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ABSTRACT
We study future constraints on dark energy parameters determined from several combinations
of cosmic microwave background experiments, supernova data, and cosmic-shear surveys
with and without tomography. In this analysis, we look in particular for combinations of
experiments that will bring the uncertainties to a level of precision tight enough (a few per cent)
to answer decisively some of the questions regarding dark energy. In view of the parametrization
dependence problems, we probe the dark energy using two variants of its equation of state
w(z), and its energy density ρde(z). For the latter, we model ρde(z) as a continuous function
interpolated using dimensionless parameters Ei (zi ) ≡ ρde(zi )/ρde(0). We consider a large set
of 13 cosmological and systematic parameters, and assume reasonable priors on the lensing
and supernova systematics. For the CMB, we consider future constraints from eight years
of data from WMAP, one year of data from Planck, and one year of data from the Atacama
Cosmology Telescope (ACT). We use two sets of 2000 supernovae with zmax = 0.8 and 1.5
respectively, and consider various cosmic-shear reference surveys: a wide ground-based-like
survey, covering 70 per cent of the sky, and with successively two and five tomographic bins;
and a deep-space-based-like survey with 10 tomographic bins and various sky coverages.
The 1σ constraints found are {σ (w0) = 0.086, σ (w1) = 0.069}, {σ (w0) = 0.088, σ (wa) =
0.11}, and {σ (E1) = 0.029, σ (E2) = 0.065} from Planck, supernovae and the ground-based-
like lensing survey with two bins. When five bins are used within the same combination the
constraints reduce to {σ (w0) = 0.04, σ (w1) = 0.034}, {σ (w0) = 0.041, σ (wa) = 0.056},
and {σ (E1) = 0.012, σ (E2) = 0.049}. Finally, when the deep lensing survey with 10 per cent
coverage of the sky and 10 tomographic bins is used along with Planck and the deep supernova
survey, the constraints reduce to {σ (w0) = 0.032, σ (w1) = 0.027}, {σ (w0) = 0.033, σ (wa) =
0.04}, and {σ (E1) = 0.01, σ (E2) = 0.04}. Other coverages of the sky and other combinations
of experiments are explored as well. Although some worries remain about other systematics,
our study shows that, after the combination of the three probes, lensing tomography with many
redshift bins and large coverages of the sky has the potential to add key improvements to the
dark energy parameter constraints. However, the fact that very ambitious and sophisticated
surveys are required in order to achieve some of these constraints or to improve them suggests
the need for new tests to probe the nature of dark energy in addition to constraining its equation
of state.

Key words: gravitational lensing – cosmology: theory – dark matter – large-scale structure
of Universe.

1 I N T RO D U C T I O N

One of the most important and challenging problems in cosmol-
ogy and particle physics is to understand the nature of the dark

�E-mail: mishak@princeton.edu

energy that is driving the observed cosmic acceleration (see, for ex-
ample, Weinberg 1989; Carroll et al. 1992; Turner 2000; Sahni &
Starobinsky 2000; Padmanabhan 2003; Ishak 2005). An important
approach to this problem is to constrain the properties of dark energy
using cosmological probes. This should provide measurements that
allow the various competing models of dark energy to be tested. As
a result of the high degeneracy within a particular narrow range of
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the parameter space, however, it will be difficult to constrain conclu-
sively dynamical dark energy models, and much effort and strategic
planning will be needed. Ultimately, a combination of powerful
cosmological probes and tests will be necessary.

In this paper, we study how dark energy parameters are con-
strained from different combinations of cosmic microwave back-
ground (CMB) experiments, data from Type Ia supernovae (SNe
Ia), and weak lensing (WL) surveys with and without tomography.
In particular, we look for combinations of experiments that can con-
strain these parameters well enough to settle decisively, say to a few
per cent, some of the dark energy questions. When CMB measure-
ments constrained the total energy density to �T = 1.02 ± 0.02 to
the 1σ level (Spergel et al. 2003; Bennet et al. 2003), it became gen-
erally more accepted that spatial curvature is negligible. Thus, an
uncertainty of a few per cent on dark energy parameters could be set
as a reasonable goal. Of course, one should bear in mind that it will
always remain possible to construct dynamical dark energy mod-
els that are indistinguishable from a cosmological constant model
within these limits, and therefore it is necessary to resort to cosmo-
logical tests beyond the equation of state measurements. A better
scenario for providing a decisive answer would be one in which
it could be clearly shown that dark energy is not a cosmological
constant.

It is certainly wise to probe the nature of dark energy using grad-
ual steps. However, in both of the scenarios mentioned above, it
should be kept in mind that the results and conclusions obtained
from an analysis in which the equation of state is assumed constant
are subject to changes if the equation of state is allowed to vary with
the redshift. In this paper, we consider dark energy with a varying
equation of state.

We chose the combination CMB+SN Ia+WL, as various studies
have already shown that Type Ia supernovae constitute a powerful
probe of dark energy via distance–redshift measurements (see, for
example, Riess et al. 1998; Garnavich et al. 1998; Filippenko &
Riess 1998; Perlmutter et al. 1997, 1999; Riess et al. 2000, 2001;
Tonry et al. 2003; Knop et al. 2003; Barris et al. 2004; Riess et al.
2004). Furthermore, several parameter forecast studies have shown
that combining constraints from weak gravitational lensing with
constraints from the CMB is a powerful way to constrain dark en-
ergy (see, for example, Hu 2001; Huterer 2002; Huterer & Turner
2001; Benabed & Van Waerbeke 2004; Abazajian & Dodelson 2003;
Refregier et al. 2003; Heavens 2003; Simon, King & Schneider
2004; Jain & Taylor 2003; Bernstein & Jain 2004; Song & Knox
2005). Importantly, weak lensing measurements are sensitive both
to the effect of dark energy on the expansion history and to its ef-
fect on the growth factor of large-scale structure. Furthermore, in
addition to tightening the constraints, the use of independent probes
will allow the systematic errors of each probe to be tested, these
being serious limiting factors in these studies. For each of these
probes, many data will be available in the near and distant future. For
WL, there are many ongoing, planned and proposed surveys, such
as the Deep Lens Survey (http://dls.bell-labs.com/) (Wittman 2002);
the NOAO Deep Survey (http://www.noao.edu/noao/noaodeep/);
the Canada-France-Hawaii Telescope (CFHT) Legacy Sur-
vey (http://www.cfht.hawaii.edu/Science/CFHLS/) (Mellier et al.
2001); the Panoramic Survey Telescope and Rapid Response Sys-
tem (http://pan-starrs.ifa.hawaii.edu/); the Supernova Acceleration
Probe (SNAP; http://snap.lbl.gov/) (Rhodes et al. 2004; Massey
et al. 2004; Refregier et al. 2004); and the Large Synoptic Sur-
vey Telescope (LSST; http://www.lsst.org/lsst home.html) (Tyson
2002). Similarly, there are many ongoing, planned and proposed
SNe Ia surveys, such as the Supernova Legacy Survey (SNLS)

(Pain et al. 2002; Pritchet 2005); The Nearby Supernova Fac-
tory (SNfactory) (Wood-Vasey et al. 2004); the ESSENCE project
(Smith et al. 2002; Garnavich et al 2002; Kirshner et al. 2003);
the Sloan Digital Sky Survey (SDSS) (Madgwick et al. 2003); The
Carnegie Supernova Project (Freedman 2004); and the Dark Energy
Camera Project (http://home.fnal.gov/annis/astrophys/deCam/). It
should be noted that there are other cosmological tools for prob-
ing dark energy that have not been considered in this study, no-
tably clusters of galaxies (see, for example, Mohr 2005; Wang
2003, and references therein), Lyman-α forests (see, for example,
Mandelbaum et al. 2003; Seljak et al. 2005), and baryonic oscilla-
tions (see, for example, Eisenstein 2002; Seo & Eisenstein 2003;
Blake & Glazebrook 2003; Linder 2003b).

For the CMB, we consider future constraints from 8 yr of
data from the Wilkinson Microwave Anisotropy Probe (WMAP8)
(Bennet et al. 2003; Spergel et al. 2003), 1 yr of data from the Planck
satellite (PLANCK1), and 1 yr of data from the Atacama Cosmol-
ogy Telescope (ACT) (see, for example, Kosowsky et al. 2003).
We use two sets of 2000 supernovae with zmax = 0.8 and zmax =
1.5 respectively, and consider two types of cosmic-shear surveys:
a ground-based-like survey covering 70 per cent of the sky with
the source-galaxy redshift distribution having a median redshift of
zmed ≈ 1, and a space-based-like deep survey covering successively
1, 10 and 70 per cent of the sky, with zmed ≈ 1.5.

We take into account systematic limits for the supernovae by
adding a systematic uncertainty floor in quadrature following Kim
et al. (2004). We also include, for weak lensing, the effect of the red-
shift bias and the shear calibration bias by adding and marginalizing
over the corresponding parameters as in Ishak et al. (2004).

The constraints on the dark energy equation of state are
parametrization-dependent (see, for example, Wang & Tegmark
2004; Upadhye, Ishak & Steinhardt 2005). Moreover, there is a
smearing effect owing to the double integration involved when us-
ing the equation of state (Maor et al. 2001, 2002). In order partially to
avoid this, one could probe the variations in the dark energy density
directly using the data (see, for example, Wang & Mukherjee 2004;
Wang & Freese 2004). However, it has been argued that the equation
of state is more physically realistic, as it also contains information
on the pressure, and trying to probe the equation of state from the
density leads to instability and bias (Linder 2004). Therefore, we
choose in this analysis to use both and to parametrize the dark energy
using its density ρ de(z) as well as two different parametrizations of
its equation of state w(z).

2 C O S M O L O G I C A L M O D E L A N D DA R K
E N E R G Y PA R A M E T R I Z AT I O N

2.1 The model

A set of 13 parameters is considered as follows. For constraints
from WL, we use �mh2, the physical matter density; ��, w0 and
w1 (or wa), respectively the fraction of the critical density in a dark
energy component and its equation of state parameters (see Sec-
tion 2.2) (alternatively, we use the dark energy density parameters
Ei ≡ ρde(zi )/ρde(0) with i = 1, 2: see Section 2.2); we use n s (k 0 =
0.05 h Mpc−1) and α s, the spectral index and running of the primor-
dial scalar power spectrum at k0; and σ lin

8 , the amplitude of linear
fluctuations. In order to parametrize some systematics, we include
as a parameter zp, the characteristic redshift of source galaxies (see
equation 13), as well as ζ s and ζ r, the calibration parameters defined
in Ishak et al. (2004) that determine the absolute calibration error
on the lensing power spectrum (Hirata & Seljak 2003), and the
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relative calibration between tomography bins (see Section 3.4).
When we combine this set of parameters with the CMB, we in-
clude �b h2, the physical baryon density; τ , the optical depth to
reionization; and T/S the scalar–tensor fluctuation ratio. We assume
a spatially flat universe with �m + �� = 1. This fixes �m and H0 as
functions of the basic parameters. We do not include massive neu-
trinos, or primordial isocurvature perturbations. For the supernova
analysis, we use ��, w0, w1 (or E1, E2), and treat the magnitude pa-
rameter M as a nuisance parameter. We use the fiducial model (e.g.
Spergel et al. 2003) and add w0 and w1: �b h2 = 0.0224, �m h2 =
0.135, �� = 0.73, w0 = −1.0, w1 = 0.0, n s = 0.93, α s = −0.031,
σ 8 = 0.84, τ = 0.17, T /S = 0.2, zp = 0.76, 1.12, ζ s = 0.0, and
ζ r = 0.0.

2.2 Dark energy parametrization

As mentioned earlier, constraining the dark energy using its equation
of state is known to be parametrization-dependent (see, for example,
Wang & Tegmark 2004; Upadhye et al. 2005), and also to suffer from
a smearing owing to the double integration involved (Maor et al.
2001, 2002). Alternatively, it is possible to probe the variations of
the dark energy density directly as a function of redshift ρ de(z). It
has, however, been pointed out that the equation of state contains
information on both the density and pressure of the dark energy,
and that using the density to probe the equation of state may lead to
instability and bias (Linder 2004). We chose to study the constraints
on dark energy using both approaches.

2.2.1 The equation of state

There are several parametrizations of the dark energy equation of
state that have been used to study currently available data or to
perform parameter constraint projections. Discussions of the ad-
vantages and drawbacks of some of these parametrizations can be
found in Wang & Tegmark (2004) and Upadhye et al. (2005). The
following two parametrizations, which have no divergence at very
large redshift, are used here.

(i) (w0, w1) (1)

Here w1 represents the redshift derivative of w(z) in the recent past
as follows (see, for example, Upadhye et al. 2005):

w(z) =
{

w0 + w1z if z < 1
w0 + w1 if z � 1.

(2)

The evolution of dark energy density with redshift is given by
ρde(z) = ρde(0)E(z), where

E(z) ≡
{

(1 + z)3(1+w0−w1) e3w1z if z < 1,

(1 + z)3(1+w0+w1) e3w1(1−2 ln 2) if z � 1.
(3)

(ii) (w0, wa) (4)

Here the equation of state is parametrized as (Chevalier et al. 2001;
Linder 2003a)

w(a) = w0 + wa
z

1 + z
= w0 + wa(1 − a), (5)

where a is the scale factor. The dark energy density evolves with
E(a), now given by

E(a) = a−3(1+w0+wa )e−3wa (1−a). (6)

2.2.2 The density parameters: E1 ≡ ρde(z1)/ρde(0),
E2 ≡ ρde(z2)/ρde(0)

Following Wang & Mukherjee (2004) and Wang & Freese (2004),
we parametrize E(z) ≡ ρde(z)/ρde(0) as a continuous function in-
terpolated between today and its amplitude parameters E1 and E2,
corresponding respectively to z = 0.5 and 1.0, and remaining con-
stant at higher redshifts. We use a polynomial interpolation as in
(Wang & Mukherjee 2004; Wang & Freese 2004), so

E(z) = 1 + (4E1 − E2 − 3)
z

zmax
+ 2(E2 − 2E1 + 1)

z2

z2
max

, (7)

where the parameters E1 and E2 will be constrained from the data.
As suggested in (Wang & Mukherjee 2004) and (Wang & Freese
2004), we could use more than two density parameters as many
more data will be available in the future, but we chose to use only
two parameters in order to keep the number of parameters equal to
in the equation of state case and be able to make a fair comparison
of the results. Departures of the density parameters from unity will
be an indication of a redshift evolution of the dark energy density
and will rule out a cosmological constant.

3 P RO B I N G DA R K E N E R G Y
W I T H C O S M I C S H E A R

Weak lensing is a very promising tool for an era of precision cosmol-
ogy. Several studies have already used currently available cosmic-
shear data to constrain various cosmological parameters (Contaldi
et al. 2003; Van Waerbeke et al. 2002; Wang et al. 2003; Jarvis
et al. 2003; Massey et al. 2005). By using statistical inference the-
ory, many other studies have demonstrated the potential of this
probe (Hu & Tegmark 1999; Hu 2001; Huterer 2002; Abazajian &
Dodelson 2003; Benabed & Van Waerbeke 2004; Takada & Jain
2004; Takada & White 2004; Heavens 2003; Jain & Taylor 2003;
Bernstein & Jain 2004; Ishak et al. 2004; Simon et al. 2004). In
particular, weak lensing has been shown to constrain significantly
the dark energy parameters. The advantage of weak lensing is that
it is sensitive to the effect of dark energy on the expansion history
and to its effect on the growth factor of large-scale structure. A fur-
ther advantage of weak lensing is that it allows the construction of
new tests or techniques to probe cosmology. These include redshift-
bin tomography (Hu 1999, 2002), cross-correlation cosmography
(Bernstein & Jain 2004), and the use of higher-order statistics such
as the bispectrum (see, for example, Takada & Jain 2004). We ex-
plore in this analysis the constraints obtained from the convergence
power spectrum and multiple-bin tomography.

3.1 Convergence power spectrum

Light rays travelling to us from background galaxies are deflected by
mass fluctuations in large-scale structures. This results in distortions
of the sizes and shapes of these galaxies that can be described by
the transformation matrix

Ai j ≡ ∂θ i
s

∂θ j
=

(
1 − κ − γ1 γ2

γ2 1 − κ + γ1

)
, (8)

where θs is the angular position in the source plane; θ is the angular
position in the image plane; κ is the convergence and describes
the magnification of the size of the image; and γ 1 and γ 2 are the
components of the complex shear and describe the distortion of the
shape of the image. In the weak gravitational lensing limit, |κ| and
|γ | � 1.
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The convergence is given by a weighted projection of the matter–
energy density fluctuations δ ≡ δρ/ρ along the line of sight between
the source and the observer:

κ(θ̂ ) =
∫ χH

0

W (χ )δ(χ, χθ̂ ) dχ, (9)

where χ is the radial comoving coordinate and χH is the comoving
coordinate at the horizon.

The convergence scalar field can be decomposed into multipole
moments of the spherical harmonics as

κ(θ̂ ) =
∑

lm

κlmY m
l (θ̂ ), (10)

where

κlm =
∫

dθ̂κ(θ̂ , χ )Y m∗
l (θ̂ ). (11)

The convergence power spectrum Pκ
l is then defined by

〈κlmκl′m′〉 = δll′δmm′ Pκ
l , (12)

and we will use it as our weak lensing statistic. In the Limber ap-
proximation, it is given by (Kaiser 1992; Jain & Seljak 1997; Kaiser
1998)

Pκ
l = 9

4
H 4

0 �2
m

∫ χH

0

g2(χ )

a2(χ )
P3D

[
l

sinK (χ )
, χ

]
dχ, (13)

where P 3D is the 3D non-linear power spectrum of the mat-
ter density fluctuation, δ; a(χ ) is the scale factor; and sinK χ =
K −1/2 sin (K 1/2χ ) is the comoving angular diameter distance to χ .
(For the spatially flat universe used in this analysis, this reduces to
χ .) The weighting function g(χ ) is the source-averaged distance
ratio given by

g(χ ) =
∫ χH

χ

n(χ ′)
sinK (χ ′ − χ )

sinK (χ ′)
dχ ′, (14)

where n(χ (z)) is the source redshift distribution normalized by∫
dz n(z) = 1. For n(z), we use the distribution

n(z) = z2

2z3
0

e−z/z0 (15)

(Wittman et al. 2000), which peaks at zp = 2z0. For cosmic-shear
calculations, we integrate the growth factor numerically using

G ′′ +
[

7

2
− 3

2

w(a)

1 + X (a)

]
G ′

a
+ 3

2

1 − w(a)

1 + X (a)

G

a2
= 0 (16)

(Linder & Jenkins 2003), where G = D/a is the normalized growth
factor with D = δ(a)/δ(ai);

X (a) = �m

(1 − �m)a3E(a)
; (17)

and E(a) is as given in equation (4). We use the mapping proce-
dure HALOFIT (Smith et al. 2003) to calculate the non-linear power
spectrum. We show in Fig. 1 the convergence power spectra for
the 10 tomographic bins. We also show the sample variance errors
averaged over bands in l.

3.2 Weak lensing tomography

The separation of source galaxies into tomographic bins signifi-
cantly improves the constraints on cosmological parameters, and
particularly those of dark energy because tomography probes the
growth of structure. The constraints obtained within the various

 1e-06

 1e-05

 0.0001

 0.001

 100  1000

l(
l+

1)
P

κ 
/ 2

π

l

Figure 1. Convergence auto power spectra for the 10 tomography bins. All
the parameters are fixed at their fiducial values. From the bottom to the top,
the curves correspond to the redshift intervals [0.0,0.3], . . . ,[2.7,3.0]. For
each curve, the sample variance errors are displayed averaged over bands
in l.

redshift bins are complementary and combine to reduce the final
uncertainties. We explore here three tomography studies using two
different types of cosmic-shear surveys. For the first survey (ground-
based-like), the source-galaxy redshift distribution has a median red-
shift zmedian = 1.0, and we assume that knowledge of the photometric
redshift will allow the source galaxies to be split into successively
two and five bins. For the second survey (space-based-like), the
source-galaxy redshift distribution has a median redshift zmedian =
1.5, and we assume a good knowledge of photometric redshifts and
split the sources into 10 tomographic bins. For each redshift bin i,
the weighting function is given by

gi (χ ) =




∫ χi+1

χi

dχ ′ni (χ
′)

χ ′ − χ

χ ′ , χ � χi+1

0, χ > χi+1

, (18)

where ni(χ ) is the bin-normalized redshift distribution. The average
number density of galaxies in this bin is �i n̄, with the fraction �i

given by

�i =
∫ χi+1

χi

dχ ′n(χ ′). (19)

For example, in the two-bin case, the normalized distributions are
given by

nA(z) =
{ n(z)

1 − 5/e2
zp � 2z0,

0, zp > 2z0,

(20)

and

nB(z) =
{

0, zp � 2z0,
n(z)

5/e2
zp > 2z0.

(21)

For the five bins, we use redshift intervals of �z = 0.6 over the
redshift range 0.0 < z < 3.0, and for the 10 bins we use intervals of
�z = 0.3. The convergence power spectra for the 10 bins, together
with the respective sample variance errors averaged over bands in l
are shown in Fig. 1.
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3.3 Fisher matrices for weak lensing

If the convergence field is Gaussian, and the noise is a combination of
Gaussian-shape and instrument noise with no intrinsic correlations,
the Fisher matrix is given by

Fαβ =
�max∑

�=�min

1

(�Pκ )2

∂Pκ

∂pα

∂Pκ

∂pβ
, (22)

where the uncertainty in the observed weak lensing spectrum is
given by (Kaiser 1992, 1998)

�Pκ (�) =
√

2

(2� + 1) fsky

[
Pκ (�) + 〈γint

2〉
n̄

]
, (23)

where f sky = �2π/129 600 is the fraction of the sky covered by
a survey of dimension � in degrees, and 〈γ 2

int〉1/2 is the intrinsic
ellipticity of galaxies. Guided by previous studies and taking into
consideration the major difficulty of constraining both w0 and w1,
we considered an almost full-sky ground-based-like survey with
f sky = 0.7, a median redshift of roughly 1, an average galaxy number
density of n̄ = 30 gal arcmin−2, and 〈γ 2

int〉1/2 = 0.4. We also mod-
elled an ambitious space-based-like survey with f sky = 0.01, 0.10,
and 0.70, a median redshift of roughly 1.5, n̄ = 100 gal arcmin−2,
and 〈γ 2

int〉1/2 ≈ 0.25. We have used �max = 3000 because, on smaller
scales, the assumption of a Gaussian shear field underlying equa-
tion (20) and the HALOFIT approximation to the non-linear power
spectrum may not be valid for larger values of �. For the minimum
�, we take the fundamental mode approximation:

�min ≈ 360◦

�
=

√
π

fsky
; (24)

that is, we consider only lensing modes for which at least one wave-
length can fit inside the survey area. For tomography, the Fisher
matrix is generalized using

Fαβ =
�max∑
�min

(� + 1/2) fskyTr

(
C−1

�

∂P�

∂pα
C−1

�

∂P�

∂pβ

)
, (25)

where C� is the covariance matrix of the multipole moments of the
observables Cκκ ′

� = Pκκ ′
� + N κκ ′

� , with N κκ ′
� = δκκ ′ 〈γ 2

int〉/�i n̄ the
power spectrum of the noise in the measurement. ‘Tr’ stands for
‘trace’.

3.4 Weak lensing systematic effects

The probes considered here have systematic errors and nuisance
factors that need to be well understood and well controlled in order
for these constraints to be achievable. For cosmic shear, several
systematic effects have been identified so far; see Refregier (2003)
and references therein for an overview.

In this analysis, we included the effect of the shear calibration
bias (Erben et al. 2001; Bacon et al. 2001; Hirata & Seljak 2003;
Bernstein & Jarvis 2002; Kaiser 2000; Van Waerbeke & Mellier
2003) on our results by marginalizing over its parameters. In this
bias, the shear is systematically over- or under-estimated by a multi-
plicative factor, and mimics an overall rescaling of the shear power
spectrum. We used the absolute power calibration parameter ζ s and
the relative calibration parameter ζ r between two redshift bins, fol-
lowing the parametrization used and discussed in Ishak et al. (2004).
The calibration bias is not detected by the usual systematic tests
such as the E- and B-mode decomposition of the shear field and the
cross-correlation of the shear maps against the point spread function
(PSF) maps. In a weak lensing survey, ζ s and ζ r are parameters of

the experiment that can in principle be determined by detailed simu-
lations of the observations. We impose in this analysis a reasonable
Gaussian prior of 0.04 on these parameters.

Another serious systematic is the incomplete knowledge of the
source redshift distribution (Wittman et al. 2000; Ishak & Hirata
2005), including the redshift bias and scattering. One can argue
that, as long as the scatter in the redshift (σ (z) ≈ 0.05) is much
smaller than the width of the redshift bin �z = 0.3 (for our 10-bin
tomography), the effect on the integrated results should be small.
This is because the scatter will only change slightly the shape of the
edges of the window function that is used for the redshift integration
within each bin. In contrast, the redshift bias alters the overall distri-
bution and has been known to affect significantly the cosmological
parameter estimation (Refregier 2003; Ishak et al. 2004; Tereno et al.
2005). A remedy to this poor knowledge of the redshift distribution
using spectroscopic redshift has been explored recently in (Ishak &
Hirata 2005). In the present analysis we marginalize over the red-
shift bias by including the characteristic redshift of the distribution
as a systematic parameter zs, and we assume a reasonable Gaussian
prior of 0.05 on this parameter.

It is important to question our assumption that the two weak
lensing systematic errors that we considered here are Gaussian. All
studies to date have made this assumption. The motivation for this
assumption is the simplicity of the approximation, but its justifica-
tion needs to be addressed in dedicated lensing systematic studies.
Thus our treatment of these two systematics is only valid under this
assumption of Gaussianity. For the redshift bias, one has to stress
the requirement for a sufficiently large number of spectroscopic
redshifts, see for example Ishak & Hirata (2005), and a sufficiently
large number of source galaxies in order to reduce the uncertainties
to a point where they can be approximated by Gaussians. Further-
more, more narrow-band colours and more accurate magnitudes (i.e.
deeper exposure) are necessary in order to break degeneracies be-
tween the photometric redshifts. For the shear calibration bias, the
errors cannot be made small enough by adding more data, and in
this case simulations are necessary in order to estimate and address
the question of non-Gaussianity. Massive sky image simulations on
which the shear is measured and compared with the input will be nec-
essary, and there are plans to carry out such studies within ongoing
projects in the lensing community, for example the Shear TEsting
Programme (STEP) project (see e.g. Heymans et al. 2005). Indeed,
studying the shear calibration bias using massive simulations is one
of the goals of this project (Heymans et al. 2005). Hence, the reader
should be aware that our treatment of shear calibration errors is valid
only under the Gaussianity assumption, and this needs to be checked
by future simulation studies.

Finally, it is important to recall that there are systematic effects
that were not included in this analysis [for example intrinsic align-
ments of galaxies, uncertainties associated with the non-linear map-
ping of the matter power spectrum; see Refregier (2003) and refer-
ences therein for a list of other effect]. It is encouraging, however, to
note that much effort has been put into studying these and other lens-
ing systematic effects and that some progress has been made. With
a better understanding of these limiting factors it will be possible
to parametrize them and evaluate their effect on the cosmological
parameter estimation.

4 P RO B I N G DA R K E N E R G Y W I T H
T Y P E I A S U P E R N OVA E

Type Ia supernovae are powerful probes of dark energy, as when
properly calibrated they become cosmological standard candles that
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can be used to measure distances as a function of redshift. The
luminosity distance to a SN Ia is given by

dL ≡
√

L

4πF
, (26)

where L is the intrinsic luminosity and F is the observed flux. The
apparent magnitude of this SNa Ia can be written as

m = 5 log10(DL) + M, (27)

where DL ≡ H 0d L/c is the dimensionless luminosity distance,
M ≡ M − 5 log10(H0/c)+constant is the magnitude parameter,
and M is the absolute magnitude, degenerate here with the Hubble
parameter. In a spatially flat model

DL(z) = (1 + z)

∫ z

0

1√
(1 − ��)(1 + z′)3 + ��E(z′)

dz′, (28)

where E(z) is as defined in equation (2). We use the Fisher matrix
for the SNe Ia defined as (see, for example, Tegmark et al. 1998;
Huterer & Turner 2001)

Fαβ =
N∑

i=1

1

σm(DL,i )2

∂DL,i

∂pα

∂DL,i

∂pβ
. (29)

We use two sets of 2000 SNe Ia uniformly distributed with
zmax = 0.8 and zmax = 1.5. It is important to note briefly that there are
systematic uncertainties associated with supernova searches: these
include luminosity evolution, gravitational lensing and dust; see,
for example, Aldering et al. (2005) and references therein. In order
partially to include the effect of these systematics and the effect
of the supernova peculiar velocity uncertainty (Tonry et al. 2003),
we follow Kim et al. (2004) and Upadhye et al. (2005) and use the
following expression for the effective magnitude uncertainty:

σ eff
m =

√
σ 2

m +
(

5σv

ln(10)cz

)2

+ N{per bin}δ2
m, (30)

where a peculiar velocity of σ v = 500 km s −1 is assumed, and,
following Kim et al. (2004) and Upadhye et al. (2005), we use δm =
0.02 for space-based supernova survey data, and assume δm = 0.04
for ground-based survey data. The quadrature relation (28) ensures
that there is an uncertainty floor set by the systematic limit δm so
that the overall uncertainty per bin cannot be reduced to arbitrarily
low values by adding more supernovae.

5 P RO B I N G DA R K E N E R G Y W I T H C M B
A N D C O S M I C C O M P L E M E N TA R I T Y

The CMB is a powerful cosmological probe; however, like other
probes it suffers from some parameter degeneracies and needs to be
combined with other data sets in order to provide tight constraints

Table 1. CMB experiment specifications for Planck and ACT. The parameters used for WMAP8 are based on a
projection of the one-year operation and are described in Section 5.

fsky lmax f(GHz) θ b(arcmin) (�T /T )(10−6) (�P/T )(10−6)

PLANCK1 0.8 2500 100 9.5 2.5 4.0
143 7.1 2.2 4.2
217 5.0 4.8 9.8

fsky lmax f(GHz) θ b(arcmin) weff (sr −1)

ACT1 0.005 8000 150 1.7 3 × 1018

on dark energy parameters. For example, it is well known that cos-
mic shear and the CMB have different types of degeneracies in
their parameters, which are nicely broken when these probes are
combined. Indeed, among the orthogonal directions of degeneracy
between cosmic shear and CMB are the known doublets (�m, σ 8),
(h, n s), and (n s, α s) (see, for example, Tereno et al. 2005). We use
this cosmic complementarity in the present analysis, where the sta-
tistical error (with some systematics included) on a given parameter
pα is given by

σ 2(pα) ≈ [
(FCMB + FWL + FSNe + �)−1

]αα
, (31)

where � is the prior curvature matrix, and FCMB, FWL and FSNe are
the Fisher matrices from the CMB, weak lensing, and supernovae,
respectively. We impose only priors on the characteristic redshift
and the calibration parameters by taking priors of σ (zp) = 0.05 and
σ (ζ s) = σ (ζ r) = 0.04 on the calibration parameters [corresponding
to 2 per cent rms uncertainty on the amplitude calibration; Hirata
& Seljak (2003)]. We can add the CMB and weak lensing (WL)
Fisher matrices together because the primary CMB anisotropies
are generated at much larger comoving distances than the density
fluctuations that give rise to weak lensing, and hence it is a good
approximation to take them to be independent. For the CMB, we
project constraints from 8 yr of WMAP data (WMAP8), 1 yr of
Planck data (PLANCK1), and 1 yr of ACT data combined with
WMAP8. The experiment specifications used for Planck and ACT
are listed in Table 1. For the 8 yr of WMAP data, we include TT ,
TE, and EE power spectra, assuming f sky = 0.768 (the Kp0 mask
of Bennet et al. 2003), temperature noises of 400, 480, and 580 µK
arcmin in the Q, V , and Wbands respectively (the rms noise was
multiplied by

√
2 for polarization), and the beam transfer functions

of Page et al. (2003).

6 R E S U LT S A N D D I S C U S S I O N

We calculated future constraints on dynamical dark energy parame-
ters obtained from several combinations of cosmic microwave back-
ground (CMB) experiments, supernova (SNe Ia) searches, and weak
lensing (WL) surveys with and without tomography. For the CMB,
we considered future constraints from 8 yr of data from WMAP
(WMAP8), one year of data from Planck (PLANCK1), and one
year of data from the Atacama Cosmology Telescope (ACT1). We
used two sets of 2000 supernovae, with zmax = 0.8 (SN[0.8]) and
zmax = 1.5 (SN[1.5]) respectively, and considered various cosmic-
shear reference surveys: an almost full sky (70 per cent) ground-
based-like survey (WL) with successively two (WLT2) and five
(WLT5) tomographic bins; and a deep-space-based-like survey with
10 tomographic bins (WLT10) covering successively 1, 10 and
70 per cent of the sky. We combined these experiments in doublets
and triplets, taking into account space-based- or ground-based-like
experiments for supernovae and weak lensing. The uncertainties
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Table 2. Summary of the parameter (w0, w1) estimation errors (1σ uncertainties) from various combinations of probes. CMB ex-
periments are WMAP 8 yr, Planck 1 yr, and ACT 1 yr (unlensed spectra) combined with WMAP 8 yr. (We did not include constraints
from the Sunayev–Zeldovich effect or lensing of the CMB, which ACT and Planck will help with.) The 2000 supernovae are uniformly
distributed with zmax = 0.8. WL is for a ground-based-like weak lensing survey with fsky = 0.7, n̄ = 30 gal arcmin−2, 〈γ 2

int〉1/2 ≈ 0.4,
and a median redshift zmed ≈ 1. WLT2 refers to the same weak lensing survey but with 2-bin tomography. The best constraints from the
combinations in this Table are from PLANCK1+SN[0.8]+WLT2.

CMB +SN +WL +WLT2 +SN+WL +SN+WLT2 SN+WL SN+WLT2
no-CMB no-CMB

WMAP8 alone
σ (w0) 3.73 0.25 0.66 0.35 0.21 0.11 0.24 0.11
σ (w1) 5.65 0.87 1.45 0.66 0.59 0.26 0.93 0.35

WMAP8+ACT
σ (w0) 0.82 0.20 0.58 0.22 0.18 0.11 ” ”
σ (w1) 1.87 0.59 1.40 0.42 0.48 0.25 ” ”

PLANCK1 alone
σ (w0) 0.50 0.17 0.28 0.23 0.093 0.086 ” ”
σ (w1) 0.31 0.23 0.20 0.18 0.083 0.069 ” ”

Table 3. As Table 2, but for the dark energy parametrization (w0, wa). As usual, the errors on wa are larger than those on w1(roughly
equal to twice the errors on w1). The best constraints in this Table are from PLANCK1+SN[0.8]+WLT2.

CMB +SN +WL +WLT2 +SN+WL +SN+WLT2 SN+WL SN+WLT2
no-CMB no-CMB

WMAP8 alone
σ (w0) 1.84 0.24 0.46 0.39 0.21 0.14 0.26 0.14
σ (wa) 3.03 1.25 1.61 1.24 0.92 0.53 1.37 0.76

ACT+WMAP8

σ (w0) 0.52 0.21 0.27 0.42 0.19 0.14 ” ”
σ (wa) 1.83 0.92 0.85 1.48 0.76 0.50 ” ”

PLANCK1 alone
σ (w0) 0.67 0.15 0.28 0.24 0.097 0.088 ” ”
σ (wa) 0.52 0.30 0.32 0.29 0.133 0.111 ” ”

Table 4. Various tomography analyses: a comparative summary of the constraints (1σ uncertainties) on the various dark energy parametrizations from
PLANCK1, 2000 uniformly distributed supernovae with zmax = 0.8, 1.5, the ground-based-like lensing survey with successively 2- (WLT2) and 5-bin (WLT5)
tomography, and the deep-space-based-like survey with 10-bin tomography (WLT10). The results are presented for the dark energy parameters {w0, w1},
{w0, wa} and {E1 ≡ ρde(z = 0.5)/ρde(0),E2 ≡ ρde(z = 1.0)/ρde(0)}.

PLANCK1 +SN(zmax = 1.5) +SN(zmax = 0.8) +SN(0.8)+WLT5 +SN(1.5)+WLT10 +SN(1.5)+WLT10 +SN(1.5)+WLT10
alone +WLT2[ fsky = 0.7] [ fsky = 0.7] [ fsky = 0.01] [ fsky = 0.1] [ fsky = 0.7]

σ (w0) 0.50 0.11 0.086 0.04 0.048 0.032 0.023
σ (w1) 0.31 0.13 0.069 0.034 0.042 0.027 0.021

σ (w0) 0.67 0.12 0.088 0.041 0.049 0.033 0.023
σ (wa) 0.52 0.21 0.111 0.056 0.067 0.040 0.026

σ (E1) 0.11 0.048 0.029 0.012 0.013 0.010 0.009
σ (E2) 0.32 0.12 0.065 0.049 0.082 0.040 0.018

obtained on the dark energy parameters from CMB-only Fisher
matrices should be treated with some caution as some of them
are large and the Fisher matrix approximation may not be valid.
We compared our CMB-only constraints for Planck with those of
Hu (2001) and found them in good agreement. For example, when
we fix the parameter w1 to compare with Hu (2001), we find that
our {σ (��) = 0.087, σ (w) = 0.31} are in good agreement with

{σ (��) = 0.098, σ (w) = 0.32} from (Hu 2001). Importantly, the
constraints we obtain from any combination of the three probes
are significantly smaller than those from CMB-only, and there-
fore the constraints obtained are good estimates of the low bound
of the uncertainties. Our results are summarized in Tables 2, 3,
and 4 and in Figs 2, 3, 4, and 5. We looked for combinations of
experiments that will provide constraints that are small enough
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Figure 2. The 1σ confidence two-dimensional regions (�χ2 = 1) for
the (w0, w1) parameters. The plots contrast the constraints obtained from
different combinations of 8 yr of data from WMAP, 2000 SNe Ia with
zmax = 0.8, and a ground-based-like WL reference survey with fsky =
0.7, n̄ = 30 gal arcmin−2, 〈γ 2

int〉1/2 ≈ 0.4, and a median redshift zmed ≈ 1.
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Figure 3. The 1σ confidence two-dimensional regions (�χ2 = 1) for
the (w0, w1) parameters. The plots contrast the constraints obtained from
different combinations of 1 yr of data from Planck, 2000 SNe Ia with
zmax = 0.8, and a ground-based like WL reference survey with fsky =
0.7, n̄ = 30 gal arcmin−2, 〈γ 2

int〉1/2 ≈ 0.4, and a median redshift zmed ≈ 1.

to answer conclusively some of the questions pertaining to dark
energy.

The first question that merits an answer is whether dark energy is
a cosmological constant or a dynamical component. The most de-
cisive answer would be to rule out, using significant error bars, the
cosmological constant. A less decisive but very suggestive answer
would be to show that the dark energy parameters are those of a
cosmological constant with an uncertainty of only a few per cent.
This can be compared with the case of spatial curvature in the Uni-
verse: when CMB results constrained the total energy density to �T

= 1.02 ± 0.02 at the 1σ level, it became generally more accepted
that spatial curvature is negligible. However, it is important to note
that it will always remain possible to build dark energy models that
could have a set of parameters indistinguishable from those of a cos-
mological constant within the limits set. So, in this scenario, types
of tests other than the equation of state will be required in order to
close the question.
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Figure 4. The improvement of the constraints as a function of the scales
probed by the ground-based-like weak lensing survey (no tomography). The
combination PLANCK1+SN[0.8]+WL is used here. The curves represent
σPLANCK1+SN[0.8]/σPLANCK1+SN[0.8]+WL for w0 and w1. The improvement
from WL arises from probing non-linear scales (l � 100), with a significant
jump in the improvement between l ∼ 200 and ∼2000 for the reference
survey considered.
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Figure 5. Tomography and the equation of state parameters: the 1σ con-
fidence two-dimensional regions (�χ2 = 1) for the parameters (w0, w1).
The plots contrast the constraints from different combinations of 1 yr of data
from Planck, 2000 uniformly distributed supernovae with zmax =0.8, 1.5, the
ground-based-like lensing survey (WL), the ground-based-like survey with
successively 2-bin tomography (WLT2) and 5-bin tomography (WLT5), and
the deep-space-based-like survey with 10-bin tomography (WLT10).

As shown in Table 4, the combinations PLANCK1+SN[1.5]+
WLT10[ f sky = 0.1] and PLANCK1+SN[0.8]+WLT5[ f sky = 0.7]
provide impressive constraints that reach the goal set. This is fol-
lowed in the table by the constraints from PLANCK1+SN[1.5]+
WLT10[ f sky = 0.01]. One should note here that, for the equa-
tion of state parameters, only small additional improvements to
these constraints are obtained when an extremely ambitious sky
coverage of 70 per cent is considered for PLANCK1+SN[1.5]+
WLT10 [ f sky = 0.7]. Finally, the constraints on the equation of state
parameters from PLANCK1+SN[0.8]+WLT2[ f sky = 0.7] are not
small enough for the criterion of a few per cent set above.

Another test to answer the above question is to probe the dark
energy density directly at various redshift points. For example, if
future data show significant departures of the parameters E1 or E2
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(see Section 2.2) from unity then a cosmological constant can be
ruled out conclusively. Our analysis shows that this might be a less
difficult test, as even PLANCK1+SN[0.8]+WLT5[ f sky = 0.7] has
the potential to achieve σ (E1) = 0.012 and σ (E2) = 0.049.

A second question of interest is what combination of experiments
could distinguish between some of the currently proposed models
of dark energy. Of particular interest are models that predict an
equation of state with parameters that are significantly different from
those of a cosmological constant. For example, one could consider
quintessence tracker models (Zlatev, Wang & Steinhardt 1999) or
super-gravity-inspired models (Brax & Martin 1999), for which, w0

� −0.8 and dw/dz(z = 0) ∼ 0.3. From the Tables, we see that the
distinction between these models and a cosmological constant can
be achieved by several different combinations of experiments with
different levels of precision.

Tables 2 and 3 show that, after combining PLANCK and super-
nova constraints, weak lensing without tomography adds an im-
provement of roughly a factor of 2 or better to the constraints. As
shown in Fig. 4, the WL-improvement arises from probing non-
linear scales (l � 100), with a significant jump between l ∼ 200
and ∼2000 for the ground-based-like survey considered. Adding
2-bin tomography to the lensing survey provides an additional factor
of 2 improvement to the combination WMAP8+SN[0.8]+WL and
to the combination ACT1+WMAP8+SN[0.8]+WL. We mention
here that these results do not include constraints from the Sunayev–
Zeldovich effect or lensing of the CMB, constraints that ACT and
PLANCK will help with.

In Table 4 and Fig. 5 we summarize our results on multiple-
bin tomography. The constraints on the equation of state pa-
rameters from PLANCK1+SN[1.5] improve by factors of 3–
5 when WLT10 with f sky = 0.1 is added to the combination.
Moeover, the constraints on the equation of state parameters from
PLANCK1+SN[0.8]+WLT5[ f sky = 0.7] are roughly factors of 3–6
better than those obtained from PLANCK1+SN[0.8]. Thus, we find
that the improvements obtained from multiple-bin tomography lens-
ing surveys are important for the questions raised at the beginning
of this section, as they bring the uncertainties significantly closer
to the goal of a few per cent. Therefore, the present study shows
that tomography is very useful for adding further improvements to
the constraints on dark energy parameters using both ground-based
experiments and space-based experiments. The precise discussion
of the technical and instrumental feasibility of multiple-bin tomog-
raphy from the ground or from space is beyond the scope of this
paper and should be addressed elsewhere.

We took care to include some systematic effects in our analysis.
We parametrized the weak lensing calibration bias and assumed
reasonable priors of 0.04 on the calibration parameters. We also
parametrized the redshift bias and used a reasonable prior of 0.05.
However, there are other systematic effects that we did not include
and that may affect our results. For example, we did not include the
effect of intrinsic correlations between the lensing source galaxies
on our results (Croft & Metzler 2000; Heavens et al. 2000; Lee &
Pen 2000; Catelan et al. 2001; Crittenden et al. 2001; Brown et al.
2002; Jing 2002; Jarvis et al. 2003; Heymans et al. 2004; Hirata &
Seljak 2005), and we used the HALOFIT fitting formula to evaluate the
non-linear matter power spectrum (full simulations should be used
for real data analysis). As discussed in Section 3.4, our inclusion
of these two lensing systematics assumed their Gaussianity. The
effect of these systematics on our results is thus valid only under this
approximation. Future dedicated studies of weak lensing systematic
effects should address the issue of non-Gaussianity. In addition,
following previous work, we included in our supernova constraints

a conservative systematic limit, but more studies need to be done in
this area as well.

Nevertheless, our results show that, after the combination of
CMB, supernovae, and weak lensing surveys, tomography with very
large fractions of the sky and many redshift bins has the potential
to add key improvements to the dark energy parameter constraints
by bringing them to the level of a few per cent.

On the other hand, the fact that very ambitious and sophisticated
surveys are needed in order to achieve some of these constraints,
and the difficulty in obtaining any further significant improvements,
even with the most ambitious survey we considered, suggest the
need for new tests to probe the nature of dark energy in addition to
constraining its equation of state.
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