The HIPASS does not show any evidence that many
sources have low-velocity width and the very lowest velocities found
are around 30 km s−1. These widths might change systematically
with redshift. Zwaan et al. (2001) have detected an example of an
H I-rich cloud at z = 0.18 with a velocity profile of width V = 60 km
s−1. We take �V = 30 km s−1 but caution that even finer velocity
bins may prove necessary to avoid losing signal-to-noise ratio on the
narrowest-line objects, particularly if linewidth correlates negatively
with redshift. The current ‘Strawman design’ for the SKA (Jones
2004) suggests that channels of width �V � 30 km s−1 will be
available. We assume throughout that H I lines are detected and
measured using optimal smoothing techniques.

In the standard picture of galaxy formation (e.g. Rees & Ostriker
1977; White & Rees 1978), we expect dark matter haloes to form
potential wells, with gas falling into these potential wells becoming
shock heated to the virial temperature. Cooling can then occur if the
free-fall time-scale is longer than the cooling time-scale. Dekel &
Silk (1986) have shown that the objects that can cool have circular
velocities between 10 and 200 km s−1. Further to this, it is argued
that objects with circular velocity between 10 and 30 km s−1 are
likely to be totally dark as their potential wells are so shallow that
the cold gas will disappear by evaporation due to photoionization
(Dekel 2004). These theoretical arguments lead us to perform our
calculations with an assumed �V = 30 km s−1, which means that
only objects with the lowest circular velocities and with nearly face-
on rotating discs will have H I line profiles with V � �V .

In every �V = 30 km s−1 channel there will be a rms noise
that will be dependent on frequency ν, estimated for the SKA to be
∼2 µJy at ν = 1.4 GHz (H I at z = 0) to ∼4 µJy at ν = 470 MHz (H I

at z � 2) for a 4-h pointed observation. We denote this noise by σ 4h.
We assume that the average hydrogen-rich galaxy has a rectan-

gular line-of-sight velocity spread V 0 = 300 km s−1 (which corre-
sponds to a circular velocity of around 200 km s−1) at z = 0 and
we also assume a ‘Tully–Fisher-like’ relationship V 4 ∝ M2

DM/R2
0

(Peacock 1999, p. 622) that would hold at higher redshift, where
MDM is the dark matter mass of the galaxy and R0 is the galaxy

radius. The evolution we choose for MDM and R0 with redshift is ex-
plained in Section 3.2, and this will impose a corresponding scaling
of V with z; this choice will in fact force the linewidth to correlate
negatively with redshift [as V (z) = V 0(1 + z)−1/2] although the
physical lower limit of 30 km s−1 proposed by Dekel (2004) should
mean that this cannot decrease without limit for haloes containing
H I. Then, the limiting H I mass that a radio survey will be able to
detect at redshift z is

MH I(z) = 16π

3

mH

A12hc

D2
L (z)

1 + z
f −1 V (z)√

V (z)/�V
SNσ4h

√
4

t
. (8)

Here, SN is the signal-to-noise level we choose to yield a robust
detection, t is the integration time in h for a given FOV and f is the
fraction of the sensitivity relative to the SKA; by definition f = 1
for the SKA, and current radio telescopes have f � 0.01.

2.4 Survey geometry

Currently, the ‘Strawman design’ for the SKA (Jones 2004) has a
FOV of at least 1 deg2. For most realizations of an SKA, the FOV
will be much larger at frequencies smaller than 1.4 GHz, which will
correspond to H I at redshifts larger than z � 0. In fact, the FOV,
in units of deg2, will typically (e.g. because it is controlled by the
diffraction limit of a dish) grow as (1 + z)2 if we are probing H I

at increasing redshift. In Section 5 we consider future telescopes
where the FOV for H I galaxies may vary with a different power of
the frequency/redshift.

So, let us consider for illustrative purposes that we have a square
beam and that we would like to cover a square sky patch of 64
deg2 with an integration time of 8 h per deg2. If we simply point the
telescope 64 times at each square that we will name A1,A2. . .H7,H8,
then we will have covered the sky smoothly at z = 0, but the data at
z = 0.5 will have parts of the sky that will have a higher sensitivity
than others. This would be an undesired feature in the data for the
purposes of making a uniform survey of H I.

In order to deal with this, we consider the following. Instead of
pointing the telescope at each of A1,A2, . . . , we take data n times
in between A1 and A2 with 1/nth of the total time we would have
spent on each of A1 and A2. We can then take the data that we re-
ceive from each small pointing and add it to the data available from
other pointings. We end up with a survey with increasing sensitivity
for increasing redshifts because a source at higher redshift will be
accessible to a larger fraction of the pointings and will therefore
have a longer effective integration time for higher-redshift objects.
In fact, the effective integration time for such a ‘tiled’ survey will
increase smoothly as (1 + z)2 for a given integration time at z = 0.
Ideally we would like to have a very smooth survey, but in practice
it may not possible to obtain maps with very large n because of lim-
ited computing capabilities. The wiggles on the power spectrum are
at intervals of ∼0.05 Mpc−1 so the survey needs to have a smooth
window function even on scales corresponding to k ∼ 0.01 Mpc−1.
If this is not the case, the wiggles will be smoothed out by correlated
errors on the power spectrum estimation (see Blake & Glazebrook
2003). Thus, for the purposes of this experiment we would like
to have a smooth sky map on sizes of �600 Mpc. The choice of
n � 10 would ensure that smoothness is achieved on scales of the
same size as the wiggles at the redshifts (z ∼ 1) of interest. We also
would not have excessive data storage requirements as the integra-
tion time would be of the order of minutes similar to those used
in current radio surveys. More complicated survey schemes will
be needed with interferometric arrays to ensure optimal ultraviolet
coverage.
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So, for a given time of survey per deg2 the limiting mass that the
SKA will be able to see is

MH I(z) = 16π

3

mH

A12hc

D2
L (z)

(1 + z)1+p
f −1

√
V (z)�V SNσ4h

√
4

t
, (9)

where we have assumed that all redshifts are accessible by a single
pointing and where p is defined by the FOV changing with frequency
ν as ν−2p (i.e. for a ν−2 dependence we have p = 1).

As we are covering a certain patch of the sky, the centre of this
patch will have the sensitivity given by equation (9), but the corners
of the survey will have lower sensitivities as the beam will not have
covered those areas as often as those in the centre. This will be the
case for most of the survey area if we are looking at a small patch of
the sky, but if we are performing a large survey, then this area with
smaller sensitivity will be a small fraction of the total area of the
survey, and can be neglected. We show in Section 5 that the optimal
survey for this experiment is an all-sky survey, so this effect should
therefore be negligible.

The assumption that the FOV changes with redshift will make a
big difference to the total cosmic volume being surveyed in a given
length of time, and this assumption is relaxed in Section 5 where
we consider different values of p.

2.5 Source count

We consider the local mass function of H I (Zwaan et al. 2003)
dn/d log10 M H I in units of Mpc−3. The number of sources viewed
assuming that this mass function is constant in z will be

dN

dz
=

∫ ∞

MH I(z)

dn

d log10 MH I

dV

dz
d log10 MH I, (10)

where M H I(z) is the limiting mass that can be detected; this quantity
is plotted in Fig. 1 in which the gain in sensitivity at high redshifts
from a ‘tiled’ survey is made clear.

However, this assumes that the H I mass function is constant
throughout all redshifts, which is clearly very unlikely to be cor-
rect as neutral hydrogen is constantly being used in star formation,

Figure 1. Limiting H I mass M H I for surveys with an SKA-like instrument
for a signal-to-noise (SN) ratio of 10 in a 4-h integration time (solid and
dotted lines) and a 360-h integration time (dot-dashed and dashed lines);
the mass is in units of M�. The dotted and dot-dashed lines assume pointed
observations and the solid and dashed lines assume tiled surveys as discussed
in Section 2.4. The horizontal line corresponds to the break of the H I mass
function M�

H I at low redshifts from Zwaan et al. (2003). We can see how an
SKA 360-h integration time can take us very deep in z, but a simple 4-h SKA
integration time is enough to detect an M�

H I galaxy (assuming no evolution
in the break of the H I mass function) out to redshift z ∼ 1. This is for an array
that has an effective FOV scaling with frequency ν as ν−2 (see Sections 2.2
and 2.3).

ionized in processes such as supernovae explosions as well as be-
ing created in processes such as cooling flows (e.g. White & Frenk
1991). We therefore have to try and see how this H I mass function
evolves with redshift to have a clearer idea of what number density
will be accessible by surveys with next-generation radio telescopes.
This is the purpose of Section 3 where we assume that the H I ob-
served traces collapsed dark matter haloes.

2.6 Source visibility for an interferometer

In the previous sections we have assumed that a source in the sky
has a flux that will be detected perfectly by the radio telescope. This
is not the case if the survey is carried out with an interferometer.
Because the output of the correlator observing an extended radio
source on certain baselines does not recover the total flux density,
we only recover the ‘correlated flux density’, which is the modulus
of the complex visibility of each baseline.

Here we estimate the signal that we lose if we perform such
surveys with an interferometer. We assume that our average galaxy
has a physical radius R0 = 15 kpc at redshift 0. We assume that
the dark matter mass of a typical galaxy halo changes as M�

DM(z)
according to the hierarchical growth of haloes (Press and Schechter
1974) and that the characteristic density ρ of a halo changes as ρ ∝
(1 + z)3; that is, the density of the collapsed galaxy changes in the
same way as the background density of dark matter. In the standard
picture of disc formation (e.g. Peebles 1969; Fall & Efstathiou 1980)
we expect the disc of a galaxy to be a factor of λ smaller than the
radius of the dark matter halo, where λ is the spin parameter and can
be taken as a constant (Efstathiou & Jones 1979). Now given that
M DM(z) � ρ(z) R3(z)/R3

0 we can approximate the proper radius of
an average galaxy as

R(z) � R0

[
M�

DM(z)

M�
DM(0)

]1/3
1

1 + z
, (11)

where our choice of M�
DM(z) ∝ (1 + z)−3 is explained in Section 3.2.

This will impose an evolution of the characteristic sizes of discs with
redshift that is proportional to (1 + z)−2; this is in rough agreement
with observations of disc sizes from the Hubble Deep Field (e.g.
Poli et al. 1999; Giallongo et al. 2000). Other prescriptions for the
evolution of the disc sizes could have been used (e.g. Ferguson 2003)
but this would not have made a large difference to our calculations.
We use a characteristic size scale for an H I disc in a galaxy at the
break of the H I mass function at redshift z = 0 of R0 = 15 kpc
(Salpeter & Hoffman 1996).

We assume that the galaxy has a surface brightness that corre-
sponds to a two-dimensional Gaussian profile with angular spread
equal to R(z)/DA(z) in radians, where DA(z) is the angular diam-
eter distance to the galaxy. The Fourier transform of this Gaussian
will be the complex visibility of each baseline. The spread of this
Fourier transform is

Dbaseline ∼ c

ν12
(1 + z)DA(z)

1

πR(z)
, (12)

so each antenna, when correlated with other antennas, will only be
sensitive to a fraction of the total flux of the source, depending on
the baseline.

Obviously we need to assume a certain configuration for the an-
tennas. We adopt a composite array (see Jones 2004) in which the
interferometer will be configured with 20 per cent of the collect-
ing area inside a diameter of ∼1 km, 50 per cent of the collect-
ing area within a diameter of ∼5 km, 75 per cent of the
collecting area within a diameter of ∼150 km and the final
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Figure 2. The fraction of flux detected from an extended model galaxy
by an SKA-like interferometer as a function of redshift for different array
distributions. The dashed line assumes a scale-free array, the dotted line
assumes an array with just a core, and the solid line assumes the composite
array as described in Section 2.6.

Figure 3. Differential number density dN/dz of sources per deg2 if we
assume a fixed SKA-like sensitivity, a 4-h integration time, a 10σ detection
limit and no evolution of the H I mass function (although galaxy radii are
assumed to change with redshift in the way described by equation 11). Three
choices of antenna distributions are considered: (i) a simple scale-free array
with resolution 0.1 arcsec at 1.4 GHz (Conway 1998) (dashed line); (ii) a
core only (dotted line); (iii) the composite array described in Section 2.6
(solid line). Performing H I surveys with an array having a large fraction of
the collecting area in short baselines is vital as many sources are resolved
out by the longer baselines.

25 per cent spread over a diameter of 3000 km in a scale-free con-
figuration (Conway 1998).

We illustrate how much the configuration affects the fraction of
the flux detected by plotting the number of sources seen with differ-
ent configurations (Figs 2 and 3). The fraction of flux detected from
sources improves rapidly as the source moves to larger redshift and
has smaller angular size, and is therefore visible to a greater fraction
of the interferometer baselines. As seen in Fig. 3 it is vital that a
large fraction of the collecting area is in short baselines so that we do
not ‘resolve out’ extended sources and miss most of the H I galaxies
in a survey.

2.7 Survey completeness limit

If we perform a survey and take data out to redshift z ∼ 1.5 we would
need to cover frequencies from 1.4 GHz down to 560 MHz; with
channels of width 30 km s−1, we would have data in roughly 10 000
channels. A survey over half of the sky at a resolution corresponding
to �1 arcsec would have about 20 000 deg2, so we therefore would

have around 1011 pixels in the sky. Our survey would therefore have
around 1015 pixels in three dimensions. We would therefore require
a 8σ catalogue in order not to have any spurious sources if the noise
was perfectly Gaussian.

Nevertheless, we expect to find sources of noise that will not be
so well behaved. We therefore adopt a signal-to-noise level of 10σ

for our calculations. In this way, we can be reasonably confident
that our catalogue will be largely free of spurious sources.

We note that the HIPASS Bright Galaxy Catalogue (BGC;
Ryan-Weber et al. 2002) is a 9σ catalogue, and the number of pixels,
in three dimensions, in their survey is only ∼ 108, given that they
perform a survey out to 13 000 km s−1, have a resolution of around
13 km s−1 and survey half the sky with a resolution of the order of
15 arcmin. We therefore conclude that depending on the sources of
systematic errors, it might be necessary in a real survey to have a
much higher detection level if we want the catalogue to be free of
spurious sources (possibly higher than 10σ ). We stress that such a
change would not affect our results significantly.

3 P O S S I B L E E VO L U T I O N O F
T H E H I M A S S F U N C T I O N

3.1 Information from damped-Lyα systems

The number density of H I sources we will be able to detect will
be a direct function of the evolution of the mass function of neutral
hydrogen. If we are able to construct a reasonable model that would
predict this mass function at high redshift, we would be able to have
a good estimate of the number of sources that will be detected.

If we perform an H I survey out to cosmological redshifts, we will
be sensitive mainly to objects near the break of the mass function.
In the following sections we use scaling relations according to the
properties of such galaxies (i.e. we assume that the population at all
redshifts have such properties). We estimate the H I mass function at
high redshifts but we are not too concerned if the low-mass objects
are not correctly described.

In order to calculate the H I mass function at higher redshifts,
we use damped-Lyα results as a probe. The current sensitivity of
radio telescopes limits the detection of H I in emission to only z
� 0.2 (Zwaan et al. 2001), so we can only probe high-z objects in
absorption. The damped-Lyα systems give us a distribution of the
number density of objects as a function of the column density as well
as the total�H I(z) at each redshift. One might think that by looking at
the distribution of column densities at high redshift we could find the
distribution in mass at high z. There is indeed a correlation between
high column density and high mass but the scatter is extremely large
(Ryan-Weber et al. 2002) because small clouds with not much H I

can have lines of sight passing through their dense cores giving
a high column density and H I-rich galaxies can have lines of sight
passing through their low-column-density regions. We cannot obtain
directly a mass function from the distributions in column density, but
we argue that the highest column densities are mainly in collapsed
structures (see Section 4), and they account for most of the mass of
neutral hydrogen (Peroux et al. 2001). The total density of neutral
gas at high redshift is the vital information that damped-Lyα systems
give us, and this of course directly constrains the H I-mass-weighted
area under the H I mass function.

3.2 Possible evolution of the H I mass function

We assume that the mass function of H I can be described as a
Schechter function at higher redshifts and that all the hydrogen
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32 F. B. Abdalla and S. Rawlings

seen in damped-Lyα systems is in collapsed haloes at high redshift
(see Section 4). It is not known whether this assumption is valid
at higher redshifts, but we are confident that this is a reasonable
approximation at least up to the redshifts in which we are interested.
We therefore have three parameters to determine at every redshift:
the normalization θ�, the faint-end slope α and the break of the mass
function M�

H I.
All our calculations use the redshift-zero H I mass function mea-

sured by the HIPASS team (Zwaan et al. 2003). In their paper they
parametrize the H I mass function by a Schechter function

dn

d(MH I/M�
H I)

= θ�

(
MH I

M�
H I

)α

exp

(
− MH I

M�
H I

)
, (13)

where α = −1.3, M�
H I = 109.48 M� and θ� = 0.025 Mpc−3 (Zwaan

et al. 2003). We assume that the faint-end slope will not play a big
role in determining the number of sources to be seen. We keep this
value constant and equal to the value (α = −1.3) seen at z = 0.

The value of the normalization is set according to the amount
of gas found at redshift z following the results from damped-Lyα

observations (Peroux et al. 2001); we assume that the neutral gas
in these damped-Lyα clouds is in collapsed objects. The integral of
the H I mass times the H I mass function equals the total density of
neutral gas and is given by damped-Lyα results (see equation 14).
Nevertheless, recent results show that if we could select quasars in
the radio we might infer a higher amount of H I because there might
be an obscuration selection effect in finding neutral gas via damped
systems selected in the optical (Ellison et al. 2001). We therefore
multiply the Peroux et al. (2001) results by a small factor (namely
1.5; Ellison et al. 2001) to account for this potential selection ef-
fect. We then fit a function to force the normalization of our H I mass
function to account for the amount of gas that must be present at that
redshift; this is done by forcing the integral under the H I mass func-
tion (weighted by M H I) to equal that measured by the damped-Lyα

results. We point out here that we have ignored the weak constraints
on �H I from Rao & Turnshek (2000) who predicted a larger amount
of neutral gas at z < 1.65 on the basis of objects selected via Mg II

absorption and followed up with the Hubble Space Telescope (HST)
to obtain damped-Lyα measurements. Their constraints are uncer-
tain because of small number statistics, but also because there are
numerous systematic effects that may not yet have been completely
understood (Rao & Turnshek 2000). From Peroux et al. (2001) we
have

�H I(z) = 1

ρc

∫ ∞

−∞
MH I

dn

d log10 MH I

(z) d log10 MH I, (14)

which leads to

�H I(z) = θ�(z)�(2 + α)M�
H I(z)/ρc, (15)

where � is the gamma function and ρ c is the critical density of the
Universe; we have used the Schechter function as the form of the
H I mass function.

The only thing left to choose is how the break of this mass function
will evolve in cosmic time. This is not well constrained by current
data and can make a significant difference to our results. If we adopt
the standard hierarchical formation scenario, where smaller objects
merge to produce bigger objects, one would naively expect that this
break would shift to lower masses at higher redshifts. Nevertheless,
the problem is not so simple. There are many other processes that
may lead to the opposite result. For example, if star formation is
more efficient in hydrogen-rich objects, then they will tend to form

stars at a higher rate than their lower-mass counterparts. In this case,
if star formation is the main process, the break could shift towards
higher H I masses at higher redshifts.

A complete theory of galaxy formation would be able to give
us the answer to this problem. We do not however possess such a
theory. We therefore will make three extreme choices for the change
in the break. In model A, we consider a break that remains constant
throughout all redshifts. In model B, we consider the case where
M H I ∝ M DM; in this choice we are assuming that the H I follows a
hierarchical formation in the same way as dark matter clusters. In
this model B, we use the fact that the Press–Schechter mass function
(Press & Schechter 1974) is roughly self-similar in ν = δc/[σ (M)
D(z)] (Jenkins et al. 2001) whereσ 2(M) is the variance of the density
field (at z = 0) smoothed over a cosmic volume corresponding
to mass M , D(z) is the linear growth factor and δc � 1.67 is the
linear theory threshold for collapse (Lokas & Hoffman 2001). If we
consider a change such that σ (M) D(z) remains constant, we can see
how a characteristic mass of dark matter changes with redshift. In
fact, σ (M) � M−(n+3)/6 where n is the slope of the power spectrum at
the scales of interest. We choose n � − 1 because this is appropriate
for galaxy scales (Peacock 1999, p. 499). We can roughly say that
M DM ∝ D3(z) � (1 + z)−3 in this model. With this choice, the
scaling of the average radius of a disc with redshift according to
equation (11) would be roughly R(z) � R0 (1 + z)−2, a scaling of
galaxy sizes with redshift that is often simply assumed (e.g. Silk &
Bouwens 1999).

The assumption that M H I ∝ M DM is not the most physically rea-
sonable assumption we could make. In fact, model B is an extreme
case, the function of which is only to provide a limit to our predic-
tions. The main reason for this is that this model neglects the effects
of star formation over a range of cosmic epochs. However, we also
know that this assumption must break down in high-mass haloes
(e.g. rich clusters) where the ratio of M H I to MDM is much lower
than in galaxies (Battye, Davis & Weller 2004). This is due, at least
in part, to the long-established fact that the mass-to-light ratio is
larger in the most massive haloes due to long cooling time-scales,
but it may also reflect a reduction in neutral content once galaxies
become subhaloes of a larger dark matter halo (e.g. Zwaan et al.
2001). In extrapolating correctly to high redshift, we would need to
account for times when these subhaloes were distinct haloes; this
would make the location of the break of the H I mass function move
to lower masses less rapidly than model B.

In model C, we consider the case where M baryons ∝ M DM. Once
more, this neglects the subhalo problem but it does attempt to take
account of the star formation. We assume that outflows will reduce
the fraction of baryons in a galaxy but accretion will bring the frac-
tion back close to the nucleosynthesis value or some relatively fixed
value of it (Silk 2003); a steady state between these two processes
would bring the ratio of baryons to dark matter to a constant value.
In this case we can say that

MH I ∝ �H I(z)

�stars(z) + �H I(z) + �H2 (z)
MDM,

where �stars(z) is given by

�stars(z) = 1

ρc

∫ ∞

z

ρ̇stars(z)

H (z)(1 + z)
dz, (16)

and where the star formation rate (SFR) ρ̇stars(z) as a function of
cosmic time is taken from Choudhury & Padmanabhan (2002) and
corrected to the cosmology we use here [H(z) is the Hubble Constant
at redshift z]. The choice of �H2 is more complex. From Young &
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Probing dark energy with baryonic oscillations 33

Figure 4. The H I mass function plotted at redshift z = 2 for models A
(dashed line), B (dotted line) and C (solid line). We also plot the Schechter
function fit to the measured H I mass function at z = 0 (dot-dashed line). Mea-
surements of the total density of H I in the high-z Universe from observations
of damped-Lyα systems (Section 3.1) fix the area, in an H I mass-weighted
sense, under the curves for models A, B and C, but the existing observational
data are insufficient to establish the evolution of the location of the break in
the H I mass function.

Knezek (1989) we know that the ratio of molecular hydrogen (H2)
to neutral hydrogen (H I) is a function of the galaxy type varying
by a factor of ∼20 depending on type. However, Young & Knezek
argued that the largest ratios (M H2/M H I ∼ 4) are found in the most
massive galaxies with deepest potential wells that correspond to
dense stellar cores with low spin temperatures. Less massive galax-
ies have a smaller proportion of molecular hydrogen (M H2/M H I

∼ 0.2) and have less dense cores with high spin temperature. We
cannot implement this in a completely consistent way in our model
C, so we decide to choose a ratio so that �H I (z) = �H2 (z), which is
consistent with the local baryon budget (Fukugita, Hogan & Peebles
1998). We also neglect the ionized fraction of gas in a galaxy, i.e.
(�H II � 0), which is a reasonable assumption for collapsed galaxy-
sized haloes (Fukugita et al. 1998). In model C the break of the H I

mass function will still shift toward smaller H I masses at higher
redshifts, but more slowly than model B as it takes into account
the fact that galaxies at higher redshifts have more gas and less
stars. In Fig. 4 we plot the H I mass function at redshift z = 2 for
models A, B, C and no-evolution.

3.3 Limits on the number count

We plot in Fig. 5 the differential number density dN/dz of objects
seen, per deg2, by a future SKA-like telescope for our models A, B
and C; we also plot the number density with an H I mass function
that does not evolve with redshift. We can see that the evidence from
damped-Lyα systems for more H I in collapsed objects (Section 3.1)
predicts a larger number density of H I-emitting objects.

We also see that considering a different break in the H I mass
function makes some difference to the amount of objects seen. Even
though we tried to choose very different possible alternatives, we
see that there is not a huge difference in the total number of H I

sources. There are two reasons for this. First, if we consider a change
in the position of the break of the H I mass function and still con-
sider that the total H I mass is the same at a given redshift, the model
with a lower break will have many more low-mass objects to ac-
count for the same mass at that redshift. If we have a survey that
has enough sensitivity to reach those masses, we will see those ob-
jects. Secondly, the change in the break becomes significant only

Figure 5. The differential number density (dN/dz) per deg2 of objects
in an SKA-like survey with a signal-to-noise detection level of 10, and an
integration time of 4 h in a tiled survey for our three evolution models –
models A (dashed), B (dotted) and C (solid) – plus a no-evolution model
(dot-dashed). The integral under these curves represents the total number of
H I emitting objects per deg2, which are 8.0 × 104, 6.5 × 104, 2.0 × 104

and 3.5 × 104, for models A, B, C and the no-evolution model, respectively.
We note that we assume more neutral gas at higher redshifts in the three
evolution models, so the number of H I sources in these models increases;
depending on the choice of break in the H I mass function, the models probe
out to different redshifts. The thick line defines the number density of objects
needed at high redshift in order for us to be cosmic variance limited when
reconstructing the galaxy power spectrum (see Section 5.2).

at higher redshifts and these redshifts are probed at longer inte-
gration times. We can therefore say that for low integration times
the total number of H I sources is uncertain to a factor of only ∼2
(see Fig. 5).

Although different breaks in the H I mass function give roughly
the same amount of sources, they yield surveys probing significantly
different volumes in space. We define the depth of our survey (zmax)
carefully in Section 5.2, but we can already see (Fig. 5) that, for a 4-h
integration time, model A probes redshifts as high as 2.1, whereas
model B only probes redshifts as high as 1.0. Model C, chosen to
have a break between the breaks for models A and B, probes out to
redshift 1.5.

Our preferred model in the next sections is model C. In Section 6
we quantify how much longer or shorter a survey will take if the H I

mass function is closer to models A or B (or if we have an evolution
that mimics the no-evolution scenario) instead of model C in order
to obtain the same cosmological constraints on w.

4 OT H E R C O N S T R A I N T S O N T H E
E VO L U T I O N O F T H E H I M A S S F U N C T I O N

In Section 3 we tried to see how the H I mass function could
change with redshift. We stress here that we are only concerned
whether the objects near the break of this mass function are well
described, as they are the ones that will dominate future surveys at
the redshifts of interest. We have assumed that an average galaxy at
z = 0 has a radius of ∼15 kpc and a circular velocity of 200 km
s−1. We have also assumed scaling relations that describe their be-
haviour at higher redshift. We have assumed no scatter on these
relations.

To obtain an expression for the normalization of the mass function
we have assumed in Section 3.2 that damped-Lyα systems are col-
lapsed objects with radii of the same size as galaxies at the redshifts
they are observed. If we assume that the path-length through the
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absorber is roughly l � N H I/nH I where N H I is the column density
and N H I is the H I number density and f c is the ratio of the density
in baryons in a collapsed halo to the universal density of baryons
(e.g. from nucleosynthesis), we have l/kpc = 109 (N H I/1023 m−2)
( f c/180)−1(1 + z)−3 (Peacock 1999, p. 365). This means that the
most extreme damped systems (N H I ∼ 1024 m−2) are consistent
with having the dimensions of galactic discs; at z = 1, the damped
systems would have radii of around 1–10 kpc. This is not the case for
much lower column density systems. Nevertheless, the total mass
obtained by integrating the damped-Lyα systems over column den-
sity is mainly due to high column density objects (Peroux et al.
2001), i.e. those that are most likely to be collapsed and to have the
sizes of galactic discs.

When a blind H I survey is made in the local Universe, it is reported
that essentially all of the galaxies found have optical counterparts
(Ryan-Weber et al. 2002). If a large fraction of the gas were in
non-collapsed objects at higher redshifts, then this would reduce
significantly the number of detections by a future survey. There have
been searches at low redshifts for large clouds of gas with high mass
and very low column density (Minchin et al. 2003). These searches
have found no large clouds with low column density, and have also
found that all collapsed galaxies detected in H I have an average
column density N H I ∼ 1023 to 1025 m−2. In Ryan-Weber et al.
(2002), a sample of 34 galaxies from this HIPASS was observed
at higher spatial resolution so that the column density could be
computed at each point of each galaxy. The resulting column density
distribution is similar to those in the damped-Lyα results (Peroux
et al. 2001), allowing for an increase in normalization for the reasons
outlined in Section 3; however, in this case we know that the galaxies
in the HIPASS are in collapsed objects. This is strong evidence that
the H I found in blind surveys traces the dark matter potential wells
in a similar way to the baryons, and this suggests that the H I found
at high redshift is likely to be in collapsed objects such as young
galaxies.

In our model C we have assumed that the mass in baryons in
a galaxy follows the dark matter mass. Observationally, there is
compelling evidence that this is the case if we look at the Tully–
Fisher relation in spirals. McGaugh et al. (2000) have shown that the
Tully–Fisher relation obtained using only the stellar component of
spiral galaxies has a break at around 90 km s−1; however, this break
disappears if, instead of considering just the stellar population, they
use the total baryonic mass of the galaxy composed of gas plus
stars. They obtain a very good fit for both ends of their data, i.e.
for low and high circular velocities. This baryonic Tully–Fisher
relation has the following implication: the mass of gas plus stars
is directly proportional to the mass in dark matter, and any other
dark component is unlikely to be important as it would introduce
too much scatter.

If we look at the blue luminosity function of galaxies at redshift
z = 1, we can use scaling relations in order to estimate whether it is
consistent with model C. We crudely assume that the blue luminosity
density is proportional to the SFR at each epoch. Therefore, the
ratio of the breaks of the H I mass function and the blue luminosity
function should be in proportion to the ratio of �H I to the SFR.
Given that we have an estimate of the SFR and the density of neutral
hydrogen at z = 1 (Section 3.2), we can infer the position of the
break of the z = 1 H I mass function by knowing the position of the
break of the z = 1 luminosity function of blue galaxies; this has been
taken from COMBO-17 (Chris Wolf, private communication based
on the data from Wolf et al. 2003). We plot and compare this model
with our models A, B and C. We can see from Fig. 6 that models A
and C are clearly preferred by this comparison. In fact, at redshift

Figure 6. The H I mass function plotted at redshift z = 1 for models A
(dashed line), B (dotted line) and C (solid line). We compare these models
with the H I mass function that is inferred from the optical luminosity function
of blue galaxies as described in Section 4 (triple-dot-dashed line). The curves
for model A, model C and the model inferred from the blue luminosity
function are very similar and almost indistinguishable from each other. This
indicates that the H I mass function is likely to be closer to models A or C
than to model B.

z = 1 our models A and C give essentially the same prediction for
the H I mass function as can be inferred from the similar dN/dz for
these two models over the redshift range 0 � z � 1.

In our model we assume that the average dark matter halo in a
galaxy at the break of the H I mass function is smaller at higher
redshifts according to hierarchical processes; however, on the other
hand, these galaxies have fewer stars and are more gaseous. So, if
we take galaxies at z � 2, their average luminosity will be roughly
proportional to the stars in that galaxy, which will be approximately
{�stars(z)/[ �stars(z) + 2�H I(z)]}L�. Thus, at z = 2, these galaxies
would be, assuming no scatter, 50 times fainter optically than L� (i.e.
objects at the break of the optical Schechter luminosity function).
Deep near-infrared imaging with the HST typically fails to detect
stellar counterparts to damped-Lyα objects (Warren et al. 2001)
to limits that are consistent with our rough calculation based on
model C.

It is also well known that it is very hard to find known damped-Lyα

systems in H I absorption in the radio. This is also in agreement with
model C as, at high redshifts, this predicts smaller gas-rich clouds
with shallower gravitational potentials and consisting mainly of a
warm neutral medium that has a high spin temperature (Kanekar
& Chegalur 2003). Because of the high spin temperature it will be
hard to find these objects in absorption in the radio until we have
instruments with the sensitivity of the SKA.

Finally, there have been searches for Hα lines associated with
star formation in damped-Lyα systems, but typically no line flux is
found. This can impose (assuming a negligible dust obscuration) a
maximum SFR which would correspond to 11.4–36.7 M� yr−1 for
the studied objects (Bunker et al. 1999). Because our break for the
H I mass function moves towards the left for our preferred model C,
the SFR in high-z objects would be lower than in galaxies at the
break of the low-z H I mass function. We therefore would not expect
any line flux to be detected is such searches, as the SFR is likely
to be too low to produce a robust detection; thus, these results are
also in agreement with model C. Nevertheless, if we do have a star
formation ∼10 M� yr−1, we would have an associated continuum
emission in the radio of ∼1 µJy at redshift z = 2 (Condon 1992),
and we will trivially be able to detect this level of emission with
SKA-like instruments (equation 2). In fact, the continuum emission
is only a factor of 15 fainter than the corresponding line emission.

C© 2005 RAS, MNRAS 360, 27–40

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/360/1/27/1060838 by U
.S. D

epartm
ent of Justice user on 16 August 2022
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Good bandpass calibration will therefore be essential for the line
detection of star-forming galaxies, particularly those that may, be-
cause of inevitable scatter, have a continuum flux of the same order
of magnitude as the 21-cm line emission.

We have to stress here that model C is basically taking the known
population of H I-emitting objects at z = 0 and trying to see what
they would look like at higher redshift. It is likely though that there
will be another population of H I-emitting objects which would be
the subunits of large elliptical galaxies today. These subunits would
probably have been H I-rich in the high-z Universe, before they
merged to form a large elliptical galaxy and before they became
part of large dark matter haloes, such as groups and clusters. Nev-
ertheless, we think that these objects would still be rare at redshifts
around z � 1.5. First, given the colour information on elliptical
galaxies found in observations (Bower, Lucey & Ellis 1992), it is
argued that most of the stars in giant elliptical galaxies must have
been formed at redshifts higher than 1.5 to explain their consistently
red colours. Secondly, a population of extremely red objects is now
well established at z � 1.5 (e.g. Daddi, Cimatti & Rensini 2000),
which look to be progenitors of nearby ellipticals, and which appear
to be red because of the old stellar populations, as was first demon-
strated for z � 1.5 radio galaxies (Dunlop et al. 1996). Thirdly, if
such a population exists it is likely that they would appear as large
spiral galaxies at z � 1.5; however, observationally (Wolfe et al.
1985) only one such example has been detected as a damped-Lyα

system at z � 2. Most damped-Lyα objects are consistent with be-
ing smaller galaxies with a warm neutral medium (e.g. Kanekar &
Chegalur 2003), which would be the precursors of the spiral popu-
lation today. We neglect the elliptical population but caution that it
may start to contribute significantly to the H I population at redshift
z ∼ 2 (Section 6).

We have emphasized here how the break of the H I mass func-
tion is likely to change with redshift, but this change is not directly
constrained by current data. However, we have discussed various
observational constraints in this section which are in good agree-
ment with our model C. If the break of the H I mass function were
to remain at very high masses at higher redshifts, then we would
expect brighter galaxies and stronger star formation lines associated
with most damped-Lyα objects. On the other hand, if the H I break
shifts towards very low masses at higher redshifts, it is hard to find
consistency with the blue luminosity function at z = 1 (Fig. 6). Fi-
nally, we note that our model C is in good agreement out to z ∼ 1.5
with the predictions of semi-analytical models; see Rawlings et al.
(2004) for a comparison with models from Cole et al. (1994) and
Benson et al. (2003).

5 P RO B I N G DA R K E N E R G Y V I A
BA RYO N I C O S C I L L AT I O N S

It has been proposed in the literature by several authors (e.g. Blake &
Glazebrook 2003; Hu & Haiman 2003; Seo & Eisenstein 2003) that
measuring the baryonic oscillations in the galaxy power spectrum
allows a clean method of probing properties of dark energy, which
could be performed provided enough cosmic volume and enough
tracers of this volume (e.g. galaxies) are available.

There are two sources of error in such a power spectrum mea-
surement. The first of these is sample or cosmic variance, which is
linked to the fact that the number of independent spatial modes that
we can measure in a given cosmic volume is finite. This error is
inversely proportional to the square root of the cosmic volume cov-
ered by a survey (see equation 17). In the case of an H I survey with

an SKA-like telescope, this will be determined by the area of the
sky we will be able to survey and the integration time we will spend
in each deg2, which will in turn constrain the maximum redshift at
which we will be able to detect H I sources (see Section 5.2 and
Fig. 5). The other source of error is shot noise due to the imperfect
sampling of the fluctuations due to the finite number of tracers in
the volume. The total fractional error in the power spectrum, assum-
ing the optimized weighting scheme of Feldman, Kaiser & Peacock
(1994), is

(
σP

P

)2

= 2
1

4πk2�k

(2π)3

Vsurvey

(
1 + n P

n P

)2

, (17)

where P is the value of the power spectrum at wavelength k and n
is the number of sources per volume in our sample.1

We would like to minimize the error we obtain from a P(k) mea-
surement. This would involve designing a survey that would have
maximum volume, provided that there are enough sources so that
the shot noise is negligible compared to the error due to cosmic
variance. In order to have a negligible shot noise, we would need
n P � 1 (equation 17) but this would involve obtaining an enor-
mous amount of sources per volume. As is argued in detail by Seo
& Eisenstein (2003), there is no great gain in going from n P ∼ 3 to
n P → ∞, so we assume that our errors will become large compared
to cosmic variance only when n P < 3.

Having n P ∼ 3 means that N/V ∼ 3/P so we have errors in
the shot noise that will be small if dN/dz > (3/P)(dV /dz). Here,
dN/dz is the differential number density of sources that we obtain
from our model, and dV /dz is the usual comoving volume element.
Given that at redshifts of interest (z ∼ 1.5) the ‘wiggles’ in the
power spectrum will have been erased by non-linear clustering for
k � 0.25 Mpc−1 (see Blake & Glazebrook 2003), we take P(0.14
Mpc−1) for our calculations, i.e. the position of the first wiggles in
the power spectrum. We have assumed that H I galaxies have a bias
that increases slowly as a function of redshift roughly as g(z), from
a bias of ∼1 at low redshift. The close association at low redshifts
between galaxies selected by their H I content and the normal ‘late-
type’ galaxy population (e.g. Minchin et al. 2003) and the unit bias
of this population with respect to the dark matter (Peacock et al.
2001; Verde et al. 2002) suggest that this assumption is reasonable.
We then assume that the systematic rise in the bias cancels with
the drop in the normalization of P(k). We estimate that measure-
ments will be statistically useful until the differential number den-
sity drops below dN/dz ∼ 5000 galaxies per deg2 (see Fig. 5). This
defines the maximum redshift we can probe with a given integration
time.

5.1 Optimal survey strategy

The error on the dark energy parameter w will not depend only on
the cosmic volume probed and the shot noise of the experiment. It
depends also on the number of wiggles probed (which is a function
of the redshifts surveyed given that non-linearities can dilute and
erase these wiggles), represented by nw(z) and on the strength of
the test, which can be represented as the distortion of the wiggle
length as a function of redshift (see fig. 5 of Blake & Glazebrook
2003). Note from the 1/k2 dependence of equation (17) that high-
k wiggles are easier to measure provided that they have not been
diluted or even erased by non-linearities.

1 We adopt the Fourier transform convention in which nP has no units.

C© 2005 RAS, MNRAS 360, 27–40

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/360/1/27/1060838 by U
.S. D

epartm
ent of Justice user on 16 August 2022



36 F. B. Abdalla and S. Rawlings

Figure 7. The solid line shows the cosmic volume surveyed in 1 yr for a
1-deg2 FOV SKA-like instrument at 10σ detection level and with a FOV
scaling with frequency ν as ν−2; this is plotted as a function of integration
time per pointing. Note that we may choose to have a short integration
time and cover a large fraction of the sky or have a deeper survey over a
smaller area. Note also that, assuming a dedicated telescope and negligible
overheads, if we choose an integration time as low as ∼0.3 h we can cover
half of the sky in ∼1 yr. It is clear that the optimal survey in terms of volume
access is the shallower survey over all the sky available. The dot-dashed
line is the volume weighted by the number of wiggles in the linear part of
the power spectrum for the same survey. We stress that it has no physical
value but that it reflects the fact that the volume at higher redshift is more
useful for dark energy parameter constraints. We can see that even with the
fudge factor that takes account of this, an all-hemisphere survey is still the
best option for an SKA-like instrument.

First, we calculate the best shape for a survey so that we obtain the
biggest volume in the smallest time. Would it be a shallow survey
that would cover the whole sky or a deep survey that would cover
only a fraction of the sky? In order to determine this, we compute
the volume surveyed by multiplying the area covered in the sky by
the effective volume covered by the data. From Tegmark (1997) we
obtain

Vsurvey = T0

t1

FOV

20 000 deg2

∫
V

(
n P

1 + n P

)2

dV , (18)

where T 0 is the total time of the survey, and t0 is the integration time
spent per pointing, t 1 = t 0/β, where β = min(1, BW SKA/BW survey).
Here, BW SKA denotes the bandwidth allowed given a particular re-
alization of an SKA-like instrument and BW survey represents the fre-
quency range corresponding to H I redshifted throughout the range
of redshifts of the survey. In most SKA realizations β is expected to
be below one, but should not be an order of magnitude below one.

We choose a survey time of one year and a FOV of 1 deg2, and
then set the optimum integration time that will maximize V . As we
can see from Fig. 7 we obtain the largest volumes when we perform
a shallow survey across all the available sky.

Nevertheless, the survey with the largest volume is not necessarily
the best survey to probe dark energy. A survey at high redshift may
have more wiggles and therefore provide a better constraint than
a survey with a large volume at low redshift. In order to illustrate
this, we plot in Fig. 7 a volume weighted by nw(z). We stress here
that this is only a toy model to illustrate that even though the test
may be more efficient at high redshifts, the sensitivities and FOV
of the SKA are such that a survey with the largest area is likely
still to be the optimal survey. We expect to produce a more rigorous
calculation of these effects.

Figure 8. Maximum redshift zmax probed by a survey as a function of
telescope specifications and duration T 0 of an SKA survey in units of yr.
We assume that half the sky is observable so the integration time we choose
trades off linearly with the FOV. A larger FOV will allow us to spend longer
in a patch of the sky and therefore to probe to deeper redshifts. The solid line
is for a telescope with a FOV scaling with frequency ν as ν−2, the dashed
line is for surveys with telescopes with a constant FOV and the dotted line
is for surveys with telescopes with a FOV scaling as ν−1. The three curves
have SKA-like sensitivity.

If we look at fig. 5 of Blake & Glazebrook (2003) we can see
that the baryonic oscillations test is considerably weaker below a
redshift of 0.5. On the other hand, we can see that even with this
volume-weighted function in Fig. 7 the largest volume-weighted
volume we obtain is for integration times that have the largest area
available in the sky. All of these surveys probe redshifts larger than
0.5, in fact as we can see from Fig. 8 these surveys probe volumes at
least as high as z ∼ 0.7–0.8. A survey that is designed to probe dark
energy with baryonic oscillations must have a considerable volume
at redshifts larger than 0.5.

We therefore conclude that the optimal way of probing large-scale
structure with future radio surveys with a sensitivity comparable to
that of an SKA will be to produce surveys that probe all the area
available on the sky. We caution that this might not be the case if
the telescope sensitivity is significantly lower.

5.2 Surveys attainable by future radio telescopes

The factor n P/(1 + n P) in equation (18) will be very close to 1 for
most redshifts where we have data and will fall sharply to 0 where
the H I starts to become too faint to be detected. Here we consider
n P/(1 + n P) as a step-down function that becomes zero at zmax.
We define this maximum redshift zmax as the redshift where we be-
come shot-noise limited (i.e. n P ∼ 3), which corresponds to dN/dz
∼ 5000 deg2. We therefore have

Vsurvey � T0

t0

βFOV

20 000 deg2

∫ zmax(t0)

0

dV

dz
dz, (19)

so the value of zmax will determine the maximum depth to which we
will be able to reproduce a galaxy power spectrum reliably.

In Fig. 8 we plot the maximum redshift of a given survey with an
SKA-like instrument as a function of how the FOV scales with z.
There are four features of the future radio telescope that are vital in
order for this survey to be optimal. The first feature is the sensitivity
of the instrument. As we can see from Fig. 8, with an SKA-like
telescope our gain in zmax starts dropping quickly as we start probing
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Figure 9. Cosmic volume probed by a survey with a future radio telescope
as a function of telescope specifications and length of survey at a 10σ level of
detection. The solid line is for telescopes with a FOV scaling with frequency
ν as ν−2, the dashed line is for surveys with telescopes with a constant FOV
and the dotted line is for surveys with telescopes with a FOV scaling as ν−1.
The three curves have SKA-like sensitivity.

redshifts ∼1.5. We conclude that if redshifts of the order of 1.5 have
to be reached in order to probe dark energy optimally with this
survey, then a full SKA-like sensitivity is needed. As we see in
Section 5.3, this is indeed the case and the full SKA will be needed
to properly probe dark energy.

The second and third features are the FOV and β, the useful
bandwidth of the telescope, which are essentially degenerate. We
can clearly see in Fig. 9 that although SKA-like sensitivity is vital
to obtain a large cosmic volume, the factor β FOV plays an equally
important role. The fourth and final feature is the way the FOV
scales with frequency. We can see in Figs 8 and 9 the effect of this
choice, and we show the huge advantage that is gained if the SKA
design can have FOV scaling with frequency as ν−2.

The choice of these four features will indicate the depth of an
eventual survey. For example, a telescope with f = 1, β FOV =
1 deg2 and a FOV scaling as ν−2 can survey 40 Gpc3 in 1 yr. In
10 yr, the same telescope will be able to survey 150 Gpc3 by probing
deeper in redshift. This same 150 Gpc3 could be completed in just
1 yr if β FOV = 10 deg2.

We note here that the angular resolution required by the bary-
onic oscillations method is much less than the angular resolution
expected of future radio interferometers such as the SKA. The re-
sults from Fig. 9 are independent of the resolution of the instrument
because the baryonic ‘wiggles’ probe very large angular scales, and
confusion will not be a serious issue given the accurate redshifts
available for objects in a low-resolution H I survey. This method can
therefore be used whether the instrument being used is an SKA-like
array or the core of such an array.

5.3 Constraints on dark energy

Now, given that we can have a realistic idea of what type of survey
future radio telescopes may produce, we can relate these surveys to
an estimated error on the measurement of w. There are are likely
to be other efforts in measuring the equation of state of dark en-
ergy using the baryonic oscillations method. As argued in Blake
& Glazebrook (2003), an optical survey would, in 1 yr, be able to
measure w to �w � 0.1, provided a spectrograph that can take data
on 3000 galaxies at a time is available on an 8-m optical telescope.

In 1 yr, a dedicated 8-m telescope with such an instrument could
cover a cosmic volume of ∼6 Gpc3 (a volume six times greater than
that covered by the Sloan Digital Sky Survey). This Kilo-Aperture
Optical Spectrograph (KAOS) project has been proposed (Barden
2003; Glazebrook 2003) and may produce results in the next decade.

As we can see from equation (17), the error on the power spectrum
scales as the V −1/2

survey, and this error would relate to the error on the
size scale of the wiggles, which would in turn directly relate to an
error on the parameter w. We therefore expect the error on w to
improve as V 1/2

survey as we cover more volume. At the likely rate of
data collection, after a decade of results, the KAOS project is likely
to produce a constraint roughly a factor of ∼ f 0.5

sky = √
10 better and

therefore constrain w down to �w � 0.03, surveying a volume2 of
around 60 Gpc3.

The volume surveyed in a 1-yr survey with a dedicated radio
telescope with f = 1 and β FOV � 1 deg2 and a FOV scaling as
ν−2 is around 40 Gpc3. Given that it is unlikely that an array such
as the future SKA will be dedicated to a single project, we conclude
that if β FOV ∼ 1 deg2 for the SKA we would only be able, on the
time-scale of years, to obtain constraints of around �w � 0.03 (see
Fig. 9), comparable to those from KAOS.

We therefore argue that a future radio telescope with a small
(∼1 deg2) FOV could constrain w well, but similar constraints will
already be available by the time this telescope is operational. How-
ever, a data set with zmax ∼ 1.5 in a hemisphere, which is achievable
in 1 yr provided β FOV � 10 (see Fig. 8), would obtain constraints
of �w � 0.01 ( f sky/0.5)−0.5 given the extra volume available. We
would be able to improve considerably on these constraints in fol-
lowing years of survey by probing deeper in redshift and accruing
more volume (see Fig. 9). If we parametrize the equation of state in
the form w = w0 + w1z, we would have �w0 � 0.035 and �w1 �
0.1 (Blake et al. 2004). Such a data set would be ideal to probe the
properties of dark energy and its evolution with redshift.

We conclude that for an SKA-like telescope, studies of dark en-
ergy demand that the optimal telescope has a FOV scaling with
frequency ν as ν−2, and β FOV � 10 deg2.

6 U N C E RTA I N T I E S A N D P O S S I B L E
P RO B L E M S W I T H F U T U R E H I S U RV E Y S

In the previous sections we have assumed certain generic features
of future radio surveys, and we have also assumed a certain evo-
lution for the mass function of H I. With these two ingredients, we
have derived a number density of sources that would be accessible
to us if we perform a survey of H I with a future radio telescope.
In this section, we relax some of the key assumptions, one by one,
and see how this would affect studies of dark energy based on bary-
onic oscillations. We present the duration of the survey needed in
order to constrain the equation of state of dark energy to the same
accuracy. Some of the results of this section are summarized in
Table 1.

If we relax the assumptions we have made regarding the evolution
of the H I mass function, we could assume that the evolution would
be better described by models A or B rather than model C. In Fig. 10
we plot the number density of H I sources for an integration time
of 2 h for model A and an integration time of of 32 h for model B.

2 Note that optical surveys with KAOS cover sky area to similar volume
depths at a similar rate to an SKA with FOV = 1 deg2, but can never be
fully dedicated to such a survey because of daylight and bright phases of
moonlight.
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Table 1. As mentioned in Section 5.3, with an all-
hemisphere survey covering redshifts 0–1.5 we would
be able to measure w to �w � 0.01; this table illus-
trates how much longer/shorter it would take if we
had chosen a different telescope design (rather than a
FOV scaling as ν−2) or a different model (rather than
model C) for the H I mass function. For example, a
telescope with twice the FOV would do the survey ∼
two times faster, or if the real H I mass function were
closer to model A, the survey would take ∼ eight
times longer.

Changes Change in time required
to complete survey

FOV /FOV
FOV ∝ ν−1 × ∼2
FOV ∝ ν0 × ∼4
Bandwidth /β

Model A × ∼8
Model B /∼2
No evolution × ∼1

Figure 10. The differential number density dN/dz per deg2 of objects in an
SKA survey with a signal-to-noise detection level of 10. Different integration
times were chosen for our three evolution models – models A (2-h; dashed),
B (32-h; dotted) and C (4-h; solid) – and for a no-evolution model (6-h;
dot-dashed), probing out to same redshift zmax ∼ 1.5. The triple-dot-dashed
line defines the number density of objects needed at high redshift for us to
be cosmic variance limited when reconstructing the galaxy power spectrum
(see Section 5).

We have chosen these integration times so that the number density
of objects is enough to probe the Universe out to the same redshift
(zmax ∼ 1.5; see Section 5.2) as for model C with tiled surveys
with 4-h integrations. We conclude that if we have made an error in
choosing the evolution of the H I mass function, the time-scale of
our survey would have to be multiplied by a factor of between ∼8
and ∼0.5 in order for us to obtain similar constraints. As discussed
in Section 4, models A and B are not preferred by observations, but
they are not yet completely ruled out; it is plausible that a survey
would take between half of the time estimated and ∼ eight times
longer.

As we can see clearly from Section 5, the gain which accrues from
an increase in FOV is linear in time. A survey with a telescope with
twice the FOV will be able to produce similar results in half of the
time. The same is applicable to an increase in the effective bandwidth
β of the correlator. A telescope with β halved will take twice as long

to produce a given survey. However, most of the volume surveyed is
at high redshift, and given that the frequency range at low redshifts
(0–0.5) is relatively large, it may be desirable to neglect the low-
redshift range of the survey in order to produce a high-redshift survey
with a higher value of β.

The relationship between the scaling of the FOV with frequency
and the performance of the survey is more complicated to assess as
it changes depending on the β FOV of the telescope. However, on
average, if a telescope is built with a FOV scaling with frequency
as ν−1, it would be able to probe the same volume around two times
slower than a telescope whose FOV scales as ν−2 (see Fig. 9). If a
telescope has a constant FOV, it will be ∼ four times slower than a
telescope with a FOV scaling as ν−2 (see Fig. 9).

The way in which H I galaxies trace the dark matter fluctuations,
the bias, is another important uncertainty in our calculations. There
are ways in which bias might make the baryonic oscillations method
more powerful than we have suggested. First, following Blake &
Glazebrook (2003) a high bias population requires a lower number
density of sources to avoid shot-noise limitation. Secondly, as dis-
cussed in Section 3.2, our method of estimating the H I mass function
at high redshift effectively ignores the most massive (i.e. elliptical)
galaxies because they have low H I content in the low-redshift Uni-
verse. The most massive systems at some (as yet unknown) high
redshift are likely to have significant H I content and they are likely
to be highly biased tracers of the dark matter mass, as is seen for
the most massive galaxies at low redshift (Norberg et al. 2001) and
for high-redshift quasars (Croom et al. 2002).

Another unknown in this analysis is the biasing model for the
power spectrum. It is not known whether a halo model (e.g. see
Seljak 2000; Peacock & Smith 2000) could induce a bias that could
possibly dilute some of the wiggles. Blake & Glazebrook (2003)
argue that at large scales, where the first few baryonic wiggles are
found, the power spectrum should have a constant bias as only ex-
tremely rare fluctuations will be going non-linear.

7 C O N C L U D I N G R E M A R K S

The most important features for the design of future radio telescopes
have to be identified if they are to be used to probe dark energy in
new and interesting ways. The instantaneous 1.4-GHz FOV of the
telescope must be at least an order of magnitude larger than the ∼1
deg2 FOV achievable now by optical multi-object spectrographs,
so that a ‘whole hemisphere’ can be surveyed on a reasonable (i.e.
∼1 yr) time-scale. H I surveys with the SKA would then in ∼1 yr
contain ∼109 galaxies with redshifts in the range 0 � z � 1.5. The
sensitivity of the telescope must eventually equal that proposed for
the SKA, because this is the only way of detecting H I galaxies out
to z ∼ 1.5, and therefore obtaining constraints on the dark energy
parameter w of the order �w ∼ 0.01. An SKA with a FOV ∼ 1 deg2

would be a very inefficient telescope for dark energy studies. The
instantaneous bandwidth of the telescope must cover the frequency
range corresponding to H I in the redshift range 0.5 � z � 1.5 in as
few settings as possible; that is, β, the ratio of the SKA bandwidth
to the survey bandwidth, must be close to unity, because otherwise
it trades off linearly with the FOV. The baseline distribution of the
SKA must have a large fraction (at least 50 per cent) of the collecting
area within a ∼5-km diameter core.

The most efficient way of making an SKA survey aimed at con-
straining the properties of dark energy will be to first make a survey
of all the sky available, and only then probe deeper in redshift. We
have shown that, provided β FOV � 10 deg2, H I surveys with a full
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SKA would, after ∼1 yr, contain ∼109 ( f sky/0.5) galaxies with red-
shifts in the redshift range 0 � z � 1.5, and hence provide constraints
on the dark energy parameter w of order �w � 0.01 ( f sky/0.5)−0.5,
where f sky is the fraction of the whole sky.
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A P P E N D I X A : F I T T I N G F O R M U L A E

We present here (Table A1) some fitting formulae for the differential
number density of objects expected in an SKA survey given the
range of integration times shown in Table A1. Fitting formulae and
numerical results are plotted in Fig. A1.

We have used the following fitting formula:

dN

dz
= A z exp

[
− (z − zc)2

2�z2

]
. (A1)

Table A1. Fitting functions (dotted lines) for the differential
number density of galaxies for a signal-to-noise detection of
10, a FOV scaling as ν−2 and for SKA-like sensitivity. We
have chosen model C to make our predictions (solid lines)
and fitted for several integration times (see Table A1).

Integration time A zc �z

1 h 1.58 × 105 0.170 0.351
4 h 2.52 × 105 0.211 0.461
36 h 4.95 × 105 0.283 0.701
360 h 9.33 × 105 0.386 1.045

Figure A1. The comparison between our fitting formulae and the expected
number density of sources from model C. For all the plots we have assumed
SKA-like sensitivity, a FOV scaling with frequency ν as ν−2, and a signal-
to-noise detection limit of 10. The fittings are valid for the regions shown
and become less accurate for redshifts larger than 3.0.
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