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1 Introduction

Under gauge/gravity duality, gravity and spacetime are viewed as emergent phenomena

that arise from quantum dynamics and entanglement in a dual field theory. Based on this,

gravitational methods have been used to address a range of problems in strongly coupled

field theories, where the emergent spacetime is well described by classical field equations,

but gauge/gravity duality also has important ramifications for quantum gravity. In fact, if

such a duality holds in Nature, it obviates the need for a fundamental quantum theory of

the gravitational interaction and suggests that thorny issues in gravitational theory, such as
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the resolution of spacetime singularities, may ultimately be explained in terms of a weakly

coupled quantum field theory. As a step in that direction, we study simple field theories

that are believed to have gravitational duals and explore their weak coupling dynamics by

computing low order correlation functions.

The simplest suitable field theories are O(N) or U(N) symmetric theories at large

N , which are free except for a singlet constraint on the states. They are conjectured

to be dual to Vasiliev higher spin theory [1–4] and tensionless string theory in AdS [5, 6],

respectively. The singlet constraint is far from innocuous, however. In finite volume it leads

to non-trivial large N phase transitions [7, 8]. In the limit of infinite string tension, i.e.

semi-classical gravity limit, the corresponding confinement-deconfinement phase transition

has been identified with the Hawking-Page transition involving bulk black holes [9, 10]

and it is an interesting open question to what extent the large N phase transitions in the

above theories with higher spin symmetries involve black hole-like objects as well. So far,

there is little concrete evidence for such an identification beyond gross thermodynamic

features. The results are also non-uniform. There are recent indications that there is no

Hawking-Page transition at AdS scale in three-dimensional higher spin gravity [11, 12] due

to the presence of light states that smooth the transition. Likewise, there appear to be

no black holes in thermal equilibrium at the AdS scale in pure higher spin theory in four

dimensions but there is a phase transition at a much higher temperature (Planck scale) in

that theory [8]. In contrast, AdS scale objects do appear to exist in the theory dual to

tensionless strings. In this case, the ’t Hooft coupling can be taken to be non-zero leading

to tensile strings and eventually to the infinite tension gravity limit at strong ’t Hooft

coupling where the role of black holes is well understood.

Some insight into the topology of the Euclidean background can be gained by consid-

ering the expectation value of the square of a Polyakov loop in the U(N) matrix model [13].

In particular, a non-vanishing expectation value indicates a contractible thermal circle in

the dual geometry corresponding to a deconfined phase. For higher spin theory, partial

geometric insights from boundary theory thermodynamics have been obtained recently

by considering the high temperature phase far above the phase transition and identify-

ing evanescent excitations behaving as if traveling along an event horizon [14, 15]. This

is intriguing and promising, and it could be illuminating to analyze the problem using

complementary methods, especially if they can bring us closer to the phase transition.

In the present paper, we extend the thermodynamic analysis by considering boundary

correlation functions at thermal equilibrium in a vector model and a matrix model with

U(N) symmetry.1 The correlation functions involve gauge invariant observables in the

boundary theories and we study their spatial dependence as a function of temperature,2

identifying leading behaviors across different thermodynamic phases in these models. We

will be working in a free field limit on the field theory side and looking to interpret the

resulting correlation functions in terms of an emergent spacetime geometry. It is not clear

a priori that this will work in the absence of a large ’t Hooft coupling but our results

1Our results can easily be extended to the O(N) vector model considered in [3].
2For a recent review of the higher spin/vector model duality, including many results on zero-temperature

correlation functions, see [16].
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are nevertheless suggestive of an AdS geometry emerging at low temperatures in both

models and signs of more elaborate geometric structures emerge above their respective

phase transitions.

We calculate boundary correlation functions at finite temperature in a large N ex-

pansion. We allow for an arbitrary number of flavours Nf in the calculations, but Nf is

always kept finite, and as a result the flavor dependence is trivial. In contrast, we find

interesting dependence on spacetime dimension, which we parametrize by the boundary

dimension d. We note that d = 3 is the natural dimension for the vector model (dual to

massless higher spins in four-dimensional spacetime) while d = 4 is the natural dimension

for the matrix model (dual to tensionless strings in five dimensions). In these dimensions

there are nearby interacting models that are conformal and allow for non-trivial AdS/CFT

studies. We will nevertheless consider free theories in higher dimensions, viewing them as

useful toy models, but keeping in mind that in this case the effect of turning on interactions

is much more uncertain. We find clear evidence of spatial structure in the putative dual

spacetime to the large N high temperature phases in all these models. The objects we

find either appear at the AdS scale (matrix model) or at much larger length scales (vector

model). We also find a range of temperatures above the phase transition in each model,

where the thermal objects appear to have a central core exhibiting a novel structure when

probed by boundary-to-boundary two point functions at large operator separation.

The paper is structured as follows. In section 2 we review standard techniques for

imposing singlet constraints and exposing the thermal phase transitions in the large N

limit on Sd−1 × S1 for both vector and adjoint (matrix) models. We apply the large N

technology to obtain Green’s functions in section 3 and then study two-point correlation

functions of gauge invariant observables and their behavior across different temperature

and angular regimes, in section 4 for the vector model, and in section 5 for the adjoint

model. Finally, in section 6 we summarize and briefly discuss our results. In appendix A,

explicit expressions are worked out for the important special case of the d = 3 vector

model, which is conjectured to be dual to four-dimensional Vasiliev higher spin theory.

In appendix B we evaluate expectation values of Polyakov loops in both the vector and

adjoint models.

2 Partition function, saddle points and phase transition

In this section we provide the necessary background for our analysis, for the most part

following [8, 17]. We commence by considering the partition function

Z[β] =

∫
DAµDφDφ†e−S[Aµ,φ,φ

†;β] , (2.1)

where the fields live on a spatial d−1-sphere and a thermal circle t ∼= t + β, leading to

Sd−1 × S1 as the underlying manifold.3 The action is that of a U(N) gauge theory in the

limit of a vanishing gauge coupling. We consider two cases for the matter sector. Either

3We set the radius of the Sd−1 to R = 1 to simplify notation. All lengths in the boundary theory are

referred to this length scale.
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it consists of Nf free scalar fields in the fundamental representation, or of a scalar in the

adjoint representation, in both cases with a conformal coupling to the background curva-

ture. As usual, gauge invariance implies Gauss’ law constraints. Due to the compactness

of the Sd−1, the integral form of these constraints imposes vanishing of all charges.

For this work, we are interested in the free limit of the gauge theory. In this case,

the only remaining effect of the gauge coupling is to enforce the singlet constraint. The

nonzero modes of the gauge field decouple entirely, and we will ignore them from this point

on. However, a nontrivial contribution arises from the zero mode of the gauge field,

α(t) =
1

V ol(Sd−1)

∫
Sd−1

At , (2.2)

which we may gauge fix to be a constant in Euclidean time,

∂tα = 0 . (2.3)

Separation of A and α in the path integral through a U(N) rotation Uα = eiαt leads to the

scalar action

Sφ =

∫
−φ†

(
D2
t + ∂2i −

1

4
(d− 2)2

)
φ , (2.4)

with φ either in the fundamental or the adjoint representation. The covariant derivative is

given by Dt = ∂t + iα in the vector model and by Dt = ∂t + i[α, ·] for an adjoint scalar.

Note that in addition to changing the form of the action, the rotation has changed the

boundary conditions around the thermal circle to twisted ones

O(t = 0) = Õ(t = β) , (2.5)

where Õ is the operator obtained by applying the U(N)-rotation eiαβ . This fixes the

singlet condition on all field configurations. In other words, the integral only runs over

gauge invariant field configurations.

Including and evaluating gauge fixing terms and corresponding Fadeev-Popov deter-

minants [17] and integrating over the scalar leads to an effective matrix model for α, or,

equivalently, of the U(N) gauge holonomy around the thermal circle, U = eiβα. Its parti-

tion function is most conveniently written in terms of the eigenvalues eiλi of the holonomy

matrix U . The partition function reads [7, 8, 17, 18]

Z[β] =
1

N !

∫ (∏
i

dλi

)
exp

[∑
i 6=j

ln

∣∣∣∣sin(λi − λj2

)∣∣∣∣−∑
i

Ss[λi]

]
. (2.6)

Ss[λ] is the scalar contribution to the partition sum. In the vector model it is given by

Ss[λi] = −2Nf

∞∑
k=1

1

k
zdS(xk) cos(kλi) , (2.7)

and in the adjoint model by

Ss[λi] = −
∞∑
k=1

1

k
zdS(xk)

∑
j

cos(k(λi − λj)) . (2.8)
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The scalar one-particle partition sum on a d− 1-dimensional sphere is given by

zdS(x) = x
d
2
−1 1 + x

(1− x)d−1
, (2.9)

with x = e−β .

One could now work directly with eq. (2.6) and look for saddle points by varying the

action with respect to the eigenvalues, as done for example in [8]. In order to compare the

vector and matrix models in the large N limit, however, it proves convenient to rewrite the

action by defining

ρk =
1

N

∑
i

cos kλi , (2.10)

where the normalization has been chosen s.t. for a homogeneous distribution of eigenvalues

ρ0 = 1. Moreover, note that

ln

∣∣∣∣sin(λi − λj2

)∣∣∣∣ = − log 2−
∞∑
k=1

1

k
cos(k(λi − λj)) . (2.11)

After some straightforward manipulations, and under the assumption of a symmetric dis-

tribution, we obtain for the action4 in the vector model

S = N2
∑
k

ρk
k

(
ρk − 2

Nf

N
zdS(xk)

)
, (2.12)

and in the adjoint model

S = N2
∑
k

1− zdS(xk)

k
ρ2k . (2.13)

In the latter case, the Zn center symmetry is no longer apparent, due to the assumption of a

symmetric distribution of eigenvalues. Later, we will remedy this by including appropriate

factors accounting for the sum over all saddles.

2.1 Saddles

For large N , the path integral eq. (2.6) can be evaluated in a saddle point approximation.

To leading order in 1/N , the saddle point equation is most readily solved in the continuum

approximation. To this end, we introduce the eigenvalue density ρ(λ), normalized to∫
dλ ρ(λ) = 1 , (2.14)

and obeying the positivity constraint

ρ(λ) ≥ 0 . (2.15)

The ρk then have a straightforward interpretation as the Fourier cosine coefficient of the

eigenvalue distribution.

4In fact, there is a subtlety when writing the action in this form. As can be easily checked, there is a

contribution to the action that arises from i = j in eq. (2.6) and which diverges logarithmically. In the

full expression, this contribution is subtracted. We ignore the subtraction term, however, since it has no

impact in the large N limit, when the ρk can be treated as independent variables.

– 5 –
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2.1.1 Vector model

In the vector model, it is easy to see that the action eq. (2.12) is now minimized for

ρk =
Nf

N
zdS(xk) . (2.16)

Together with the normalization condition eq. (2.14) this yields [18]

ρ(λ) =
1

2π
+
Nf

N

∞∑
k=1

zdS(xk)
1

π
cos(kλ) . (2.17)

This solution is valid up to temperatures such that the positivity constraint eq. (2.15)

is no longer satisfied. This happens when the distribution eq. (2.17) vanishes somewhere

along the circle and marks the onset of a Gross-Witten type phase transition. In the large

N limit, for fixed finite Nf , it takes place at very high temperatures T ∼
√
N .

We can find the critical temperature by noting that at high temperatures, 1−x ≈ 1/T

and the scalar partition function becomes

zdS(xk)→ 2
T d−1

kd−1
. (2.18)

Moreover, in our conventions, the minimum of the distribution lies at λ = ±π. Inserting

this into eq. (2.17) and evaluating the sum leads to

ρ(π) =
1

2π
− 2

π
(1− 22−d)ζ(d− 1)

Nf

N
T d−1 , (2.19)

which fixes the critical temperature to

T d−1c =
1

4 (1− 22−d) ζ(d− 1)

N

Nf
. (2.20)

At higher temperatures, the eigenvalue distribution vanishes for a finite interval of λ.

It is described by

ρ(λ) =

Ad
(
T
Tc

)d−1 (
<Lid−1(eiλ)−<Lid−1(eiλm)

)
for |λ| ≤ λm ,

0 else ,
(2.21)

where we have defined Ad = 1
2π(1−22−d) ζ(d−1)

, and λm is fixed by the normalization condi-

tion eq. (2.14). Here, Lin denotes the n-th Polylogarithm and < and = are the real and

imaginary parts, respectively. Explicitly, we have

2Ad

(
T

Tc

)d−1 (
=Lid(eiλm)− λm<Lid−1(eiλm)

)
= 1 . (2.22)

Analytic solutions for λm can be found for d = 3 and are given in appendix A.

Focusing on the scaling behavior far above the transition, T � Tc, we expand eq. (2.22)

in powers of λm and solve the lowest order equation,

λm →
Tc
T
×



√
2

πAd
for d = 3 ,(

3
2Ad

) 1
3

log−1/3 T
Tc

for d = 4 ,(
3

2ζ(d−3)Ad

) 1
3 (Tc

T

) d−4
3 for d ≥ 5 .

(2.23)
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2.1.2 Adjoint model

The solution in the adjoint case is found in the same way, but the mechanism driving the

phase transition is somewhat different. From eq. (2.13) one observes that the homogeneous

distribution, ρk≥1 = 0, is preferred as long as zdS(xk) < 1 for all k. At temperatures

T = Tc ∼ O(1), zdS(xc) = 1, and the first Fourier mode of the distribution becomes gapless.

This is the Hagedorn transition, beyond which ρ1 condenses. For higher temperatures, the

analysis requires taking into account the positivity constraint and becomes more involved.

There, the constraint sets conditions on all ρn. Nevertheless, it is clear that the distribution

vanishes at a single point just above the transition, and subsequently on a finite interval.

An approximate expression for the distribution at T > Tc, given in [17], reads

ρ(λ) =


1

π sin2(λm2 )

√
sin2

(
λm
2

)
− sin2

(
λ
2

)
cos
(
λ
2

)
for |λ| ≤ λm ,

0 else ,
(2.24)

where the maximal angle λm is fixed by

sin2

(
λm
2

)
= 1−

√
1− 1

zdS(x)
. (2.25)

At high temperatures this becomes

λm → T
1−d
2 . (2.26)

2.1.3 Asymptotic form of the eigenvalue distribution

For completeness, we give the asymptotic form of the eigenvalue distribution for T � Tc.

In the vector model, we have

ρ(λ) =
Ad
2

(
T

Tc

)d−1
π(λm − |λ|) for d = 3 ,
1
2

(
λ2m(3− 2 log λm)− λ2(3− 2 log |λ|)

)
for d = 4 ,

ζ(d− 3)(λ2m − λ2) for d ≥ 5 ,

(2.27)

yielding the asymptotic Fourier coefficients

ρk = 2Ad

(
T

Tc

)d−1 1

k2

×


π sin2

(
kλm
2

)
for d = 3 ,

1
k (Si(kλm)− log λm sin(kλm)) + λm cos(kλm)(log λm − 1) for d = 4 ,

ζ(d− 3)
(
sin(kλm)

k − λm cos(kλm)
)

for d ≥ 5 ,

(2.28)

where Si(z) ≡
∫ z
0 dt t

−1 sin t. This implies a k−2-falloff for large k � λ−1m in all dimensions.

In the adjoint model, the distribution approaches

ρ(λ) =
2

πλ2m

√
λ2m − λ2 , (2.29)

which leads to the Fourier moments

ρk =
2

kλm
J1(kλm) , (2.30)

with the first Bessel function of the first kind J1. Here, the large k � λ−1m falloff is k−3/2.

– 7 –
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3 The thermal Green’s function

The scalar Green’s function for a particular eigenvalue distribution λi can be read off

directly from eq. (2.4). The inversion of the kinetic operator is most readily implemented by

decomposing it in terms of its eigenvalues and eigenvectors. In the vector model, this yields

GAB(0, y) = β−1
∑

i,n,`,M

Y`,M (0)Y ∗`,M (y)Ψi
A(Ψi

B)†

β−2 (2πn+ λi)
2 + (`+ (d− 2)/2)2

= (2πβ)−1
Γ(σ)

πσ

∑
i,n,`

(`+ σ)C
(σ)
` (cos θ)Ψi

A(Ψi
B)†

β−2 (2πn+ λi)
2 + (`+ σ)2

, (3.1)

where 0 and y refer to points on Sd−1 separated by a polar angle θ. Here, i runs from 1

to N , n from −∞ to ∞, and ` from 0 to ∞. M denotes d− 2 magnetic indices that obey

` ≥ |md−2| ≥ . . . ≥ |m1|. Y`,M are the d-dimensional spherical harmonics. We have used

their orthogonality and the fact that one insertion point is at 0 to set M = 0 to obtain the

second line of eq. (3.1). They are eigenfunctions of the spherical part of the Laplacian with

eigenvalues −`(`+ d− 2). We have introduced σ = (d− 2)/2 for notational simplicity and

C
(σ)
` are the Gegenbauer polynomials which reduce to the regular Legendre polynomials

for d = 3. Ψi
A is the i-th eigenvector of the holonomy matrix U at the saddle point, with

eigenvalue eiλi . We have also included color indices A, B for clarity. The eigenvectors are

normalized according to

Ψi
A(Ψj

A)† = δij , Ψi
A(Ψi

B)† = δAB . (3.2)

The sum over ` can be performed explicitly. To this end, we first rewrite the sum over n as5

GAB(0, y) =
Γ(σ)

4πσ+1

∑
j

Ψj
A(Ψj

B)†
∑
n,`

C
(σ)
` (cos θ) e−β|n|(`+σ) cosnλj , (3.4)

and then use the generating functional for Gegenbauer polynomials,

1

(1− 2tx+ t2)σ
=
∞∑
`=0

t`C
(σ)
` (x) , (3.5)

to sum over ` and obtain

GAB(0, y) =
1

2

Γ(σ)

(2π)σ+1

∑
j

Ψj
A(Ψj

B)†
∑
n

cosnλj
(coshnβ − cos θ)σ

. (3.6)

As one might have anticipated, for λj = 0 this agrees with the expression obtained by con-

sidering the Green’s function in the universal covering space R × Sd−1 and subsequently

implementing periodic boundary conditions for the thermal direction by summing over

all images.

5Here, we have made use of the identity

∞∑
n=−∞

E

(2πn+ λ)2 + E2
=

1

2

∞∑
n=−∞

e−|n|E cosnλ . (3.3)
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In the adjoint case, the corresponding Green’s function reads

GAB,CD(0, y) =
1

2

Γ(σ)

(2π)σ+1

∑
j 6=k

Ψj
A(Ψk

B)†Ψk
C(Ψj

D)†
∑
n

cosn(λj − λk)
(coshnβ − cos θ)σ

. (3.7)

4 Two-point functions of local operators A: the vector model

Let us now consider expectation values of the form
〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
. As usual, by

Wick’s theorem, expectation values are obtained via operator contractions and in this case

normal ordering and symmetries leave only one nontrivial contraction,

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
=
〈

Trφ†(0)φ(0)Trφ†(y)φ(y)
〉

=
1

N
GAB(0, y)GBA(0, y) . (4.1)

In order to facilitate making contact with bulk duals, we have chosen to normalize the

fields so that their vacuum two point functions are independent of N . This explains the

factor of 1/N on the right hand side of the second equality in eq. (4.1). Inserting eq. (3.6)

and employing eq. (3.2), we obtain

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
=

Γ2(σ)

4(2π)dN

∑
i

(∑
n

cosnλi
(coshnβ − cos θ)σ

)2

=
Γ2(σ)

2d+2πd

∞∑
n,m=−∞

ρ|n−m|

[(coshnβ − cos θ)(coshmβ − cos θ)]σ
, (4.2)

where we have used eq. (2.10) on the second line. The two-point function can now be

approximated by inserting the saddle point values of ρn.

4.1 Low temperature phase: T ≤ Tc

Below the phase transition, ρn is given by

ρn =

{
1 for n = 0 ,

Nf
N zdS(xn) for n > 0 .

(4.3)

Inserting this into the general expression eq. (4.2) for the two-point function, gives

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
=

Γ2(σ)

2d+2πd

( ∞∑
n=−∞

(coshnβ − cos θ)2−d

+
Nf

N

∑
n 6=m

zdS(x|n−m|)

[(coshnβ − cos θ)(coshmβ − cos θ)]σ

)
= Kd+1

AdS(β, θ) +O(1/N) , (4.4)

where KdAdS(β, θ) is the boundary-to-boundary correlator in d-dimensional thermal AdS

space. We will explore this connection to thermal AdS correlators in more detail in section 6.

The next step is consider the behavior of the the two-point function in different distance

regimes.

– 9 –
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4.1.1 Short distance θ � β

In the θ � β limit, the dominant terms are those singular in θ. They arise exclusively

from terms with m = 0 and/or n = 0 in eq. (4.2). In the short distance limit the two-point

function is thus given by

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
=

Γ2(σ)

2d+2πd

(
1

(1− cos θ)2σ
+

4

(1− cos θ)σ

∞∑
n=1

ρn
(coshnβ − cos θ)σ

)

≈ Γ2(σ)

2d+2πd

(
1

(1−cos θ)2σ
+
Nf

N

2σ+2

(1−cos θ)σ

∞∑
n=1

z
2(d−1)
S (xn)

)
. (4.5)

The leading contribution at any temperature comes from the vacuum piece and reads〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ Γ2(σ)

16πd
1

θ2(d−2)
. (4.6)

4.1.2 Long distance θ � β

Since θ ≤ π it follows that long distance compared to β implies that β � 1, i.e. that we are

at relatively high temperature even if we are still below Tc. Due to the suppression of the

higher Fourier coefficients of ρ, we can expand the denominator of eq. (4.2) in (n −m)β

and arrive, after shifting the summation index m, at

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ Γ2(σ)

2d+2πd

( ∞∑
p=−∞

ρ|p|

) ∞∑
n=−∞

(coshnβ − cos θ)2−d

≈
(

1 + 4 ζ(d−1)
Nf

N
β1−d

)
Kd+1

AdS(β, θ) . (4.7)

This reveals an interesting fact. Even when the O(1/N) terms in eq. (4.4) begin to con-

tribute, they do so in a controlled manner, as long as we are below the phase transi-

tion. Indeed, they only provide a temperature dependent renormalization of the leading

order result.

4.2 High temperature phase: T > Tc

In the high temperature phase, the behavior of the correlators is more subtle than below

the transition. The reason for this is the emergence of an additional length scale in the

sum in eq. (4.2) once a hierarchy between T and Tc opens up, i.e. for λm � 1.

We can easily infer the emergence of the new length scale from the Fourier form of the

eigenvalue distribution in eq. (2.28). For n� λ−1m it is independent of n to leading order,

while for n � λ−1m it is oscillatory with an envelope that scales as n−2. More precisely,

using the high temperature expression for ρn, we have

ρn → 1 for nλm � 1 . (4.8)

Thus, whenever the correlator is dominated by n� λ−1m , it corresponds to that of an uncon-

strained, free theory. On the other hand, for n� λ−1m , the full expression for the distribu-

tion function is relevant and when this regime dominates a correlation function, the singlet

constraint will be important and we will find behavior similar to the low temperature phase.
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To find the crossover scale, we should not compare n itself to the angle θ, but instead

the combination nβ, since this is what enters in the denominators in eq. (4.2). This yields a

crossover scale θc ≈ βλ−1m . Inserting the asymptotic expression for the maximal angle λm,

the following picture emerges. In d = 3, λm ∼ βc/β and the crossover scale is independent

of β and at a rather small angle, θc ∼ 1/
√
N . In higher dimensions, on the other hand,

the crossover scale grows with temperature. At sufficiently high T , it surpasses the size

of the sphere, and no regime θ > θc exists. Therefore, in higher dimensions, the large

distance correlator above the phase transition differs significantly from its low temperature

counterpart. In particular, at large enough temperature it cannot be identified with the

boundary-to-boundary correlator in thermal AdS.

4.2.1 Below the crossover scale: θ � θc

The crossover in angular behavior occurs at θc ≈ βλ−1m , which depends on temperature as

follows in different dimensions,

θc ∼ βc ×


1 for d = 3 ,

log1/3 βcβ for d = 4 ,(
βc
β

) d−4
3

for d ≥ 5 .

(4.9)

Taking a look at the continuum version of eq. (3.4),

Γ(σ)

4πσ+1

∫
dλ ρ(λ)

∑
n,l

C
(σ)
l (y) e−β|n|(l+σ) cosnλ , (4.10)

we observe that relevant contributions arise only from n . 1/βEl, with El = l + σ, since

larger n are exponentially suppressed. In the relevant range we have

nλ ≤ nλm .
1

βcEl
∼ θ

θc
� 1 , (4.11)

which allows us to approximate cosnλ ≈ 1 and thus ρn ≈ 1. In this regime, the distribution

is therefore δ-like and we obtain

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
=

Γ2(σ)

2d+2πd

(∑
n

[coshnβ − cos θ]−σ
)2

. (4.12)

Subthermal distances, θ � β. In the short distance regime, we again focus on the

contributions to eq. (4.12) that are singular for θ → 0,

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ Γ2(σ)

2d+2πd

(
1

(1−cos θ)2σ
+

4

(1−cos θ)σ

∞∑
n=1

1

(coshnβ−1)σ

)
. (4.13)

Again, the leading contribution is given by eq. (4.6) and coincides with the low temperature

phase short distance behavior.
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Intermediate distances, β � θ � θc. To understand the behavior in this regime, we

leave Sd−1 for a moment and consider flat space instead. There, the equivalent of eq. (4.12)

can be written in a momentum representation as

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
∼

(∫
dd−1k eiky

∞∑
n=−∞

e−βnk

)2

∼
(∫

dd−1k (1 + 2nB (k))eiky
)2

, (4.14)

where we have approximated Ek ∼ k and evaluated the sum over n to arrive at the second

line. Since we are at scales much larger than the thermal wavelength, kβ � 1, we can

expand the Bose distribution to yield

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
∼
(∫

dk kd−2
(

1 +
2

βk

)
eiky

)2

∼
(

1

|y|d−1
+

1

β|y|d−2

)2

∼ 1

β2|y|2(d−2)
, (4.15)

where the final relation holds for β � |y|. The result is nothing but the vacuum correlator

in d − 1 dimensions. We thus observe an effective dimensional reduction of the correlator

in the intermediate regime. Back on the sphere, we can perform the sum in eq. (4.12). If

we further take the small angle approximation, keeping in mind that 1 � θ � β, then the

leading contribution simply reads

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
∼

{
1
β2 log2 θ for d = 3 ,

1
β2 θ

2(3−d) for d > 3 .
(4.16)

4.2.2 Long distances: θ > θc

As discussed above, this regime exists only as long as θc remains small. This holds at all

temperatures in d = 3 but in higher dimensions the temperature range is restricted. It is

straightforward to check from eq. (4.9), that the allowed range is βc ≥ β � β′c, where

β′c ∼


0 for d = 3 ,

βc e
−1/β3

c ∼ N−
1
3 e−N for d = 4 ,

β
d−1
d−4
c ∼ N−

1
d−4 for d ≥ 5 .

(4.17)

For d = 3 and d = 4 this regime is available at basically all temperatures above the phase

transition, whereas for d ≥ 5, the higher the dimension the narrower the temperature range

for which the critical angle is small. We note, however, that in any given dimension d the

temperature range, where we can observe the long distance behavior at θ > θc, gets wider

as we take N larger.

Within this temperature interval, the long distance correlator takes a surprisingly

simple form. We can apply the same expansion that lead to the first line of eq. (4.7), and
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obtain an expression of the same form,

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈

( ∞∑
p=−∞

ρ|p|

)
Kd+1

AdS(β, θ) . (4.18)

The multiplicative factor in front of the AdS propagator depends on temperature but

not on the angle θ, so the leading behavior at long distances once again corresponds to

propagation in thermal AdS, up to a temperature dependent normalization factor.

Let us summarize the high temperature behavior above the phase transition. We

find that in the limit of small operator separation the correlation function has rather

simple angular dependence, that corresponds to propagation in thermal AdS space of one

higher dimension. When θ > β the separation between the operator insertions is larger

than the thermal length and the correlator behaves in a qualitatively different manner,

reflecting an effective dimensional reduction. However, when d is low and the temperature

is not too high, we observe an unexpected departure from this behavior at the largest

available angular separations. Surprisingly, the higher dimensional thermal AdS propagator

is recovered up to an overall temperature dependent normalization in this regime.

It is not immediately clear how to interpret these results from the point of view of

gauge/gravity duality, although the behavior of the two-point correlation function at low

temperatures and at short distances is suggestive of an emerging AdS geometry. It is then

tempting to attribute the deviation from AdS behavior at temperatures above the phase

transition to an emerging geometry of an extended object, possibly a very large black hole

(much larger than AdS scale), but the large angle behavior, where we recover a form of

thermal AdS propagation, is rather mysterious from that point of view.

5 Two-point functions of local operators B: the adjoint model

We again limit our attention to the only non-trivial Wick contraction and normalize the

field as before,

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
=

Γ2(σ)

2d+2N2πd

∑
i,j

(∑
n

cos (n(λi − λj))
(coshnβ − cos θ)σ

)2

. (5.1)

Analogous to the vector model, we can write this as

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
=

Γ2(σ)

2d+2πd

∞∑
n,m=−∞

ρ2|m−n|

[(coshmβ − cos θ)(coshnβ − cos θ)]σ
, (5.2)

where we have taken the eigenvalue distribution to be symmetric around λ = 0, without

loss of generality. Note the quadratic dependence on the ρn. This reflects the U(1) (or, for

finite N the ZN center) symmetry of the theory.6

6As mentioned in section 2, integration over the center gives rise to an additional overall factor of 2π.

We have normalized our correlation function in such a way that the vacuum contribution is given by the

boundary-to-boundary correlator in d+1-dimensional thermal AdS space.
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5.1 Low temperature phase: T ≤ Tc

Below the transition, due to the vanishing of all off-diagonal contributions, the two-point

function simplifies to7

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
=

Γ2(σ)

2d+2πd

∞∑
n=−∞

(coshnβ − cos θ)2−d = Kd+1
AdS(β, θ) . (5.5)

Thus, once more, this corresponds to the boundary-to-boundary correlator in thermal AdS.

At very low temperatures, cosh nβ ∼ 1
2e
nβ and the finite temperature part of the above

expression is exponentially suppressed,

∞∑
n=1

(coshnβ − cos θ)2−d ≈ 2d−2e−(d−2)β
(

1 + 2(d− 2)e−β cos θ
)
. (5.6)

5.2 High temperature phase: T > Tc

Around the phase transition, the exact form of the eigenvalue distribution is somewhat

complicated but it simplifies significantly in the very high temperature regime. Similar

to the vector model considered in section 4, there is a crossover scale θc in the adjoint

model at which the correlator crosses over from that of an unconstrained theory to that of

a theory with a singlet condition.

5.2.1 Below the crossover scale: θ � θc

One again finds that θc = βλ−1m , but the expression for λm differs from the vector model.

At sufficiently high temperature, we find

λm ≈ β
d−1
2 , (5.7)

and thus

θc ≈ β
3−d
2 . (5.8)

As before, we can approximate the eigenvalue distribution at angles below the crossover

scale by a δ-function, i.e. ρn = 1 for all n, and obtain

∑
mn

ρ2|n−m|

[(coshmβ − cos θ)(coshnβ − cos θ)]σ
≈

(∑
n

(coshnβ − cos θ)−σ
)2

. (5.9)

As in the vector model, there are two cases to consider.

7Subdominant pieces in 1/N arise from taking fluctuations around the saddle into account. Due to the

Gaussian nature of the partition function eq. (2.13) this is straightforward. We obtain〈
ρ2n
〉

=
1

2N2(1 − zdS(xn))
, (5.3)

and therefore for the subleading piece

1

2

∞∑
n,m=−∞

(1 − zdS(x|m−n|))−1 [(coshmβ − cos θ)(coshnβ − cos θ)]−σ . (5.4)
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Subthermal distance, θ � β. The leading contributions are again given by the sin-

gular terms. Correspondingly, we obtain

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ Γ2(σ)

2d+2πd

(
1

(1−cos θ)2σ
+

4

(1−cos θ)σ

∞∑
n=1

1

(coshnβ−1)σ

)
. (5.10)

Thus the leading behavior at sufficiently small angles, θ � 1, is exactly the same as in the

vector model, 〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ Γ2(σ)

16πd
1

θ2(d−2)
. (5.11)

Intermediate distance, β � θ � θc. For the same reasons as in the vector model,

intermediate distances imply dimensional reduction and we find that

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
∼

{
1
β2 log2 θ for d = 3 ,

1
β2 θ

2(3−d) for d > 3 .
(5.12)

5.2.2 Long distance θ > θc

In contrast to the vector model, the critical temperature is now βc ∼ O(1), implying that

close to the phase transition the crossover angle is θc ∼ O(1) in any dimension. For d > 3

the crossover angle grows with temperature above the phase transition and becomes larger

than π at rather small temperature, so no simple temperature expansion can be taken. For

d = 3, on the other hand, the crossover angle remains at O(1) at high temperatures and

in this special case, an expansion of eq. (5.2) in powers of β(m− n) leads to

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈

( ∞∑
p=−∞

ρ2|p|

)
K4

AdS(β, θ) , (5.13)

for θ>θc. This result is qualitatively similar to eq. (4.18) and recovering higher-dimensional

thermal AdS behavior at large angles is equally mysterious here.

6 Summary and discussion

We summarize our results in table 1 and in figures 1 to 3. At temperatures below the

phase transition the leading order correlation function is given by a thermal boundary-to-

boundary correlator in d+1-dimensional AdS spacetime, up to corrections suppressed by

powers of 1/N , in both models. This corresponds to the leftmost regions labelled by I in

figures 1 and 2.

Above the critical temperature the behavior of the correlation function is qualitatively

different depending on whether the separation between the operators is larger or smaller

than the thermal wavelength. At subthermal distances, i.e. in the region labelled I below

the green dashed lines in figures 1 and 2, the correlation function is still well described by

the boundary-to-boundary correlator of d + 1-dimensional thermal AdS space, but with

corrections parametrized by θ/β instead of 1/N .

At distances beyond the thermal wavelength, on the other hand, the correlation func-

tions differ significantly from their low-temperature counterparts. In this regime, there is a
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T ≤ T ac ∼ 1 T ac � T ≤ T fc ∼
√
N T � T fc

Vec Adj Vec Adj Vec Adj

θ � β

Kd+1
AdS(β, θ)

Kd+1
AdS(β, θ) Kd+1

AdS(β, θ)

θc � θ � β

Kd+1
AdS(β, θ)

Fd(θ)
β2

Fd(θ)
β2

θ � θc � β � β′c
fβK4

AdS(β, θ)

for d = 3
fβKd+1

AdS(β, θ)
fβK4

AdS(β, θ)

for d = 3

Table 1. Leading order correlation functions in all angular regimes for the scalar fields both in the

adjoint and the fundamental representations of U(N). The critical temperatures for the adjoint and

the vector models are T ac and T fc , respectively, KdAdS(β, θ) is the boundary-to-boundary correlator

in d-dimensional thermal AdS space, F3(θ) = log(θ)2 and Fd>3(θ) = θ2(3−d). In the vector model

fβ ≡
∑
p ρ|p| and for the adjoint case fβ ≡

∑
p ρ

2
|p|.

θc

I'

I

I
II

β

1 N1/6 N1/3 N1/2
T

Tc

N
- 1
d-1

1
π

θ

θcI'

I

I II

β

Tc'

1 N1/6 N1/3
T

Tc

N
- 1
d-1

1

π

θ

Figure 1. Vector model phase diagram for d = 3, 4 (left) and d ≥ 5 (right). In regions I, I’ and II

the correlation functions are given by Kd+1
AdS(β, θ), fβKd+1

AdS(β, θ), and Fd(θ)
β2 , respectively. Unlabeled

regions correspond to crossover regions without a simple approximation for the correlators.

further division into intermediate and long distances labelled by by II and I’, respectively,

in figures 1 and 2. At intermediate distances (region II), below the crossover scale θc indi-

cated by orange dotted lines in figures 1 and 2, there is an effective dimensional reduction

and the correlation function reduces to the small angle limit of the vacuum boundary-to-

boundary propagator in d-dimensional AdS spacetime, with a T 2 factor in front. At long

distances (region I’), above the crossover scale, the correlation function goes back to the

form of a thermal propagator in d+1-dimensional AdS, but with a temperature dependent

normalization factor. The crossover scale depends on both temperature and the number

of dimensions as shown in figure 3.
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θc
I'

I II

β

I

0.1 1 10 100 1000

T

Tc

0.1

1

π

θ

θc

I
II

I
β

0.1 1 10 100 1000

T

Tc

0.1

1

π

θ

Figure 2. Adjoint model phase diagram for d = 3 (left) and d ≥ 4 (right). In regions I, I’ and II

the correlation functions are given by Kd+1
AdS(β, θ), fβKd+1

AdS(β, θ), and Fd(θ)
β2 , respectively. Unlabeled

regions correspond to crossover regions without a simple approximation for the correlators.

1 N1/6 N1/3 N1/2
T

Tc

N-1/2

N-1/3

N-1/6

1

π

θc

0 2 4 6 8 10 12

T

Tc

1

2

π
θc

Figure 3. Crossover scale θc in vector (left) and adjoint (right) models as a function of temperature

for dimensions d = 3 to 7 (bottom to top).

Focusing on the form of the correlators, the preceding summary can be given a bulk

interpretation relying only on rather general features of the AdS/CFT correspondence,

including that physics at long distances on the boundary corresponds to physics deep in

the bulk.

• In the regions labelled by I, the boundary correlation function matches to leading

order a correlator induced by propagation through a bulk thermal AdS space. The

geometry seems to be unaffected by the heat bath below the critical temperature or

sufficiently close to the boundary. We see corrections to the correlation function at

order 1/N and we expect back reaction on the geometry as well at that order.

• At sufficiently high temperature there is a dense region, labelled by II, which is

deconfined in the sense that the singlet constraint is ineffective. In this region the

boundary correlators behave like short distance correlators in a (d−1)-dimensional

unconstrained theory.
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• The deconfined character of the propagators above the phase transition is confirmed

by evaluating the expectation value of (the square of) a Polyakov loop. This is

done for both the vector and the adjoint model in appendix B. The form of our

correlation functions along with the presence of a non-vanishing Polyakov loop in the

high temperature phase is consistent with a change in the emerging geometry away

from thermal AdS to a black hole like configuration [13].

• The deconfined behavior becomes apparent at operator separation on the boundary

of order the thermal wavelength, θ ∼ β. This implies that at the critical temperature

the deconfined phase appears at the AdS scale in the adjoint model, independent of N ,

and grows with temperature. In the vector model, on the other hand, the deconfined

phase appears on a super-AdS scale at large N already at the critical temperature.

• We confirm the observation made in [8] that there are no black holes at the AdS scale

in higher spin gravity. Our results do suggest the presence of black hole like objects

but they are parametrically larger than AdS scale at large N .

• In low dimensions, and at large angles, the boundary correlator probes a core region

labelled I’. Surprisingly, the angular dependence is again that of a propagator through

d+1-dimensional thermal AdS space, but with a temperature dependent overall nor-

malization. In this region the singlet constraint again plays a role. It is as if the

boundary correlator again detects an effective AdS geometry. Thinking about the

deconfined phase as signalling the presence a black hole, one is tempted to interpret

this as the boundary correlator probing the second asymptotic region of an eternal

black hole.

Our work can be extended in various ways. It would be desirable to have a deeper

understanding of the deep core region I’ and in particular whether it remains present away

from the free limit. Time dependent correlators may contain some signal of the evanescent

modes found in [14] in the limit of a flat O(N) boundary theory. Time evolution could

also shed light on possible precursors of positive Lyapunov exponents and the onset of

chaos [19–21], known to be present in Yang-Mills theories at finite coupling.
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A Explicit expressions in d = 3 for the vector model

In this appendix we specialize to d = 3, which is the most relevant case for studying the

duality between CFT and higher spin gravity, and focus mainly on the high temperature

behavior. Using eq. (2.18), the eigenvalue distribution at Tc > T � 1 can be written as

ρ(λ)→ 1

2π
+

(
−π

6
+

(|λ| − π)2

2π

)
Nf

N
T 2 . (A.1)
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At the critical temperature,

Tc =

√
3

π

√
N

Nf
, (A.2)

the eigenvalue distribution goes to zero at λ = π and at T ≥ Tc the eigenvalue density

vanishes in a finite interval, λm ≤ |λ| ≤ π, and can be written

ρ(λ) =

 3
2πγ2

((
1− |λ|π

)2
−
(
1− λm

π

)2)
if |λ| ≤ λm ,

0 if λm < |λ| ,
(A.3)

where γ ≡ Tc/T . The normalization condition eq. (2.14) forces λm, the angle at which the

eigenvalue distribution goes to zero, to satisfy the following cubic equation

− 2

(
λm
π

)3

+ 3

(
λm
π

)2

= γ2 , (A.4)

which physical solution At temperatures above the phase transition, i.e. for 0 < γ < 1, this

equation has a single physical solution inside the range 0 < λm < π. The high-temperature

limit amounts to γ → 0 and then the terms on the left hand side of the cubic equation

must also go to zero, in which case we can drop the higher order term and obtain

λm →
π√
3

Tc
T
. (A.5)

In other words, the distribution becomes δ-like around λ = 0 when T →∞.

The boundary-to-boundary correlator in thermal AdS4 takes a particularly simple form,

K4
AdS(β, θ) =

1

32π2

∞∑
n=−∞

1

coshnβ − cos θ
=

1

16π2
(π − θ)
β sin θ

. (A.6)

Below the phase transition, the large distance two-point function given by eq. (4.7) becomes〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
=

1

16π2
π − θ
β sin θ

(
1 +

2

γ2

)
. (A.7)

The explicit expression for the high-T Fourier moments of the eigenvalue distribution

for d = 3 and n 6= 0 reads

ρ|n| =
6

π2γ2n2

(
1 +

(
λm
π
− 1

)
cosλmn−

sinλmn

πn

)
, (A.8)

which is valid for γ < 1 and where λm is the physical solution of eq. (A.4). Note that by

using this form of the distribution function we limit ourselves to the leading order behavior

in β, independent of the distance regime under consideration.

In the short distance regime, θ � β, we can explicitly compute the subleading contri-

butions using eq. (A.8). The two-point function becomes

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ 1

16π2θ2
+

3

2π5γ2βθ

(
πζ(3) + (λm−π)<Li3(eiλm)−=Li4(eiλm)

)
.

(A.9)
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In the limit of very high temperature, γ � 1, it further simplifies to

〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ 1

16π2θ2
+

1

8π2βθ

(
3 + 2 log

√
3

πγ

)
. (A.10)

In d = 3, the crossover scale is θc ∼ βc � 1. Hence there is a clear distinction between

intermediate and long distances. For the latter, θ � θc, and the correlator reads

16π2
〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ π − θ

β sin θ

1 + 2

∞∑
p=1

ρp


=

π − θ
β sin θ

(
1+

2

γ2
+

12(λm−π)

π3γ2
<Li2(eiλm)− 12

π3γ2
=Li3(eiλm)

)

=
π − θ
β sin θ

(
2
√

3

γ
− 1

)
, (A.11)

where in the last expression the limit of very high temperature, λm ∼ πγ/
√

3, is assumed

and eq. (A.6) has been used.

For the intermediate regime, β � θ � θc, we can perform the sum in eq. (4.12),

leading to 〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ 1

2π2β2
K2

(
cos2

θ

2

)
, (A.12)

where K(x) =
∫ π/2
0 dφ(1 − x sin2 φ)−1/2 is the complete elliptic integral of the first kind.

In the small angle approximation this yields〈
Tr |φ(0)|2 Tr |φ(y)|2

〉
≈ 1

2π2β2
log2

θ

8
. (A.13)

B Polyakov loops

In the adjoint model, the Polyakov loop itself vanishes due to the Zn center symmetry of

the action. As usual, we therefore consider the squared modulus of the loop, defined via

〈
|P|2

〉
=

1

N2

〈
Tr ei

∫ β
0 dtA0 Tr e−i

∫ β
0 dtA0

〉
=

〈∣∣∣∣∫ dλ ρ(λ) eiλ
∣∣∣∣2
〉

=
〈
ρ21
〉
. (B.1)

Below the phase transition, this vanishes to leading order in both the adjoint and the fun-

damental models. However, in the case of the fundamental model, it receives contributions

at order 1/N due to corrections to the saddle point,

P =
√
〈|P|2〉 =

Nf

N
zdS(x) . (B.2)

In the matrix model, on the other hand, no contributions to the Polyakov loop arise from

the saddle point but contributions do arise at order 1/N2 from fluctuations around the

saddle. We obtain them by inserting ρ21 into the path integral eq. (2.6),

P =
1

2N2(1− zdS(x))
. (B.3)
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Above the phase transition, the (square of the) Polyakov loop picks up nonvanishing

contributions in either model. In the vector model, it can be read from eq. (2.28) and

is found to interpolate between 1
2(1−22−d)ζ(d−1) at Tc and 1 for T → ∞. Similarly, in the

adjoint model, P interpolates between 1/2 and 1.
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