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Abstract

We summarize the utility of precise cosmic microwave background (CMB) polarization measurements

as probes of the physics of inflation. We focus on the prospects for using CMB measurements

to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode

polarization would demonstrate that inflation occurred at a very high energy scale, and that the

inflaton traversed a super-Planckian distance in field space. We explain how such a detection or

constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements

can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the

possibility of a significant isocurvature contribution. Each such limit provides crucial information

on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting

forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.
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42 California Institute of Technology, Pasadena, CA 91125, USA
43 Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720, USA

2



44 CITA, University of Toronto, Toronto, Ontario, M5S 3H8, Canada
45 ICREA & Institute of Space Sciences (CSIC-IEEC), Campus UAB, Bellaterra, Spain

46 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
47 Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 2EG, UK

3



Contents

1 Precision Cosmology: ‘From What to Why’ 6

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The Next Decade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Cosmological Observables: An Overview 10

2.1 The Concordance Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The Inflationary Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Inflationary Cosmology 14

3.1 Inflation as a Solution to the Big Bang Puzzles . . . . . . . . . . . . . . . . . . . . . 14

3.2 The Physics of Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Cosmological Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 SVT Decomposition in Fourier Space . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 Scalar (Density) Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3 Vector (Vorticity) Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.4 Tensor (Gravitational Wave) Perturbations . . . . . . . . . . . . . . . . . . . 20

3.4 Quantum Fluctuations as the Origin of Structure . . . . . . . . . . . . . . . . . . . . 21

3.5 CMB Polarization: A Unique Probe of the Early Universe . . . . . . . . . . . . . . . 23

3.6 Current Observational Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Alternatives to Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Probing Fundamental Physics

with Primordial Tensors 31

4.1 Clues about High-Energy Physics from the CMB . . . . . . . . . . . . . . . . . . . . 32

4.2 Sensitivity to Symmetries and to Fundamental Physics . . . . . . . . . . . . . . . . . 33

4.3 Tests of String-Theoretic Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Beyond the B-mode Diagnostic 37

5.1 Models of Inflation and their Phenomenology . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Single-Field Slow-Roll Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Beyond Single-Field Slow-Roll . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Deviations from Scale-Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Non-Gaussianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Isocurvature Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Defects, Curvature and Anisotropy 50

6.1 Topological Defects and Cosmic Strings . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Spatial Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Large-Scale Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4



7 Testing Inflation with CMBPol 56

7.1 Fisher Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.2 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.3 Non-Gaussianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.4 Isocurvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.1.5 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Summary and Conclusions 62

A Models of Inflation 66

A.1 Single-Field Slow-Roll Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.1.1 Large-Field Slow-Roll Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1.2 Small-Field Slow-Roll Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1.3 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 General Single-Field Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.3 Inflation with Multiple Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.4 Inflation and Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.5 Inflation in String Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B Alternatives to Inflation 78

B.1 Ekpyrotic/Cyclic Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.2 String Gas Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.3 Pre-Big Bang Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C Fisher Methodology 81

C.1 Likelihood Function and Parameter Errors . . . . . . . . . . . . . . . . . . . . . . . . 81

C.2 Ideal Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.3 Realistic Satellite Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.4 Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D List of Acronyms 88

5



1 Precision Cosmology: ‘From What to Why’

1.1 Introduction

Striking advances in observational cosmology over the past two decades have provided us with

a consistent account of the form and composition of the universe. Now that key cosmological

parameters have been determined to within a few percent, we anticipate a generation of experiments

that move beyond adding precision to measurements of what the universe is made of, but instead

help us learn why the universe has the form we observe. In particular, during the coming decade,

observational cosmology will probe the detailed dynamics of the universe in the earliest instants after

the Big Bang, and start to yield clues about the physical laws that governed that epoch. Future

experiments will plausibly reveal the dynamics responsible both for the large-scale homogeneity and

flatness of the universe, and for the primordial seeds of small-scale inhomogeneities, including our

own galaxy.

The leading theoretical paradigm for the initial moments of the Big Bang is inflation [1–6], a

period of rapid accelerated expansion. Inflation sets the initial conditions for conventional Big Bang

cosmology by driving the universe towards a homogeneous and spatially flat configuration, which ac-

curately describes the average state of the universe. At the same time, quantum fluctuations in both

matter fields and spacetime produce minute inhomogeneities [7–12]. The seeds that grow into the

galaxies, clusters of galaxies and the temperature anisotropies in the cosmic microwave background

(CMB) are thus planted during the first moments of the universe’s existence. By measuring the

anisotropies in the microwave background and the large scale distribution of galaxies in the sky, we

can infer the spectrum of the primordial perturbations laid down during inflation, and thus probe

the underlying physics of this era. Any successful inflationary model will deliver a universe that

is, on average, spatially flat and homogeneous – and one homogeneous universe looks very much

like another. It is the departures from homogeneity that differ between inflationary models, and

measurements of these inhomogeneities will drive progress in understanding the inflationary epoch.

All of the generic predictions of inflation are consistent with current observations. In particular,

the universe is found to be spatially flat to at least the 1% level, and the primordial perturbations are

approximately scale-free, adiabatic, and Gaussian. Furthermore, the observed correlation between

temperature anisotropies and the E-mode polarization of the CMB, 〈TE〉, makes it clear that the

initial anisotropies were laid down before recombination, rather than by an active source such as

cosmic string wakes in the post-recombination universe (see [13, 14]).

Over the next decade, the inflationary era – perhaps 10−30 seconds after the Big Bang – will

thus join nucleosynthesis (3 minutes) and recombination (380,000 years) as windows into the pri-

mordial universe that can be explored via present-day observations. However, while the workings of

recombination and nucleosynthesis depend on the well-tested details of atomic and nuclear physics

respectively, the situation with inflation is very different. Not only do we lack a unique and detailed

model of inflation, but the one thing of which we can be certain is that any inflationary era is driven

by physics that we do not currently understand. Up to the electroweak scale, high-energy physics is

well described by the familiar Standard Model (SM), and this – in combination with general relativ-

ity – does not contain the necessary components for an inflationary epoch in the early universe. Thus

the new physics responsible for inflation presumably lies at energies at which the Standard Model is

incomplete, namely the TeV scale and beyond. Particle interactions at TeV energies will be studied

6



at the forthcoming Large Hadron Collider (LHC), but the TeV scale is actually a weak lower bound

on the inflationary energy. Indeed, the physical processes that underlie inflation could reach the

scale of Grand Unified Theories (GUTs), or ∼ 1015 GeV – an energy scale around one trillion times

greater than that which is studied at the LHC. Our ability to see through the inflationary window

will turn the early universe into a laboratory for ultra-high energy physics at energies entirely inac-

cessible to conventional terrestrial experimentation. Some of the boldest and most profound ideas

in particle physics come into play at these scales, so an understanding of inflation may bring with it

a revolution in our conceptions of spacetime, particles and the interactions between them.

It is worthwhile to reflect upon the progress that has been made in observational cosmology. Less

than one hundred years ago, the “great debate” in cosmology asked whether the Milky Way was the

dominant object in the universe, or if the so-called nebulae were objects similar in size to our own

galaxy. This dispute was settled in the mid-1920s, when it was realized that our own galaxy was one

of many, giving humankind its first glimpse of the true scale and structure of the universe. Shortly

thereafter, Hubble’s discovery of the redshift-distance relationship suggested that the universe was

expanding, while the advent of general relativity provided an intellectual framework within which

one could understand a dynamical spacetime. The discovery of the CMB led to the primacy of the

Big Bang paradigm in the 1960s, and established that the form of our universe changes dramatically

with time, even though it is uniform on large spatial scales. It is commonplace to refer to the

present time as the “golden age of cosmology”, drawing an implicit analogy with the golden age of

exploration, during which the basic outline of the continents was mapped out. In cosmology, we

now know the overall properties of our universe, and one could argue that the golden age is similarly

coming to an end. However, after the Earth was mapped it became possible to conceive of and test

ideas such as plate tectonics. This paradigm not only offered an explanation for the observed map of

the Earth, but caused us to see that map as a single frame in a larger dynamical history, converting it

into a probe of the otherwise hidden mechanisms that operate at the center of our planet. Likewise,

our study of cosmology is at the brink of a similar transition: we are close to performing meaningful

tests of rival theories that seek to explain the form of the universe which we have already observed.

1.2 The Next Decade

In the coming decade, an array of experiments will dramatically improve constraints on the infla-

tionary sector and on other observables of the concordance cosmology (see Section 2). Observations

of the CMB will continue to be vital to our quest to understand the physics of the early universe and

its late-time evolution. Within the next five years, several major CMB experiments can be expected

to release significant results. Due for launch in early 2009, the Planck satellite [15] will carry out an

all-sky survey over a broad range of frequencies. Planck’s measurements of temperature anisotropies

will be cosmic variance limited over an unprecedented range of angular scales and thus dramatically

improve inflationary parameter estimation. At the same time, ground-based experiments such as the

Atacama Cosmology Telescope (ACT), the South Pole Telescope (SPT), and the Arcminute Imager

(AMI) will measure temperature anisotropies on subsets of the sky at very high angular resolution,

exploring secondary anisotropies such as the Sunyaev-Zel’dovich effect with vastly increased accu-

racy. However, these experiments will shed little light on the amplitude of gravitational waves (as

measured by the ratio r of tensor (metric) perturbations to scalar (density) perturbations), a key

inflationary observable.
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Primordial tensor perturbations do make a small contribution to the temperature perturbations,

but they are most sensitively detected via measurements of the polarization of the CMB. As explained

in Section 3, the polarization of the CMB divides naturally into two orthogonal components – a curl-

free E-mode giving polarization vectors that are radial around cold spots and tangential around hot

spots on the sky; and a divergence-free B-mode giving polarization vectors with vorticity around

any point on the sky. The E-mode has been detected at a high level of significance and is necessarily

produced by inflationary models. E-mode polarization is generated by density perturbations at

recombination and is therefore tightly correlated with the temperature anisotropies in the CMB.

The B-mode, in contrast, is sourced only by the differential stretching of spacetime associated

with a background of primordial gravitational waves.1 In the near term the tightest constraints

on the B-mode are likely to come from ground and balloon-based measurements, such as SPIDER,

PolarBEAR, EBEX, SPUD, Clover and BICEP. These missions are expected to significantly improve

the current bound on the tensor-to-scalar ratio r, but are ultimately limited by their sky coverage,

scan strategy, integration time and atmospheric foregrounds that are endemic to non-orbital missions.

Consequently, a polarization-optimized CMB survey is a natural candidate for a future space-based

mission with a start during the coming decade.

Any successful model of inflation must provide a suitable primordial spectrum of scalar (density)

perturbations, in order to account for the observed large-scale structure in our universe. Observations

dictate that these perturbations should have an initial amplitude ∼ 10−5. Since gravitational waves

do not couple strongly to the rest of the universe, there is no analogous observationally-driven esti-

mate of the primordial gravitational wave amplitude. However, many canonical inflationary models

do predict a detectable gravitational background. This is a highly significant result, as the gravita-

tional wave amplitude can take on a vast range of values, only a tiny fraction of which is accessible

to experiment. As we will see in Section 4, the gravitational wave amplitude is strongly correlated

with the energy scale at which inflation occurs, and a direct measurement of this amplitude would

remove the largest single source of uncertainty faced by inflationary model-builders. Finally, while

a non-detection of a primordial tensor background would not invalidate the inflationary paradigm,

all known rivals to inflation predict a vanishingly small amplitude for gravitational waves at CMB

scales, and would thus be falsified by a detection of this signal.

The principal goal of this White Paper is to explore the utility of CMB polarization measurements

as probes of the physics that powered inflation. We particularly focus on the scientific impact of a

detection of, or a strong upper bound on, primordial tensor perturbations. There are two reasons

for this emphasis: tensor modes provide a uniquely powerful probe of physics at extremely high

energies, and constraints on tensors are most readily achieved via a polarization-optimized CMB

experiment.

This White Paper was prepared as part of the CMBPol Mission Concept Study2 and will be

included into a larger document to be submitted to the Decadal survey at the end of 2008. The

companion papers to this report are: Baumann et al. ‘Executive Summary’ [16], Dunkley et al. ‘Fore-

ground Removal’ [17], Fraisse et al. ‘Foreground Science’ [18], Smith et al. ‘Lensing’ [19], and Zal-

1Below we also discuss the relevance of B-modes created by vector modes.
2Here and in the following we use the label ‘CMBPol’ to refer to a future space-based mission focused on

CMB polarization. The precise experimental specifications of CMBPol have not yet been defined, so we will

consider different cases (see Appendix C).
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darriaga et al. ‘Reionization’ [20].

1.3 Outline

The structure of this paper is as follows:

In §2 we give a qualitative overview of the parameters of the concordance cosmology. We then

discuss the prospects for future observational constraints on the inflationary parameter space. In §3
we review basic aspects of inflationary cosmology and its predictions for fundamental cosmological

observables. We describe how primordial fluctuations divide into scalar (density) and tensor (gravi-

tational wave) modes and discuss the observational signatures that these imprint in the polarization

of the cosmic microwave background radiation. In §4 we explain why CMB polarization provides

a spectacular opportunity to test the high-energy physics of the inflationary era. We argue that a

realistic future satellite experiment has the potential to reach a critical limit for probing the pri-

mordial gravitational wave amplitude. In §5 we show how measurements of the scale-dependence,

non-Gaussianity and the isocurvature contribution of the scalar spectrum can reveal much about

the detailed mechanism underlying inflation. In §6 we discuss how the physics before (curvature,

anisotropy) and after (defects) inflation may leave distinctive signatures in the CMB polarization.

In §7 we forecast the experimental sensitivities expected for various realizations of future satellite

missions. We take foreground uncertainties into careful consideration. Finally, in §8 we summarize

our results and conclude with an assessment of the prospects to test the physics of inflation with

observations of CMB polarization.

In a number of appendices we collect technical details: in Appendix A we survey the different

models of inflation proposed in the literature. Special attention is paid to the classification into

small-field and large-field models. We also present models of inflation that involve more than one

field and/or non-trivial kinetic terms. In Appendix B we discuss the theoretical status of the leading

alternatives to inflation. In Appendix C we present the methodology of the Fisher analysis of §7. In

Appendix D we collect acronyms that appear in this report.

Throughout this paper we use natural units c = ~ ≡ 1 and the reduced Planck mass Mpl ≡
(8πG)−1/2. The metric signature is (−,+,+,+).
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2 Cosmological Observables: An Overview

2.1 The Concordance Cosmology

It is now conventional to speak of a “concordance cosmology”, the minimal set of parameters whose

measured values characterize the observed universe. These variables are summarized in Table 1,

along with their possible physical origin and current best-fit values [14]. Our ability to construct

and quantify this concordance cosmology marks a profound milestone in humankind’s developing

understanding of the universe. It is remarkable that all current cosmological data sets are consistent

with a simple six-parameter model: {Ωb,ΩCDM, h, τ} describe the homogeneous background3, while

{As, ns} characterize the primordial density fluctuations.

Label Definition Physical Origin Value

Ωb Baryon Fraction Baryogenesis 0.0456 ± 0.0015

ΩCDM Dark Matter Fraction TeV-Scale Physics (?) 0.228 ± 0.013

ΩΛ Cosmological Constant Unknown 0.726 ± 0.015

τ Optical Depth First Stars 0.084 ± 0.016

h Hubble Parameter Cosmological Epoch 0.705 ± 0.013

As Scalar Amplitude Inflation (2.445 ± 0.096) × 10−9

ns Scalar Index Inflation 0.960 ± 0.013

Table 1: The parameters of the current concordance cosmology are summarized. We assume a flat

universe, i.e. Ωb + ΩCDM + ΩΛ ≡ 1; if not, we must include a curvature contribution Ωk.

Likewise, the conventional cosmology includes the microwave background and the neutrino

sector. Both these quantities contribute to Ωtotal, but at a (present-day) level well below

Ωb, the smallest of the three components listed above. The number and energy density of

photons is fixed by the observed black body temperature of the microwave background.

The neutrino sector is taken to consist of three massless species, consistent with the

number of Standard Model families [21], with a number density fixed by assuming the

universe was thermalized at scales above 1 MeV. The parameter h describes the expansion

rate of the universe today, H0 = 100h km s−1 Mpc−1. “Spectrum” refers to the primordial

scalar or density perturbations, parameterized by As(k/k⋆)
ns−1, where k⋆ = 0.002 Mpc−1

is a specified but otherwise irrelevant pivot scale.

Our understanding of the structure and evolution of the universe rests upon well-tested physical

principles, including the general-relativistic description of the expanding universe, the quantum

mechanical laws that govern the recombination era, and the Boltzmann equation which allows us

to track the populations of each species. However, most of the parameters in the concordance

model contain information on areas of physical law about which we have no detailed understanding.

The relative fractions of baryons, dark matter and dark energy in the universe are all governed by

3The six-parameter concordance model assumes a spatially flat universe, such that the dark energy density

is given by ΩΛ = 1 − Ωb − ΩCDM.
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Label Definition Physical Origin

Ωk Curvature Initial Conditions

Σmν Neutrino Mass Beyond-SM Physics

w Dark Energy Equation of State Unknown

Nν Neutrino-like Species Beyond-SM Physics

YHe Helium Fraction Nucleosynthesis

αs Scalar “Running” Inflation

At Tensor Amplitude Inflation

nt Tensor Index Inflation

fNL Non-Gaussianity Inflation (?)

S Isocurvature Inflation

Gµ Topological Defects Phase Transition

Table 2: Parameters in possible future concordance cosmologies are summarized. At present, these

numbers are all either consistent with zero (or −1 in the case of w), or are fixed indepen-

dently of a fit to the global cosmological dataset, in the case of the helium fraction and the

number of neutrino species. The tensor or gravitational wave spectrum is conventionally

taken to be of the form At(k/k⋆)
nt . One could extend the parameterization of the dark

energy to include a non-trivial equation of state (w′), while the parameterization of the

scalar spectrum could incorporate more general scale-dependence, such as “features” in

the spectrum. Likewise, fNL is a placeholder for measurements of generic non-Gaussianity

(see §5.3) and the parameter S quantifies the amplitude of an isocurvature contribution

to the scalar spectrum (see §5.4).

fundamental physics processes that lie outside the current Standard Model of particle physics, and

may extend up to the TeV, GUT or even Planck scales.

The set of variables required by the concordance cosmology is not fixed, but is dictated by the

quality of the available data and our ignorance of fundamental physical parameters and interactions.4

As measurements of the universe improve, parameters will certainly be added to Table 1.5 Several

further parameters may be measured to have non-null values in the future, and would therefore

be added to the concordance model; the leading contenders are summarized in Table 2. Looking

at Table 2 we see that many of the currently unmeasured parameters relate to the physics of the

inflationary era. Any improvement in the upper bounds on these parameters places tighter con-

straints on the overall inflationary parameter space, while a direct detection of any one of them will

immediately rule out a large class of inflationary models.

4A similar list of parameters is given in [22, 23].
5For instance, observations of neutrino oscillations show that the neutrino masses are not equal, and thus

that at least two neutrinos are massive, establishing that Σmν & 0.05 eV [21] while at the time of writing

Σmν < 0.67 eV (95% C.L.) [14]. There is every reason for optimism that cosmology will probe the lower limit

over the next decade, and Σmν will take its place in the concordance cosmology. Lensing of CMB polarization

offers one of the most promising ways of measuring Σmν [24, 25].
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Label Definition Physical Origin Current Status Section

As Scalar Amplitude V, V ′ (2.445 ± 0.096) × 10−9 §3.4

ns Scalar Index V ′, V ′′ 0.960 ± 0.013 §3.4

αs Scalar Running V ′, V ′′, V ′′′ only upper limits §3.4

At Tensor Amplitude V (Energy Scale) only upper limits §3.4

nt Tensor Index V ′ only upper limits §3.4

r Tensor-to-Scalar Ratio V ′ only upper limits §3.4

Ωk Curvature Initial Conditions only upper limits §6.2

fNL Non-Gaussianity Non-Slow-Roll, Multi-Field only upper limits §5.3

S Isocurvature Multi-Field only upper limits §5.4

Gµ Topological Defects End of Inflation only upper limits §6.1

Table 3: The inflationary parameter space, i.e. the set of cosmological observables which are

directly associated with inflation. Under “physical origin” V , V ′, etc. refer to the deriva-

tive(s) of the potential to which this variable is most sensitive. A detailed discussion of the

connection between inflationary physics and the corresponding observable can be found

in the listed subsections.

2.2 The Inflationary Sector

Looking at the current concordance parameter set in Table 1, we see two quantities which are

related to inflation, namely the amplitude (As) and spectral dependence (ns) of the primordial

density perturbations. The conventional formulation used here is based on a simple, empirical

characterization of the power spectrum, and these numbers are predicted by any well-specified model

of inflation (see Section 3). In many inflationary models, the overall scale of the perturbation (As) is

a free parameter, and ns is typically a far stronger tool for discriminating among models. However,

of all the parameters in the current concordance model, the difference between the measured value

of ns and its null value of unity is of relatively low significance (∼ 3σ), making it the least well-

constrained parameter in this set. Moreover, the parameters in Table 2 cannot be distinguished

from their null values with any significant degree of confidence. However, we see that many of these

parameters are directly connected to inflationary physics, and the full set is summarized in Table 3.

The list of possible inflationary parameters that could enter future concordance cosmologies

makes it clear that future advances in observational cosmology have the potential to place very tight

constraints on the physics of the inflationary era. Any specific inflationary model will predict values

for all the parameters in Table 3. In many models, most of these parameters are predicted to be

unobservably small, so a detection of any of the quantities laid out in Table 3 would immediately rule

out vast classes of inflationary models. Conversely, forecasts for the likely bounds on these parameters

in anticipated future experiments make it clear that the possible range of all the parameters in

Table 3 will shrink dramatically over the next decade – typically by at least an order of magnitude

(see Section 7). Collectively, this improvement would rule out almost all inflationary models that

predict non-trivial values for any one of these parameters.

As a consequence of our ability to constrain the parameters in Table 3, during the coming decade

12



we will test theories of the very early universe in ways that would have been previously unimaginable.

By measuring these numbers, we will directly probe the inflationary epoch, and gain a clear view

through a new window into the primordial universe.
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3 Inflationary Cosmology

In this section we give a mostly qualitative introduction to inflationary cosmology. For further

technical details the reader is referred to Ref. [26–30].

In §3.1 we describe the classic Big Bang puzzles and their resolution by a period of accelerated

expansion. In §3.2 we discuss the classical dynamics of inflation via the Friedmann equations. The

inflaton field φ and its potential V (φ) are introduced and reheating is briefly mentioned. We then

present cosmological perturbation theory in §3.3, paying particular attention to the decomposition

of fluctuations into scalar, vector and tensor modes. In §3.4 we explain how quantum mechanical

fluctuations during the inflationary era become macroscopic density fluctuations which leave distinct

imprints in the CMB. This provides a beautiful connection between the physics of the very small and

observations of the very large. In §3.5 we introduce CMB polarization and its decomposition into

E- and B-modes as a powerful probe of early universe physics. In §3.6 we review the best current

constraints on inflationary parameters (see Komatsu et al. [14]). Finally, in §3.7, we comment on

alternatives to inflation.

3.1 Inflation as a Solution to the Big Bang Puzzles

Fundamental to the standard cosmological model is the so-called Big Bang theory, that the universe

began in a very hot and dense state and then cooled by expansion. This picture successfully explains

many observed astro- and particle-physics phenomena from particle relic densities to gauge symmetry

breaking, and most notably the presence of a cosmic microwave background resulting from the

decoupling of electromagnetic radiation from the plasma when protons, helium nuclei and electrons

combined into neutral hydrogen and helium.6 However, the Big Bang model is incomplete in that

there remain puzzles it is incapable of explaining:

i) Relic Problem: The breaking of gauge symmetries at the extremely high energies associated

with the early Big Bang universe leads to the production of many unwanted relics such as

magnetic monopoles and other topological defects. For example, monopoles are expected to

be copiously produced in Grand Unified Theories and should have persisted to the present

day. The absence of monopoles is a puzzle in the context of the standard Big Bang theory

without inflation.

ii) Flatness Problem: Present observations show that the universe is very nearly spatially flat. In

standard Big Bang cosmology a flat universe is an unstable solution, and so any primordial

curvature of space would grow very quickly. To explain the geometric flatness of space today

therefore requires an extreme fine-tuning in a Big Bang cosmology without inflation.

iii) Horizon Problem: Observations of the cosmic microwave background imply the existence of

temperature correlations across distances on the sky that corresponded to super-horizon scales

at the time when the CMB radiation was released. In fact, regions that in the standard Big

Bang theory would be causally connected on the surface of last scattering correspond to only

an angle of order 1◦ on the sky. The CMB is seen to have nearly the same temperature in

6In the following we will refer to this event as ‘decoupling’, ‘recombination’, or ‘last-scattering’.
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all directions on the sky. Yet there is no way to establish thermal equilibrium if these points

were never in causal contact before last scattering.

In addition, inflation solves the homogeneity and isotropy problems, and explains why the total

mass and entropy of the universe are so large [31]. Each of these problems is eliminated by the

assumption that the early universe underwent a brief but intense period of accelerated expansion,

inflating by a factor of at least 1026 within less than 10−34 seconds. In this picture the entire

observable universe (∼ 1026 m) originated from a smooth patch of space smaller than 10−26 m in

diameter (many orders of magnitude smaller than an atomic nucleus).

The way in which such an inflationary phase solves the first two puzzles is immediately intuitive.

Any monopoles existing at early times will be vastly diluted until there exist none in the observable

universe today. Similarly, any primordial geometric curvature would be diluted in the same sense

that inflating a sphere allows one to approximate its surface as flat on scales much smaller than the

radius of the sphere. A flat universe is an attractor solution during inflation.

The mechanism by which inflation solves the horizon problem is more subtle. Two facts are

fundamental to understanding the horizon problem and its resolution:

i) the physical wavelength of fluctuations is stretched by the expansion of the universe,

ii) the physical horizon (i.e. the spacetime region in which one point could affect or have been

affected by other points) is time-dependent.

In standard Big Bang cosmology (without inflation) the physical horizon grows faster than the

physical wavelength of perturbations. This implies that the largest observed scales today were outside

of the horizon at early times. Quantitatively, according to the standard Big Bang theory, the CMB at

decoupling should have consisted of about 104 causally disconnected regions. However, the observed

near-homogeneity of the CMB tells us that the universe was quasi-homogeneous at the time of last

scattering. In the standard Big Bang theory this uniformity of the CMB has no explanation and

must be assumed as an initial condition.

During inflation the universe expands exponentially and physical wavelengths grow faster than

the horizon. Fluctuations are hence stretched outside of the horizon during inflation and re-enter

the horizon in the late universe. Scales that are outside of the horizon at CMB decoupling were

in fact inside the horizon before inflation. The region of space corresponding to the observable

universe therefore was in causal contact before inflation and the uniformity of the CMB is given a

causal explanation. A brief period of acceleration therefore results in the ability to correlate physical

phenomena, including the temperature of the CMB, over apparently impossible distances.

3.2 The Physics of Inflation

What drives the accelerated expansion of the early universe? Consulting the Friedmann equations

governing the scale factor a(t)

H2 =

(

ȧ

a

)2

=
1

3M2
pl

ρ , (1)

Ḣ +H2 =
ä

a
= − 1

6M2
pl

(ρ+ 3p) (2)
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of a spatially flat universe with Friedmann-Robertson-Walker (FRW) metric7

ds2 = −dt2 + a(t)2dx2 (3)

we see that inflation requires a source of negative pressure p and an energy density ρ which dilutes

very slowly8, while allowing for an exit into the standard Big Bang cosmology at later times. Such

a source of stress-energy can be modeled by the potential energy V (φ) of a scalar field φ, together

with a mechanism which maintains a near-constant value of V (φ) during the inflationary period.

That is, the scalar field φ(t,x) (the ‘inflaton’) is an order parameter used to describe the change in

energy density during inflation. There is a wide array of mechanisms for obtaining near-constant

V (φ) during inflation. Two basic approaches include (i) postulating a nearly flat potential V (φ),

or (ii) postulating an effective action for φ which contains strong self-interactions which slow the

field’s evolution down a steep potential. All single-field mechanisms for inflation can be captured by

an effective field theory for single-field inflation [32]; different mechanisms and models with diverse

theoretical motivations arise as limits of this basic structure.

reheating

Figure 1: Examples of Inflaton Potentials. Acceleration occurs when the potential energy of the

field V dominates over its kinetic energy 1
2 φ̇

2. Inflation ends at φend when the slow-roll

conditions are violated, ǫ → 1. CMB fluctuations are created by quantum fluctuations

δφ about 60 e-folds before the end of inflation. At reheating, the energy density of the

inflaton is converted into radiation.

Left: A typical small-field potential. Right: A typical large-field potential.

One simple limit is known as single-field slow-roll inflation, for which an effective Lagrangian

Leff(φ) = f [(∂φ)2]−V (φ) is postulated.9 We consider a time-dependent homogeneous and isotropic

background spacetime as in Eqn. (3). The expansion rate is characterized by the Hubble parameter

7For simplicity, we anticipate the inflationary solution of the flatness problem and assume that the spatial

geometry is flat. The generalization to curved space is straightforward.
8Note that the two Friedmann equations can be combined into the continuity equation ρ̇ = 3H(ρ+p). For

p ≈ −ρ, one therefore finds ρ̇ ≈ const. and ä > 0.
9For pedagogical reasons, we restrict the discussion in the remainder of this section to single-field slow-roll

inflation with canonical kinetic term f [(∂φ)2] = 1

2
(∂φ)2. In Section 5 and Appendix A we generalize our

treatment to single-field inflation with non-canonical kinetic terms and inflationary models with more than

one field.
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H ≡ ∂t ln a. This system will yield the following equations of motion for the homogeneous modes

φ(t) and a(t),

H2 =
1

3M2
pl

(

1

2
φ̇2 + V (φ)

)

, (4)

ä

a
= − 1

3M2
pl

(

φ̇2 − V (φ)
)

, (5)

and

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (6)

The spacetime experiences accelerated expansion, ä > 0, if and only if the potential energy of

the inflaton dominates over its kinetic energy, V ≫ φ̇2. This condition is sustained if |φ̈| ≪ |V ′|.
These two conditions for prolonged inflation are summarized by restrictions of the form of the

inflaton potential V (φ) and its derivatives. Quantitatively, inflation requires smallness of the slow-

roll parameters

ǫ ≡ − Ḣ

H2
=
M2

pl

2

φ̇2

H2
≈
M2

pl

2

(

V ′

V

)2

, |η| ≈M2
pl

∣

∣

∣

∣

V ′′

V

∣

∣

∣

∣

. (7)

Once these constraints are satisfied, the inflationary process (and its termination) happens gener-

ically for a wide class of models. The slow evolution of the inflaton then produces an exponential

increase in the geometric size of the universe,

a(t) ≈ a(0)eHt , H ≈ const . (8)

For inflation to successfully address the Big Bang problems, one must simply ensure that the in-

flationary process produces a sufficient number of these ‘e-folds’ of accelerated expansion Ne ≡
ln(a(tfinal)/a(tinitial)). A typical lower bound on the required number of e-folds is Ne & ln 1026 ∼ 55

[26–28].10 Our discussion has so far addressed only the classical and homogeneous evolution of the

inflating system. Small spatial perturbations in the inflaton φ and the metric gµν are inevitable

due to quantum mechanics; inflation stretches these fluctuations to astronomical scales, eventually

producing large-scale structures including galaxies such as the one we inhabit. Thus inflation is

responsible not just for the universe that we observe, but also for the fact we are here to observe it.

After a sufficient number of e-folds have been achieved, the process must terminate. The inflaton

descends towards the minimum of the potential and ‘reheats’ the universe, with φ-particles decaying

into radiation, and so initiating the hot Big Bang.

This basic inflation model can be generalized in a variety of ways: several fields collectively

producing the inflaton, non-standard kinetic terms, scalars replaced by axion-like fields, etc. Each of

these models still produces an inflationary period, with the details determining various observables

such as cosmological perturbations, as will be described in further detail below.

There also remain questions of initial conditions and of whether inflation continues eternally.

This latter point may seem paradoxical; if the inflaton completes its evolution as we have just

assumed, how could inflation continue? The answer lies in the fact that inflation produces other

10This estimate of the required number of e-folds assumes GUT scale reheating. For lower reheating

temperatures, fewer e-folds can be sufficient.
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inflating regions of space; there is then the possibility that although inflation may terminate at any

single region of space, on a global scale it continues to proceed eternally [33, 34]. These important

questions can be answered only by determining the particular inflation model which Nature utilizes,

which is in turn determined by observations, as we will see in the next section.

3.3 Cosmological Observables

In this section we give a general summary of cosmological perturbation theory [35–37]. In Section

3.4 we then describe how these fluctuations arise as quantum fluctuations during the inflationary

epoch.

3.3.1 SVT Decomposition in Fourier Space

During inflation we define perturbations around the homogeneous background solutions for the

inflaton φ̄(t) and the metric ḡµν(t) as in (3),

φ(t,x) = φ̄(t) + δφ(t,x) , gµν(t,x) = ḡµν(t) + δgµν(t,x) (9)

where

ds2 = gµν dxµdxν

= −(1 + 2Φ)dt2 + 2aBidx
idt+ a2[(1 − 2Ψ)δij + Eij ]dx

idxj . (10)

The spatially flat background spacetime possesses a great deal of symmetry. These symmetries allow

a decomposition of the metric and the stress-energy perturbations associated with φ into independent

scalar (S), vector (V) and tensor (T) components. This SVT decomposition is most easily described

in Fourier space

Qk(t) =

∫

d3x Q(t,x) eik·x , Q ≡ δφ, δgµν . (11)

We note that translation invariance of the linear equations of motion for perturbations means that

the different Fourier modes do not interact. Next we consider rotations around a single Fourier

wavevector k. A perturbation is said to have helicity m if its amplitude is multiplied by eimψ under

rotation of the coordinate system around the wavevector by an angle ψ

Qk → eimψQk . (12)

Scalar, vector and tensor perturbations have helicity 0, ±1 and ±2, respectively. The importance of

the SVT decomposition is that the perturbations of each type evolve independently (at the linear

level) and can therefore be treated separately. In real space, the SVT decomposition of the metric

perturbations (10) is [38]11

Bi ≡ ∂iB − Si , where ∂iSi = 0 , (13)

and

Eij ≡ 2∂ijE + 2∂(iFj) + hij , where ∂iFi = 0 , hii = ∂ihij = 0 . (14)

11SVT decomposition in real space corresponds to the distinctive transformation properties of scalars,

vectors and tensors on spatial hypersurfaces.
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Finally, it is important to note that the perturbations δφ and δgµν are gauge-dependent, i.e. they

change under coordinate/gauge transformations. Physical questions therefore have to be studied in

a fixed gauge or in terms of gauge-invariant quantities. An important gauge-invariant quantity is

the curvature perturbation on uniform-density hypersurfaces [11]

−ζ ≡ Ψ +
H

ρ̇
δρ , (15)

where ρ is the total energy density of the universe.

3.3.2 Scalar (Density) Perturbations

In a gauge where the energy density associated with the inflaton field is unperturbed (i.e. δρφ = 0)

all scalar degrees of freedom can be expressed by a metric perturbation ζ(t,x)12

gij = a2(t)[1 + 2ζ]δij . (16)

Geometrically, ζ measures the spatial curvature of constant-density hypersurfaces, R(3) = −4∇2ζ/a2.

An important property of ζ is that it remains constant outside the horizon.13 In a gauge defined

by spatially flat hypersurfaces, ζ is the dimensionless density perturbation 1
3δρ/(ρ + p). Taking

into account appropriate transfer functions to describe the sub-horizon evolution of the fluctuations,

CMB and large-scale structure (LSS) observations can therefore be related to the primordial value

of ζ. A crucial statistical measure of the primordial scalar fluctuations is the power spectrum of ζ14

〈ζkζk′〉 = (2π)3 δ(k + k′)
2π2

k3
Ps(k) . (17)

The scale-dependence of the power spectrum is defined by the scalar spectral index (or tilt)

ns − 1 ≡ d lnPs
d ln k

. (18)

Here, scale-invariance corresponds to the value ns = 1. We may also define the running of the

spectral index by

αs ≡
dns
d ln k

. (19)

The power spectrum is often approximated by a power law form

Ps(k) = As(k⋆)

(

k

k⋆

)ns(k⋆)−1+ 1
2
αs(k⋆) ln(k/k⋆)

, (20)

where k⋆ is the pivot scale.

If ζ is Gaussian then the power spectrum contains all the statistical information. Primordial non-

Gaussianity is encoded in higher-order correlation functions of ζ (see §5.3). In single-field slow-roll

inflation the non-Gaussianity is predicted to be small [39, 40], but non-Gaussianity can be significant

in multi-field models or in single-field models with non-trivial kinetic terms and/or violation of the

slow-roll conditions.

12In addition to the perturbation to the spatial part of the metric there are fluctuations in gµ0. These are

related to ζ by Einstein’s equations.
13This statement is only true for adiabatic perturbations. Non-adiabatic fluctuations can arise in multi-field

models of inflation (see §5 and Appendix A). In that case, ζ evolves on super-horizon scales.
14The normalization of the dimensionless power spectrum Ps(k) is chosen such that the variance of ζ is

〈ζζ〉 =
∫

∞

0
Ps(k) d ln k.
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3.3.3 Vector (Vorticity) Perturbations

The vector perturbations Si and Fi in equations (13) and (14) are distinguished from the scalar

perturbations B, Ψ and E as they are divergence-free, i.e. ∂iSi = ∂iFi = 0. One may show

that vector perturbations on large scales are redshifted away by Hubble expansion (unless they are

driven by anisotropic stress). In particular, vector perturbations are subdominant at the time of

recombination. Since CMB polarization is generated at last scattering the polarization signal is

dominated by scalar and tensor perturbations (§3.5). Most of this section therefore focuses on scalar

and tensor perturbations. However, vector perturbations can be sourced by cosmic strings which

are discussed in §6.1.

3.3.4 Tensor (Gravitational Wave) Perturbations

Tensor perturbations are uniquely described by a gauge-invariant metric perturbation hij

gij = a2(t)[δij + hij ] , ∂jhij = hii = 0 . (21)

Physically, hij corresponds to gravitational wave fluctuations. The power spectrum for the two

polarization modes of hij ≡ h+e+ij + h×e×ij , h ≡ h+, h×, is defined as

〈hkhk′〉 = (2π)3 δ(k + k′)
2π2

k3
Pt(k) (22)

and its scale-dependence is defined analogously to (18) but for historical reasons without the −1,

nt ≡
d lnPt
d ln k

, (23)

i.e.

Pt(k) = At(k⋆)

(

k

k⋆

)nt(k⋆)

. (24)

CMB polarization measurements are sensitive to the ratio of tensor power to scalar power

r ≡ Pt
Ps

. (25)

The parameter r will be of fundamental importance for the discussion presented in this paper. As

we argue in Section 4, its value encodes crucial information about the physics of the inflationary era.
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3.4 Quantum Fluctuations as the Origin of Structure

In Section 3.2 we discussed the classical evolution of the inflaton field. Something remarkable

happens when one considers quantum fluctuations of the inflaton: inflation combined with quantum

mechanics provides an elegant mechanism for generating the initial seeds of all structure in the

universe. In other words, quantum fluctuations during inflation are the source of the primordial

power spectra Ps(k) and Pt(k). In this section we sketch the mechanism by which inflation relates

microscopic physics to macroscopic observables.

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit
horizon re-entry

density fluctuation

Figure 2: Creation and evolution of perturbations in the inflationary universe. Fluctuations are

created quantum mechanically on sub-horizon scales. While comoving scales, k−1, re-

main constant the comoving Hubble radius during inflation, (aH)−1, shrinks and the

perturbations exit the horizon. Causal physics cannot act on superhorizon perturbations

and they freeze until horizon re-entry at late times.

Quantum fluctuations in quasi-de Sitter

In spatially-flat gauge, perturbations in ζ are related to perturbations in the inflaton field value15

δφ, cf. Eqn. (15) with Ψ = 0

ζ = −Hδρ

ρ̇
≈ −Hδφ

φ̇
≡ −Hδt , (26)

where in the second equality we have assumed slow-roll. The power spectrum of ζ and the power

spectrum of inflaton fluctuations δφ are therefore related as follows

〈ζkζk′〉 =

(

H

φ̇

)2

〈δφk δφk′〉 . (27)

Finally, in the case of slow-roll inflation, quantum fluctuations of a light scalar field (mφ ≪ H) in

quasi-de Sitter space (H ≈ const.) scale with the Hubble parameter H [42]

〈δφk δφk′〉 = (2π)3 δ(k + k′)
2π2

k3

(

H

2π

)2

. (28)

15Intuitively, the curvature perturbation ζ is related to a spatially varying time-delay δt(x) for the end of

inflation [41]. This time-delay is induced by the inflaton fluctuation δφ.

21



The r.h.s. of (27) is to be evaluated at horizon exit of a given perturbation k = aH (see Figure 2).

Inflationary quantum fluctuations therefore produce the following power spectrum for ζ

Ps(k) =

(

H

φ̇

)2(H

2π

)2
∣

∣

∣

∣

∣

k=aH

. (29)

In addition, quantum fluctuations during inflation excite tensor metric perturbations hij [6]. Their

power spectrum (in general models of inflation) is simply that of a massless field in de Sitter space

Pt(k) =
8

M2
pl

(

H

2π

)2
∣

∣

∣

∣

∣

k=aH

. (30)

Slow-roll predictions

Models of single-field slow-roll inflation makes definite predictions for the primordial scalar and

tensor fluctuation spectra. Under the slow-roll approximation one may relate the predictions for

Ps(k) and Pt(k) to the shape of the inflaton potential V (φ).16 To compute the spectral indices one

uses d ln k ≈ d ln a (H ≈ const.). To first order in the slow-roll parameters ǫ and η one finds [43]

Ps(k) =
1

24π2M4
pl

V

ǫ

∣

∣

∣

∣

∣

k=aH

, ns − 1 = 2η − 6ǫ , (31)

Pt(k) =
2

3π2

V

M4
pl

∣

∣

∣

∣

∣

k=aH

, nt = −2ǫ , r = 16ǫ . (32)

We note that the value of the tensor-to-scalar ratio depends on the time-evolution of the inflaton

field

r = 16ǫ =
8

M2
pl

( φ̇

H

)2
. (33)

We also point out the existence of a slow-roll consistency relation between the tensor-to-scalar ratio

and the tensor tilt which, at lowest order, has the form

r = −8nt . (34)

Measuring the amplitudes of Pt (→ V ) and Ps (→ V ′) and the scale-dependence of the scalar

spectrum ns (→ V ′′) and αs (→ V ′′′) allows a reconstruction of the inflaton potential as a Taylor

expansion around φ⋆ (corresponding to the time when fluctuations on CMB scales exited the horizon)

V (φ) = V |⋆ + V ′∣
∣

⋆
(φ− φ⋆) +

1

2
V ′′∣
∣

⋆
(φ− φ⋆)

2 +
1

3!
V ′′′∣
∣

⋆
(φ− φ⋆)

3 + · · · , (35)

where (. . . )|⋆ = (. . . )|φ=φ⋆
. Furthermore, if one assumes that the primordial perturbations are

produced by an inflationary model with a single slowly rolling scalar field, one can fit directly to the

slow-roll parameters, bypassing the spectral indices entirely, and then reconstruct the form of the

underlying potential [44–51].

16In Appendix A we present the results for general single-field models. In this case, the primordial power

spectra receive contributions from a non-trivial speed of sound cs 6= 1 and its time evolution. The slow-roll

results arise as the limit cs → 1, ċs → 0.
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3.5 CMB Polarization: A Unique Probe of the Early Universe

CMB polarization will soon become one of the most important tools to probe the physics governing

the early universe. Because the anisotropies in the CMB temperature are indeed sourced by pri-

mordial fluctuations, we expect the CMB anisotropies to become polarized via Thomson scattering

(for a pedagogical review see Ref. [52]; for technical details and pioneering work see [53–56]). Since

the polarization of CMB anisotropies is generated only by scattering, the polarization signal tracks

free electrons and hence isolates the recombination (last-scattering) and reionization epochs. The

polarization signal and its cross-correlation with the temperature anisotropies provide an important

consistency check for the standard cosmological paradigm. In addition, measurements of CMB po-

larization help to break degeneracies among some cosmological parameters and hence increase the

precision with which these parameters can be measured. Finally, and most importantly for this re-

port, different sources of the temperature anisotropies (scalar, vector and tensor; see §3.3.1) predict

subtle differences in the polarization patterns. One can therefore use polarization information to

distinguish the different types of primordial perturbations. It is this distinguishing feature of CMB

polarization that we wish to elucidate in this section.

Quadrupole
Anisotropy

Thomson 
Scattering

e–

Linear 
Polarization

COLD

HOT

Figure 3: Thomson scattering of radiation with a quadrupole anisotropy generates linear polariza-

tion [52]. Red colors (thick lines) represent hot radiation, and blue colors (thin lines)

cold radiation.
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Polarization via Thomson scattering

Thomson scattering between electrons and photons produces a simple relationship between tem-

perature anisotropy and polarization. If a free electron ‘sees’ an incident radiation pattern that

is isotropic, then the outgoing radiation remains unpolarized because orthogonal polarization di-

rections cancel out. However, if the incoming radiation field has a quadrupole component, a net

linear polarization is generated via Thomson scattering (see Figure 3). A quadrupole moment in the

radiation field is generated when photons decouple from the electrons and protons just before re-

combination. Hence linear polarization results from the velocities of electrons and protons on scales

smaller than the photon diffusion length scale. Since both the velocity field and the temperature

anisotropies are created by primordial density fluctuations, a component of the polarization should

be correlated with the temperature anisotropy.

Characterization of the radiation field

We digress briefly to give details of the mathematical characterization of CMB temperature

and polarization anisotropies. The anisotropy field is defined in terms of a 2 × 2 intensity tensor

Iij(n̂), where n̂ denotes the direction on the sky. The components of Iij are defined relative to

two orthogonal basis vectors ê1 and ê2 perpendicular to n̂. Linear polarization is then described

by the Stokes parameters Q = 1
4(I11 − I22) and U = 1

2I12, while the temperature anisotropy is

T = 1
4(I11 +I22). The polarization magnitude and angle are P =

√

Q2 + U2 and α = 1
2 tan−1(U/Q).

The quantity T is invariant under a rotation in the plane perpendicular to n̂ and hence may be

expanded in terms of scalar (spin-0) spherical harmonics

T (n̂) =
∑

ℓ,m

aTℓm Yℓm(n̂) . (36)

The quantities Q and U , however, transform under rotation by an angle ψ as a spin-2 field (Q ±
iU)(n̂) → e∓2iψ(Q ± iU)(n̂). The harmonic analysis of Q ± iU therefore requires expansion on the

sphere in terms of tensor (spin-2) spherical harmonics [54, 55, 57]

(Q+ iU)(n̂) =
∑

ℓ,m

a
(±2)
ℓm [±2Yℓm(n̂)] . (37)

Instead of a
(±2)
ℓm it is convenient to introduce the linear combinations [57]

aEℓm ≡ −1

2

(

a
(2)
ℓm + a

(−2)
ℓm

)

, aBℓm ≡ − 1

2i

(

a
(2)
ℓm − a

(−2)
ℓm

)

. (38)

Then one can define two scalar (spin-0) fields instead of the spin-2 quantities Q and U

E(n̂) =
∑

ℓ,m

aEℓm Yℓm(n̂) , B(n̂) =
∑

ℓ,m

aBℓm Yℓm(n̂) . (39)

E- and B-modes

E andB completely specify the linear polarization field. E-polarization is often also characterized

as a curl-free mode with polarization vectors that are radial around cold spots and tangential around

hot spots on the sky. In contrast, B-polarization is divergence-free but has a curl: its polarization

vectors have vorticity around any given point on the sky.17 Fig. 4 gives examples of E- and B-mode

17Evidently the E and B nomenclature reflects the properties familiar from electrostatics, ∇× E = 0 and

∇ · B = 0.
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E < 0 E > 0

B < 0 B > 0

Figure 4: Examples of E-mode and B-mode patterns of polarization. Note that if reflected across

a line going through the center the E-patterns are unchanged, while the positive and

negative B-patterns get interchanged.

patterns. Although E and B are both invariant under rotations, they behave differently under parity

transformations. Note that when reflected about a line going through the center, the E-patterns

remain unchanged, while the B-patterns change sign.

TE correlation and superhorizon fluctuations

The symmetries of temperature and polarization (E- and B-mode) anisotropies allow four types

of correlations: the autocorrelations of temperature fluctuations and of E- and B-modes denoted

by TT , EE, and BB, respectively, as well as the cross-correlation between temperature fluctuations

and E-modes: TE. All other correlations (TB and EB) vanish for symmetry reasons.18

The angular power spectra are defined as rotationally invariant quantities

CXYℓ ≡ 1

2ℓ+ 1

∑

m

〈aXℓmaYℓm〉 , X, Y = T,E,B . (40)

In Fig. 5 we show the latest measurement of the TE cross-correlation [14]. The EE spectrum has

now begun to be measured, but the errors are still large. So far there are only upper limits on the

BB spectrum, but no detection.

The dependence on cosmological parameters of each of these spectra differs, and hence a com-

bined measurement of all of them greatly improves the constraints on cosmological parameters by

giving increased statistical power, removing degeneracies between fitted parameters, and aiding in

discriminating between cosmological models.

18This assumes no parity-violating processes in the early universe. Conversely, non-zero TB and EB

correlations would be a distinctive signature of such physics.
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Figure 5: Power spectrum of the cross-correlation between temperature and E-mode polarization

anisotropies [14]. The anti-correlation for ℓ = 50 − 200 (corresponding to angular sepa-

rations 5◦ > θ > 1◦) is a distinctive signature of adiabatic fluctuations on superhorizon

scales at the epoch of decoupling [13, 58], confirming a fundamental prediction of the

inflationary paradigm.

A smoking gun of inflation

The cosmological significance of the E/B decomposition of CMB polarization was realized by

the authors of Refs. [54, 55], who proved the following remarkable facts:

i) scalar (density) perturbations create only E-modes and no B-modes.

ii) vector (vorticity) perturbations create mainly B-modes.19

iii) tensor (gravitational wave) perturbations create both E-modes and B-modes.

Intuitively these results may be understood as follows: Thomson scattering produces an E-mode

locally at the scattering event. For scalar perturbations the spatial pattern of the polarization field

at the last-scattering surface is curl-free. Since free streaming (to linear order) projects a curl-free

spatial pattern to a curl-free angular distribution, the observed signal from scalar perturbations

remains curl-free and hence pure E-mode. For tensor modes the polarization is also E-mode at last

scattering, but the spatial distribution has non-zero curl. Projection of the polarization pattern from

the last-scattering surface to the point of observation today therefore produces B-mode polarization.

The fact that scalars do not produce B-modes while tensors do is the basis for the often-quoted

19However, vectors decay with the expansion of the universe and are therefore believed to be subdominant

at recombination. We therefore do not consider them here, but note that cosmic strings can produce a B-mode

signal via vector modes (see §6.1).
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Figure 6: E- and B-mode power spectra for a tensor-to-scalar ratio saturating current bounds,

r = 0.3, and for r = 0.01. Shown are also the experimental sensitivities for WMAP,

Planck and two different realizations of CMBPol (EPIC-LC and EPIC-2m). (Figure

adapted from Bock et al. [59].)

statement that detection of B-modes is a smoking gun of tensor modes, and therefore of inflation.20,21

The search for the primordial B-mode signature of inflation is often considered the “holy grail”

of observational cosmology. We discuss the theoretical implications of the B-mode amplitude in

Section 4.

3.6 Current Observational Constraints

Cosmological observations are, for the first time, precise enough to allow detailed tests of theories of

the early universe. In this section, we review the current observational constraints on the primordial

power spectra Ps(k) and Pt(k). We compare these measurements to the predictions from inflation.

Komatsu et al. [14] recently used the WMAP 5-year temperature and polarization data, combined

with the luminosity distance data of Type Ia Supernovae (SN) at z ≤ 1.7 [63] and the angular

diameter distance data of the Baryon Acoustic Oscillations (BAO) at z = 0.2 and 0.35 [64], to put

constraints on the primordial power spectra (see Fig. 7 and Table 4). A power-law parameterization

20To justify this statement requires careful consideration of tensor modes from i) alternatives to inflation

(see §3.7 and Appendix B) and ii) active sources like global phase transitions [60] or cosmic strings. For case i)

the tensor amplitude is typically negligibly small, while for case ii) the signal is typically dominated by vector

modes which produce a distinct spectrum and a characteristic ratio of E-modes and B-modes. To distinguish

the inflationary B-mode spectrum from that produced by cosmic strings will likely require the high-resolution

option of CMBPol (see §6.1 and Ref. [61]).
21It is worth noting that the temperature-E-mode cross correlation function has the opposite sign for scalar

and tensor fluctuations on large scales [62]. This raises the possibility of using measurements of TE correlations

for a direct determination of whether the microwave anisotropies have a significant tensor component.
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Parameter 5-year WMAP WMAP+BAO+SN

ns 0.963+0.014
−0.015 0.960+0.013

−0.013

ns 0.986 ± 0.022 0.970 ± 0.015

r < 0.43 < 0.22

ns 1.031+0.054
−0.055 1.017+0.042

−0.043

αs −0.037 ± 0.028 −0.028+0.020
−0.020

ns 1.087+0.072
−0.073 1.089+0.070

−0.068

r < 0.58 < 0.55

αs −0.050 ± 0.034 −0.058 ± 0.028

Table 4: 5-year WMAP constraints on the primordial power spectra in the power law parameter-

ization [14]. We present results for (ns), (ns, r), (ns, αs) and (ns, r, α) marginalized over

all other parameters of a flat ΛCDM model.

Figure 7: WMAP 5-year constraints on the inflationary parameters ns and r [14]. The WMAP-

only results are shown in blue, while constraints from WMAP plus other cosmological

observations are in red. The third plot assumes that r is negligible.

of the power spectrum is employed in [14]

Ps(k) = As(k⋆)

(

k

k⋆

)ns(k⋆)−1+ 1
2
αs(k⋆) ln(k/k⋆)

. (41)

The amplitude of scalar fluctuations at k⋆ = 0.002 Mpc−1 is found to be

As = (2.445 ± 0.096) × 10−9 . (42)

Assuming no tensors (r ≡ 0) the scale-dependence of the power spectrum is

ns = 0.960 ± 0.013 (r ≡ 0) . (43)

The scale-invariant Harrison-Zel’dovich-Peebles spectrum, ns = 1, is 3.1 standard deviations away

from the mean of the likelihood.
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Including the possibility of a non-zero r into the parameter estimation gives the following upper

bound on r22

r < 0.22 (95% C.L.) . (44)

Komatsu et al. [14] showed that the constraint on r is driven mainly by the temperature data and

the temperature-polarization cross correlation; constraints on B-mode polarization make a negligible

contribution to the current limit on r.23 Since the B-mode limit contributes little to the limit on

r, and most of the information essentially comes from the TT and TE measurements, the current

limit on r is highly degenerate with ns. Better limits on ns therefore correlate strongly with better

limits on r.

Figure 8: How the WMAP temperature and polarization data constrain the tensor-to-scalar ratio

(Figure courtesy of Ref. [14]).

Left: The contours show 68% and 99% C.L. The gray region is derived from the low-ℓ

polarization data (TE, EE, BB at ℓ ≤ 23) only, the red region from the low-ℓ polariza-

tion plus the high-ℓ TE data at ℓ ≤ 450, and the blue region from the low-ℓ polarization,

the high-ℓ TE, and the low-ℓ temperature data at ℓ ≤ 32.

Right: The gray curves show (r, τ) = (10, 0.050), the red curves (r, τ) = (1.2, 0.075), and

the blue curves (r, τ) = (0.2, 0.080).

With non-zero r the marginalized constraint on ns becomes

ns = 0.970 ± 0.015 (r 6= 0). (45)

Including the possibility of a non-zero running (αs) in the parameter estimates leads to a dete-

rioration of the limits on ns and r (see Table 4).

Finally, WMAP detected no evidence for curvature (−0.0179 < Ωk < 0.0081), running (−0.068 <

αs < 0.012), non-Gaussianity (−9 < f local
NL < 111, −151 < f equil.

NL < 253), and isocurvature (Saxion <

0.072, Scurvaton < 0.0041).

22When the constraints on a given parameter depend on the choice of the prior probability for that pa-

rameter, one can immediately conclude that the parameter is poorly constrained by the data. This follows

directly from the statement of Bayes’ Theorem (for discussion on this point as related to r, see e.g. [65]).
23With the E-mode and B-mode polarization data at low multipoles (ℓ ≤ 23) only, they find r < 20 at

95% C.L., two orders of magnitude worse than that from the temperature and temperature-polarization cross

power spectra. A Fisher matrix analysis [66] shows that constraints up to r < 0.1 can be inferred from the

TT and TE spectra. To go below this limit requires information from BB measurements.
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3.7 Alternatives to Inflation

Ultimately, our confidence in inflation relies not only upon observations confirming its predictions,

but also on the absence of compelling alternatives. Specifically, a study of alternatives to inflation

is necessary to have confidence that a detection of r really would be a smoking gun of inflation.

As we have reviewed above, a period of accelerated expansion necessarily causes a given observer’s

comoving horizon to decrease, correlating apparently distant pieces of the universe without recourse

to acausal processes, thereby predicting and explaining the long range TE correlations seen in the

CMB. However, accelerated expansion is not the only mechanism that can shrink an observer’s

comoving horizon: the contracting phase before a Big Crunch performs this task equally well, and

is the basis of the recently much discussed and much debated ekpyrotic scenarios [67, 68] (see

[69] for a review, and [70–77] for a critical discussion of this scenario). While inflation achieves

a shrinking comoving Hubble sphere of radius (aH)−1 by rapid expansion with H ≈ const. and

a(t) exponentially increasing, ekpyrosis instead relies on a phase of slow contraction with a(t) ≈
const. and H−1 decreasing. We discuss the theoretical challenges and phenomenological predictions

of ekpyrotic cosmology in Appendix B. Here we restrict ourselves to highlighting two important

features:

i) for the contracting phase to smoothly connect to the expanding Big Bang evolution (i.e., for

there to be a bounce) requires that

2M2
plḢ = −(ρ+ p) > 0 , (46)

i.e. a violation of the null energy condition (NEC). Although this can be achieved at the level

of effective field theory [78, 79], it remains an important open question whether a consistent UV

completion exists. According to [80] this is a very important issue because the quantization of the

new ekpyrotic theory, prior to the introduction of the UV cutoff and the UV completion, leads to a

catastrophic vacuum instability.

ii) a generic prediction of all models of ekpyrosis is the absence of a significant amplitude of

primordial gravitational waves [67, 81]. This strengthens the case for considering B-modes a smoking

gun of inflation.

Item i) (the physics of the bounce) provides a significant theoretical challenge for Big Crunch-Big

Bang scenarios, item ii) (the absence of primordial gravitational waves) offers a distinctive way to

rule out these alternative models of the early universe on purely observational grounds. For further

details on ekyprotic cosmology and a brief discussion of string gas cosmology and the pre-Big Bang

model we refer the reader to Appendix B.
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4 Probing Fundamental Physics

with Primordial Tensors

Inflation is one of the great developments in theoretical physics, solving the horizon and flatness

problems of the Big Bang model within general relativity and effective field theory, while providing

a quantum-mechanical mechanism for the origin of large-scale structure. Moreover, inflation provides

a unique window on high energy physics. By amplifying early-universe fluctuations to angular scales

accessible to CMB experiments, inflation has the capacity to reveal phenomena that are forever

beyond the reach of terrestrial accelerators. As explained below, a detection of primordial tensor

perturbations would probe physics at an energy that is a staggering twelve orders of magnitude

larger than the center of mass energy at the LHC. Of equal importance is the fact that a detection or

constraint on the tensor-to-scalar ratio r at the level accessible to CMBPol will answer a fundamental

question about the range ∆φ of the scalar field excursion during inflation as compared to the Planck

mass scale Mpl. The quantity ∆φ/Mpl is sensitive to the physics behind inflation, including the

ultraviolet completion of gravity.

To understand the scientific impact of a B-mode detection, we must consider our current under-

standing of the possibilities for the physics driving the inflationary expansion. Given the striking

success of inflation as a phenomenological paradigm for the early universe, it is natural to inquire

about the underlying theoretical structure, and to ask how the scalar fields involved in inflation are

related to other, better-understood areas of physics. A true ‘model of inflation’ is then more than

merely a choice of an effective action for some scalar fields; it is instead an answer to at least some of

the following fundamental questions: Is the inflaton a particle that has already been invoked for some

other reason? Does it couple to the Standard Model particles through gauge interactions? Does

it couple to or involve GUT particles? Is inflationary physics well-approximated by semi-classical

equations of motion, or are quantum effects important? Does the inflaton have a superpartner? Does

inflation involve extra dimensions, or a low-energy limit of string theory? How many light degrees

of freedom are relevant during inflation? Is there only one stage of inflation between the time at

which the largest observable scales crossed the horizon and nucleosynthesis? Most importantly, is

there a mechanism or symmetry principle that is responsible for the long duration of inflation?

Theoretical physics has come a long way in mapping out a range of consistent and well-motivated

inflationary mechanisms and their phenomenological predictions. However, theory alone may not

answer these questions – there is a pressing need for observational data. This data will distinguish

wildly different possibilities for the origin of inflation. Moreover, the absence of manifest connections

between inflation and Standard Model physics, although frustrating from the viewpoint of economy

in Nature, underscores the spectacular discovery potential of an experimental probe of inflation: it

is a very real possibility that inflation involves an entirely new set of fields and interactions going

beyond the Standard Model of particle physics.

In §5 and Appendix A we survey some of the leading models of inflation, indicating their diverse

predictions for CMB observables and the correspondingly wide array of underlying physical mecha-

nisms that can be distinguished by CMBPol. In this section we focus our discussion on a generic and

model-independent connection between inflationary gravitational waves and fundamental questions

about the high energy origin of the inflationary era.
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4.1 Clues about High-Energy Physics from the CMB

Let us suppose that CMBPol detects a primordial B-mode signal, i.e. a B-mode spectrum imprinted

by a stochastic background of gravitational waves, or constrains it to lie below r ∼ 0.01. What would

this imply for our understanding of the high-energy mechanism driving the inflationary expansion?

Two crucial clues would emerge from such a B-mode detection or constraint:

1. Energy scale of inflation: High-scale inflation

The measurement (42) of the amplitude of the scalar power spectrum (31) implies the following

relation between the energy scale of inflation V 1/4 and the tensor-to-scalar ratio on CMB scales

r⋆ ≡ r(φcmb)

V 1/4 = 1.06 × 1016 GeV
( r⋆

0.01

)1/4
. (47)

A detectably large tensor amplitude would convincingly demonstrate that inflation occurred

at a tremendously high energy scale, comparable to that of Grand Unified Theories (GUTs).

It is difficult to overstate the impact of such a result for the high-energy physics community,

which to date has only two indirect clues about physics at this scale: the apparent unification

of gauge couplings, and experimental lower bounds on the proton lifetime.24

2. Super-Planckian field excursion: Large-field inflation

The tensor-to-scalar ratio relates to the evolution of the inflaton field (see Eqn. (33))25

r(N) =
8

M2
pl

(

dφ

dN

)2

. (48)

The total field excursion between the end of inflation and the time when fluctuations were

created on CMB scales is then [83] (see Fig. 1)

∆φ

Mpl
≡
∫ φcmb

φend

dφ

Mpl
=

∫ Ncmb

0

(r

8

)1/2
dN ≡

(r⋆
8

)1/2
Neff , (49)

where

Neff ≡
∫ Ncmb

0

(

r(N)

r⋆

)1/2

dN . (50)

The value of Neff is model-dependent and depends on the precise evolution of the tensor-to-

scalar ratio r(N). For slow-roll models the evolution of r is strongly constrained (and only

24Some of the earliest successful inflation models involved direct connections between the inflaton and GUT

scale particle physics. While more recent models of inflation are usually less tied to our models of particle

interactions, instead invoking a largely modular inflation sector, an observed connection between the scale of

inflation and the scale of coupling-constant unification might prompt theorists to re-visit a possible deeper

connection.
25The following formulae apply only in the special cases of single-field slow-roll inflation and single-field

DBI inflation [82]. The more general result may be found in Appendix A.
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arises at second order in slow-roll), and can be estimated to be Neff ∼ O(30−60) [84]. Taking

the conservative lower bound, one then finds [83, 84]26

∆φ

Mpl
& 1.06 ×

( r⋆
0.01

)1/2
. (51)

A tensor-to-scalar ratio bigger than 0.01 therefore correlates with super-Planckian field varia-

tion between φcmb and φend. As explained in detail below, this would provide definite informa-

tion about certain properties of the ultraviolet completion of quantum field theory and gravity,

and hence yield perhaps the first experimental clue about the nature of quantum gravity. An

upper limit of r < 0.01 would also be very important as it would rule out all large-field models

of inflation.

It is essential to recognize that CMB polarization experiments have almost unique potential to

provide these two clues about physics at the highest scales.27

4.2 Sensitivity to Symmetries and to Fundamental Physics

General relativity is strongly coupled at high energies: in particular, graviton-graviton scattering

becomes ill-defined at the Planck scale, Mpl ≡ (8πG)−1/2 = 2.4 × 1018 GeV. Some other structure

must provide an ultraviolet completion of general relativity and quantum field theory. Inflation is

sensitive to this ultraviolet completion of gravity in several important ways, which is the origin of

much of the difficulty in inflationary model-building, and at the same time is responsible for the

great excitement about experimental probes of inflation among high-energy theorists who study the

physics of the Planck scale. At a phenomenological level, an inflationary model consists of an effective

action for one or more scalar fields, together with couplings of those scalars to known particles. A

more fundamental description of the same system would include a derivation of the inflaton effective

action from some reasonable set of premises that are consistent with our understanding of quantum

field theory and gravity. The central challenge and opportunity is this: any such derivation depends

crucially on the assumptions made about the ultraviolet completion of gravity.

String theory is by far the best-understood example of a theory of quantum gravity, but the

considerations described below are more general and rely only on the firmly-established Wilsonian

approach to effective field theory, which allows systematic incorporation of the effects of high-scale

physics into an effective Lagrangian valid at lower energies. Given the symmetry structure of the

high-energy theory, as well as a choice of cutoff Λ, the corresponding effective Lagrangian below the

cutoff contains a generally infinite series of higher-dimension operators, suppressed by appropriate

powers of Λ, that are allowed by the symmetries of the ultraviolet theory.

26More recently, a Monte Carlo study of single-field slow-roll inflationary models which match recent data

on ns and its first derivative revealed an even stronger bound ∆φ
Mpl

& 10 ×
(

r⋆

0.01

)1/4
[85].

27A futuristic direct-detection gravitational wave experiment like the Big Bang Observer (BBO) might

someday complement the observations of CMB polarization [86–89].
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There are two basic cases relevant to a Wilsonian analysis of inflation, depending on whether or

not there is an approximate shift symmetry in the inflaton direction in scalar field space.

1. No Shift Symmetry

Consider first the case of a scalar field on which only the symmetry φ→ −φ is imposed:

Leff(φ) = −1

2
(∂φ)2 − 1

2
m2φ2 − 1

4
λφ4 −

∞
∑

p=1

[

λpφ
4 + νp(∂φ)2

](g φ

Λ

)2p
+ ... , (52)

where the omitted terms include more derivatives.

An important role in this Wilsonian argument is played by the choice of symmetries one as-

sumes of the ultraviolet (UV) theory. A scalar without the Z2 symmetry would have been

expected to appear with odd powers as well in the expansion (52); the Z2 symmetry selects

instead only even terms. If the UV theory has no other symmetries, then the general ex-

pectation, confirmed in a wide range of analogous physical systems, is that the coefficients

g (which control the couplings of the inflaton to other fields) and λp, νp are of order unity.

Conversely, systems with small couplings have approximate shift symmetries, discussed in the

next item below. Moreover, we expect that the cutoff Λ can be at most Mpl, because gravita-

tional scattering itself becomes strong there and must be made unitary. In the case of string

theory, new physics becomes relevant at a parametrically lower scale, Mstring; in theories with

extra dimensions there is also a threshold with new massive states at MKK (where typically,

in string constructions, MKK < Mstring). The Wilsonian expectation can be confirmed in the

case of string theory through explicit computations of potentials for scalar fields in directions

without a shift symmetry (e.g. [90, 91]). In these directions in field space, one indeed obtains

such an infinite series which de-correlates over distances of order Mstring in field space. This

is to be expected; as one moves a distance Λ in field space, new fields become light while

previously light fields can become heavy, and their exchange corrects the inflaton potential.

One must therefore make assumptions about couplings of the inflaton to modes of mass ≫ Λ

if one wishes to control features of the potential over distances in field space ≫ Λ. Since we

wish to be very conservative in estimating the size of corrections, we will set Λ = Mpl.

Combining these facts, in scalar field directions without a sufficiently constraining symmetry,

the effective Lagrangian evidently receives important corrections from an infinite series of

higher-dimension operators whenever φ ranges over a distance of order Mpl. Scalar fields in

this class can support small-field inflation (∆φ ≪ Mpl), which only requires the accidental

near-cancellation of a small set of operators in the effective potential. Such models of inflation

predict a small tensor signal, though other signatures (such as non-Gaussianity and cosmic

strings) can arise, depending on the precise model.

2. Shift Symmetry

We have stressed that a key assumption in the Wilsonian parametrization of the effective

potential is the symmetry structure of the ultraviolet theory. Consider now a direction φ in

field space with an approximate symmetry under which φ shifts, φ → φ+ const. We assume

that the leading effect breaking this shift symmetry is the inflaton potential itself. As a specific

example, consider the case in which the inflaton potential behaves like a power, V (φ) ∼ µ4−pφp,
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in the relevant range of field space. The inflaton self-interactions encoded in this potential,

along with its coupling to gravity, renormalize the potential. Gravitational interactions are

Planck-suppressed, leading to small corrections. Moreover, for the COBE-normalized power

spectrum discussed above, the dimensionful coupling µ appearing in the potential is quite small

compared to Mpl, leading to small loop corrections from the scalar self-interactions. The shift

symmetry in the ultraviolet theory forbids the presence (with order one coefficients) of the

series of terms (52) that would add structure to the potential on distances ∆φ < Mpl and

would therefore spoil flatness. Such a system can thus robustly support large-field inflation

[4], in a way consistent with the principles of effective field theory.

Because of the super-Planckian range of the field in this case, it is particularly important to

move beyond effective field theory and analyze the symmetry structure of the UV completion of

gravity, so that we can understand whether suitable approximate shift symmetries are present

in well-motivated theories of Planck-scale physics. In the case of string theory, a subset of

scalar fields do enjoy an approximate shift symmetry, and according to recent work described

in Appendix A, they can support large-field inflation with a tensor mode signature accessible

to CMBPol.28 In general, there is preliminary evidence from string theory that both small-

field and large-field models of inflation – with their distinct symmetry structures – are indeed

compatible with a candidate ultraviolet completion of quantum gravity and particle physics.

In summary, we have explained that for the purpose of understanding large-field inflation in an

effective field theory treatment, it is useful to organize scenarios into two broad classes, characterized

by whether or not the inflation direction possesses an approximate shift symmetry. This symmetry

structure is sensitive to the UV completion of gravity, and we remarked that both cases do arise

in string theory, albeit via rather different mechanisms. By determining whether the inflaton field

excursion was super-Planckian or not, CMBPol has the potential to probe important aspects of the

scalar field space and the symmetry structure of quantum gravity, and to distinguish very different

mechanisms for inflation.29 This is an astonishing opportunity.

4.3 Tests of String-Theoretic Mechanisms

To conclude this section, we note that near-future CMB observations and other precision cosmological

experiments will provide unprecedented opportunities to perform empirical tests of string-theoretic

mechanisms for inflation and reheating. These mechanisms – briefly reviewed in Figure 9 and

Appendix A – are motivated by the sensitivity of inflationary effective actions to the ultraviolet

completion of gravity, for which string theory is the leading candidate. So far, rather than directly

producing UV completions of the simplest-looking inflationary potentials, this study has led to

distinctive mechanisms for inflation, with a rich phenomenology. These include variants of hybrid

inflation [94, 95], with the possibility of signatures from relic cosmic strings [96]; variants of chaotic

28Interestingly, the predictions for r and ns in a subset of these models turn out to be distinctive [92],

different from those of the simple integer power laws discussed in the original works on large-field inflation in

quantum field theory.
29From Eqn. (51) we see that r = 0.01 is a critical value for the tensor-to-scalar ratio. The regimes r > 0.01

and r < 0.01 distinguish the two qualitatively different classes of inflationary theories. For related arguments

for r = 0.01 as a significant physics milestone in inflation see [93].
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inflation and natural (axion) inflation [92, 97] (with predictions for r and ns distinct from those

of the corresponding classic models), and new string-inspired mechanisms leading to strong non-

Gaussian signatures [82, 98]. Each of these mechanisms can be realized in effective field theory,

and so can in principle exist outside of string theory; however, as we have explained, the structure

arising from the ultraviolet completion plays a crucial role in each case, and one might argue that

these mechanisms are more natural in string theory than they appear to be in field theory. Finally,

although observational limitations will ultimately restrict our ability to identify the detailed model of

inflation, it is encouraging that the upcoming window of accessible observations will provide concrete

connections between data and physics sensitive to quantum gravity.
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5 Beyond the B-mode Diagnostic

In the previous section we described the potential of B-mode polarization as a probe of fundamental

physics. These considerations were largely independent of the specific model for inflation and in

particular did not depend in any significant way on the assumption of single-field slow-roll inflation.

In this section we discuss complementary tests of inflation beyond the B-mode diagnostic, like

the scale-dependence (§5.2) and the non-Gaussianity (§5.3) of the scalar spectrum and a possible

contribution of isocurvature modes (§5.4). These observables reveal much about the details of the

physics driving the inflationary expansion.

5.1 Models of Inflation and their Phenomenology

We preface this section with a brief summary of the most popular ‘models of inflation’ (for a more

complete discussion the reader is referred to Appendix A).

During the inflationary epoch the universe is dominated by a form of stress-energy which sources

a nearly constant Hubble parameter H = ∂t ln a. Theoretically, this can arise via a truly diverse set

of mechanisms with disparate phenomenology and varied theoretical motivations. Recently, a useful

model-independent characterization of single-field models of inflation and their perturbation spectra

has been given [32, 99–102]. Starting from this basic structure, each model of single-field inflation

arises as a special limit. One important limit is the traditional case of single-field slow-roll inflation,

which we review first (§5.1.1). We then discuss more general single-field mechanisms for inflation

and finally present multi-field models (§5.1.2).

5.1.1 Single-Field Slow-Roll Inflation

Single-field slow-roll inflation is described by a canonical scalar field φ minimally coupled to gravity

S =
1

2

∫

d4x
√−g

[

R− (∇φ)2 − 2V (φ)
]

, M−2
pl ≡ 8πG ≡ 1 . (53)

It should be emphasized that the following discussion assumes that a single field describes the dy-

namics during inflation and that curvature perturbations are generated from vacuum fluctuations of

the inflaton field. A measurement of the amplitude and the scale-dependence of the scalar and tensor

spectra then directly constrains the shape of the inflaton potential V (φ). Conversely, only for single-

field slow-roll models does a specification of the inflaton potential uniquely specify the inflationary

parameters r and ns. In §5.1.2 we discuss the consequences of relaxing those assumptions.

If we normalize the potential on CMB scales, v(φ) ≡ V (φ)/V (φcmb), then (31) and (33) become

r = 8 (v′)2
∣

∣

φ=φcmb
, and ns − 1 =

[

2v′′ − 3(v′)2
]
∣

∣

φ=φcmb
. (54)

A measurement of (r, ns) therefore determines the shape of the inflaton potential (v′, v′′) at φcmb.

The scalar amplitude, As = 2.4× 10−9, then fixes the energy scale of inflation, V (φcmb), in terms of

r.

In Figure 9 we illustrate three different criteria that classify single-field slow-roll models according

to their predictions for r and ns [103]:

i) models predict either red (ns < 1) or blue (ns > 1) spectra,
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ii) models have positive (η > 0) or negative (η < 0) curvature at the time when CMB scales exit

the horizon,

iii) models are of the large-field (∆φ > Mpl) or small-field (∆φ < Mpl) type according to the total

field excursion during the inflationary phase (see Section 4).
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Figure 9: Constraints on single-field slow-roll models in the ns-r plane. The value of r determines

whether the models involve large or small field variations. The value of ns classifies

the scalar spectrum as red or blue. Combinations of the values of r and ns determine

whether the curvature of the potential was positive (η > 0) or negative (η < 0) when the

observable universe exited the horizon. Also shown are the WMAP 5-year constraints

on ns and r [14] as well as the predictions of a few representative models of single-

field slow-roll inflation: chaotic inflation: λp φ
p, for general p (thin solid line) and for

p = 4, 3, 2, 1, 2
3(•); models with p = 2 [104], p = 1 [97] and p = 2

3 [92] have recently

been obtained in string theory; natural inflation: V0[1 − cos(φ/µ)] (solid line), hill-top

inflation: V0[1 − (φ/µ)2] + . . . (solid line); very small-field inflation: models of inflation

with a very small tensor amplitude, r ≪ 10−4 (green bar); examples of such models in

string theory include warped D-brane inflation [95, 105, 106], Kähler inflation [107], and

racetrack inflation [108].

Figure 9 also shows the latest CMB constraints on r and ns [14] as well as the predictions of a

few simple, but well-motivated, models of single-field slow-roll inflation. We see that for ns > 0.95

many of the ‘simplest’30 inflationary models predict r ≥ 0.01.

30We caution the reader that there is no universally accepted definition of ‘simple models’. Here we loosely

take ‘simple models’ to mean models with the seemingly simplest functional forms for the effective potential

V (φ). For discussions of criteria for fine-tuning of inflation based upon the algebraic simplicity of the potential

see e.g. [109–111].
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5.1.2 Beyond Single-Field Slow-Roll

For models of single-field slow-roll inflation we have just seen how a measurement of ns and r

cleanly correlates with the scale and shape of the inflaton potential V (φ). This correspondence

between cosmological observables and the inflationary potential is broken in models in which the

kinetic term for the inflaton is non-canonical or more than one field is dynamically relevant during

inflation. Although this makes the interpretation of a measurement of ns and r less direct, additional

observables beyond r and ns allow one to break this degeneracy (see §5.2, §5.3 and §5.4).

General single-field inflation

Non-trivial kinetic effects are often parameterized by the following action [99, 100],

S =
1

2

∫

d4x
√−g [R + 2P (X,φ)] , (55)

where X ≡ −1
2g
µν∂µφ∂νφ. Examples of inflation models with actions of the type (55) are k-inflation

[112], DBI inflation [82] and ghost inflation [113]. Slow-roll inflation (53) is contained in (55) as the

special case P (X,φ) = X − V (φ). The function P (X,φ) corresponds to the pressure of the scalar

fluid, while its energy density is ρ = 2XP,X − P . Furthermore, the models are characterized by a

speed of sound

c2s ≡
P,X
ρ,X

=
P,X

P,X + 2XP,XX
. (56)

The time-variation of the speed of sound adds an extra term to the prediction for the spectral index

ns (see Appendix A). This breaks the one-to-one correspondence between (v′, v′′) and (r, ns).

In the following subsections, we discuss how further information about models with non-trivial

sound speed can be obtained from a measurement of the scale-dependence of the scalar (αs) and

tensor spectra (nt) (§5.2) and the non-Gaussianity (fNL) of the scalar spectrum (§5.3).

Multi-field inflation

Employing two or more scalar fields during inflation [114–117] extends the possibilities for infla-

tionary models, but also diminishes the predictive power of inflation. Multi-field models can produce

features in the spectrum of adiabatic perturbations [118–125], and seed isocurvature perturbations

[114, 116, 126–129] which could eventually leave an imprint on CMB anisotropies. Some multi-field

models decouple the creation of density perturbations from the dynamics during inflation. If the

decay of the vacuum energy at the end of inflation is sensitive to the local values of fields other

than the inflaton then this can generate primordial perturbations due to inhomogeneous reheating

[130, 131] or modulated hybrid inflation [132]. Alternatively, in the curvaton scenario [133–135], the

inhomogeneous distribution of a weakly coupled field generates density perturbations when the field

decays into radiation at some time after inflation. The curvaton scenario can also produce isocur-

vature density perturbations (§5.4) in particle species (e.g. baryons) whose abundance differs from

the thermal equilibrium abundance at the time when the curvaton decays [133, 136]. Inflation is

still required to set up large-scale perturbations from initial vacuum fluctuations in all these models.

But when the primordial density perturbation is generated by local physics some time after slow-roll

inflation then the local form of non-Gaussianity is no longer suppressed by slow-roll parameters

(§5.3). Measurements beyond B-mode polarization are therefore vital as diagnostics for multi-field

models of inflation. We discuss these important inflationary observables in the following sections.
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5.2 Deviations from Scale-Invariance

Scalar spectrum

The scale-dependence of primordial scalar fluctuations is a powerful probe of inflationary dynamics,

Ps(k) = As

(

k

k⋆

)ns−1+ 1
2
αs ln(k/k⋆)

, ns − 1 =
d lnPs
d ln k

, αs =
dns
d ln k

. (57)

In particular, as we discussed above, for single-field slow-roll inflation, deviations from perfect scale-

invariance (ns = 1, αs = 0) are encoded in the shape of the inflaton potential. A large scale-

dependence (“running”) αs of the spectral index ns arises only at second-order in slow-roll and is

therefore expected to be small.

In the case of slow-roll inflation, a definitive measurement of a large running, αs, is a signal that

ξH , the third Hubble slow-roll parameter [137] (defined in analogy to the first two potential slow-roll

parameters discussed previously),

ξH ≡ 4M4
pl

[

H ′(φ)H ′′′(φ)

H2(φ)

]

, (58)

played a significant role in the dynamics of the inflaton [138] as the CMB scales exited the horizon.

The consequences for the physics of inflation differ depending on whether the running is negative or

positive, and both options would dramatically complicate the theoretical understanding of inflation:

i) Large negative running

A large negative running implies that ξH was (relatively) large and positive as the cosmological

perturbations were laid down. It can be shown that ξH > 0 generally hastens the end of

inflation (relative to ξH = 0), provided the higher-order slow-roll parameters can be ignored.

With these assumptions, we find a tight constraint on ξH if we are to avoid a premature

end to slow-roll, with inflation terminating soon after the observable scales leave the horizon

[47, 139–142]. Thus, a definitive observation of a large negative running would imply that

any inflationary phase requires higher-order slow-roll parameters to become important after

the observable scales leave the horizon [51, 139, 140, 143, 144], or multiple fields which could

produce complicated spectra, a temporary breakdown of slow-roll (inducing features in the

potential), or even several distinct stages of inflation [116, 117, 119, 122–125, 145–158].

ii) Large positive running

The current cosmological data disfavor inflationary models with a blue tilt on CMB scales,

ns > 1 [14, 159]; however, a significant parameter space is still allowed with ns < 1 but

with a large positive running (implying a large negative ξH), which would lead to a strongly

blue-tilted spectrum after the cosmological scales have exited the horizon [50]. Again under

the hypothesis that this parameterization can be extrapolated to the end of inflation, we find

a class of solutions where ǫ → 0 as H remains finite, and the field rolls towards a minimum

with a substantial vacuum energy. The perturbation spectrum grows at small scales, possibly

diverges, and can lead to an over-production of primordial black holes [50, 160–171], or even

the onset of eternal inflation [34, 50, 171]. Inflation could also stop well before black-hole

production, due to a mechanism involving another sector: for instance, a second scalar field
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coupled with the inflaton, which could trigger a phase transition marking the end of inflation

and the onset of reheating. This mechanism is generically called hybrid inflation [172–174]

and belongs to the category of single-field slow-roll models, since the dynamics of inflation is

still governed by a single inflaton (as long as the trigger is a heavy, with m≫ H); the hybrid

inflation paradigm amounts to relaxing the assumption that the end of inflation is due to the

breaking of slow-roll conditions. Consequently, if we measure a large positive running we will

conclude that the end of the inflationary phase is not described within the single-field slow-roll

formalism, or that higher-order terms in the slow-roll expansion are important.

Finally, we should mention that a large running might more naturally be accommodated in infla-

tionary models with general speed of sound (see Appendix A). In this case, αs receives contributions

from cs and its time-evolution during inflation. This might allow larger values of αs than the slow-roll

analysis suggests.

Tensor spectrum and consistency relation

Single-field slow-roll inflation predicts a nearly scale-invariant spectrum of tensor modes

Pt = At

(

k

k⋆

)nt

, nt = −2ǫ ≈ 0 . (59)

At first order in a slow-roll expansion it furthermore predicts the following consistency relation

between the amplitude and the scale-dependence of the spectrum of tensor fluctuations,

r = −8nt . (60)

i) Multiple fields

The presence of multiple fields during an inflationary phase is one of the possible sources of

deviation from the consistency relation holding for single-field models of slow-roll inflation.

There exists a model-independent consistency relation for slow-roll inflation with canonical

fields [175] (see Appendix A)

r = −8nt sin
2 ∆ , (61)

where for two-field inflation cos∆ is the correlation between the adiabatic and isocurvature

perturbations, which is a directly measurable quantity (see §5.4). More generally, sin2 ∆ pa-

rameterizes the ratio between the adiabatic power spectrum at horizon-exit during inflation

and the observed power spectrum. The conversion of non-adiabatic perturbations into curva-

ture perturbations after horizon-exit decreases the tensor-to-scalar ratio for a fixed value of

the slow-roll parameter ǫ (or nt = −2ǫ).

ii) Kinetic effects

A second way to violate the single-field slow-roll consistency relation is the non-slow-roll

evolution of the inflaton driven by a non-canonical kinetic term. This leads to a non-trivial

speed of sound cs ≪ 1 and a modified consistency relation (see Appendix A)

r = −8nt cs . (62)

In those theories the violation of the slow-roll consistency relation correlates with a large

non-Gaussianity of the density spectrum, fNL ∼ 1/c2s ≫ 1 (see §5.3).
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This emphasizes the importance of measuring or constraining the scale-dependence of the tensor

power spectrum. Although it will be hard to measure any scale-dependence of the tensors if the

single-field consistency relation holds (i.e., if nt = −r/8), a large tilt would invalidate this consistency

relation. A large negative tilt could be consistent with multi-field inflation or a non-trivial speed

of sound arising from a non-canonical kinetic term for the inflaton. Finally, since nt = 2Ḣ/H2, a

positive tilt is only possible if the theory violates the null energy condition, Ḣ > 0.

5.3 Non-Gaussianity

Non-Gaussianity is a measure of interactions of the inflaton. A certain level of non-Gaussianity

is a generic prediction of inflation: the inflaton at least interacts gravitationally and likely has a

potential beyond a simple mass term. However, the slow-roll requirements limit single-field inflation

with a smooth evolution and a canonical kinetic term to fNL ∼ O(ǫ, η) ∼ O(10−2) [39, 40], which

is undetectable with current and foreseen CMB experiments. As with the consistency relation

of the previous section, measuring a deviation from Gaussianity in the primordial spectrum would

indicate physics beyond standard single-field slow-roll. Both non-trivial kinetic terms (derivative self-

interactions) and multiple field effects may lead to large, observationally distinct non-Gaussianity.

Regardless of details, a detection of primordial non-Gaussianity with |fNL| ∼ O(1) would rule out

the minimal inflationary scenario.

If the fluctuations in the primordial curvature ζ were exactly Gaussian (that is, if the inflaton

were a free field), all the statistical properties of ζ would be encoded in the two-point function. A

non-zero measurement of the connected part of any higher-order correlation function would be a

detection of non-Gaussianity, but the deviation from zero is almost certainly largest in the three-

point function31. In momentum space, the three-point correlation function can be written generically

as:

〈ζk1
ζk2

ζk3
〉 = (2π)3 δ(k1 + k2 + k3) fNL F (k1, k2, k3) . (63)

Here fNL is a dimensionless parameter defining the amplitude of non-Gaussianity, while the function

F (k1, k2, k3) captures the momentum dependence. The amplitude and sign of fNL, as well as the

shape and scale dependence of F (k1, k2, k3), depend on the details of the interaction generating the

non-Gaussianity, making the three-point function a powerful discriminating tool for probing models

of the early universe [179].

Two simple and distinct shapes F (k1, k2, k3) are generated by two very different mechanisms [180]:

The local shape is a characteristic of multi-field models and takes its name from the expression for

the primordial curvature perturbation ζ in real space,

ζ(x) = ζG(x) +
3

5
f local
NL

(

ζG(x)2 − 〈ζG(x)2〉
)

, (64)

where ζG(x) is a Gaussian random field. Fourier transforming this expression shows that the signal

is concentrated in “squeezed” triangles where k1 ≪ k2, k3. The local ansatz for non-Gaussianity has

long been a favorite of cosmologists [181–183] and is the origin of the WMAP convention for fNL

31While the connected four-point function is in general much smaller than the three-point and so much

harder to detect (see e.g. Ref. [176]), it could in principle be used to distinguish between models with identical

three-point functions [177]. In addition, some multi-field or curvaton models may have a negligible bispectrum

but significant trispectrum [178].
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as the magnitude of the non-linear term. In addition, it is physically well-motivated in multi-field

models where the fluctuations of an isocurvature field are converted into curvature perturbations.

As this conversion happens outside of the horizon, when gradients are irrelevant, one generates

non-linearities of the form (64). Specific models of this type include multi-field inflation [184–

196], the curvaton scenario [133, 197], inhomogeneous reheating [130, 131], and New Ekpyrotic

models [78, 198–203]. In these cases, |f local
NL | is model-dependent but generically larger than 5 − 10.

The second important shape is called equilateral as it is largest for configurations with k1 ∼
k2 ∼ k3. The equilateral form is generated by single-field models with non-canonical kinetic terms

such as DBI inflation [98], ghost inflation [113, 204] and more general models with small sound

speed [32, 100, 205]. As discussed in §5.1.2, the magnitude of non-Gaussianity increases as the

sound speed cs decreases, with f equil.
NL ∝ 1/c2s. There is a model-dependent prefactor (negative in DBI

inflation), and the non-Gaussianity is scale-dependent if the sound speed is time-dependent. There

is no theoretical lower limit on cs (although perturbative considerations imply cs & 10−9/4 [206]) so

current bounds on non-Gaussianity at CMB scales already constrain these models significantly.

The distinction between the single-field and multi-field case is robust, as one can prove that

a single-field model always gives fNL ∼ O(ns − 1) ≪ 1 in the squeezed limit, independently of

the specific Lagrangian [40, 207, 208]. The detection of a large non-Gaussianity in the local limit

would therefore rule out all single-field models in which slow-roll is maintained throughout inflation;

however, features in the potential that cause temporary departures from slow-roll can source local

non-Gaussianity [209] even in a single-field model. Furthermore, higher-derivative terms can be

important in multi-field models, where the shape of the three-point function can interpolate between

the local and the equilateral cases [210–212]. Finally, deviations from the standard Bunch-Davies

vacuum for the fluctuations can be a source of additional non-Gaussianities [100, 213–216], with an

intermediate shape and scale-dependence.

Although current data analyses only constrain constant fNL, there are well-motivated examples

where the predicted non-Gaussianity is scale-dependent. If the non-Gaussianity is (approximately)

scale-invariant, it is useful phenomenologically to absorb the overall scale-dependence into fNL and

define a running non-Gaussianity index nNG by

fNL = fNL(k⋆)

(

k

k⋆

)nNG−1

. (65)

For small sound speed models, scale-dependence of the non-Gaussianity comes from scale-dependence

of the sound speed, which also affects the spectral index and the relation between the tensor index

and the tensor-to-scalar ratio. In DBI inflation, a weak scale-dependence of precisely this type is

rather natural [217, 218]. Even in the case of an inflaton with a standard kinetic term, features in the

inflationary potential, including isolated sharp features [209, 219–221] or a series of closely-spaced

small features [222], can produce non-Gaussianities with more significant scale-dependence, while

keeping the viability of the power spectrum. Since such non-Gaussianities typically have oscillatory

behavior in ℓ-space [209, 222], independent data from temperature and polarization anisotropies are

important to identify them despite cosmic variance.

At present, the most stringent constraints on fNL come from the WMAP 5-year analysis [14].

For the two shapes mentioned above the limits are:

−9 < f local
NL < 111 at 95% C.L. (66)

−151 < f equil.
NL < 253 at 95% C.L. (67)
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Ongoing galaxy surveys such as the Sloan Digital Sky Survey (SDSS) have a sensitivity to f local
NL which

is competitive with WMAP [223]. Upon inclusion of these additional data, the allowed interval for

f local
NL reduces considerably [224]

−1 < f local
NL < 70 at 95% C.L. (LSS + WMAP) , (68)

−29 < f local
NL < 70 at 95% C.L. (LSS only) . (69)

With the exception of techniques that rely on measuring the large-scale structure bispectrum, how-

ever, constraints on non-Gaussianity from galaxy surveys are not sensitive to the shape of non-

Gaussianity. While future surveys may achieve ∆f local
NL ∼ 1 or less [225–227] they are not nearly

as sensitive to f equil.
NL . The abundance of collapsed objects (halos) can also be used to constrain

non-Gaussianity. The halo abundance is only sensitive to the skewness, thus is sensitive to the sign

of non-Gaussianity, regardless of shape, in a particularly simple way: fNL > 0 yields more very large

structures (galaxy clusters) than Gaussian fluctuations would, while fNL < 0 yields fewer [228]. No-

tice that the current allowed interval in (68) slightly prefers a positive value for f local
NL , in agreement

with that found already in the WMAP 3-year analysis [229]. Future data from the WMAP exper-

iment and further optimization of the analysis should improve the current limits by approximately

10-20% [230]. Future large-scale structure measurements may also be helpful in determining any

simple scale-dependence of the non-Gaussianity since they probe smaller scales than the (current)

CMB data does [231].

The previous constraints on CMB non-Gaussianity have been obtained using the temperature

signal only. The E-mode polarization signal can improve the sensitivity by approximately a factor

of 1.6 [232–234]. Although experiments have already started characterizing E-mode polarization

anisotropies [235–238], the signal-to-noise ratio is still too low to allow significant improvements

in the current constraints of non-Gaussianity. The upcoming Planck satellite will improve this,

but its E-mode polarization signal will still be cosmic variance limited only up to ℓ ∼ 20. Fisher

matrix forecasts (see §7), assuming that all the contamination from foregrounds can be effectively

removed (an issue which requires further investigation, see e.g. [239]), show that Planck will be able

to improve the current limits by approximately a factor of 6, reaching 1σ errorbars of the order

∆f local
NL ≃ 4 [232, 234]. The improvement on f equil.

NL should scale in approximately the same way,

leading to an expected 1σ error of ∆f equil.
NL ≃ 25. On the other hand, a satellite mission such as

CMBPol dedicated to polarization and cosmic variance limited up to ℓ ∼ 2000 would be able to

further improve on Planck by a factor of order 1.6, reaching approximately ∆f local
NL ∼ 2 − 3 and

∆f equil.
NL ∼ 13 − 15. Considering that f local

NL & 1 marks the difference between standard single-

field slow-roll inflation (and a Bunch-Davies vacuum) and models that violate one or more of these

conditions, the potential of an experiment like CMBPol becomes clear. In case of a high signal-to-

noise detection, CMBPol data may allow one to measure either a simple scale-dependence (nNG) or

to find features.

So far we have only concentrated on the primordial non-Gaussian signal induced on the CMB by

the inflationary epoch. However, the non-linearities of general relativity and of the plasma physics

induce an additional non-Gaussian signal [240]. These contributions are expected to give fNL ∼ O(1)

so that it will be important to study them in detail [241, 242] for the level of sensitivity that will be

reached by CMBPol. This additional signal will not only represent a contaminant for the primordial

non-Gaussianity, but also a new observational tool from the epoch of recombination to the present.
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Gaussian Quantum Fluctuation δη

↓
Non-Gaussian Inflaton Fluctuations δφ ∼ gδφ(δη + fδη δη

2)

↓
Non-Gaussian Curvature Fluctuations ζ ∼ gζ(δφ+ fδφ δφ

2)

↓
Non-Gaussian CMB Anisotropy ∆T

T ∼ gT (ζ + fζ ζ
2)

Table 5: Flow chart summarizing how non-Gaussianity may arise in the CMB data starting from

the primordial Gaussian quantum fluctuations. Although quantum fluctuations produce

Gaussian fluctuations δη, any non-linearities in the inflationary dynamics or non-trivial

interaction terms generate non-Gaussianity (through a non-zero fη). To first order in

perturbations, fζ and fδφ are zero, and it is only at the second order that they appear.

Here gT is the radiation transfer function.

What is the importance of a polarization-oriented mission like CMBPol for non-Gaussianities?

By the time CMBPol will fly, two scenarios are possible. In the first, WMAP and Planck will have

detected a primordial non-Gaussian signal.32 This would represent a remarkable discovery because

it would rule out the minimal model of inflation and put severe constraints on the alternatives. In

such a case, an instrument such as CMBPol (assuming it is cosmic variance limited for polarization

up to ℓ ∼ 2000) would be crucial as it could almost double the confidence level of the detection

and explore the “shape-dependence” of the signal. In that case we should be able to differentiate

between a local and an equilateral shape and to constrain the scale dependence of the primordial

non-Gaussianity. Further, by analyzing the temperature and the polarization data separately we

would be able to reduce the systematic effects and the foregrounds and increase our confidence in

the discovery. In the second scenario WMAP and Planck will not have detected non-Gaussianity.

Even in such a case, the additional information coming from CMBPol would be still very useful as it

would probe the fNL ∼ few region. Indeed, the threshold fNL ∼ few is very important since models

which are significantly different from standard single-field slow-roll inflation tend to produce a non-

Gaussianity larger than this. Even a mild improvement in the constraint is relevant. Measuring or

constraining non-Gaussianity is a powerful tool for inflation, and could provide evidence for small

sound speed or multiple fields that is complementary to the other diagnostics of this section. Finally,

non-Gaussian signals at the level fNL ∼ 1 are expected, even if not induced by inflation. This regime

will be accessible by CMBPol.

5.4 Isocurvature Fluctuations

Isocurvature density perturbations are a “smoking gun” for multi-field models of inflation. In single-

field inflation, the fluctuations of the inflaton field on large scales (where spatial gradients can be

neglected) can be identified with a local shift backwards or forwards along the trajectory of the

32In addition, large-scale structure observations will also probe f local
NL

∼ 1 by the time CMBPol will fly.

CMBPol would be able to provide independent confirmation of these complementary observations.
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homogeneous background field. They affect the total density in different parts of the universe after

inflation, but cannot give rise to variations in the relative density between different components.

Hence, they produce purely adiabatic primordial density perturbations characterized by an overall

curvature perturbation, ζ.

But in general one can also have relative perturbation modes between different components,

e.g. between radiation and matter

Sm ≡ 3H

(

δργ
ρ̇γ

− δρm
ρ̇m

)

=
δρm
ρm

− 3

4

δργ
ργ

. (70)

The initial curvature is unperturbed and hence these are known as isocurvature modes [114, 116, 243–

246]. Isocurvature perturbations may also be produced in the neutrino density/velocity [247] and

other matter. These perturbations produce distinctive signatures in the CMB temperature and

polarization anisotropies [248]. Although in the most general multi-field scenario four isocurvature

modes may arise in addition to the adiabatic one, it is hard to conceive of a model in which all of

them were observable, unless a great degree of fine-tuning is imposed. Therefore, the amplitude of

each mode is often constrained individually.

An almost scale-invariant spectrum of matter isocurvature perturbations mainly contributes to

temperature anisotropies on large angular scales, as is the case for tensor modes, but can be distin-

guished by polarization measurements. Isocurvature perturbations are scalar modes and so cannot

produce B-mode polarization. However, E-mode polarization and the cross-correlation between

temperature anisotropies and E-mode polarization can discriminate between isocurvature modes

and purely adiabatic spectra with similar temperature power spectrum.

The existence of more than one light scalar field during inflation leads to additional non-adiabatic

perturbations being frozen-in on large scales during inflation [114, 116, 126, 129, 243, 249]. Fluctua-

tions orthogonal to the background trajectory can affect the total density after inflation, but they can

also affect the relative density between different matter components even when the total density and

therefore spatial curvature is unperturbed [128]. Actually, the amplitude of primordial isocurvature

perturbations relevant for CMB anisotropies and structure formation is strongly model-dependent:

it does not depend entirely on the multi-field inflationary dynamics, but also on the post-inflationary

evolution. If all particle species are in thermal equilibrium after inflation and their local densities

are uniquely given by their temperature (with vanishing chemical potential) then the primordial

perturbations are adiabatic [136, 250]. Thus, it is important to note that the existence of primordial

isocurvature modes requires at least one field to decay into some species whose abundance is not de-

termined by thermal equilibrium (e.g. CDM after decoupling) or respects some conserved quantum

numbers, like baryon or lepton numbers. For instance, neutrino density isocurvature modes could

be due to spatial fluctuations in the chemical potential of neutrinos [136, 251].

The quantum perturbations of each light scalar field are independent from each other during

slow-roll inflation. However, for non-trivial inflationary trajectories in multi-dimensional field space,

the quantities later identified to observable adiabatic and isocurvature modes consist in combinations

of the large-scale fluctuations of these fields [126, 128], and can therefore be statistically correlated

[127]. Even if the inflationary trajectory is a straight line leading to uncorrelated adiabatic and

isocurvature modes, some extra correlation can appear later. Indeed, whenever the species carrying

isocurvature perturbations contributes significantly to the background expansion (giving rise to

variations in the local equation of state, like a non-adiabatic pressure perturbation), it provides an
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additional source for curvature perturbations outside the horizon [126, 128, 129, 145, 252, 253]. If this

happens before the radiation-dominated stage preceding photon decoupling, the initial conditions

relevant for the calculation of CMB anisotropies and structure formation could consist in a mixture

of completely correlated adiabatic and isocurvature modes, on top of the arbitrarily correlated

adiabatic contribution eventually surviving from inflation. The mixture of correlated adiabatic and

isocurvature modes of the various types induces some significant extra freedom in the shape of the

CMB anisotropy spectra [254].

We now briefly comment on three scenarios which have been investigated in some detail.

A minimal extension of chaotic inflation called double inflation relies on a second scalar field χ

with mχ < H during inflation

V (φ, χ) =
m2
φφ

2

2
+
m2
χχ

2

2
. (71)

If χ is identified with (or decays into) CDM after inflation and the inflaton φ decays into radiation,

then isocurvature perturbations persist after inflation [126]. The spectral tilts of adiabatic and

isocurvature power spectra, their correlation, and relative amplitude of curvature and isocurvature

perturbations depend on the parameters of the model and the classical trajectory during inflation.

Such models are analyzed in [255] without tensors and in [256] including tensor perturbations. It is

interesting that the amount of allowed isocurvature modes decreases when tensors are included in

the uncorrelated case [256]. Non-Gaussianities are typically small (fNL ≃ 1) in this model [195].

The curvaton scenario [133, 134] is also based on two fields which are light during inflation. The

energy of the first field (the inflaton) is assumed to completely dominate the background density

during inflation, while observable cosmological perturbations are entirely seeded by the perturbations

in the other field (the curvaton). In a typical implementation of this scenario, the curvaton decays

some time after inflation, but before primordial nucleosynthesis, perturbing the photon density

δργ
ργ

≃ Ωχ
δρχ
ρχ

, (72)

where Ωχ is the fractional energy density in the curvaton just before it decays. The primordial

baryon asymmetry is known to be due to some out-of-equilibrium process in the very early universe.

If the baryon asymmetry is produced from the decay of the curvaton (or its decay products) then

we have
δρb
ρb

≃ δρχ
ρχ

, (73)

and there is a residual baryon isocurvature perturbation after the curvaton decay which is completely

correlated with the total density perturbation [136]

Sb ≃ (1 − Ωχ)
δρχ
ρχ

≃ 3

(

1 − Ωχ

Ωχ

)

ζ (74)

(where we have identified ζ with the primordial density perturbation on spatially flat hypersurfaces

[257]). Since the adiabatic and isocurvature modes have a common origin, they share the same spec-

tral tilt nad = niso. The absence to date of observational evidence for any isocurvature component

in the primordial perturbation is an important constraint on attempts to implement the curvaton

scenario in particle physics models.

The epoch of CDM decoupling also determines the amplitude of an eventual CDM-isocurvature

mode. Similarly to the case of the baryon asymmetry, a CDM fluid freezing out relative to the
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rest of the universe before the curvaton decay, would give rise to an isocurvature signal that would

exceed the current observational bounds [136, 258]. This fact must also be taken into account when

building plausible curvaton models.

In the case where the curvaton itself decays into the CDM, an isocurvature amplitude arises

which has a dependence on Ωχ equal to (74). However, the experimental constraints on these two

different modes are different due to the different abundances of CDM and baryons in the universe

[136].

In the axionic dark matter scenario, the axion is a massless quantum field which acquires quantum

fluctuations during inflation. These are totally uncorrelated from the fluctuations seeded by the

inflaton because the two fields are not related. Under some circumstances, the axionic perturbations

could be erased by the restoration of the Peccei-Quinn symmetry during inflation or at the end of

reheating. Otherwise, once the axion acquires its mass at the QCD scale, an isocurvature mode

arises and is preserved, since the axion remains totally decoupled from other species [114, 116].

If one assumes that axions come to play the role of CDM (or part of it), this scenario predicts

an uncorrelated mixture of adiabatic and CDM isocurvature modes. Furthermore, in this case,

there is a simple relation between the isocurvature amplitude and the scale of inflation, and the tilt

niso = 1 − r/8 is very close to one [259].

Finally, in the general case of adiabatic perturbations mixed with N − 1 arbitrarily correlated

isocurvature modes, the initial conditions for primordial perturbations consist in N(N + 1)/2 am-

plitude parameters (the amplitude of each mode, plus N(N − 1)/2 correlation angles) [260], and the

same number of tilts characterizing the various scale dependences in first approximation. In the case

N = 2, one is left with two amplitudes, one correlation angle and three independent tilts [255, 261].

Current constraints from WMAP limit the amplitude of matter isocurvature perturbations 100%-

correlated with the adiabatic mode to Piso/Ps < 0.011 (95% C.L., assuming no gravitational waves)

[159], which translates into a bound of Sb/ζ < 0.1(Ωm + Ωb)/Ωb for the baryon isocurvature pertur-

bation [262].

The amplitude of isocurvature perturbations which are uncorrelated with the adiabatic mode

may be larger with Piso/Ps < 0.16 for a scale-invariant spectrum of isocurvature perturbations [159].

Note that because any contributions from isocurvature modes to the CMB anisotropies are sub-

dominant, bounds on their scale-dependence or non-Gaussianity are correspondingly weaker than

for adiabatic density perturbations.

Larger amplitude isocurvature perturbations become allowed when one considers arbitrary spec-

tral indices [263, 264] or neutrino isocurvature modes, including neutrino isocurvature velocity

perturbations [265], but we are not aware of any inflationary models which motivate such initial

conditions.

There is no clear theoretical target for future observations beyond the current limits on isocurva-

ture perturbations. However, tightening the bounds in these parameters would be of great interest

for particle physics and inflationary model building. For example, WMAP bounds already require

Ωχ ≈ 1 in models where the curvaton decay generates the baryon asymmetry. This would correspond

to a non-Gaussianity parameter fNL ≈ −5/4. A detection of large non-Gaussianity (fNL ≫ 1) would

be incompatible with any primordial isocurvature perturbation in the curvaton scenario [266] (unless

one considers multiple curvaton fields [193, 267] or relaxes some of the curvaton model assumptions

[191]). Also, additional contraints on the tensor modes would allow for a much tighter bound on
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the axionic isocurvature signal. Since the contribution of tensor modes and the axionic isocurvature

amplitude are degenerate on large scales, tightening the constraints on the former would improve

constraints on the latter.
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6 Defects, Curvature and Anisotropy

In this section we discuss how topological defects (§6.1), spatial curvature (§6.2) and a large-scale

anisotropy (§6.3) leave imprints in the CMB polarization signal. These probe the physics before

(curvature, anisotropy) and after (defects) inflation.

6.1 Topological Defects and Cosmic Strings

Even if inflation did not generate observable gravitational waves, the non-perturbative physics of

topological defect formation may generate observable B-modes. Such topological defects are generi-

cally found in models of grand unification, particularly those that involve supersymmetry. In models

where GUT defects survive inflation, there is a danger of reintroducing the monopole problem. But

more generally, physics at the end of inflation can involve phase transitions at much lower energies

that produce topological defects unrelated to GUT scale physics: this is common in models of hybrid

inflation, and includes models from superstring theory.

The best studied of these phenomena are cosmic strings. Cosmic strings are formed at the end

of multi-field inflation whenever a U(1) symmetry is broken during the process of reheating. This

is a common feature of supersymmetric inflationary models [268], including D-brane inflation in

string theory [269–271]. The tension of the cosmic strings formed in this way is model-dependent:

supersymmetric GUTs typically imply tensions near the observational upper bound of Gµ ∼ few ×
10−7 [272–274], but geometrical warping mechanisms in string theory (which are introduced for

model-building reasons unrelated to defect formation [95]) can give effective tensions as low as

Gµ ∼ 10−11 [96]. If they are formed, cosmic strings would generate B-mode polarization in the

CMB by directly sourcing vector-type metric perturbations [275–281]. The resultant spectrum has

two peaks (see Figure 10):

1. A peak at low ℓ ∼ 10, generated at reionization. The position of this peak is set by the

correlation length of the string network at the time of reionization and the rms velocity of the

strings, which, in principle, are model-dependent quantities. However, the correlation length

is typically expected to be comparable to, but smaller than the horizon size, and the rms

velocity is always less than the speed of light. Hence, the peak is at a somewhat smaller scale

(higher ℓ) than the low-ℓ peak expected from primordial gravitational waves, where it directly

corresponds to the horizon size at reionization. This difference in the low-ℓ peak positions

may be detectable, depending on the strength of the signal.

2. A peak at high ℓ ∼ 600 − 1000, generated at last-scattering. The position of this peak is

determined by the correlation length and the rms velocity of the strings at the time of last

scattering. It would imply power on small scales in excess of what one would expect from

lensing alone.

String-mediated B-mode production is efficient, so a string network that sources little CMB

temperature anisotropy could be a dominant source of B-mode polarization. Current observations

imply that strings sourced . 10% of the primordial anisotropy; however, even strings that source

. 1% of that anisotropy would be well within the reach of CMBPol. In terms of string tensions, this

corresponds to Gµ & 10−7, which corresponds to strings formed very near the GUT scale. Strings
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Figure 10: A comparison of the B-mode polarization generated by tensor modes during inflation

and B-modes generated by cosmic strings. The blue dashed line is the B-mode power

expected from a network of cosmic strings that source 10% of the primordial TT -power

present in the WMAP angular range; the translation of this power to a tension is model

dependent, but in all models corresponds to Gµ ∼ few× 10−7. The green dotted line is

the power spectrum expected from the lensing of E-mode polarized light into B-mode

polarized light from large-scale structure. The black solid line is the direct sum of the

10% string contribution and the lensed B-mode signal. The red dash-dotted line is the

spectrum generated by a string network that sources only 1% of the primordial TT -

power (Gµ ∼ 10−7) added to the lensed B-mode spectrum. The lavender, dashed line

is the spectrum generated by a tensor-to-scalar ratio of r = 0.01 added to the lensed

B-mode spectrum.

at this tension could also be seen by other ongoing missions, such as high-ℓ CMB experiments like

the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT) [282, 283]. Thus,

by the time CMBPol is ready to be commissioned, it is possible that we will know whether strings

exist with sufficient tension to be observed by it. However, even lighter strings may be detectable by

CMBPol: estimates based on a hypothetical CMBPol-like experiment [284] found that Gµ ∼ 10−9

is potentially observable.

CMBPol may also be able to probe the type of defect formed – strings are the best-studied

case, but the phase transition that ends inflation could also generate global monopoles, textures, or

semilocal strings. Ref. [285] showed that the polarization spectra from different defect types have

different shapes, particularly the B-mode spectra, and for high Gµ distinguishing between these

should be within the reach of CMBPol. Determining the nature of cosmic defects would provide

invaluable information on high-energy symmetry breaking. Incidentally it has also recently been
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shown [286] that there is no significant degeneracy between primordial r and defects at Planck

satellite resolution, i.e. one source would not be mistaken for the other. Therefore this is also true

at CMBPol accuracy.

6.2 Spatial Curvature

Flatness problem

Homogeneous and isotropic cosmologies are parametrized by the intrinsic curvature of their

spatial slices. Spatial curvature is usually parametrized by a normalized curvature parameter Ωk

which scales as a−2. One can think of it as an “energy density” parameter

ρk ≡ − 3

8πG

k

a2
(75)

such that Ωk ≡ ρk/ρtotal with k = −1, 0, 1 specifying a negatively curved, flat and positively curved

universe, respectively. Crucially, curvature decays less rapidly than matter, Ωm ∝ a−3, and radiation,

Ωr ∝ a−4 (since dark energy is just beginning to dominate we can ignore it for the present discussion).

It is then clear that it requires incredible fine-tuning for the universe to have evolved at least 60

e-folds since the Big Bang and not have the curvature dominate. This is known as the flatness

problem (see §3.1).

Inflation solves this problem elegantly: the early exponential increase in the scale factor drives

the value of Ωk close to zero while the rest of the energy density of the universe is contained in the

potential of the inflaton which is roughly constant. This energy density is then released, mostly into

radiation, during the reheating phase, starting the hot Big Bang. As long as inflation lasts a little

bit longer than Ne & O(60) e-folds,33 any relic curvature the universe possesses will be driven to

zero. The current best estimate for Ωk, using the WMAP + BAO + SN combined data set is [14]

−0.0175 < Ωk < 0.0085 (95% C.L.) . (76)

In many inflationary models, the total number of e-folds of inflation is much greater than O(60).

Therefore the standard prediction of inflation is

|Ωk| . 10−4 . (77)

The main reason why |Ωk| is not predicted to be exactly zero is that inflationary perturbations of

the metric do not allow one to measure (or even to define) the flatness of the universe with a much

better accuracy.

Open universes

This does not mean that |Ωk| is smaller than 10−4 in all inflationary models. For example, if

the last stage of inflation was relatively short and occurred inside a bubble produced during a false

vacuum decay, we may live in an open universe with |Ωk| ≫ 10−4 [287]. This idea attracted a lot

of attention in the mid-90s, when many people believed that Ω ∼ 0.3 [288]. However, most of the

models of open inflation proposed at that time failed, which clearly demonstrated that it is very

difficult to construct inflationary models with Ω significantly different from 1.

33The exact number of required e-folds depends on the energy scale of inflation and on the mechanism of

reheating.
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Recently there has been a revival of interest in models of open inflation with |Ωk| ∼ 10−2. Such

models may appear relatively naturally in the context of string cosmology under certain assumptions

about the probability measure for eternal inflation [289]. Therefore it is quite interesting that the

measurement of Ωk with an accuracy better than 10−2 may help us to test some of the recent ideas

about the probability measure for eternal inflation.

One of the features of the models of open inflation is a very specific modification of the spectrum

of scalar and tensor modes for small ℓ [290]. The contribution of these modifications to CTTℓ may

partially cancel each other, but one can separate these effects by measuring the amplitude of B-

modes.

Closed universes

The situation with inflationary models of a closed universe with |Ωk| ≫ 10−4 is more complicated.

A closed inflationary universe may emerge due to quantum creation of the universe “from nothing,”

but the probability of such a process is exponentially small [291, 292], and it is very difficult to

combine this scenario with the requirement that inflation must be short, which is necessary to get

|Ωk| ≫ 10−4 [293]. One may argue that a more natural scenario to consider is quantum creation of

a compact open or flat inflationary universe with a nontrivial topology, which is not exponentially

suppressed [294–297]. However, neither of these models can be naturally incorporated in the context

of the theory of eternal inflation, which is much better suited for a description of a multiverse

consisting of many bubbles containing open but nearly flat inflationary universes. This provides an

intriguing possibility to falsify some very interesting cosmological theories by observing a positive

spatial curvature or a nontrivial topology of our universe.

What are the observational prospects for measuring spatial curvature?

CMB anisotropies measured by the WMAP satellite have determined the angular diameter dis-

tance to the epoch of photon decoupling, zdec ≃ 1090, which is sensitive to the spatial curvature.

However, as the angular diameter distance depends not only on curvature but also on the energy

components in the universe, i.e. matter density and dark energy density, the angular diameter dis-

tance out to zdec alone could not determine the spatial curvature unambiguously. Therefore, a

combination of angular diameter distances measured out to multiple redshifts is a powerful way of

measuring the spatial curvature. For example, the angular diameter distances out to z = 0.2 and

0.35 measured by the Sloan Digital Sky Survey (SDSS) and the Two Degree Field Galaxy Redshift

Survey (2dFGRS), when combined with the angular diameter distance to the CMB, have yielded

a stringent limit on the spatial curvature (76). With the future galaxy surveys at higher redshifts,

z ∼ 3, e.g. the Hobby-Eberly Dark Energy Experiment [298], combined with the improved deter-

mination of the angular diameter distance out to zdec from Planck, the spatial curvature would be

determined to the accuracy of |Ωk| ∼ 10−3, i.e. an order of magnitude better than the current limit.

Can the CMB alone determine the spatial curvature? Yes, if CMB data alone can constrain Ωm

and/or the angular diameter distances out to z ∼ 3. The weak gravitational lensing of the CMB

offers such measurements. The weak lensing effect smoothes the acoustic oscillations of the power

spectra of temperature and E-mode polarization anisotropies, and also adds power at ℓ & 3000.

These effects can be measured by Planck, and would be measured better by CMBPol with the high-

angular resolution option (EPIC-2m) [19]. Moreover, the weak lensing converts the E-modes to the

B-modes, which would not be accessible to Planck, but would be measured by CMBPol with the

high-angular resolution option. Projections for future constraints on Ωk are discussed in §7.
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6.3 Large-Scale Anisotropy

Anomalies in the large-scale CMB temperature sky measured by WMAP have been suggested as

possible evidence for a violation of statistical isotropy on large scales [299–309], and a confirmation

of such evidence would represent a radical departure from the standard cosmological model. The

evidence for the breaking of statistical isotropy in the form of temperature anomalies is usually

inferred in an a posteriori manner, and therefore it is difficult to apply formulations of Occam’s

razor to compare isotropy-violating models with the isotropic concordance cosmology. Thus, it

is very important to test the predictions of such models for other observable signatures. In any

physical model for broken isotropy, there are testable consequences for the CMB polarization field

(e.g. [310, 311]). In Ref. [312], the authors make predictions for the polarization field in models that

break statistical isotropy locally through a modulation field. In particular, they study two different

models: a dipolar modulation, proposed to explain the asymmetry in power between northern

and southern ecliptic hemispheres [313–315], and a quadrupolar modulation, invoked to explain

the alignments between the quadrupole and the octopole of the temperature field [316]. For the

dipolar case, predictions for the correlation between the first ten multipoles of the temperature and

polarization fields are fairly robust to model assumptions, and can typically be tested at the 98%

C.L. or greater. For example, in the absence of foreground considerations, a space-based experiment

with 5 frequency channels and a noise level of 18 µK-arcmin per frequency channel will saturate

the cosmic variance bound in each channel. For the quadrupolar case, the quadrupole and octopole

of the E-polarization field will tend to align as well. Such an alignment is a generic prediction

of explanations which involve the temperature field at recombination. Thus, its main use will be

to discriminate against explanations involving foregrounds or local secondary anisotropies. The

predictions for polarization statistics made by anomaly models is a vital probe of a fundamental

assumption underlying all cosmological inferences.

It is challenging to provide cosmological models that explicitly realize these modulations, in a

way that can be reconciled with the inflationary picture. In most of these models, the breaking

of statistical isotropy is a remnant of a pre-inflationary stage. Therefore, the duration of inflation

needs to be tuned so that the signature will be present at the largest observed scales. One re-

quires that inflation only lasted just the minimum amount of e-folds necessary to solve the standard

cosmological problems. In such models, statistical isotropy is recovered at small scales, since the

modes responsible for the CMB anisotropies at those scales exited the horizon during the standard

inflationary expansion.

For instance, Ref. [317] suggested that the difference in power between the two ecliptic hemi-

spheres could be due to a spatial gradient in the inflaton field at the onset of inflation. A power

asymmetry across the observable universe could also be generated by large super-horizon fluctua-

tions. Refs. [318, 319] studied the impact on the CMB of a single super-horizon mode. It was shown

that, in this context, the observed power asymmetry cannot be realized within a single-field slow-roll

inflation. However, it can be realized if the fluctuation is generated by a curvaton field [314] (the

mode may arise due to domain structure in the curvaton-web [320]). Interestingly, this scenario

predicts a level of non-Gaussianity that can be detected by the Planck satellite [318]. Breaking

of statistical isotropy, with a possible alignment of different CMB multiples, can also result from

an anisotropic expansion at the onset of inflation. The simplest possibility is to assume different

initial expansion rates for the different spatial directions (Bianchi I geometry), and the subsequent
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isotropization due to slow-roll inflation. The system of perturbations for such a model is characterized

by three physical modes, which, after the background isotropizes, can be identified with the scalar

density contrast and the two gravitational wave polarizations [321]. During the anisotropic stage,

these three modes are coupled to each other already at the linearized level, and have a nonstandard

evolution. In particular, one of the gravitational wave polarizations exhibits a large growth during

the anisotropic stage, which can result in a potentially observable B-mode signal in the CMB [322].

This growth is a purely classical effect, and the resulting signal is superimposed on the gravitational

waves of quantum origin generated during inflation. In particular, it can result in an observable

B-mode in the CMB even if inflation occurred at a low energy scale. Therefore, the results of a

B-mode experiment can provide information not only on the energy scale of inflation, but also on

its duration, and on the pre-existing conditions.

In general, all the above proposals rely on specific initial conditions that cannot be predicted

from the model. One may hope to improve in this respect by arranging for a background with a

controllable (and arbitrarily small) departure from a FRW inflationary geometry. In this way, the

primordial perturbations can be quantized as in the standard case [29], resulting in predictive initial

conditions. This can be realized by adding suitable sources that contrast the rapid homogeniza-

tion and isotropization caused by the inflaton. For instance, in [323–326] a prolonged inflationary

anisotropic expansion is obtained through a vector field with nonvanishing spatial vacuum expec-

tation value. Ref. [327] showed that the WMAP data provide a 3.8σ evidence for an anisotropic

covariance matrix which is motivated by one of these models [324]. It was shown in [328] that these

proposals suffer from instabilities at horizon crossing. It may, however, be possible that suitable

modifications of these models could avoid such problems.
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7 Testing Inflation with CMBPol

In this section we present forecasts of realistic errors on inflationary parameters for a future satellite

experiment. Special attention is paid to uncertainties in the foreground removal and their effects on

the theoretical forecasts. Details of our computations are presented in Appendix C.

7.1 Fisher Forecasts

For purposes of illustration we define two versions of a future satellite experiment to measure CMB

polarization [59]:

• EPIC-LC: a low-cost mission targeting B-modes only on scales larger than ∼2 degrees.

• EPIC-2m: a mid-cost mission measuring B-modes on both large and small scales.

The precise experimental specifications for both of these options are given in Appendix C. We

present results for two types of foreground treatments:

• no foregrounds

In this case, we ignore foregrounds completely and present results simply as a function of

instrumental sensitivities. The associated results should of course be viewed as over-optimistic.

• with foregrounds

In this case, we include assumptions about foreground removal in the Fisher analysis. Our

treatment closely follows Ref. [66] and is defined in more detail in Appendix C.

Residual foregrounds introduce a bias (i.e. a systematic error) to constraints on r while noise just

introduces a statistical error. We attempt to include both these effects in the reported confidence

regions, despite the very different natures of these two terms. To estimate their effects on the final

constraints on cosmological parameters, we have adopted the ansatz of [66] (see Appendix C). The

systematic uncertainty on the constraints on r introduced by residual foregrounds can be appreciated

by comparing forecasts for the case with no foregrounds (only statistical errors) and the case with

foregrounds (with statistical and systematic errors). We treat the weak lensing B-mode signal as a

Gaussian noise, and do not assume that it can be removed.

For the fiducial set of parameters we use

ᾱ ≡ {r = 0.01 (0.001), ns = 0.963, nt = −r/8, αs = 0, As = 2.41 × 10−9,

τ = 0.087, ωb = 0.02273, ωc = 0.1099, h = 0.72, Ωk = 0} . (78)

The pivot scale for r, nt, As, ns and αs is k⋆ = 0.05 Mpc−1. The forecasted errors do not depend

significantly on the actual choice of fiducial model parameters, except for the value chosen for r

(due to cosmic variance). Since r is of primary interest, we will report results assigning it different

fiducial values. The errors on all the parameters depend either weakly or not at all on the choice

of the pivot34, and this dependence for constraints on r should be subdominant to other real world

effects that we do not consider here.

34r = 0.01 at k⋆ = 0.05 Mpc−1 corresponds to r0.002 = 0.009 at k⋆ = 0.002 Mpc−1 and r = 0.001

corresponds to r0.002 = 0.0009. Thus the choice of pivot does not significantly affect our conclusions on the

forecasted errors.
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7.1.1 Summary of Results

Tables 6 and 7 show a subset of the results of Appendix C. Figures 11 and 12 compare WMAP,

Planck and CMBPol constraints in the ns-r plane. For the foregrounds we assume what we term

“pessimistic” and “optimistic” options for EPIC-LC and EPIC-2m respectively (see Appendix C),

to span a range of experimental possibilities. “Pessimistic” assumes that the residual foreground

amplitude is 30% (10% in Cℓ) ; “optimistic” assumes a 10% residual (1% in Cℓ). Both options assume

realistic levels of polarized dust, although this is currently uncertain at the order of magnitude level

(see [17]). The errors due to foreground contamination adopted here are valid only if ∼ 70% or more

of the sky can be used for cosmological analysis. Should the foreground contamination impose more

drastic sky-cuts, there will be a significant error degradation (e.g. [329]). The estimated errors also

assume that there is no effect of leakage of power from E to B-modes. By using a large fraction of

the sky, the errors on the measured polarization will vary spatially when foreground uncertainty is

included, resulting in additional contamination of the B-mode signal. The analysis of [329] suggests

that this would inflate error bars over those presented here, although initial studies in [17] indicate

that the effect should be small for models with r = 0.01. For further discussion see Appendix C and

Ref. [17].

Below (§7.1.2–7.1.5) we comment on the implications of these results.

Errors WMAP Planck EPIC-LC EPIC-2m

no FGs no FGs no FGs with Pess FGs no FGs with Opt FGs

∆ns 0.031 0.0036 – – 0.0016 0.0016

∆αs 0.023 0.0052 – – 0.0036 0.0036

∆r 0.31 0.011 5.4 × 10−4 9.2 × 10−4 4.8 × 10−4 5.4 × 10−4

∆r – 0.10 0.0017 – 0.0015 0.0025

∆nt – 0.20 0.076 – 0.072 0.13

∆f local
NL – 4 – – 2 –

∆f equil.
NL – 26 – – 13 –

∆α(c) – 1.2 × 10−4 3.5 × 10−5 4 × 10−5 3.5 × 10−5 3.5 × 10−5

∆α(a) – 0.025 0.0065 0.0068 0.0065 0.0066

∆Ωk – – – – 6 × 10−4 6 × 10−4

Table 6: Forecasts of (1σ) errors on key inflationary parameters for WMAP (8 years), Planck [330]

and CMBPol (EPIC-LC and EPIC-2m). We present results for the unrealistic assump-

tion of ‘no foregrounds’ (no FGs) and ‘with foreground removal’ (with FGs). For the fore-

grounds we assume the pessimistic and the optimistic options for EPIC-LC and EPIC-2m,

respectively (see Appendix C). The fiducial model has r = 0.01. The single-field consis-

tency relation has been applied in the top block of forecasts.
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Figure 11: Forecasts of CMBPol constraints in the r-ns plane assuming the consistency relation.

Left: EPIC-LC with pessimistic foreground option. Right: EPIC-2m with optimistic

foreground option. The contours shown are for 68.3% (1σ), 95.4% (2σ) and 99.7% (3σ)

confidence limits.
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Figure 12: Forecasts of future constraints in the ns-r plane. Comparison of WMAP, Planck and

CMBPol (EPIC-LC+pessimistic FGs). The contours shown are for 68.3% (1σ) and

95.4% (2σ) confidence limits. The WMAP contours are from the 5 year analysis [14].
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EPIC-LC EPIC-2m

∆r ∆nt ∆r ∆r ∆nt ∆r

no FGs r = 0.001 6.9 × 10−4 0.18 2.3 × 10−4 5.7 × 10−4 0.17 2.1 × 10−4

r = 0.01 0.0017 0.076 5.4 × 10−4 0.0015 0.072 4.8 × 10−4

with FGs r = 0.001 – – 8.0 × 10−4 0.0018 0.93 4.1 × 10−4

r = 0.01 – – 9.2 × 10−4 0.0025 0.13 5.4 × 10−4

Table 7: Forecasted constraints on tensor modes. We present results for the unrealistic assumption

of ‘no foregrounds’ (no FGs) and ‘with foreground removal’ (with FGs). For the fore-

grounds we assume the pessimistic and the optimistic options for EPIC-LC and EPIC-

2m, respectively (see Appendix C). Cases where there is no detection are indicated with

dashes.

7.1.2 Tensors

Bearing in mind the caveats specified above, the following conclusions about tensor modes can be

drawn from this analysis:

Detection

• Gravitational waves can be detected at ∼ 3σ for r & 0.01 for the low-cost mission assuming

the foreground levels are as currently predicted, and that they can be cleaned to the 10% level

in amplitude (1% in power).

• In the optimistic foreground scenario, an r = 0.01 signal could be measured by CMBPol for

the low-cost mission at about 15σ if the consistency relation is imposed, nt = −r/8.

Upper limit

• CMBPol would provide a 3σ upper limit on tensors of r . 0.002 for the low-cost mission and

optimistic foregrounds if the consistency relation is imposed.

These limits should be compared to the theoretically interesting regime of large-field inflation (r >

0.01); cf. §4. This shows that CMBPol is a powerful instrument to test this crucial regime of the

inflationary parameter space.

7.1.3 Non-Gaussianity

Our Fisher results suggest that CMBPol will be able to achieve the sensitivity of ∆f local
NL ≃ 2 (1σ)

for non-Gaussianity of local type and ∆f equil.
NL ≃ 13 (1σ) for non-Gaussianity of equilateral type. For

the local type of non-Gaussianity this amounts to an improvement of about a factor of 2 over the

Planck satellite and about a factor of 12 over current best constraints. These estimates assume that

foreground cleaning can be done perfectly, i.e. the effect of residual foregrounds has been neglected.
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Also the contribution from unresolved point sources and secondary anisotropies such as ISW-lensing

and SZ-lensing has been ignored.

In the event that Planck saw a hint for a non-zero fNL-signal, CMBPol would offer the great

opportunity to scrutinize it with enhanced sensitivity. A convincing detection of any form of non-

Gaussianity would be a major breakthrough in cosmology.

7.1.4 Isocurvature

Precise measurements of E- and B-mode polarization will significantly improve existing constraints

on isocurvature fluctuations. We define the following measure of the isocurvature amplitude

αiso(k⋆)

1 − αiso(k⋆)
≡ Piso

Pad
, (79)

where Pad ≈ Ps. The forecasts for the error of the isocurvature fraction in the primordial perturba-

tions have been calculated for the curvaton model (α(c)) and the axion model (α(a)), assuming the

fiducial set of parameters (78) with r = 0.01.

The results in Table 6 verify that CMBPol will be a powerful instrument to constrain or measure

the primordial isocurvature fraction. Any detection of isocurvature fluctuations would inform us

about the nature of dark matter (for the case of dark matter isocurvature), or baryogenesis (for the

case of baryon isocurvature); at the very least, the detection would rule out single-field inflation-

ary models, and any scenarios in which matter was in thermal equilibrium with photons with no

conserved quantum numbers [250].

7.1.5 Curvature

Due to a geometric degeneracy [331], the primary CMB alone is not able to measure the spatial

curvature parameter, Ωk, as it is determined from the angular diameter distance out to z ≃ 1090,

which also depends on the matter density, Ωm. However, the weak gravitational lensing of the CMB

due to the intervening matter distribution, a secondary effect, helps to break this degeneracy, as

the lensing depends on a combination of Ωm and the amplitude of fluctuations, σ8. The lensing

effect smoothes the acoustic oscillations in the temperature and E-mode power spectra, and creates

additional power at ℓ & 3000. In addition, the lensing converts E-modes to B-modes, creating

the B-mode power spectrum that peaks at ℓ ∼ 1000. This information can be used to determine

Ωm, thereby allowing the CMB data alone to break the geometric degeneracy and determine the

curvature parameter accurately.

The high-resolution version of EPIC is capable of determining Ωk to 6 × 10−4 [66], which is

not very far from the expected non-zero value from inflation, 10−4 (see §6.2). Moreover, since the

gravitational lensing creates non-Gaussianity in the CMB, there is more information in the higher-

order statistics. In particular, the 4-point function is known to contain a lot of information of the

CMB lensing [332, 333]. It is therefore plausible that adding the 4-point information will get us even

closer to 10−4. To exploit the full potential of the weak lensing of the CMB, the high-resolution

version of EPIC is required [19].
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7.2 Model Selection

The Fisher information matrix analysis of the previous section addresses the question of how accu-

rately parameters can be determined in a given cosmological model. The extension of this framework

to consider different cosmological models (i.e. different choices of parameters to be varied) is known

as model selection, and Bayesian implementations of model selection, centered around a quantity

known as the Bayesian evidence, have been developed (see [334] for an overview). Many of the

science goals of CMBPol are model selection goals:

• Comparison of models with and without primordial gravitational waves.

• Comparison of models with and without cosmic defects.

• Comparison of models with different types of cosmic defects.

The data analysis strategy for CMBPol should feature a combination of parameter estimation and

model selection methods, in order to clearly identify the robustness of results.

Model selection forecasting, as described in [335, 336], is an alternative to the Fisher matrix in

quantifying experimental capability. Work is underway to carry out model selection forecasts for

the proposed CMBPol survey parameters [337].
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8 Summary and Conclusions

In this White Paper we have described the excitement felt by the community of cosmologists and

particle physicists in using observations of the cosmic microwave background to learn about the

universe at the highest energies and the smallest distance scales. In this final section we summarize

our conclusions.

The Golden Age of Cosmology

Observations of cosmic microwave background (CMB) anisotropies and large-scale structure

surveys have led to the emergence of a concordance cosmology. This ΛCDM cosmology composed

of a homogeneous background of atoms (4.4%), dark matter (21.4%) and dark energy (74.2%) and

containing a small amplitude of nearly scale-invariant adiabatic Gaussian density fluctuations fits

all cosmological data. The success of cosmological observations in revealing the composition of

the homogeneous universe provides significant motivation to now probe its fluctuations. Through

inflation these observations can be directly related to the high energy physics at 10−30 seconds after

the ‘beginning of time’.

Inflation

Inflation allows regions of space which should be uncorrelated at CMB decoupling to be observed

at almost identical temperatures. In the inflationary paradigm, quantum fluctuations in the very

early universe were in fact produced when the relevant scales were causally connected. Subsequently,

however, the superluminal expansion of space during inflation stretched these scales outside of the

horizon. When the perturbations re-entered the horizon at later times, they served as the initial

conditions for the growth of large-scale structure and the anisotropies in the CMB. Inflation makes

detailed predictions about key statistical features of the primordial perturbations such as their

scale-dependence and (non-)Gaussianity. In addition, inflation predicts a stochastic background of

gravitational waves which leaves a characteristic (B-mode) signature in the polarization of the CMB.

If observed, B-modes will reveal the energy scale at which inflation occurred.

The Next Frontier: Probing the Primordial Universe

Cosmological observations have only begun to study details of the primordial fluctuation spectra

created by inflation. The present data determines the initial amplitude of the primordial density

fluctuations (As) and shows the first hints for its variation with scale (ns). As explained in §2,

future observations have great potential to enlarge the inflationary parameter space via accurate

measurements of the primordial perturbation spectra. Besides confirming the deviation from scale

invariance of the scalar spectrum, the data may show signs of tensor perturbations (r, nt), primordial

non-Gaussianity (fNL), and multi-field effects (S). We consider CMB polarization to be a fantastic

tool to study these basic questions in early universe physics.

B-modes and the UV Sensitivity of Inflation

We argued in §4 that inflation is sensitive to certain properties of the ultraviolet completion of

gravity, and that a detection of primordial gravitational waves would provide striking, almost model-

independent information about the high-energy physics driving inflation. Such a detection would

demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a

super-Planckian distance in field space. In turn, these facts would strongly suggest the presence of an

approximate shift symmetry in the ultraviolet theory: in the absence of such a symmetry, it is highly
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Label Definition Physical Origin Current Status

As Scalar Amplitude V, V ′ (2.445 ± 0.096) × 10−9

ns Scalar Index V ′, V ′′ 0.960 ± 0.013

αs Scalar Running V ′, V ′′, V ′′′ only upper limits

At Tensor Amplitude V (Energy Scale) only upper limits

nt Tensor Index V ′ only upper limits

r Tensor-to-Scalar Ratio V ′ only upper limits

fNL Non-Gaussianity Non-Slow-Roll, Multi-field only upper limits

S Isocurvature Multi-field only upper limits

Ωk Curvature Initial Conditions only upper limits

Gµ Topological Defects End of Inflation only upper limits

Table 8: From {As, ns} to {As, ns, αs}, {At, nt, r}, {fNL, S}: Copy of Table 3 illustrating the po-

tential of future measurements of primordial scalar and tensor fluctuations as a probe of

inflation.

implausible that inflation could occur over such a large field range. We noted that symmetries of this

sort can arise in certain limits of string theory. Observational constraints on primordial tensors can

therefore provide powerful discrimination among well-motivated particle physics and string theory

realizations of inflation. Most remarkably, such observations have the potential to provide the very

first direct clues about the scalar field geometry and symmetry structure of quantum gravity.

Beyond the Tensor-to-Scalar Ratio

While B-modes are a powerful probe for testing the inflationary mechanism that is largely insen-

sitive to the details of how precisely inflation is implemented, a host of complementary observations

can potentially reveal more specific details about the inflationary era. In §5 we discussed how devia-

tions from scale-invariance (running of the scalar spectrum and a large tilt of the tensor spectrum),

non-Gaussianity, and isocurvature contributions probe the structure of the underlying inflationary

Lagrangian. A nonzero value for any of these observables would be inconsistent with single-field

slow-roll inflation and hence would suggest that non-trivial kinetic terms, violations of slow-roll, or

multiple fields were important during inflation.

Experimental Forecasts

To quantify the relation between the theoretical topics studied in this report and the measure-

ments of a future CMB satellite we presented realistic forecasts of parameter uncertainties in §7, with

the underlying assumptions and caveats detailed in Appendix C. Our conclusions for the projected

constraints on tensor modes can be summarized as follows:

• Gravitational waves can be detected at ∼ 3σ for r & 0.01 for the low-cost mission and opti-

mistic foregrounds (see Appendix C).

• If r = 0.01 then CMBPol would measure this at the ∼ 15σ level for the low-cost mission and

optimistic foregrounds if the consistency relation is imposed, nt = −r/8.
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• CMBPol would provide a 3σ upper limit on tensors of r . 0.002 for the low-cost mission and

optimistic foregrounds if the consistency relation is imposed.

These limits should be compared to the theoretically interesting regime of large-field inflation (r >

0.01); cf. §4. This shows that CMBPol is a powerful instrument to test this crucial regime of the

inflationary parameter space.

Errors WMAP Planck EPIC-LC EPIC-2m

no FGs no FGs no FGs with Pess FGs no FGs with Opt FGs

∆ns 0.031 0.0036 – – 0.0016 0.0016

∆αs 0.023 0.0052 – – 0.0036 0.0036

∆r 0.31 0.011 5.4 × 10−4 9.2 × 10−4 4.8 × 10−4 5.4 × 10−4

∆r – 0.10 0.0017 – 0.0015 0.0025

∆nt – 0.20 0.076 – 0.072 0.13

∆f local
NL – 4 – – 2 –

∆f equil.
NL – 26 – – 13 –

∆α(c) – 1.2 × 10−4 3.5 × 10−5 4 × 10−5 3.5 × 10−5 3.5 × 10−5

∆α(a) – 0.025 0.0065 0.0068 0.0065 0.0066

∆Ωk – – – – 6 × 10−4 6 × 10−4

Table 9: Forecasts of (1σ) errors on key inflationary parameters for WMAP (8 years), Planck and

CMBPol (EPIC-LC and EPIC-2m). Copy of Table 6 showing results for the unrealistic

assumption of ‘no foregrounds’ (no FGs) and ‘with foreground removal’ (with FGs) (see

Appendix C). The fiducial model has r = 0.01. The single-field consistency relation has

been applied in the top block of forecasts.
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Figure 13: Forecasts of CMBPol constraints in the r-ns plane (Copy of Figure 11). Left: EPIC-LC

with pessimistic foreground option. Right: EPIC-2m with optimistic foreground option.
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Figure 14: Summary of slow-roll predictions in the ns-r plane (Figure 9) and forecasts of future

constraints (Figure 12).

Final Remarks – Physics at the Highest Energies and Smallest Distances

Particle physics is entering a new era. In the next few years, the Large Hadron Collider (LHC) at

CERN will provide unprecedented information about physics at the TeV scale. This is a tremendous

achievement, but a vast range of even higher energies will remain forever unexplored by terrestrial

collider experiments. Fundamental questions about the most basic workings of Nature at the highest

energy scales – questions about grand unification, string theory, and the physics of the Planck scale,

for example — must await a more powerful experimental method. Inflation serves as the ultimate

particle accelerator, amplifying physical processes from the smallest scales to the very largest. The

detection of primordial gravitational waves from inflation would illuminate energies a trillion times

higher than those at the LHC and provide a unique window onto the laws of Nature at the highest

energy scales.
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A Models of Inflation

Inflation requires a form of stress-energy which sources a nearly constant Hubble parameter H =

∂t ln a. Theoretically, this can arise via a truly diverse set of mechanisms with disparate phenomenol-

ogy and varied theoretical motivations. Recently, a useful model-independent characterization of

single-field models of inflation and their perturbation spectra has been given [32, 99, 100, 102].

Starting from this basic structure, each model of single-field inflation arises as a special limit. We

first review the traditional case of single-field slow-roll inflation (§A.1). Next, we present more gen-

eral single-field mechanisms for inflation and their density perturbations (§A.2). Finally, we give a

brief discussion of multi-field models (§A.3). For more details on some of the models, we refer the

reader to the comprehensive review by Lyth and Riotto [30]. We discuss inflationary model-building

in the context of supergravity and string theory in §A.4 and §A.5, respectively. In Appendix B we

also contrast the predictions of inflation to the potential predictions arising from alternative models

of the early universe.

A.1 Single-Field Slow-Roll Inflation

The definition of an inflationary model amounts to a specification of the inflaton action (potential

and kinetic terms) and its coupling to gravity. Single-field models including only first derivative

interactions and minimally coupled to gravity are described by the action [99, 100]

S =
1

2

∫

d4x
√−g [R + 2P (X,φ)] , M−2

pl ≡ 8πG = 1 , (80)

where X ≡ −1
2g
µν∂µφ∂νφ. Slow-roll inflation then corresponds to the special case of a canonical

kinetic term

P (X,φ) = X − V (φ) . (81)

In this case, the inflationary dynamics is fully specified by the potential V (φ). More general single-

field models of the type (80) will be described in the next section.

Single-field slow-roll models of inflation are usefully divided into two classes:

i) Large-field inflation:

Models that imply a high energy scale for inflation and involve large field excursions (∆φ >

Mpl).

ii) Small-field inflation:

Models that imply a low energy scale and small field excursions (∆φ < Mpl).

In the following we present characteristic examples of models of each type.
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A.1.1 Large-Field Slow-Roll Inflation

In Section 4, we showed that the amplitude of inflationary gravitational waves (measured by the

tensor-to-scalar ratio r) relates to the field variation ∆φ = |φend−φcmb| between the end of inflation

and the time when CMB scales exited the horizon about 60 e-folds before (see Figure 1),

∆φ

Mpl
& O(1)

( r

0.01

)1/2
. (82)

An observation of B-mode polarization with CMBPol (r > 0.01) would therefore be convincing

evidence that i) inflation occurred and ii) Nature realized large-field inflation. In Section 4, we

described the fundamental clues that this would provide about the symmetries of the high-energy

theory underlying inflation. In the context of effective field theory the following large-field models

have been considered in the inflationary literature:

Chaotic Inflation

The prototype for chaotic inflation [4] involves a single polynomial term (with p > 0)

V (φ) = λp

(φ

µ

)p
. (83)

Here, the scale µ relevant for higher-dimensional terms in the effective potential corresponds to the

mass of heavy states that have been integrated out in forming the effective potential. By computing

the slow-roll parameters corresponding to (83) one easily sees that inflation requires φ > Mpl, and

as explained in detail in §4.2, we must have µ < Mpl. Thus, the absence of ever higher-order

terms (φ/µ)n (n→ ∞) with order-one coefficients is tantamount to the presence of a shift symmetry

which forbids such terms. Such a shift symmetry is quite consistent with the radiative stability of the

potential (83) because the coefficient λp must be extremely small to match the COBE normalization

of the power spectrum; hence the potential, as well as its coupling to gravity, very weakly breaks

the shift symmetry. An example of a supergravity model where such a symmetry is present and

the simplest chaotic inflation potential 1
2m

2φ2 emerges was proposed in [338]. We discussed the

prospects for UV completing such shift-symmetric models in §4.2; a relatively simple mechanism

producing chaotic inflation in string theory was recently described in [92, 97]. In the relevant range

of φ, these models yield a potential of the form (83), but with p in general a fraction of the powers

considered in the original chaotic inflation literature. As shown in Figure 9, many of these models

are observationally distinguishable from each other.

Chaotic inflation models of the form (83) make the following predictions

r =
8p

2N⋆
= 8

(

p

p+ 2

)

(1 − ns) , (84)

where N⋆ is the number of e-folds between the end of inflation and the time when the observable

scale leaves the horizon.

Hill-top models with quadratic term

Typical hill-top models can be expanded as

V (φ) = V0

[

1 −
(φ

µ

)p
]

+ . . . , φ < µ . (85)
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The potential (85) may be considered an approximation to a generic symmetry-breaking potential.

The dots in (85) represent higher-order terms that become important near the end of inflation and

during reheating. If p = 2, the second slow-roll parameter reads,

η = −2

(

Mpl

µ

)2 1

1 − (φ/µ)2
. (86)

Hence slow-roll requires µ > Mpl, and inflation ends when φ ∼ µ > Mpl. So, this model can only be

of the large-field type. It predicts the following relation between r, ns and N⋆

r = 8(1 − ns) exp [−1 −N⋆ (1 − ns)] . (87)

For p > 2, the potential (85) can lead to either large-field or small-field inflation, depending on the

value of µ.

Axion Inflation

In the context of inflationary model building, pseudo-Nambu Goldstone bosons (PNGB; axions)

have the attractive feature that their potential is protected by a shift symmetry φ → φ + α. This

symmetry guarantees that to first approximation the PNGB is massless. However, non-perturbative

corrections break the shift symmetry and generically lead to a potential of the form

V (φ) = V0

[

1 − cos

(

φ

µ

)]

. (88)

This potential is a particular case of (85). For µ > Mpl, it gives a successful model of large-field

inflation which is natural in the Wilsonian sense [339, 340]. A supergravity version of natural

inflation was recently constructed in [341, 342].

Axions are generically present in string theory and extra-dimensional theories of gravity. Never-

theless, early attempts to derive large-field inflation from such axion fields [343, 344] were difficult

to implement in string theory; the resulting effective potentials in many cases have µ < Mpl for

detailed dynamical reasons [345, 346].

However, further research has produced several promising ideas for making working models of

axion inflation. Typical string models have a large number of axion fields, so there may be a

possibility of obtaining the large field excursion from the combined effect of many axions [104, 347]

(though the field range is not parametrically increased as a function of the number of fields).35

Recently, a reasonably generic string theory mechanism for large-field inflation has been elucidated.

This involves ‘monodromy’ in field space – a phenomenon arising from the higher-dimensional branes

of string theory which enlarges the periodicity of angular directions (such as certain D-brane positions

and axions) to yield a super-Planckian field range [92, 97]. The corresponding potential in the case

of axion monodromy inflation [97] takes the form

V (φ) = µ3φ+ . . . , (89)

where the leading omitted terms are periodic functions of the angular variables.

35Difficulties with concretely constructing such ‘N -flation’ models are discussed in [342, 348]; these difficul-

ties may reflect the fact that the problem is naturally complicated by the large number of fields required by

the basic mechanism.
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A.1.2 Small-Field Slow-Roll Inflation

Small-field inflation refers to models with sub-Planckian field excursions ∆φ < Mpl. The associated

tensor amplitude is most likely unobservable with CMBPol (r ≪ 0.01).

Hill-top models with no quadratic term

A characteristic small-field potential has the following form

V (φ) = V0

[

1 −
(φ

µ

)p
]

+ . . . , φ < µ≪Mpl , p > 2 . (90)

This potential is identical to that of (85) with the two restrictions µ≪Mpl and p > 2 necessary for

small-field inflation; as already mentioned, this potential may be considered an approximation to a

generic symmetry breaking potential, and the dots in (90) represent higher-order terms that become

important near the end of inflation and during reheating. The fine-tuning of initial conditions

(e.g. the initial value of φ̇) is often more severe for small-field models than for large-field models

(but see e.g. [297]). For this model, the scalar spectral index is given by

ns − 1 = − 2

N⋆

p− 1

p− 2
, (91)

and there exists an upper bound on the gravitational wave amplitude

r < 8
p

N⋆ (p− 2)

(

8π

N⋆ p (p− 2)

)p/(p−2)

. (92)

Coleman-Weinberg

Historically, a famous inflationary potential is the Coleman-Weinberg potential [2, 3]

V (φ) = V0

[

(

φ

µ

)4(

ln

(

φ

µ

)

− 1

4

)

+
1

4

]

, (93)

which arises as the potential for radiatively-induced symmetry breaking in electroweak and grand

unified theories. Although the original values of the parameters V0 and µ based on the SU(5)

theory are incompatible with the small amplitude of inflationary fluctuations, the Coleman-Weinberg

potential remains a popular phenomenological model.

A.1.3 Hybrid Models

The hybrid scenario [172–174] frequently appears in models which incorporate inflation into super-

symmetry. In a typical hybrid inflation model, the effective inflaton potential receives a constant

contribution from a false vacuum energy, stabilized by interactions of the inflaton field φ with other

fields ψ. When the inflaton passes a critical value, the false vacuum is destabilized and another field

triggers a phase transition to a lower energy vacuum state, bringing inflation to an end. Topological

defects may be produced in such a phase transition and could provide a distinctive observational sig-

nature of such models. The dynamics which brings inflation to an end in hybrid models is decoupled

from the inflatonary slow-roll parameters.

During inflation, such models are characterized by potentials of the form

V (φ) = V0 [1 + f(φ/µ)] , (94)

69



where f is a function which should be compatible with the slow-roll conditions. A particular case is

that of hybrid inflation with a single polynomial term

V (φ) = V0

[

1 +

(

φ

µ

)p]

. (95)

The field value at the end of inflation, φend(ψ), is determined by some other physics, so there is a

second free parameter characterizing the models. Because of this extra freedom, hybrid models fill

a broad region in the ns-r plane. For (φ⋆/µ) ≫ 1 (where φ⋆ is the value of the inflaton field when

there are N⋆ e-foldings until the end of inflation) one recovers the results of the large-field models.

On the other hand, when (φ⋆/µ) ≪ 1, the dynamics are analogous to small-field models, except that

in some cases – including f(φ) = (φ/µ)p – the field is evolving toward, rather than away from, a

dynamical fixed point. This distinction is important to the discussion here because near the fixed

point the parameters r and ns become independent of the number of e-folds N⋆.

Models of inflation based on global supersymmetry [349] or D-term inflation models [350, 351]

are of the hybrid type and the potential is of the form

V = V0

[

1 + α log
φ

µ

]

, (96)

where α is a loop factor. The logarithmic behavior arises from the fact that the quadratic diver-

gences are canceled thanks to supersymmetry, leaving only the mild logarithmic dependence. In

this particular example of hybrid inflation, the field is not rolling towards a dynamical fixed point,

and depending on parameter values the slow-roll conditions can break down before or after the false

vacuum destabilization.

Warped D-brane Inflation

In string theory, a version of hybrid inflation can arise from a brane-antibrane system in a

warped flux compactification of type IIB string theory [95, 105]. The inflaton potential arises from a

combination of the Coulomb interaction between the brane and antibrane, and of moduli-stabilizing

effects that generate Planck-suppressed operators in the four-dimensional theory (see [106] for a

systematic treatment of these contributions to the inflaton potential). This class of models does not

require – or allow [84] – a large field range, and no symmetry appears in general in the direction of the

inflaton. Instead, inflation occurs in a small range around a fine-tuned inflection point [105, 352, 353].

Ref. [106] in particular has argued that such potentials arise under rather general circumstances in

warped brane-antibrane systems; see [354] for a systematic study of the corresponding parameter

space. These models allow only a very low tensor amplitude, r ≪ 10−4 [84], but the scalar spectrum

can be either red or blue at CMB scales, depending on the first derivative of the potential near the

inflection point. The prediction for r is too small to observe, while ns depends on the details of

the full string compactification and its effect on the brane-antibrane potential [105, 106, 352]; even

small-field models are UV-sensitive in this basic sense. In this class of models, the exit from inflation

is rather economically accomplished by the annihilation of the branes, a process which leads to a

cosmic string signature in a subset of models.
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A.2 General Single-Field Models

The classification of models has so far relied on properties of the potential in cases where the

inflaton has a standard kinetic term. However, considering all possible interactions that preserve

a shift symmetry naturally leads to the inclusion of derivative interactions [205], which may a

priori be added to any of the scenarios discussed above. These more general models introduce new

parameters, the sound speed cs and its running, that enter the consistency relation and the scalar

spectral index. This was briefly discussed in Section 5 and will be presented in more detail below.

Perhaps most importantly, non-standard kinetic terms also introduce the possibility of large non-

Gaussianity since the derivative interactions may be large without destroying the slow evolution of

the Hubble parameter.

Single-field models including first-derivative interactions are described by the action (80). The

function P (X,φ) in (80) corresponds to the pressure of the scalar fluid while the energy density is

given by

ρ = 2XP,X − P . (97)

Examples of inflation models where P (X,φ) takes a non-trivial form are k-inflation [112], DBI

inflation [82] and ghost inflation [113]. These models are characterized by a speed of sound

c2s ≡
P,X
ρ,X

=
P,X

P,X + 2XP,XX
, (98)

where cs = 1 for a canonical kinetic term and a smaller sound speed indicates a more significant

departure from the standard scenario.

Notice that X has mass dimension four, so that we expect higher powers ofX to be suppressed by

some scale µ as Xn/µ4n−4. The significance of these terms (and the magnitude of non-Gaussianity)

depends on the size of X, evaluated on the background classical evolution of the inflaton, compared

to the scale µ. For potential energy dominated inflation, this is no larger than V (φ)/µ4. Since µ is

typically the Planck scale or the string scale, these interactions can often be ignored. Their relevance

in some scenarios is another example of UV sensitivity in inflation (cf. Section 4).

To calculate observables, it proves convenient to define parameters for the time-variation of the

expansion rate H(t) and the speed of sound cs(t)

ǫ ≡ − Ḣ

H2
=
XP,X
H2

, η̃ ≡ ǫ̇

ǫH
, s ≡ ċs

csH
. (99)

Inflation of significant duration occurs when ǫ and |η̃| are small. Although large smay not necessarily

imply that inflation ends, the analytic expressions given below assume that |s| ≪ 1. Small s is also

a desirable feature in models that match observational bounds on the spectral index.

A non-trivial speed of sound modifies the scalar spectrum

Ps(k) =
1

8π2M2
pl

H2

csǫ

∣

∣

∣

∣

∣

csk=aH

. (100)

That is, for a fixed energy scale of inflation, a small sound speed enhances the scalar perturbations.

Scalar fluctuations now freeze out at the sound horizon, so the r.h.s. of (100) is evaluated at aH = csk.

The scale-dependence of the spectrum is

ns − 1 = −2ǫ− η̃ − s . (101)
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Note that the running of the spectral index, αs, will now involve a new term from ds/d ln k. The

tensor fluctuation spectrum is not affected by the new interactions and so is the same as for slow-roll

models

Pt(k) =
2

π2

H2

M2
pl

∣

∣

∣

∣

∣

k=aH

, (102)

nt = −2ǫ . (103)

The r.h.s. of (102) and (103) is evaluated at the usual horizon aH = k. We see that for models with

cs 6= 1 the consistency relation between r and nt is modified to

r = −8csnt . (104)

Arguably the most important distinction of small sound speed models is that for cs ≪ 1 the

scalar fluctuations are highly non-Gaussian [100]. For example, the three-point function is largest

for equilateral triangles, with magnitude

f equil
NL = − 35

108

(

1

c2s
− 1

)

+
5

81

(

1

c2s
− 1 − 2Λ

)

, (105)

where

Λ ≡ X2P,XX + 2
3X

3P,XXX

XP,X + 2X2P,XX
. (106)

At the time of writing, bounds on the magnitude of non-Gaussianity at CMB scales provide

one of the strongest constraints on these models. Section 5.3 elaborates on those constraints and

contrasts the non-Gaussian signal from single-field models with that from multi-field models (see

also Section A.3).

A particularly useful example of this type of scenario occurs in brane inflation, where the inflaton

is related to the brane position [98]. The kinetic part of the action, in the limit of small acceleration,

is the Dirac-Born-Infeld (DBI) action. In the simplest case36 and including an arbitrary potential,

this action takes the form of Eqn. (80) with

P (X,φ) = −h(φ)
√

1 − 2Xh−1(φ) + h(φ) − V (φ). (107)

The function h(φ) is the warped brane tension (∝ φ4 if the background is Anti-de Sitter (AdS) space)

so the scale suppressing the kinetic terms is the warped string scale. The square root enforces a speed

limit for the brane which allows more e-folds of inflation along a steep potential than in standard

slow-roll. When the brane is moving near the speed limit, the square root may not be expanded

and the non-Gaussianity is significant. The specific form of the action leads to two simplifying

relationships: P,X = cs and 2Λ = c−2
s −1. Then the relationship between the field range and r is the

same as in slow-roll (although now r may vary more significantly) and the second term in Eqn. (105)

for f equil
NL vanishes.

36This case corresponds to a single brane without worldvolume flux, with motion in a single direction along

which the background warp factor may vary.
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A.3 Inflation with Multiple Fields

Invoking two or more scalar fields extends the possibilities for inflationary models [116, 117], but

also diminishes the predictive power of inflation.

We have already considered models of inflation involving more than one field: namely, hybrid

inflation models. However, in hybrid inflation, the dynamics of inflation and the generation of

primordial perturbations is still governed by a single inflaton field: hence, these models can still be

classified as single-field models, with the peculiarity that the end of inflation is then independent

from the breaking of the slow-roll conditions.

Multi-field models include double inflation [115, 121–123], thermal inflation [124], double hybrid

inflation [125], curvaton models [133–135], inhomogeneous reheating [130, 131] and assisted inflation

[355]. These models relax some of the constraints on inflation arising from the predictions for cosmo-

logical observables. However, multi-field models can have distinctive observational signatures such as

features in the spectrum of adiabatic perturbations [118–125], observable isocurvature perturbations

[114, 116, 126–129], or large non-Gaussianities.

In models such as assisted inflation [355] (or the specific case of assisted quadratic inflation,

known as N-flation [104]) there may be many fields which evolve during inflation. In this case one

must take into account quantum fluctuations in all the fields which affect the dynamical evolution

during inflation, or afterwards. In general this leads to additional sources for primordial density

perturbations, while the gravitational waves still depend only upon the energy scale during inflation.

Thus the consistency equation for the tensor-to-scalar ratio in single-field inflation becomes an upper

bound on the tensor-to-scalar ratio in multi-field models [145].

Many multi-field models decouple the creation of density perturbations from the dynamics during

inflation. If the decay of the vacuum energy at the end of inflation is sensitive to the local values of

fields other than the inflaton then this can generate primordial perturbations due to inhomogeneous

reheating [130, 131]. In the curvaton scenario [133–135], the inhomogeneous distribution of a weakly

coupled field generates density perturbations when the field decays into radiation sometime after

inflation. The curvaton scenario can also produce isocurvature density perturbations in particle

species (e.g. baryons) whose abundance differs from the thermal equilibrium abundance at the time

when the curvaton decays [133, 136].

Inflation is still required to set up large-scale perturbations from initial vacuum fluctuations in

all these models. But if the primordial density perturbation is generated by local physics some time

after slow-roll inflation then the local form of non-Gaussianity is no longer suppressed by slow-roll

parameters. A large value of f local
NL may therefore serve as a useful diagnostic of inflation models with

multiple fields. Recent work on general multi-field inflation such as [218] reveals interesting features

in the power spectrum – particularly on the amplitude and shape of the non-Gaussianities – from

the combination of more generic kinetic terms with multiple fields.

The presence of multiple fields during an inflationary phase is one of the possible sources of

deviation from the consistency relation that holds for single-field models of slow-roll inflation. There

exists a model-independent consistency relation for slow-roll inflation with canonical fields [175],

r = −8nt sin
2 ∆ , (108)

where for two-field inflaton cos∆ is the correlation between the adiabatic and isocurvature per-

turbations, which is a directly measurable quantity. More generally sin2 ∆ parameterizes the ratio
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between the adiabatic power spectrum at horizon exit during inflation and that which is observed.

The conversion of non-adiabatic perturbations into curvature perturbations after horizon exit de-

creases the tensor-to-scalar ratio for a fixed value of the slow-roll parameter ǫ, which determines the

tensor tilt.

This underscores the importance of measuring or constraining the scale-dependence of the tensor

power spectrum. Although it will be hard to measure any scale dependence of the tensors if the single-

field consistency relation nt = −r/8 holds, a large tilt would invalidate this consistency relation. A

large negative tilt could be consistent with multiple-field inflation.

A.4 Inflation and Supersymmetry

Considerable theoretical effort has been devoted to realizing inflation in the context of well-motivated

theories of high-energy physics. The earliest models of inflation were connected to GUT scenarios,

and much work in the intervening decades has focused on connections between inflation and super-

symmetry.

There are three basic motivations for pursuing inflation in a supersymmetric theory. First,

supersymmetry is the most intensively studied candidate for the physics of the TeV scale – with

several indirect hints from particle physics pointing in its direction, including quantitative ties to

GUT physics – and it would be striking if inflation were natural in a supersymmetric extension of the

standard model. Proposed models of inflation in the MSSM include [356–359]. We will know more

about the relevance of these models with low-energy supersymmetry after the Large Hadron Collider

(LHC) runs for several years. It could be that in the next decade, we will know that low-energy

supersymmetry is a fact of Nature, or on the other hand that the physics of the TeV scale is not

supersymmetric, and hence that inflationary models with low-energy supersymmetry are irrelevant.

A second motivation, independent of the outcome at the LHC, is that supersymmetry might serve

as a protective symmetry that preserves the desired flatness of the inflaton potential. Indeed, in a

non-supersymmetric scalar field theory without an approximate shift symmetry, loop corrections will

be large, driving the physical inflaton mass up to a value of order of the UV cutoff. (This is avoided,

even in the absence of supersymmetry, in models with a shift symmetry, e.g. if the inflaton is an

axion.) Supersymmetry does provide a considerable degree of radiative stability, but it is fair to say

that supersymmetry alone (even in its local form, supergravity) is not sufficient to ensure adequate

flatness. In particular, an entire class of supergravity models, those in which the inflationary energy

comes from an F-term, visibly suffers from the ‘eta problem’ described in §4: dimension-six Planck-

suppressed contributions to the potential generically spoil flatness by rendering η ∼ O(1). This

result is occasionally misinterpreted as indicating that inflation is unusually difficult to obtain in

supergravity. As explained in §4, the eta problem is present in rather general effective quantum field

theories coupled to gravity, supersymmetric or not; the problem is simply harder to ignore in the

case of F-term supergravity models. Conversely, although inflation sourced by a D-term has been

advanced as a solution to the eta problem in the context of supergravity, inclusion of generic Planck-

suppressed contributions to the potential is expected to spoil this conclusion, and can be shown to

do so in string theory realizations of D-term inflation. In summary, supergravity does not appear to

provide a more natural source for approximately flat inflaton potentials than non-supersymmetric

field theory provides, but neither are supergravities particularly deficient in this regard.

The third motivation for realizing inflation in supergravity is that supergravity is the low-energy
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effective theory descending from supersymmetric compactifications of string theory. As with the

previous motivations, this one is subject to important caveats. In particular, most limits of string

theory yield a higher scale of supersymmetry breaking.37 Nonetheless, much work has been done on

the particular class of string compactifications which admit low energy supersymmetry, motivated

in part by the exciting possibility of TeV-scale supersymmetry reviewed above. Within this class of

compactifications, it is very interesting to assess whether the high scales of inflation required to see a

tensor signal can coincide with the low energy scales involved in modeling TeV-scale supersymmetry

in string theory. In the specific moduli-stabilization scenarios studied to date, it appears challenging

to construct a natural model with low-scale supersymmetry and detectable primordial tensors [360].

Low-energy supersymmetry being a leading candidate for physics beyond the Standard Model of

particle physics, it will be worthwhile to determine whether this result has broader validity or is

instead an artifact of the limited class of configurations understood at present. The study of string

compactifications with generic supersymmetry-preserving ingredients is just beginning, and may lead

to progress on this question.

A.5 Inflation in String Theory

As explained in detail in §4, inflation is sensitive to the ultraviolet completion of gravity. This

strongly motivates formulating inflation within an ultraviolet-complete theory. String theory, as

a candidate ultraviolet completion of particle physics and gravity, is a natural setting in which

to address this question. The problem is technically challenging in part because of the plethora

of gravitationally-coupled scalar fields, or moduli, descending from the extra dimensions of string

theory. The moduli generically roll too rapidly for inflation, and must be stabilized as part of the

construction of a viable cosmological model; this difficulty is a specific example of the ultraviolet

sensitivity described above. Much of the progress in realizing inflation in string theory in recent

years has involved the incorporation of methods of moduli stabilization.

Several ideas for the string theory origin of the inflaton have emerged. Commonly-studied models

rely on inter-brane separations (brane inflation), geometric moduli, or axions. Reviews which discuss

various subsets of early models can be found in [271, 341, 361–365]; other models have emerged more

recently. Some of these models involve mechanisms for inflation, i.e. systematic arguments from

string theory that motivate or protect the near-constancy of the Hubble expansion rate. Much work

remains to systematically map out the space of robust mechanisms and models. At this early stage

it is already clear that the phenomenology of string inflation models is very rich: certain classes

of current models readily produce tensor modes, others predict strongly non-Gaussian perturbation

spectra, while others yield cosmic superstrings, for example. Moreover, in certain cases the couplings

of the inflaton sector to our low-energy world can be specified, leading to studies of reheating.

Large-field inflation in string theory

Because observable tensor modes are a powerful probe of Planck-scale physics (see §4), it is worth

examining what string theory has to say about the large-field models of inflation in which detectable

tensors can arise. In brief, it is too early to draw a definitive conclusion, but it appears that both

large-field and small-field models of inflation can be reasonably realized in string theory – via rather

37In particular, most six-manifolds that admit consistent compactifications of supersymmetric string theories

break supersymmetry at the Kaluza-Klein scale.
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different mechanisms which will be distinguished by upcoming CMB observations.

The earliest mechanisms studied in stabilized string theory vacua were small-field models38

(e.g. generalizations of hybrid inflation using D3-branes, such as [95]), but more recent constructions

have revealed explicit mechanisms for large-field models (e.g. generalizations of chaotic inflation, such

as [92, 97]). Some fine-tuning or significant specialization of the string compactification is inevitably

involved in modeling inflation in string theory; this amounts to making explicit the dependence

on Planck-suppressed operators that will be present in any scenario, string-theoretic or otherwise.

However, the existing mechanisms are reasonably generic in the sense that they each use common

features of string compactifications, and models involving axions can be fully “natural”, in the sense

of ’t Hooft and Wilson. Although both possibilities for the field range (∆φ > Mpl and ∆φ < Mpl)

– and different values of r – have been shown to arise, the two cases are very different both micro-

scopically and observationally, and detecting or constraining tensor modes can therefore serve as a

powerful selection principle for inflationary models in string theory.

For a subset of candidate inflatons in string theory, one can prove that the field range is kinemat-

ically constrained to be sub-Planckian. One example is D3-brane inflation [94] in warped throats

[82, 95], where Mpl and the field range are both constrained by the volume of the compactification

[84]39. (The case studied in [367] of wrapped branes on tori and in warped throats is more subtle,

with dynamical backreaction effects becoming important.) Single axions [345, 346], in the absence

of monodromy (see below), also have sub-Planckian field ranges. In all such cases, the associated

gravitational wave signal is therefore small, independent of the structure of the potential.

For other candidate inflatons, the field range is kinematically unbounded. For example, moduli

spaces of string vacua often contain angular directions which are lifted by additional ingredients such

as fluxes and wrapped branes that undergo monodromy – not returning to their original potential

energy when the system moves around the angular direction. This effect has been used to produce

string-theoretic realizations of large-field inflation with detectable tensor signatures, with the first

explicit example involving repeated motion of a wrapped D-brane around a circle in a twisted torus

[92], and a further class of models involving repeated motion in the direction of a single axion [97].

An earlier idea was to consider two [368] or many axions [104] to increase the field range in a way

consistent with the sub-Planckian range of each individual axion. The many axions also renormalize

Mpl, and moreover have reduced ranges at weak coupling and large volume, leading to a certain

degree of difficulty in constructing models within a computable regime. (The motion of multiple

M5-branes [369] is a related possibility, but it remains necessary to incorporate the effects of moduli

stabilization into the dynamics.) In certain limits of other moduli spaces, kinematically large field

ranges may also occur, as in D3/D7 inflation [370] on degenerate tori [371], a case which also provides

an arena for concrete small-field inflationary model building, or in ‘fibre inflation’ [372], in which the

field range is geometrically limited but may still be large enough to give an ultimately detectable

tensor signal.

To date no physical principle has been identified that explains why super-Planckian vevs should

be favored or disfavored in string theory, or which class of models is more generic, or which is more

likely from the point of view of initial conditions. Future work may shed light on these questions,

and it is important to recognize that systematic exploration of the space of string inflation models

38For a review of early models, see e.g. [361].
39Implications of field range limits for eternal inflation appear in [366].
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has just begun. Moreover, as already emphasized, genuinely predictive model-building in string

theory has become possible due to the UV sensitivity of inflation combined with the progress in

CMB measurements; the data can therefore be used to distinguish the different mechanisms.
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B Alternatives to Inflation

As we discussed in §3, inflation is a compelling solution of the homogeneity, flatness, and monopole

problems of the standard FRW cosmology. In addition, quantum fluctuations during inflation provide

an elegant mechanism to create the initial seeds for structure formation. One of inflation’s most

robust predictions is an adiabatic, nearly scale-invariant spectrum of density perturbations. This

prediction is in very good agreement with observations, especially considering the recent evidence

for the expected small deviation from exact scale invariance [14]. However, it is disputable whether

these observations can be considered a proof that inflation did occur. Clearly, a fair evaluation of

the status of inflation requires the consideration of alternatives, in the hope to find experimental

distinctions among different models.

In this Appendix we discuss the theoretical challenges and observational prospects of ekpy-

rotic/cyclic models (§B.1), string gas cosmology (§B.2) and pre-Big Bang models (§B.3). Our dis-

cussion emphasizes the following two aspects:

1. Each alternative invokes novel and ‘incompletely understood’ physics to solve the problems as-

sociated with the standard Big Bang cosmology. This implies important theoretical challenges

that have to be addressed carefully before the models mature into compelling alternatives to

inflation.

2. Most or all of the alternatives to inflationary cosmology predict negligible tensors on CMB

scales. This strengthens the case for considering B-modes a “smoking gun” of inflation. It

should be considered an amazing opportunity to use CMB observations to constrain all known

alternatives to inflation.

B.1 Ekpyrotic/Cyclic Cosmology

The ekpyrotic model [67, 68] (see [69] for a recent review) was proposed as an alternative to the

inflationary paradigm. Instead of invoking a short burst of accelerated expansion from an energetic

initial state, the ekpyrotic scenario relies on a cold beginning and a subsequent phase of slow contrac-

tion. This is then followed by a bounce which leads to the standard expanding, decelerating FRW

cosmology. Despite the stark contrast in dynamics with respect to inflation, the model is claimed

to be equally successful at solving the flatness and homogeneity problems of the standard Big Bang

cosmology [67, 68]. In its cyclic extension [373], the ekpyrotic phase occurs an infinite number of

times — our current expansion is to be followed by a contracting ekpyrotic phase, leading to a new

hot Big Bang phase, and so on. A critical evaluation of the ekpyrotic/cyclic scenario can be found

in [70–77].

While the observational predictions of the ekpyrotic model outlined below do not rely on a

particular realization of the bounce, clearly the viability of the scenario hinges on whether a bounce

can happen or not. Indeed, a bouncing phase requires the violation of the null energy condition

(NEC) and this is usually associated with catastrophic instabilities. By a deformation of the ghost

condensate theory [374], an example of a stable bounce was put forward in [375] and then used in

the new ekpyrotic scenario in [78, 79]. Although this model is consistent at the level of effective field

theory, it is not clear whether it is possible to find a UV completion for it. As we already mentioned,

according to [80], this is a very important issue because the quantization of the new ekpyrotic
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theory, prior to the introduction of a UV cutoff and a UV completion, leads to a catastrophic

vacuum instability. Despite these theoretical challenges, we will highlight the phenomenologically

distinct predictions of the ekpyrotic universe.

As with inflation, during the contracting phase ekpyrosis relies on a scalar field φ rolling down a

potential V (φ). Instead of being flat and positive, however, here V (φ) must be steep, negative and

nearly exponential in form. A fiducial ekpyrotic potential is

V (φ) = −V0e
−φ/

√
ǫ̃Mpl , (109)

where ǫ̃ ≪ 1 is the ekpyrotic “fast-roll” parameter. The Friedmann and scalar field equations then

yield a background scaling solution describing a slowly-contracting universe.

Two drawbacks prevented the original ekpyrotic scenario from becoming a serious competitor

to inflation: the lack of an explicit and controllable model of a bouncing phase, and the problem

of the generation of a scale-invariant spectrum of perturbations. The two issues are clearly related,

as the absence of a completely explicit model prevented full control of the predictions. The curva-

ture perturbation on uniform-density hypersurfaces, ζ, has an unacceptably blue spectrum in the

contracting phase. If ζ remains constant during the bounce, as can be shown under quite general

conditions (see [376, 377] and references therein), the model is experimentally ruled out.

The issue of scalar perturbations was addressed in the new ekpyrotic scenario [78, 79, 378, 379].

Due to an entropy perturbation generated by a second scalar field, the curvature perturbation ζ

acquires a scale-invariant spectrum well before the bounce, which, under the general assumption of

[377], subsequently goes through the bounce unscathed and emerges in the hot Big Bang phase with

a scale-invariant spectrum.

An important prediction of this new mechanism for generating density perturbations in the

ekpyrotic model is a substantial level of non-Gaussianity [78, 198–200, 380]. This is a consequence

of the self-interactions in the steep exponential potential and of the mechanism of conversion to

adiabatic perturbations. As both these sources of non-Gaussianity act when the modes are outside

of the Hubble radius, the shape of non-Gaussianity is of the local form. Although the level of

non-Gaussianity is rather model dependent, we can quote f local
NL > few as a rough lower bound.

Another generic prediction of ekpyrosis is the absence of a detectable signal of tensor modes

[67, 81]. Inflation predicts scale-invariant primordial gravitational waves, whereas ekpyrosis does

not. Intuitively, this traces back to the difference in dynamics: in the ekpyrotic background the

curvature of the universe is slowly growing towards the bounce, and therefore the spectrum is not

scale-invariant, but grows towards smaller scales. The tensor spectrum is highly blue (nt ≈ 3),

resulting in an exponentially small primordial gravitational wave amplitude for observable wave-

lengths. A detection of tensor modes through CMB B-mode polarization would therefore rule out

the ekpyrotic/cyclic scenarios. Thus, independent of one’s opinion about the theoretical status of

ekpyrotic cosmology, it is encouraging that observations have the potential to falsify ekpyrosis.

B.2 String Gas Cosmology

String gas cosmology (SGC) is a model of early universe cosmology in which the universe initially

begins in a hot, dense state as suggested by Big Bang cosmology (see [381] for a review). All

dimensions are taken to be compact and initially at the string scale, where the theory exhibits a
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scale-inversion symmetry R → 1/R believed fundamental to string theory [382]. In [383] it was

suggested that this was not only a natural initial state for the universe, but that by taking into

consideration the additional winding and momentum modes of the string gas (and their interactions)

one would generically expect three spatial dimensions to ‘decompactify,’ leaving any other dimensions

stabilized at the string scale. However, a further analysis of the dynamics suggested that the model

would require substantial fine-tuning for the dimensionality argument to work [384]. Nonetheless it

remains an intriguing avenue to explore other issues of early-time cosmology, including the generation

of primordial tensor mode perturbations. In fact, it was recently claimed that a spectrum of nearly

scale-invariant cosmological perturbations could be produced from such a string gas phase and would

be observationally distinct from inflationary theory due to a blue-tilted tensor power spectrum [385–

387]. However, subsequent work has shown that a smooth transition between this string gas phase

and the standard radiation phase would require either a violation of the null energy condition

(conjectured by some to be impossible in UV complete theories) or stabilization of the dilaton field

(which would destroy the desired scale-inversion symmetry) [388, 389], and there are counter-claims

in the literature that the spectrum of scalar perturbations appears to be very blue: instead of the at

perturbations with ns = 1 one finds a spectrum with ns = 5 [388] (but see [390]). Thus, addressing

these challenges is an important initial step before SGC can be considered a viable alternative to

inflation for producing primordial tensor perturbations.

B.3 Pre-Big Bang Cosmology

Initially motivated by SGC, the pre-Big Bang model (PBB) also attempts to invoke new symmetries

and degrees of freedom expected if our universe is correctly described by string theory [391] (see

[392] for a review). However, unlike SGC and the conventional hot Big Bang theory, the PBB model

initially begins in a cold, empty state with zero curvature. Then fluctuations drive the universe into

a period of dilaton-driven super (or pole) inflation, during which the expansion rate is increasing.

This phase continues until the expansion rate reaches the string scale, at which time the effective

theory description breaks down and corrections from string theory become important. It is then

argued that because string theory has a natural UV cutoff (set by the string length), new string

physics should become important causing the expansion rate to take a maximum value near the

string scale. From this phase, our radiation dominated universe is then to emerge, with the PBB

supplying adequate initial conditions for the hot Big Bang.

The key challenge for this model is describing the exit from the PBB phase to the radiation

dominated universe. Similar to the challenge facing SGC discussed above, it was shown in [393–395]

that such an exit requires violation of the null energy condition. It has been argued in the literature

that this might be reasonable given quantum gravity corrections, but lack of parametric control and

understanding of explicit time dependent solutions in string theory make this an important open

challenge. Until the issue of the exit from the string phase is better understood, both the PBB and

SGC models lack predictability, making it too early to consider them for alternative predictions to

those of inflation for primordial tensor perturbations.40

40Furthermore, according to [396, 397], the PBB scenario does not solve the horizon, flatness and isotropy

problems. Until these problems are resolved, it too early to consider the PBB theory a consistent alternative

to inflation.
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C Fisher Methodology

In Section 7 we performed a standard Fisher analysis to forecast the errors on inflationary parameters

derived from a future satellite experiment. In this Appendix we give details of the Fisher method-

ology and define the survey parameters of two realistic experimental configurations. Our treatment

parallels the approach of Ref. [66]; we give the relevant equations and definitions for completeness,

but direct the reader to Ref. [66] for further details.

C.1 Likelihood Function and Parameter Errors

The Fisher information matrix [398] is defined as

Fij ≡
〈

− ∂2 lnL
∂αi∂αj

〉
∣

∣

∣

∣

α=ᾱ

, (110)

where lnL is the likelihood function and αi denote model parameters. We consider the following

vector of cosmological parameters α ≡ {r, ns, nt, αs, As, τ, ωb, ωc, h,Ωk}. The Cramer-Rao inequality

for the minimum standard deviation of a parameter αi is

σαi
≥ (F−1)

1/2
ii . (111)

For the fiducial set of parameters we use

ᾱ ≡ {r = 0 or 0.01 or 0.001, ns = 0.963, nt = −r/8, αs = 0, As = 2.41 × 10−9,

τ = 0.087, ωb = 0.02273, ωc = 0.1099, h = 0.72,Ωk = 0} . (112)

The forecasted errors do not depend strongly on the chosen fiducial model, except in the choice of

r (because of cosmic variance), since the signal primarily comes from large angular scales. For this

reason we will report results for different fiducial cases where we vary r while keeping the other

parameters constant (except adjusting nt via the consistency relation nt = −r/8). The pivot scale

for r, nt, As, ns and αs is k⋆ = 0.05 Mpc−1.

For data with partial sky coverage, experimental noise, and foreground subtraction residuals,

the likelihood function can be approximated as:

−2 lnL =
∑

ℓ

(2ℓ+ 1)

{

fBBsky ln

(

CBBℓ
ĈBBℓ

)

+
√

fTTskyf
EE
sky ln

(

CTTℓ CEEℓ − (CTEℓ )2

ĈTTℓ ĈEEℓ − (ĈTEℓ )2

)

+
√

fTTskyf
EE
sky

ĈTTℓ CEEℓ + CTTℓ ĈEEℓ − 2ĈTEℓ CTEℓ
CTTℓ CEEℓ − (CTEℓ )2

+fBBsky

ĈBBℓ
CBBℓ

− 2
√

fTTskyf
EE
sky − fBBsky

}

. (113)

Here, CXYℓ (αi) are the theoretical angular power spectra, with X,Y = {T,E,B}. The estimator

of the measured angular power spectra, ĈXYℓ , includes a contribution from noise, and the fraction

of the sky used for cosmological analysis is fXYsky . The scaling of the errors with fsky adopted

here is valid only if ∼ 70% or more of the sky can be used for cosmological analysis. Should the
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foreground contamination impose more drastic sky-cuts there will be a significant error degradation

– see e.g. [329]. Here, we assume that 80% of the sky can be used for cosmological analysis.

The estimated errors also assume that there is no effect of leakage of power from E to B-modes.

By using a large fraction of the sky, the errors on the measured polarization will vary spatially when

foreground uncertainty is included, resulting in additional contamination of the B-mode signal. The

analysis of [329] suggests that this would inflate error bars over those presented here, although

initial studies in [17] indicate that the effect should be small for models with r = 0.01. For further

discussion see Ref. [17] .

We treat the weak lensing B-mode signal as a Gaussian noise in the Fisher matrix. In all cases

we do not assume that lens-cleaning (delensing) can be implemented. Should delensing be possible

the constraints will improve.

Residual foregrounds introduce a bias (i.e. a systematic error) to constraints on cosmological

parameters while noise just introduces a statistical error. We attempt to include both these effects

in the reported confidence regions, despite the very different natures of these two terms. To estimate

their effects on the final constraints on cosmological parameters, we adopted the ansatz of [66] (this

ansatz has been found to reproduce the results of simulations of [17]). The systematic uncertainty on

the constraints introduced by residual foregrounds can be appreciated by comparing forecasts for the

case with no foregrounds (only statistical errors) and the case with foregrounds (with statistical and

systematic errors). The theoretical power spectra Cℓ are therefore split into a primordial contribution

Cℓ, a contribution from instrumental noise Nℓ, and a residual foreground term Fℓ, which will also

be treated as a noise term:

Cℓ = Cℓ +Nℓ + Fℓ . (114)

The primordial signal Cℓ is computed using the publicly available Code for Anisotropies in the

Microwave Background (CAMB) [399]. We now describe our models for the noise Nℓ and the

residual foregrounds Fℓ.

Instrumental noise

We assume Gaussian beams, where ΘFWHM denotes the FWHM of a beam and σb = 0.425 ΘFWHM.

The noise per multipole is n0 = σ2
pixΩpix, where Ωpix and σ2

pix are the pixel (beam) solid angle and

the variance per pixel, respectively. In terms of the sky fraction fsky, the number of pixels Npix, the

detector sensitivity s, the number of detectors Ndet and the integration time t, we find

Ωpix = ΘFWHM × ΘFWHM = 4π
fsky

Npix
, σpix =

s√
Ndett

. (115)

With these definitions the noise bias becomes

Nℓ =
ℓ(ℓ+ 1)

2π
n0 exp(ℓ2σ2

b ) . (116)

For Nchan frequency channels the noise bias is reduced by a factor of 1/Nchan. We therefore treat

the noise bias as a function of {ΘFWHM, σpix, Nchan}.
If the different channels have different noise levels we need to generalize the above considerations.

The optimal channel combination then is

Cℓ =

∑

i,j≥iwijC
ij
ℓ

∑

i,j wij
, wij ≡

[

N i
detN

j
det

1

2
(1 + δij)

]−1

, (117)
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where i, j label the different frequency channels, and N i
det are the number of detectors in frequency

channel νi. The resulting noise is given by

[

NXY
eff (ℓ)

]−2
=
∑

i≥j

[

(

nXYfg,i (ℓ) + nXYi (ℓ)
) (

nXYfg,j (ℓ) + nXYj (ℓ)
) 1

2
(1 + δij)

]−1
, (118)

where i, j runs though the channels, ni is the instrumental noise bias (i.e. convolved with the beam)

of channel νi, and nfg is given by the sum of ndust + nsynch,

nXYdust,synch,i(ℓ) = CXYresidual,i(ℓ) +
nXYi (ℓ)

Nchan(Nchan − 1)/4

(

νi
νref

)2α

, (119)

where Nchan is the total number of channels used, and the reference channel νref is the highest and

lowest frequency channel included in the cosmological analysis for dust and synchrotron respectively.

The frequency dependence α for the foreground under consideration is defined in Table 10. We

define the frequency channels and their associated noise levels for two realistic CMB satellites in

§C.3.

Foreground residuals

Details of the foreground subtraction are discussed in a separate publication [17]. As described

there, foreground removal is most effectively and optimally carried out in pixel space. Here, we

assume that foreground subtraction can be done correctly down to a given level (i.e. 1% in the Cℓ
for the optimistic case and 10% in the Cℓ for a more pessimistic case). We then use foreground

models in harmonic space to propagate the effects of foreground subtraction residuals into the

resulting error-bars for the cosmological parameters. Actual cleaning of foregrounds should not be

carried out in harmonic space.

We focus on the two dominant polarized foregrounds: synchrotron (S) and dust (D). The residual

Galactic contamination is

Fℓ(ν) =
∑

fg=S,D

Cfg,XY
ℓ (ν)σfg,XY +N fg,XY

ℓ (ν; νtp) . (120)

Here, X,Y stand for {E,B}, Cfg
ℓ (ν) is our model for the power spectrum of the synchrotron and

dust signals, σfg is the assumed residual (1% for the optimistic case, 10% for the pessimistic case),

and N fg
ℓ (ν; νtp) is the noise power spectrum of the foreground template map (created at template

frequency νtp), as foreground templates are created by effectively taking map differences and thus

are somewhat affected by the instrumental noise.

For the scale-dependence of the synchrotron signal we assume

CS,XYℓ (ν) = AS

(

ν

ν0

)2αS
(

ℓ

ℓ0

)βS

, (121)

where αS = −3, βS = −2.6, ν0 = 30 GHz, and ℓ0 = 350, AS = 4.7 × 10−5 µK2 (corresponding to

0.91µK2 in ℓ(ℓ+1)/(2π)Cℓ). This choice matches the synchrotron emission at 23 GHz observed and

parameterized by WMAP [400], and agrees with the DASI [401] measurements.

For dust we assume

CD,XYℓ (ν) = p2AD

(

ν

ν0

)2αD
(

ℓ

ℓ0

)βXY

D

[

ehν0/kT − 1

ehν/kT − 1

]2

, (122)
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where αD = 2.2, ν0 = 94 GHz, ℓ0 = 10, AD = 1.0 µK2, βXYD = −2.5. The intensity of the dust,

given by AD, is estimated to be 1.0 µK2 at ℓ0 = 10 from the IRAS dust map extrapolated to 94 GHz

by Ref. [402]. The dust polarization fraction, p, is estimated to be 5%, motivated by the fact that

even a very weak Galactic magnetic field of ∼ 3 µG already gives a 1% polarization [403] and that

Archeops [404] finds an upper limit for the diffuse dust component of a 5% dust polarization fraction

at ℓ = 900. This is also consistent with WMAP observations [400, 405], and with the Planck sky

model that has been derived from these observations [17]. However, including possible depolarization

effects due to the Galactic magnetic field, there is around an order of magnitude uncertainty in the

observed dust polarization fraction, which could reasonably lie in the approximate range ∼1% to

∼10%. For more discussion see [17] and [18]. Recent studies by [406] suggest an upper limit of

p ∼15%. The normalization used here yields ℓ(ℓ+ 1)/(2π)Cℓ ∼ 0.04 µK2 at ℓ0 = 10 for p = 5%.

The ℓ-dependence, however, is quite uncertain. The slope for polarization may not be the same

as that for the temperature, βTTD = −2.5. The work of Refs. [407, 408] seems to indicate that any

modulation of the density field by the magnetic field orientation would always flatten the spectrum.

Measurements of starlight polarization [409] indicate βEED = −1.3, βBBD = −1.4, βTED = −1.95. We

will thus also examine in some cases how constraints improve for a more optimistic case with the

flatter spectrum of βEED = −1.3, βBBD = −1.4, βTED = −1.95 (foreground option B). In this case

AD = 1.2 × 10−4 µK2 at ℓ0 = 900, ν0 = 94 GHz.

We summarize the foreground parameterization41 in Table 10, again emphasizing that the simple

foreground models above are only used for the purpose of propagating the effects of foreground

residuals into the estimated uncertainties on the cosmological parameters.

Table 10: Assumptions about foreground subtraction.

parameter synchrotron dust dust B

AS,D 4.7 × 10−5 µK2 1.0 µK2 1.2 × 10−4 µK2

p (dust only) – 5% 5%

ν0 30 GHz 94 GHz 94 GHz

ℓ0 350 10 900

α −3 2.2 2.2

βEE −2.6 −2.5 −1.3

βBB −2.6 −2.5 −1.4

βTE −2.6 −2.5 −1.95

subtraction

Optimistic 1% 1% 1%

Pessimistic 10% 10% 10%

41The Greek letter β is used in this text as in [66], to quantify the angular dependence of the foreground

power spectra. We note that in many foreground analyses this letter is used to quantify the frequency

dependence of the foregrounds. The companion CMBPol document on Foreground Removal [17] uses m in

place of β for the angular dependence of the foregrounds, and β in place of α for the frequency dependence.
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C.2 Ideal Experiment

For comparison with the (semi-)realistic satellite experiments described below, we here quote for

reference the parameter constraints derived from an ideal experiment. The reference experiment

covers the full sky (fsky = 1), with no instrumental noise (Nℓ = 0) and no foregrounds (Fℓ = 0) up

to ℓmax = 1500. Results are shown in Table 11 and are taken directly from Ref. [66].

r ∆r ∆ns ∆nt ∆αs

0.01 0.001 0.0017 0.056 0.003

L 0.03 0.0027 0.0017 0.047 0.0036

0.1 0.006 0.002 0.035 0.0035

0.01 0.000021 0.0021 0.0019 0.0038

NL 0.03 0.000063 0.0021 0.0019 0.0038

Table 11: 1σ errors for an ideal experiment, including lensing (L), and with no lensing (NL) [66].

C.3 Realistic Satellite Experiments

We forecast the expected observational constraints on inflationary parameters from different types

of space-based experiments. For each experiment we specify the spectral range and resolution, the

spatial resolution, the collecting area, the field of view, as well as assumptions about foreground

subtraction and instrumental noise (see Tables 10, 12 and 13). When computing forecasts in the

presence of foregrounds we use only the five central frequencies of each experimental setup. This is

motivated by the fact that, effectively, the statistical power of the highest and lowest frequencies is

entirely used to characterize the foregrounds themselves. We present our results in Tables 14 and

15.

C.4 Forecasts

Here we report complete forecast tables. In Table 14 we give the constraints on other cosmological

parameters including the scalar spectral index ns and its running αs for the mid-cost set up (EPIC-

2m). Table 15 shows the forecasts for the parameters r and nt, the constraints on which completely

rely on the B-mode polarization measurements. In the absence of foregrounds CMBPol can reach

constraints similar to those of an ideal experiment for r & 0.001. These results illustrate the

importance of accurate foreground subtraction: the key conclusion to be drawn from Table 15 is

that our ability to detect a primordial tensor background with r . 0.01 depends critically on the

detailed properties of the polarized foregrounds that exist in the universe, and our ability to subtract

them at the 1% level or better in the power (i.e. 10% level in the amplitude).

The forecasts in Table 15 are averages of the results of two independent implementations of

the Fisher algorithm ([51, 66]). In low signal-to-noise regimes the Fisher approach is unlikely to

provide reliable forecasts – for these situations we do not give quantitative forecasts. In the absence

of foregrounds, CMBPol will provide constraints comparable to those of an ideal experiment for
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Freq (GHz) beam FWHM (arcmin) δT (µK arcmin)

30 155 44.12

40 116 15.27

60 77 8.23

90 52 3.56

135 34 3.31

200 23 3.48

300 16 5.94

Table 12: Experimental specifications for the low-cost (EPIC-LC) CMBPol mission. The highest

and lowest frequencies are excluded from the analysis when we consider the realistic case

with foregrounds, but included in the idealized case of no foregrounds. δT is for the

Stokes I parameter; the corresponding sensitivities for the Stokes Q and U parameters

are related to this by a factor of
√

2.

Freq (GHz) beam FWHM (arcmin) δT (µK arcmin)

30 26 13.58

45 17 5.85

70 11 2.96

100 8 2.29

150 5 2.21

220 3.5 3.39

340 2.3 15.27

Table 13: Experimental specifications for the mid-cost (EPIC-2m) CMBPol mission. The highest

and lowest frequencies are excluded from the analysis when we consider the realistic case

with foregrounds, but included in the idealized case of no foregrounds. δT is for the

Stokes I parameter; the corresponding sensitivities for the Stokes Q and U parameters

are related to this by a factor of
√

2.

r & 0.001. Recall that if we impose the inflationary consistency condition, the tensor spectrum is

specified by just one parameter, r, and this single parameter can be tightly constrained. If we do

not impose this prior, fits to r and nt permit only weak null tests of the consistency condition. In

particular, if r . 0.01, |nt| is very much smaller than the forecast constraint – even for EPIC-2m

and perfect foreground subtraction.
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no FG Opt FG Pess FG

∆wb 5.8 × 10−5 5.9 × 10−5 5.9 × 10−5

∆wc 0.00020 0.00022 0.00030

∆ exp(−2τ) 0.0028 0.0031 0.0046

∆h 0.0010 0.0011 0.0014

∆(As/2.95 × 10−9) 0.0029 0.0031 0.0041

∆ns 0.0016 0.0016 0.0017

∆αs 0.0036 0.0036 0.0036

Table 14: Forecasted constraints on cosmological parameters, applying the consistency relation.

We only report forecasts for the EPIC-2m set up. Error bars for EPIC-LC are comparable

with those from Planck.

EPIC-LC EPIC-2m

∆r ∆nt ∆r ∆r ∆nt ∆r

no FG r = 0 – – – 5.0 × 10−5 0.20 3.3 × 10−5

r = 0.001 6.9 × 10−4 0.18 2.3 × 10−4 5.7 × 10−4 0.17 2.1 × 10−4

r = 0.01 0.0017 0.076 5.4 × 10−4 0.0015 0.072 4.8 × 10−4

Opt FG r = 0.001 0.0022 1.1 5.2 × 10−4 0.0018 0.93 4.1 × 10−4

r = 0.01 0.0029 0.15 6.6 × 10−4 0.0025 0.13 5.4 × 10−4

Pess FG r = 0.001 – – 8.0 × 10−4 – – 6.3 × 10−4

r = 0.01 – – 9.2 × 10−4 0.0049 0.28 7.4 × 10−4

Opt FG B r = 0.001 8.6 × 10−4 0.26 3.5 × 10−4 6.7 × 10−4 0.22 3.0 × 10−4

r = 0.01 0.0018 0.085 6.0 × 10−4 0.0016 0.078 5.0 × 10−4

Pess FG B r = 0.001 – – 6.4 × 10−4 0.0016 0.81 5.2 × 10−4

r = 0.01 0.0029 0.15 7.8 × 10−4 0.0025 0.14 6.5 × 10−4

Table 15: Forecasted constraints on tensor modes. Results are presented for EPIC-LC and EPIC-

2m with optimistic and pessimistic foreground assumptions and two different models

for the scale-dependence of the dust polarization. Cases where there was no predicted

detection and the Fisher approach is unreliable are denoted by dashes, and a quantitative

forecast is not presented for these cases.
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D List of Acronyms

Acronym Definition and Comments

CMB Cosmic Microwave Background

CDM Cold Dark Matter

ΛCDM Concordance Cosmology

ISW Integrated Sachs-Wolfe Effect

SZ Sunyaev-Zel’dovich Effect

BAO Baryon Acoustic Oscillations

LSS Large-Scale Structure

SN Supernovae

GR General Relativity

FRW Friedmann-Robertson-Walker

SVT Scalar-Vector-Tensor

QM Quantum Mechanics

SM Standard Model

EFT Effective Field Theory

QFT Quantum Field Theory

UV Ultraviolet

TeV 1012 eV; energy scale probed by LHC

GUT Grand Unified Theory

PNGB Pseudo-Nambu-Goldstone-Boson

TT Temperature Autocorrelation

TE Temperature-Polarization Crosscorrelation

EE E-mode Autocorrelation

BB B-mode Autocorrelation

C.L. Confidence Limit

FWHM Full Width at Half Maximum

FG Foreground

Pess FG Pessimistic Foreground Level

Opt FG Optimistic Foreground Level

Table 16: Common acronyms in physics and cosmology.

88



Space-based

COBE Cosmic Background Explorer

RELIKT-1 –

WMAP Wilkinson Microwave Anisotropy Probe

Planck Planck Satellite

SDSS Sloan Digital Sky Survey

2dFGRS Two Degree Galaxy Redshift Survey

CMBPol Future CMB Polarization Satellite

EPIC Experimental Probe of Inflationary Cosmology

EPIC-LC EPIC-low cost

EPIC-2m EPIC-mid cost

SPOrt Sky Polarization Observatory

BBO Big Bang Observer

Balloon

BOOMERanG –

Archeops –

MAXIMA Millimeter Anisotropy eXperiment IMaging Array

SPIDER –

EBEX E and B Experiment

Ground-based

ACT Atacama Cosmology Telescope

SPT Southpole Telescope

AMI Arcminute Imager

SZA Sunyaev-Zel’dovich Array

ACBAR Arcminute Cosmology Bolometer Array Receiver

DASI Degree Angular Scale Interferometer

CBI Cosmic Background Imager

PolarBEAR Polarization of Background Radiation

Clover Cℓ-over

BICEP Background Imaging of Cosmological Extragalatic Polarization

QUIET Q/U Imaging ExperimenT

QUaD QUEST at DASI

CAPMAP –

VSA Very Small Array

LHC Large Hadron Collider

Table 17: Common acronyms for cosmological experiments; mostly limited to CMB experiments.
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