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Abstract: Singular graphene metasurfaces, conductivity grat-

ings realized by periodically suppressing the local doping

level of a graphene sheet, have recently been proposed to ef-

ficiently harvest THz light and couple it to surface plasmons

over broad absorption bands, achieving remarkably high

field enhancement. However, the large momentum wavevec-

tors thus attained are sensitive to the nonlocal behaviour

of the underlying electron liquid. Here, we extend the the-

ory of singular graphene metasurfaces to account for the

full nonlocal optical response of graphene and discuss the

resulting impact on the plasmon resonance spectrum. Fi-

nally, we propose a simple local analogue model that is

able to reproduce the effect of nonlocality in local-response

calculations by introducing a constant conductivity offset,

which could prove a valuable tool in the modelling of more

complex experimental graphene-based platforms.

1 Introduction

Over the past two decades, singular plasmonic structures,

such as touching metallic wires and spheres, have demon-

strated enticing capabilities for controlling light in the sub-

wavelength regime thanks to their ability to bridge very

different length scales, namely the wavelength of the photon

and that of the electron [1, 2, 3]. Characterized by fea-

tures much smaller than their overall size, these structures

have so far enabled extreme confinement of electromag-

netic fields, with a plethora of far-reaching applications,

including the access to quantum regimes of light–matter

interactions [4, 5, 6]. More recently, extended structures
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featuring singularities have been investigated in the context

of metasurfaces [7, 8], which enable larger scattering cross-

sections and lower losses, as well as unprecedented tunability

and dynamical control of electromagnetic waves [9, 10, 11].

The working principle of singular structures, which has

been recently shown to be intimately linked to the con-

cept of compactification encountered in high-dimensional

field theories [12, 13], may be summarized in the follow-

ing consideration. In a conventional one-dimensional (1D)

periodic scattering problem (Fig. 1), one can identify two

distinct scenarios: hard-boundary scattering, which is often

modelled through boundary conditions, commonly results

in reflection, and the subsequent quantization of scattered

fields into effective Fabry–Pérot modes (Fig. 1a); the op-

posite regime consists of the weak scattering limit, often

modelled with WKB-type approaches, whose main effect is

the phase change of a largely transmitted wave (Fig. 1b).

Singular structures constitute a narrow intermediate regime,

whereby the scattering process is not abrupt enough to gen-

erate significant back-reflection, whilst not being smooth

enough to let the wave be significantly transmitted. As a re-

sult, the wavelength of the excitation becomes increasingly

short as it approaches a so-called singular point. Its group

Fig. 1: (a) The in-plane scattering of an electromagnetic wave

in a periodic system, e.g., a plasmon propagating along a peri-

odically modulated conductive surface is typically dominated by

reflection at hard-boundaries or transmission through soft bound-

aries, leading to discrete Fabry–Pérot modes or Bloch waves,

respectively. (b) At a singular boundary, both transmission and re-

flection channels are virtually inaccessible, and the only available

path for a wave is to shrink its wavelength and concentrate its

energy as it travels towards the singular point.
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velocity is dramatically reduced, such that the wave never

reaches the singularity, and energy is absorbed close to it

in the presence of material loss, and realising remarkable

concentration of electromagnetic energy within nanoscale

volumes. Recently, graphene-based singular metasurfaces

have been proposed as a promising platform for the fo-

cusing of THz plasmons, as well as for their broadband,

tunable plasmonic response to far-field illumination [7]. The

plasmonic response of graphene has recently demonstrated

unprecedented field confinement, concentrating waves which

propagate with free-space wavelengths of tens to hundreds

of microns down to the atomic scale [14, 15, 16, 17]. In

addition, the technological relevance of these THz plasmons

for vibrational sensing [18, 19, 20, 21, 22] and high-speed

wireless communication [23, 24, 25] has attracted enormous

interest in these surface excitations.

However, it has recently been shown that the account

of nonlocal effects—arising from the quantum nonlocal

response of the two-dimensional (2D) electron gas—is of

paramount importance when the plasmon wavelength be-

comes comparable to the electronic Fermi wavelength,

in order to correctly predict their electromagnetic re-

sponse [15, 16]. The nonlocal response of singular metallic

structures featuring three-dimensional electron gases has

been widely studied [26], primarily via the so-called hydro-

dynamic model [27, 28], which accounts for charge screening

at a dielectric–metal interface [29, 30, 31]. Alternative theo-

retical models have also been developed in the past, which

simplify the account of nonlocal effects in complex plas-

monic structures [32, 33, 34, 35]. More recently, nonlocal

effects have attracted renewed interest due to their surpris-

ing role in the reduction of plasmonic losses [16], and, in

particular, due to the sizable impact of quantum mechanical

effects in plasmon-enhanced light–matter interactions [36]

in the nanoscale, as well as for applications to all-optical

signal processing [37].

In these singular metasurfaces, the nonlocal response

of graphene arises from the onset of different types of elec-

tronic transitions within the regions of phase space shown

in Fig 2. Region 1B constitutes the so-called lossless regime

(in the absence of electronic scattering processes). Here,

interband transitions are forbidden due to Pauli blocking,

and the small plasmon momentum—i.e., k ≪ kF , where kF

is the Fermi wavevector—does not allow for any indirect

transitions. Hence, in this regime, the only loss channels

for graphene plasmons arise from electronic scattering pro-

cesses (e.g., with phonons, defects, etc) [38, 17] which are

commonly introduced phenomenologically via the so-called

relaxation-time approximation [20]. Nevertheless, the in-

corporation of quantum nonlocal effects is reflected in the

reactive (imaginary) component of the conductivity for large

Fig. 2: Electronic contributions to the graphene conductivity in

different regions of phase space [20]. Region 1B (k < ω/vF ,

k < 2kF − ω/vF ) of phase space is protected from Landau

damping arising from both interband and intraband transitions.

The lossy (shaded) regions are: 1A (ω/vF < k < 2kF − ω/vF )

and 2A (ω/vF < k < 2kF + ω/vF , k > 2kF − ω), dominated

by Landau damping resulting from intraband transitions, and

2B (2kF − ω/vF < k < ω/vF , ω/vF < 2kF + k) and 3B

(k < ω/vF − 2kF ) dominated by indirect and direct interband

transitions respectively.

plasmon momenta k → ω/vF . In fact, the divergent char-

acter of graphene’s conductivity at the boundary between

region 1B and 1A constitutes a main detrimental effect

for the realization of conductivity singularities in graphene.

Region 1A suffers from the onset of Landau damping, which

arises due to the matching between the phase velocities

of the electrons and of the plasmons. This has the effect

of dramatically enhancing the loss. Similarly, region 2A is

affected by additional intraband channels, which become

accessible once the plasmon momentum k > kF . Finally,

indirect (region 2B) and direct (region 3B) interband tran-

sitions occur once the plasmon energy ℏω > 2EF − ℏvF k

and ℏω > 2EF + ℏvF k respectively.

Due to the extreme values of plasmon momenta to

which a singular structure can couple incident photons

to, a rigorous account of the momentum-dependence of

the optical response of these metasurfaces is pivotal. In

this work, we explore the nonlocal behaviour of plasmons in

singular graphene metasurfaces and show that these systems

are able to probe the strong nonlocal response of 2D electron

gases by coupling far-field radiation to deeply subwavelength

plasmon modes. By means of a nonlocal mode-matching
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Fig. 3: Local (red) and nonlocal (blue) transmittance spectra for plane wave illumination through the graphene metasurface at normal

incidence, obtained with the mode-matching (continuous lines) and finite-element method (dots) for three increasingly singular meta-

surfaces corresponding to ∆ = 1 (a), ∆ = 2 (b) and ∆ = 3 respectively. The nonlocal contribution, which is negligible away from the

singular regime, becomes dominant as the singular limit is approached, opposing the merging of surface plasmon modes.

technique [20], supported by numerical calculations, as well

as a phenomenological local-analogue model, we unravel

the physics underpinning the onset of nonlocality in these

metasurfaces. We believe that our method constitutes a

valuable tool for incorporating nonlocal effects in complex

metasurface setups, and may be employed as an alternative

approach to fully nonlocal conductivity models.

2 Methods

Nonlocal effects in plasmonics manifest themselves when

the plasmon wavelength approaches the typical electronic

wavelength λF in a material. In this regime, the spatial

variation of the electric field E(x) is sufficiently abrupt to

sample the underlying inhomogeneity of the electron gas, so

that the constitutive relation for the surface current density

can be written as

J(x, ω) =

∫

σ(x− x′, ω)Ex(x
′, ω)dx′ (1)

and thus can no longer be approximated assuming a spatial

dependence of the conductivity of the form σ(x− x′, ω) =

σ(ω)δ(x− x′), where δ(x) is the Dirac delta function.

However, when the structuring of a THz metasurface is

performed over scales much larger than the Fermi’s wave-

lenth (L ≫ λF ), a separation of length scales can be as-

sumed. Hence, we can write, under the adiabatic approxi-

mation:

J(x, ω) =

∫

σ(x− x′, ω)ζ(x′)Ex(x
′, ω)dx′ (2)

where ζ(x′) is a dimensionless variable which describes the

spatial modulation of the conductivity of graphene [39, 40],

the latter depending monotonically on the local doping

level of graphene. This has the desirable property of being

actively tunable (e.g., electrostatically, chemically, or opti-

cally). In this work, we assume that a periodic conductivity

modulation is applied, which, for simplicity and definiteness,

is herein assumed to be of the form ζ(x) = 1 + ζ1 cos(gx),

where L = 2π/g is the period of the 1D metasurface and g

the reciprocal lattice vector associated with the same.

Using Bloch’s theorem and expanding the Bloch modes

of the in-plane electric field and the surface current as a

Fourier series, one may write

Ex(x) = eikx
∑

n

En,xe
ingx (3)

and a simple relation between the Fourier amplitudes of the

electric field and the surface current hereby takes the form

Jn,x = σ(k + ng)[En,x +
ζ1
2
(En+1,x + En−1,x)] (4)

which is accurate as long as the reciprocal lattice vector

of the metasurface satisfies g ≪ kF . For concreteness, the

nonlocal conductivity model [20] is described in Appendix A.

3 Results

The main effect of nonlocality in graphene is to oppose the

formation of a singularity by increasing the conductivity

probed by large-momentum Fourier components. In Fig. 3

we plot the transmission spectra under plane wave illumi-

nation at normal incidence (k = 0) for different modulation

strengths ∆ = − log10 (1− ζ1), corresponding to the num-

ber of orders of magnitude by which the conductivity is sup-

pressed at the singular point. We assume an average Fermi

level EF = 0.4 eV, a conductivity grating period L = 5 µm,
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Fig. 4: Band structure for ∆ = 1 (a) and ∆ = 3 (b,c), visualized by plotting the logarithm of the absolute value of the reflection

coefficient. Local (a,b) and nonlocal (c) spectra differ significantly for the singular case only. Moreover, in the singular limit, it can be

seen that modes above each band gap become extremely broad, due to their stronger radiative coupling. In addition, the modes are

effectively degenerate at k = 0, due to the symmetry of the modulation combined with the strongly quasi-static character of graphene

plasmons.

and a mobility µm = 104 cm2/(V s) resulting in an elec-

tron scattering time τ = µmEF /(v2F e) ≈ 0.44 ps, where the

Fermi velocity vF = 9.5× 105 ms−1 [41] is assumed. Our re-

sults are obtained via the nonlocal mode-matching method

outlined above; these have been benchmarked, in the local-

response limit, against finite-element method (FEM) nu-

merical calculations using a commercially available package

(COMSOL Multiphysics). For weak conductivity modula-

tion, i.e., far from the singular limit (Fig. 3a), the local

and nonlocal spectra are effectively equivalent. In this limit,

only momentum states well below the Landau damping

regime k ≈ ω/vF are populated, so that the metasurface

can be accurately described via a local Drude-type conduc-

tivity model σD(ω) = e2

πℏ2

EF

(γ−iω)
, where γ = τ−1. As we

increase the modulation strength to 99.9% of the average

value (Fig. 3b, ∆ = 2) the local and the nonlocal spectra

start deviating, the latter exhibiting a clear blueshift which

is consequence of nonlocality (see, e.g., Ref. [20]), since plas-

mon resonance frequencies ω ∝ σ (see dispersion relation,

Eq. 5). Finally, for ∆ = 3 (Fig. 3), nonlocality becomes a

dominant effect, which effectively saturates the plasmonic

spectrum, opposing any further merging of the plasmon

resonances.

Away from k = 0, additional effects are present, as

shown in Fig. 4, where we plot in log-scale the absolute value

of the reflection coefficient, which has been colour-saturated

in order to allow both propagating and evanescent modes to

be identifiable. In the non-singular regime [Panel (a)], plas-

monic band gaps are clearly visible at k = π/L, whereas no

significant gaps are present at k = 0, due to the quasistatic

character of these excitations, as discussed in Ref. [42].

However, as the singular limit is approached, the band gap

becomes so large that the two resonances become indistin-

guishable due to their finite width, resulting in extremely

flat bands, an effect which survives the onset of nonlocality

[Panel (c)]. In this regime, the overall effect of nonlocality

is not only to oppose the merging of the resonances, but

also to introduce significant additional broadening due to

nonlocal intraband Landau damping.

The account of nonlocality can be somewhat demand-

ing in the modelling of more complex experimental setups.

Consequently, local-analogue models which are able to in-

corporate the effects of nonlocality in a local simulation are

valuable tools for the theoretical modelling of plasmonic

systems. Here we propose a simple local-analogue model

which can accurately reproduce the results of the fully non-

local calculation carried out above. Local-analogue models

were originally proposed for metallic plasmonic systems [32]

in order to capture nonlocal effects under the framework of

the hydrodynamic model of the free-electron gas at the in-

terface between nearly-touching metallic structures. In that

context, the effect of nonlocality is the inward shift of the in-

duced charges, i.e., away from the metallic surface and into

the bulk, thereby effectively widening the gap between the

components of the dimer (e.g., metallic cylinders or spheres).

Consequently, the substitution of a thin metallic layer by an

effective dielectric one was able to accurately reproduce the

optical response of such nearly-touching metallic structures.

Conversely, the type of singular structure described in

this work entails the inverse effect: since the conductivity

is strongly enhanced as k → ω/vF , the effect of nonlocality

is to smear out the singularity by effectively saturating

the local conductivity to a minimum level σs dictated,

qualitatively, by the condition k(σs) ≈ ω/vF , i.e., when

the plasmon wavelength λp → λF , and Landau damping

opposes any further confinement of the plasmonic field.
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The quasi-static dispersion relation of graphene plasmons

is reads [20]:

ε1 + ε2 + i
σ

ε0ω
k = 0, (5)

where σ ≡ σ(k, ω) and σ ≡ σ(ω) = σ(k → 0, ω) in the

nonlocal and local cases, respectively. Herein, we have set

ε1,2 = 1 (for simplicity alone). Moreover, we can then

substitute the wavevector k = βω/vF , where β is a phe-

nomenological factor of order ∼ 1 which quantifies the

fraction of electron momentum to which the plasmon can

couple before saturating (which is exactly one if momentum

saturation occurs exactly at the electron momentum). In

this fashion, we thus obtain the saturation value for the

conductivity, σs = 2iε0vF /β. In Fig. 5, we add a positive

surface conductivity offset

∆σ(ω) = iIm[σs − (1− ζ1)σD(ω)][1− i/(ωτ)] (6)

in a local FEM calculation, where the factor in the first

square bracket is responsible for the smearing of the imagi-

nary part of the surface conductivity, whereas the second

ensures that the loss-tangent Re[σ]/Im[σ] is preserved upon

the conductivity offset.

For β = 1, the agreement between the previous nonlocal

result (Fig. 3c) and the spectrum obtained using the local

analogue model is only qualitative. However, as the figure

plainly shows, by choosing β ≃ 1.29 this simple model is

able to reproduce the entire transmission spectrum with

remarkable accuracy, hereby validating the physical assump-

tions behind our local analogue model, and providing us

with a useful and intuitive method for the incorporation of

nonlocal effects in the future modelling of complex meta-

surfaces based on 2D materials.

4 Conclusions

In this work we have presented a theoretical description of

nonlocal effects in singular graphene metasurfaces. By calcu-

lating the transmission spectra under plane wave illumina-

tion, as well as the plasmon band structure, we have demon-

strated how such conductivity gratings are able to probe

the nonlocal response of graphene. Furthermore, we have

discussed the consequent limitations imposed by nonlocality

to the field confinement and spectral degeneracy induced

by the singularity, which is effectively smeared out by the

increased conductivity probed by large plasmon wavevec-

tors. Finally, we have proposed a simple local-analogue

model which is able to reproduce the effects of nonlocality

by means of an effective surface conductivity offset, which

saturates the plasmon wavevector to the electronic one.

Fig. 5: Local (red), nonlocal (blue line) and local analogue (green

triangles for β = 1.29 and grey dashed line for β = 1) trans-

mittance spectra of the singular (∆ = 3) graphene conductivity

grating. The inset shows how a local analogue metasurface can

be obtained by saturating the conductivity of graphene near the

value which causes the local plasmon dispersion to cross the

electron dispersion ω = vF k, a regime dominated by Landau

damping.

To conclude, singular graphene metasurfaces constitute a

platform for probing nonlocality in graphene with far field

measurements. Our results form the the basis for a quan-

titative account of nonlocality in these metasurfaces, and

should be valuable for guiding future experimental efforts.
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A Nonlocal conductivity model

The nonlocal conductivity of graphene can be written in

terms of graphene’s 2D polarizability as [20]

σ(k, ω) = ie2
ω

k2
Pγ(k, ω) (7)

where Pγ(k, ω) is the 2D density-density response function

(or 2D polarizability) in the relaxation-time approximation

(which incorporates a finite plasmon lifetime whilst preserv-

ing electron number density [43, 20]). The 2D polarizability

in the relaxation-time approximation is given by [43, 20]

Pγ(k, ω) =
(1 + iγ/ω)P (k, ω + iγ)

1 + iγ/ω · P (k, ω + iγ)/P (k, 0)
(8)

where P (k, ω) denotes the zero-temperature density-density

response function in the four regions outlined in Fig. 2 may

be written as:

Re[P ] =
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where k̄ = k/kF , ω̄ = ℏω/EF , the constant F = 2kF

πℏvF
and

the auxiliary functions:

Ch(z) = z
√

z2 − 1− cosh−1 (z),

C(z) = z
√

1− z2 − cos−1 (z).
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