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Abstract In the development of atomic clocks, some
atomic transition frequencies are measured with remarkable
precision. These measured spectra may include the effects of
a new force mediated by a weakly interacting boson. Such
effects might be distilled out from possible violation of a
linear relation in isotope shifts between two transitions, as
known as King’s linearity, with relatively suppressed theo-
retical uncertainties. We discuss the experimental sensitiv-
ity to a new force in the test of the linearity as well as the
linearity violation owing to higher-order effects within the
Standard Model. The sensitivity to new physics is limited by
such effects. We have found that, for Yb+, the higher-order
effect is in the reach of future experiments. The sensitivity to
a heavy mediator is also discussed. It is analytically clarified
that the sensitivity becomes weaker than that in the litera-
ture. Our numerical results of the sensitivity are compared
with other weak force search experiments.
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1 Introduction

One of the main targets of the intensity frontier in particle
physics is a new force carrier which is much lighter than
the weak scale and very weakly interacts with the Standard
Model particles. Such a new particle is examined by low
energy experiments and stellar observations.

Among various experiments, measurements of transition
frequencies in the development of atomic clocks achieve
remarkable precision. Their relative error is expected to be
the order of 10−18 for Yb ion in the near future [1]. Therefore,
precision atomic spectroscopy can be considered as a sensi-
tive probe to a new force other than the Coulomb interaction.
In contrast to the extreme precision of the experiments, the
theoretical calculation of atomic spectra suffers from uncer-
tainties of the many-body system.

A possible way to reduce theoretical uncertainties is to
utilize the isotope shift. The atomic spectra differ from one
isotope to another. The shifts are considerably small, typi-
cally O(GHz), compared with the major part of the Coulomb
interaction. The remaining shifts are ascribed to two origins.
One is the mass shift and the other is the field shift. The mass
shift is caused by the modification of the kinetic term. The
field shift depends on the modification of the potential which
originates from the nuclear charge distribution differences
of isotopes. At the leading order of these effects, the isotope
shifts of two different transitions satisfy a linear relation. This
linear relation is called King’s linearity [2].

The electron–neutron interaction given by a new force car-
rier also contributes the isotope shift. In general, this effect
violates King’s linearity. Using this property, the possibility
to detect the contributions of the Higgs and Z bosons is stud-
ied in Ref. [3]. As revisited in the next section, their effects
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are highly suppressed by the large scale differences between
the electroweak and the atomic physics. However, the viola-
tion of King’ linearity could be still a good probe of a new
force mediated by a boson lighter than about 1 MeV [4–6].

In this paper, we study the violation of King’s linearity
by a new force which is mediated by a light new boson. In
particular, its sensitivity to the new physics is discussed by
not only numerical but also analytic means. We also study
the next-leading-order contribution of the field shift, which
also violates the linearity [7,8]. We argue how the field-shift
non-linearity limits the experimental sensitivity to the new
physics. The expected bounds on the new force in future
experiments are compared with the other known constraints.
It turns out that King’s linearity violation gives us a comple-
mentary constraint to a new force in the intra-atomic (sub-
keV to sub-MeV) range.

The rest of the paper is organized as follows. In Sect. 2,
we revisit the breaking of King’s linearity by the higher-order
effect of the field shift and by the new particle. Afterwards,
we present our numerical results of the violations of the lin-
earity in terms of the mass and the coupling of the new boson
in Sect. 3. We also compare the future sensitivity of King’
linearity violation with other bounds. Section 4 is devoted to
our conclusion.

2 Non-linearity of the isotope shift

We review King’s linearity and discuss its violation in this
section. Two sources of the linearity violation are examined.
One is the next leading order (NLO) of the field shift, and
the other is the light new mediator. We call the isotope shift
by the exchange of a new particle as the particle shift.

The isotope shift of a transition, which is represented by
δν, is described by the leading orders of the mass shift and
the field shift, and the other contributions as

δν = Gδμ + Fδ〈r2〉 + X. (2.1)

The coefficients G and F represent the transition-dependent
parts of the mass and the field shift, respectively. The last term
X stands for the other contributions including the higher-
order effects of the above shifts. The reduced mass difference
of the isotopes is denoted by δμ. The transition-independent
part of the field shift is given by the difference of the mean
square charge radii δ〈r2〉 of the nuclei. Since the precise
charge distribution is not clear, to be compared to the reduced
masses, we eliminate δ〈r2〉 with another transition. Using the
subscripts 1 and 2 for the different transitions, we obtain

ω2 = F2

F1
ω1 + G21 + X21

δμ
, (2.2)

where

ωi = δνi

δμ
, (2.3)

G21 = G2 − F2

F1
G1, (2.4)

X21 = X2 − F2

F1
X1. (2.5)

We call ωi the modified isotope shift. If the last term is inde-
pendent of the mass numbers, the modified isotope shifts
satisfy the linear relation, that is, King’s linearity [2].

In the rest of this section, we firstly study the higher-order
correction of the field shift. Since it contributes X , the sensi-
tivity to the new particle is limited by the size of its contribu-
tion. Secondly, we discuss the particle shift. The formulation
is similar to the field shift. Afterwards, the violation of the
linearity is discussed in detail for both of the shifts.

2.1 The field shift

The nuclear charge distributions of the isotopes are slightly
different from each other. Their small modifications of the
potentials are observed as the field shift in the isotope shift.

In the single electron approximation, assuming the spher-
ical symmetry of the system, the field shift of a transition is
written as

FS =
∫

dr r2(RN ′(r)2 − RN (r)2)δV (r), (2.6)

where RN (r) is the radial wave function of the state speci-
fied by a set of the quantum numbers represented as N . The
modification of the potential δV (r) is defined as

δV (�r) = −Zα

∫
d �r ′ δρ(r ′)

|�r − �r ′| , (2.7)

with the charge distribution difference δρ(r) between two
nuclei of charge Z . The spherical symmetry of δρ is the ori-
gin of the symmetry of δV . The charge distribution ρ is nor-
malized as

4π

∫
dr r2ρ(r) = 1. (2.8)

Since the total charges of the isotopes are the same, the dif-
ference of the potential δV can be expressed as

δV (r) = − 4π Zα

(∫ r

0
dr ′ r ′2

r
δρ(r ′) +

∫ ∞

r
dr ′ r ′δρ(r ′)

)

(2.9)

= − 4π Zα

∫ ∞

r
dr ′

(
r ′ − r ′2

r

)
δρ(r ′). (2.10)
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In terms of the perturbation on the charge distribution differ-
ence, we do not have to take care the isotope dependence of
the wave function at the leading order.

The charge distribution difference appears near the ori-
gin, and the potential difference does too. The wave func-
tion close to the origin is modified from that given by the
point charge, which is a good approximation away from the
nucleus. Therefore, we separately treat the wave functions in
the two regions in calculating the field and the particle shifts.
The wave function near the nucleus is evaluated by the power
series expansion at the origin, and then it is connected to the
solution given by the point charge. The connection point rc is
also determined by the smooth connection condition. A more
explicit description of our treatment is shown in Appendix A.

For simplicity, we discuss the contribution of a state to
the field shift. We write the squared wave function inside the
nucleus in a series expansion as

RN (r)2 = r2l
∑
k=0

ξ lkr
k, (2.11)

where l is the angular momentum. The wave function outside
the nucleus is denoted by 	l . The energy shift is given by the
following integration:

∫ ∞

0
dr r2RN (r)2δV (r) =

∫ rc

0
dr r2l+2

∑
k=0

ξ lkr
kδV (r)

+
∫ ∞

rc
dr r2	l(r)δV (r) (2.12)

=
∫ ∞

0
dr r2l+2

∑
k=0

ξ lkr
kδV (r)

+
∫ ∞

rc
dr r2

(
	l(r) −

∑
k

ξ lkr
k+2l

)

× δV (r). (2.13)

With Eq. (2.10) and the exchange of the integration order,
the first term gives us the Seltzer moment expansion [9],

∫ ∞

0
dr rl+2

∑
k=0

ξ lkr
kδV (r)

= Zα
∑
k=0

ξ lk

(k + 2l + 3)(k + 2l + 2)
δ〈rk+2l+2〉, (2.14)

where

δ〈ra〉 = 4π

∫
dr ra+2δρ(r). (2.15)

The explicit form of 〈ra〉 with the Helm form factor [10]
is shown in Appendix B. For l = 0, the leading term of the
above expression is proportional to δ〈r2〉. This term gives the
field shift in Eq. (2.1). If the expansion of the wave function

can be extended to the outside of the nucleus, the second term
of Eq. (2.13) vanishes.

For the case of the Helm distribution, the ratio of the lead-
ing and the next leading-order field shift for l = 0 is roughly
estimated using the formulas shown in Appendices A and B,

NLO

LO
= 3

10

ξ0
2

ξ0
0

δ〈r4〉
δ〈r2〉 (2.16)

= 3

7
ZαmerN

(
1 + 6

s2

r2
N

+ O(s4/r4
N )

)
(2.17)

∼ Z(4.10 + 0.0255 Z) × 10−5. (2.18)

We have found the last approximate formula using rN =
0.519+1.00Z1/3+0.103Z2/3 fm, which is derived by fitting
rN in Eq. (B.2) as a function of Z with the mass number A
being the standard atomic weight [11]. We have used the
atoms of Z ≥ 10 to find the above fit results. For Ca+ and
Yb+, the NLO-to-LO ratios are 8.69×10−4 and 4.15×10−3,
respectively. The estimate is consistent with Ref. [7].

2.2 The particle shift

Since the particle shift is sensitive to only the interaction of
electron with neutron, we consider the following potential:

VPS(r) = (−1)s+1(A′ − A)
gnge
4π

e−mr

r
, (2.19)

where gn and ge are the coupling with neutron and electron,
respectively. The new force carrier is supposed to possess the
spin s and the mass m. Then, in the single electron approxi-
mation, the particle shift is

PS =
∫

dr r2(RN ′(r)2 − RN (r)2)VPS(r). (2.20)

This is just given by the replacement of δV with the Yukawa
potential in the field shift.

Following the discussion of the field shift, we consider the
contribution to the particle shift by a state with the angular
momentum l. Omitting the couplings, it is written as

∫
dr r2RN (r)2 e−mr

r
=

∫ rc

0
dr r2l+1e−mr

∑
k=0

ξ lkr
k

+
∫ ∞

rc
dr re−mr	l(r) (2.21)

=
∑
k=0

ξ lk

mk+2l+2 (k + 2l + 1)!
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−
∑
k=0

ξ lk

mk+2l+2 
(k + 2l + 2,mrc)

+
∫ ∞

rc
dr re−mr	l(r), (2.22)

where we use the incomplete gamma function, 
(n, x) =∫ ∞
x dt tn−1e−t .

For a given order of the Seltzer moment in Eq. (2.14), each
term of the first summation in Eq. (2.22) is simultaneously
eliminated with the corresponding field shift.

If the mass of the mediator is much larger than the inverse
of the nuclear size, the particle shift is dominated by the lead-
ing term in the first summation of Eq. (2.22). Assuming that
the transitions include s-states, the field-shift coefficient F
is proportional to ξ0

0 as shown in Eq. (2.14). The particle
shift involved in X is dominated by the contribution of ξ0

0
in Eq. (2.22). Thus Fδ〈r2〉 + X is regarded as the product
of ξ0

0 and the transition-independent (but isotope-dependent)
quantity. Eliminating the latter with two transitions results
in the linear relation in which the information of the particle
shift is lost. This is the reason why the violation of King’s lin-
earity is insensitive to the Higgs and Z bosons, as discussed
in Ref. [3]. For a light mediator, the integration in Eq. (2.22)
gives us the leading contribution. If the mass of the media-
tor is small enough to cover the whole wave function, this
contribution becomes independent of the mass.

2.3 Non-linearity

So far, we have obtained some additional contributions to the
isotope shift. Including the terms discussed in this section,
Eq. (2.1) is modified as

δν = Gδμ + Fδ〈r2〉 + F̃ + (A′ − A)H. (2.23)

The higher-order field shift is described by F̃ , and its leading
contribution is proportional to δ〈r4〉. The last term including
H is the contribution of the particle shift. These terms have
appeared as X in Eq. (2.1), then, in general, they violate
King’s linearity.

In Eq. (2.2), the values F1,2 are proportional to the dif-
ferences of the squared wave functions at the origin (see
Eq. (2.14)). Omitting the electron spin degree of freedom as
the numerical analysis in Sect. 3, three or four distinct elec-
tronic orbital states are involved in the two transitions. Here
we consider the case that one of the orbital states is an s-state
and the others are non-s-states. We observe the following
features of the non-linearity:

• If both of the transitions include the s-state, its contribu-
tions are canceled each other.

• If only one of the transitions includes the s-state, its con-
tribution is suppressed.

In the former case, we obtain X2/X1 = F2/F1 as far as the s-
state contributions in X1,2 are considered, so that the s-state
contribution to X21 in Eq. (2.5) vanishes. In the latter case,
assuming that the transition 1 includes the s-state, namely,
F1 	= 0 and F2 = 0, then X21 = X2. That is, the dom-
inant contribution due to the s-state is suppressed. In both
of the cases, the non-linearity is induced by higher angu-
lar momentum states. We shall use the experimental results
of these situations in the numerical analysis later. To obtain
effects of the non-linearity by the s-state, the transitions need
to include at least two distinct s-states.

The non-linearity given by the particle shift follows the
same features. The contributions of the s-states disappear
unless the relevant transitions include two or more distinct s-
states. Then only the states with the higher angler momenta
contribute to the non-linearity. The sensitivity to the new
force carrier is scaled with an inverse power of its mass if
it becomes much heavier than the typical scale of the wave
function. Since the leading contribution is not given by the
s-state in the above situation, the scaling is 1/m4 or worse.

Finally, we mention the extension of King’s linearity. The
higher-order corrections, such as the NLO field shift above,
prevent us from improving the experimental bounds of the
light mediator search. However, it is possible to eliminate the
effect of the NLO field shift and obtain an extended linear
relation if we use additional data of isotope shifts with another
transition. The general structure of the linearity is discussed
in Appendix C.

If we eliminate the higher-order field shift, the correspond-
ing contributions of the particle shift are simultaneously
removed. This means that the above scaling in the heavier
mediator region becomes worse. Including distinct s-states
helps us to improve the sensitivity in a region between the
atomic and the nuclear scales.

3 Numerical analysis

We show the current status and the future prospect of the
new weakly interacting light mediator search with the isotope
shift.

The particle shift is measured as the deviation from King’s
linearity with two transitions of an element. Hence, in addi-
tion to the experimental precision, the choices of elements
and transitions are also important to measure the effect of the
new force. In the following numerical analysis, we compare
the calcium ion Ca+ and the ytterbium ion Yb+. As shown
below, some isotope shifts of Ca+ are precisely measured at
present and the data satisfy King’s linearity within the errors.
The relative errors in its isotope shifts are better than 10−4.
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Experiments on Yb+ give us similar bounds on the parti-
cle shift though the errors are about one order of magnitude
worse than those of Ca+. We investigate the future prospect
of experimental bounds, simply reducing the experimental
error to 1 Hz as an illustration.

The precise wave functions of the states in the transitions
are quite difficult to obtain for heavier elements because it is a
many-body problem. We calculate them as the wave function
of an electron in an effective potential given by other elec-
trons and the nucleus. The effective potential is estimated by
the Thomas–Fermi model, which is a semi-classical approx-
imation of the electrons around the nucleus see e.g. [12]. Our
analysis is done in the non-relativistic limit. In this case, the
wave function does not discriminate the spin dependence.
The electronic states are characterized by a pair of quantum
numbers (n, l). This approximation is good for s- and p-
states as shown in Appendix D and Ref. [13]. The same data
set of Ca+ isotope shifts is studied in Ref. [4] using different
wave functions from ours. Both results reasonably agree in
the sufficiently small mass region.

3.1 Experimental data of isotope shifts

The experimental data of the isotope shifts used in our anal-
ysis are summarized in Table 1. The masses of isotopes for
the calculation of the modified isotope shifts are given in
Ref. [11].

For Ca+, we use the transitions of 397 nm (2S1/2 →
2P1/2) and 866 nm (2D3/2 → 2P1/2) reported in Ref. [14]. In
our calculations, the first one is considered as the transition
of 4s → 4p and the second one is the 3d → 4p transition.

For Yb+, the transitions of 369 nm (2S1/2 → 2P1/2)
and 935 nm (2D3/2 → 3D[3/2]1/2) are studied. They are
given in Refs. [15] and [16], respectively. These transitions,
respectively, correspond to the 6s → 6p transition and the
4 f → 6s transition in our study. For these transitions, King’s
plot is shown in Fig. 1.

Both of transitions include only one s-state, 4s for Ca+ and
6s for Yb+. As discussed in the previous section, the s-states
do not contribute to the non-linearity of King’s plot in these
cases. Besides, the field shift of the higher Seltzer moments
rapidly become small. Therefore, the p-states numerically
dominate the field-shift non-linearity.

The constraints to the non-linearity are calculated by the
usual χ2 as described in Appendix E. The bound to gnge
depends on its sign. The weaker bound is employed as the
one for its absolute value.

3.2 Current experimental bounds and future prospects

The current bounds and the future prospects of King’ linearity
violation are shown in Fig. 2. The lines given by the isotope
shifts are the same in both panels. The left and the right

Table 1 Isotope shifts of Ca+ and Yb+ in the unit of GHz. The shifts of Ca+ are given by Ref. [14], and those of Yb+ are given by Refs. [15] (369
nm) and [16] (935 nm). The shifts are measured from the mass number of 40 for Ca+ and 172 for Yb+

Ca+ 397 nm 866 nm Yb+ 369 nm 935 nm

42 0.425706 (94) − 2.349974 (90) 170 −1.6233 (8) − 3.464 (10)

44 0.849534 (74) − 4.498883 (80) 174 1.2753 (7) 2.612 (3)

48 1.705389 (60) − 8.297769 (81) 176 2.4928 (10) 5.074 (19)

Fig. 1 King’s plot of Yb+. The
modified isotope shifts are in the
natural unit. In the main figure,
the error bars are 10σ , while
they are 1σ in the insets. The
width and the height of the insets
are 2 × 10−6 and 5 × 10−6,
respectively. The isotope pairs
of the plotted points are
(176, 172), (174, 172) and
(172, 170) from left to right
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Fig. 2 The isotope shift and other experimental constraints on the mass
and the coupling of the light force carrier. The left panel is for the scalar
mediator and the right one is for the vector mediator. The red/blue lines
and region are used for the bounds with the isotope shifts by Ca+/Yb+.
The upper solid lines are the current experimental bounds, and the lower
ones are the future prospects with the error of 1 Hz. The non-linearities
by the NLO field shifts appear in the shaded regions below the dashed
lines. The upper shaded orange regions indicate the constraints obtained

with the bounds on the couplings of electron and neutron by low energy
experiments; see the main text for the details. The shaded brown regions
below about 500 keV is constrained by the stellar cooling bounds given
by Ref. [24]. As described in Ref. [25], the stellar bounds have uncer-
tainty above the brown dotted line. The shaded gray regions below about
100 eV are restricted by the fifth force experiment [26,27]. The black
line in the right panel stands for the region indicated by the Atomki
anomaly [28–30]

panels show other experimental constraints on the scalar and
the vector mediators, respectively.

The integrand of the particle shift in Eq. (2.20) includes
the difference of the squared wave functions. If the medi-
ator is massless, both of the states contribute the integral.
Since the integrand flips the sign at a point, the integral dis-
appears around the corresponding mass scale. This cancel-
lation explains the peak structures in Fig. 2. The position of
cancellation depends on the combination of the wave func-
tions. This means that testing the linearity with various atoms
and transitions is important not only to check each against
the other but also to exclude the cancellation points.

For the current bounds by the isotope shifts, Ca+ and Yb+
give us similar bounds, although the experimental errors of
Yb+ is about one order of magnitude worse than those of
Ca+. Accordingly, the sensitivity of Yb+ is about one order
of magnitude better than that of Ca+ in the prospected bounds
with the error of 1 Hz.

The field-shift non-linearity of Ca+ and Yb+ appear at
1.1 × 10−2 and 4.7 Hz, respectively. These frequencies are
interpreted in terms of the mass and the coupling of the light
mediator as indicated by the dashed lines in Fig. 2. Once the
experimental sensitivity reaches the line, the bound on the
particle shift is not improved without the further subtraction
of the field-shift non-linearity as discussed in Appendix C.
The Yb+ line of the expected sensitivity lies below the field-
shift non-linearity indicated by the dashed line, while the
Ca+ line does not. If the precision of the Ca+ measurement

is improved, it may cover the region of smaller coupling.
However, in this case, the non-linearity of the NLO mass
shifts, which are more significant for lighter elements, also
ought to be taken into account.

The experimental bounds are obtained as the allowed size
of the non-linearity. They depend on the sign of the coupling
with the light new mediator. Hence, the constraints to the
mediator are changed at the peaks since the sign of the par-
ticle shift is changed there. As already mentioned, we have
adopted the sign giving the weaker constraint to calculate
each of the current experimental bounds. Thus, the current
bounds shown in Fig. 2 are the conservative ones.

Now, we turn to other constraints by light particle searches
in the same mass region.

We consider the terrestrial bounds which are obtained as
the product of the individual bounds on the couplings with
electron and neutron. The constraint of the electron coupling
is mostly given by the electron g − 2 [17]. The region above
20 MeV is bounded by Babar [18]. The beam dump exper-
iments strongly constrain the region from 100 keV and 1
MeV to about 10 MeV for the scalar and the vector medi-
ators, respectively [19,20]. As summarized in Ref. [5], the
experimental bounds on the neutron coupling is given by the
combination of several low energy neutron experiments [21–
23]. The obtained bounds are much stronger than the current
bounds by the isotope-shift non-linearity. However, the future
prospects of the sensitivities are better than the above terres-
trial bound in the region between about 10 eV and 1 MeV.
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The mass region less than about 100 eV is covered by the
fifth force search [26,27]. Since this bound is very strong,
the mediator lighter than about 100 eV is almost excluded
for the entire coupling region plotted in Fig. 2.

The stellar cooling bounds are also very strong in the
region lighter than about 1 MeV [24]. However, if the cou-
pling becomes large, the light new boson cannot take the
energy to the outside. It is not sure that the stellar cooling
observation can constrain the boson for sufficiently strong
couplings. The brown dotted line in Fig. 2 indicates this lim-
itation given by Ref. [25]. We consider the isotope-shift non-
linearity as well as other terrestrial experiments to be useful
since it provides us constraints independent of the stellar
dynamics.

The mass and the coupling of the light vector boson sug-
gested by the Atomki 8Be experiment [28–30] are also shown
in the right panel of Fig. 2. The result in Ref. [4] is that
the region can be excluded by the future Yb+ measurement.
However, our result indicates that the sensitivity cannot reach
the coupling of the vector. Even worse, the field-shift non-
linearity prevents us from probing the parameter region. We
note that the present work and Ref. [4] employ different tran-
sitions of Yb+, and our result is derived from the existing data
of the Yb+ isotope shifts.

4 Conclusion

The isotope shifts can be precisely measured with the tech-
nique developed in the atomic clock experiments. In the mea-
surements, the weakly interacting light force carrier can be
tested as the violation of King’s linearity.

We have investigated two sources of the non-linearity. One
is the higher-order effect of the field shift and the other is the
above effect of the light mediator, the particle shift.

Because of the larger particle shift of heavier elements, the
sensitivity to the light mediator of Yb+ is about one order
of magnitude better than that of Ca+. However, Yb+ also
possesses the sizable field-shift non-linearity. In the future
prospects with the 1 Hz error, the sensitivity of Yb+ reaches
the non-linearity given by the field shift. Then its sensitiv-
ity to the light mediator is not improved without the further
development of the formulation of the linearity. On the other
hand, the field-shift non-linearity of Ca+ is about one order of
magnitude smaller than that of Yb+ in terms of the coupling
of the light mediator.

The future prospect gives us the bounds better than the
other low energy experiments in the region from 100 eV to
1 MeV. This region is also bounded by the observation of
the stellar cooling. The terrestrial experiments including the
isotope-shift non-linearity tell us the complementary infor-
mation.

In our study, the scaling of the sensitivity is analytically
clarified as 1/m4 in the region where the force carrier is
heavy. In the numerical analysis, this behavior is indeed
observed if the boson is heavier than about 100 keV. As a
result, the expected exclusion lines with the error of 1 Hz
cannot reach the parameter region of the Atomki anomaly.
Furthermore, the favored region cannot be proved because of
the field-shift non-linearity even if the experimental precision
is improved.

Our analysis uses the non-relativistic limit, the mean field
approximation with the Thomas–Fermi potential, and the
assumption of the Helm distribution. It is required to improve
the theoretical methods for more precise and extensive stud-
ies of the isotope-shift non-linearity including other atoms
and transitions.
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Appendix A: Wave function inside the nucleus

The Schrödinger equation of the radial direction is

(
d2

dr2 − l(l + 1)

r2 + 2me(E − V (r))

)
r RN (r) = 0. (A.1)

Since we consider a bound state, the potential V (r) and the
energy E are negative in this equation.

We are interested in the wave function near the origin. The
potential is expanded as

V (r) =
∑
i=0

vi r
i , (A.2)

where v0 < 0, and v1 = 0 for a nuclear charge distribution
without a cups at the origin such as the Helm distribution
described in Appendix B. It is supposed that the wave func-
tion is also given as the following series:

RN (r) =
∑
i=0

χ l
i r

i+l . (A.3)
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Then the Schrödinger equation is expressed as

0 = 2(l + 1)χ l
1 +

∑
i=0

r i+1

⎛
⎝(2l + i + 3)(i + 2)χ l

i+2

+ 2me((E − v0)χ
l
i −

i−2∑
j=0

vi− jχ
l
j )

⎞
⎠ . (A.4)

The first term leads to χ l
1 = 0. The entity within the large

parentheses gives us the recurrence relation to determine the
coefficients χ l

i . The first equation of the above relation with
i = 0 is

0 = (2l + 3)χ l
2 + me(E − v0)χ

l
0. (A.5)

Using E/v0 � 1, we obtain

χ l
2

χ l
0

= mev0

2l + 3
. (A.6)

The rest of the coefficients are recursively obtained. We use
the wave function of O(r2). The squared wave function
inside the nucleus is

RN (r)2 = r2lχ l
0

2
(

1 + 2mev0

2l + 3
r2 + · · ·

)
. (A.7)

This wave function is smoothly connected to the wave func-
tion with the point charge, i.e., the solution outside the
nucleus.

The coefficient χ l
0 and the connection point rc are both

obtained by the condition to connect. It is convenient to
express the wave function with the point charge as rl(a0 +
a1r) near the nucleus. Then the above quantities are analyti-
cally calculated as

χ l
0 = 1

2

⎛
⎝a0 −

√
mev0

(
a2

0mev0 + (2l + 3)a2
1

)
mev0

⎞
⎠ ∼ a0

+ (2l + 3)a2
1

4a0mev0
, (A.8)

rc = −
a0mev0 +

√
mev0

(
a2

0mev0 + (2l + 3)a2
1

)
a1mev0

∼ (2l + 3)a1

2a0mev0
. (A.9)

Strictly speaking, the wave function inside the nucleus
varies from one isotope to another because v0 depends on rN
as shown in Eq. (B.13). Since this is a higher-order effect,
we use the fixed rN of A = 44 for all the Ca isotopes and
A = 173 for the Yb ones.

B. The nuclear charge density and the potential with the
Helm distribution

The Helm distribution of the nuclear charge [10] is defined
as

ρ̃Helm(q) = 3
sin(qrN ) − qrN cos(qrN )

(qrN )3 e−q2s2/2. (B.1)

In our numerical analysis, we use the following parameters
given by Ref. [31]:

r2
N = c2 + 7

3
π2a2 − 5s2, (B.2)

a ∼ 0.52 fm, (B.3)

c ∼ 1.23A1/3 − 0.60 fm, (B.4)

s ∼ 0.9 fm. (B.5)

This distribution is given by smearing of the uniform density
distribution as shown below. The limit of s → 0 corresponds
to the uniform distribution with the radius of rN .

The spatial density is obtained:

ρHelm(r) =
∫

d�q
(2π)3 ρ̃Helm(q)ei �q·�r ,

= 3

8π2r3
Nr

(
−2s

√
2π sinh

(rrN
s2

)
e− r2+r2

N
2s2

+πr

(
Erf

(
r + rN√

2s

)
− Erf

(
r − rN√

2s

)))
,

(B.6)

where the error function Erf(x) is defined as

Erf(x) = 2√
π

∫ x

0
dte−t2 . (B.7)

The distribution is also expressed as

ρHelm(r) =
∫

d3r ′ 3

4πr3
N

θ(rN − r)ρg(�r − �r ′), (B.8)

where θ is the step function and the smearing function ρg is
given by the Gaussian distribution as

ρg(�r) = e−r2/2s2

(2πs2)3/2 . (B.9)

We can check the whole space integration of this density
indeed becomes unity, namely,

4π

∫ ∞

0
dr r2ρHelm(r) = 1. (B.10)

123
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The electrostatic potential induced by the above density
is

V (r) = − Zα

∫ ∞

0
d �r ′ ρHelm( �r ′)

|�r − �r ′| (B.11)

= − Zα

4πr3
Nr

(√
2πs

(
(r2 + rNr − 2r2

N + 2s2)e− (r+rN )2

2s2

− (r2 − rNr − 2r2
N + 2s2)e− (r−rN )2

2s2

)

− π

(
(r3 − 3(rN + s)(rN − s)r − 2r3

N )Erf

(
r + rN√

2s

)

− (r3 − 3(rN + s)(rN − s)r + 2r3
N )Erf

(
r − rN√

2s

)))
.

(B.12)

This function is even with respect to r . The potential at
the origin is

v0 = − 3
Zα

2rN

((
1 − s2

r2
N

)
Erf

(
rN√

2s

)
+ s

rN

√
2

π
e− r2

N
2s2

)
.

(B.13)

In the Seltzer moment expansion, we need the mean values
of rn ,

〈rn〉 = 4π

∫
dr ρ(r)r2+n (B.14)

= 2(
√

2s)n√
π




(
n + 3

2

)
1F1

(
−n

2
,

5

2
,− r2

N

2s2

)
,

(B.15)

where we introduce the confluent hypergeometric function
of the first kind,

1F1(a, b, z) = 
(b)


(b − a)
(a)

∫ 1

0
dt ezt ta−1(1 − t)b−a−1.

(B.16)

The relevant terms in our calculations are
〈

1

r

〉
= − v0

Zα
, (B.17)

〈r2〉 = 3

5
(r2

N + 5s2), (B.18)

〈r4〉 = 3

7
(r4

N + 14r2
N s

2 + 35s4). (B.19)

C. Generalization of the linearity

Eliminating the difference of the mean squared radii with
two distinct transitions, King’s linearity is obtained. It turns

out that the higher-order field shift and even the particle shift
can be similarly eliminated with additional transitions. We
formulate this procedure and derive the generalization of the
linearity as follows.

For simplicity, we discuss it with the higher-order field
shifts at first. The isotope shift is written as

δνi = Giδμ +
∑
k

F (k)
i δ〈r2+k〉 + Xi , (C.1)

where the terms including F (k)
i are the higher-order field

shifts in terms of the Seltzer moment. The last term Xi stands
for the other non-linearity. If we have a sufficient number of
transition data, the above expression can be rewritten as

δ�ν − �X =

⎛
⎜⎜⎝

...
...

...

Gi F (0)
i F (2)

i · · ·
...

...
...

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

δμ

δ〈r2〉
δ〈r4〉

...

⎞
⎟⎟⎟⎠ . (C.2)

For convenience, we write the matrix in the right hand side
as T . If T has an inverse, we multiply it to the above equa-
tion. The difference of the reduced masses δμ is precisely
measured, while the mean radii are not.

Multiplying T−1 to the above equation, the first element
is

∑
i

(T−1)1i (δ�ν − �X)i = δμ. (C.3)

Dividing this equation by δμ, we obtain the generalized linear
relation which is free of the field-shift non-linearity. If Xi =
0 for any i , the data of the modified isotope shifts with n
different transitions are on an n − 1 dimensional plane.

The above procedure is easily extended to the other non-
linearity. Firstly, the given term is separated into the wave-
function-dependent part and -independent part. This way of
separation is not unique, however, the result is independent
of this detail. Secondly, the wave-function-dependent part
is embedded in the above matrix T , and then we multiply
the inverse. Finally, the precisely measured element, like δμ

above, gives us the linear relation we want. This means that
we may simultaneously obtain several linear relations.

For example, we consider the elimination of the non-
linearity by the particle shift. In order to do so, the factor
independent of the wave function (A′ − A) is appended to
the above vector, and the other part is embedded in T . Then
a new linear relation is derived in the same manner as above.
Since the factor (A′ − A) is also determined with a high
precision, the additional linear relation is found from the dif-
ferent element. Even if King’ linearity violation is observed,

123
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these generalized linear relations are preserved as long as the
non-linearity originates from the particle shift.

D. The Thomas–Fermi potential

The Thomas–Fermi model is a semi-classical approxima-
tion of the electrons around the nucleus; see e.g. [12]. The
electrons are regarded as the free fermion gas of zero temper-
ature. Two electrons occupy the phase space of (2π h̄)3 from
the bottom. The self-consistent potential is represented by
the universal function so called the Thomas–Fermi function.

This function is the solution of the following non-linear
differential equation:

d2χ

dx2 =
√

χ3

x
. (D. 1)

One boundary condition is given at the origin as χ(0) = 1.
For positive ions, the other boundary condition is imposed to
satisfy

x0χ
′(x0) = − n

Z
, (D. 2)

where χ(x) vanishes at x0, and n is the positive charge of the
ion. Since we consider an electron in a singly charged positive
ion, the mean potential is given by the other electrons and the
nucleus, namely, n = 2. The resulting potential energy is

VTF(r) =
{

− Zα
r χ(x) − n α

r0
0 < x < x0,

−n α
r x0 < x,

(D. 3)

where x = 4 3
√

2Z/9π2 meαr . The boundary x0 is approx-
imately given by x0 = −8.964 + 7.341Z1/3. The wave-
lengths of the relevant transition evaluated in the Thomas–
Fermi potential are shown in Table 2 as well as the corre-
sponding experimental data.

E. Statistics

We use the following formulas in the numerical analysis.
The data of the modified isotope shifts of two transitions are

Table 2 The transition wavelengths for Ca+ and Yb+ in the unit of
nm. The columns of EX stand for the experimental values, and those of
TF are given by the Thomas–Fermi potential

Ca+ EX TF Yb+ EX TF

4p → 4s 397 475 6p → 6s 369 380

4p → 3d 866 − 1610 6s → 4 f 935 48.6

denoted by xa and ya , and their standard deviations are σxa
and σya , respectively. The subscript a indicates an isotope
pair. The term violating the linearity is represented by εsa .
The parameter ε stands for the wave-function-independent
part, e.g., the coupling of the particle shift. The χ2 of the fit
function can be written as

χ2 =
∑
a

(
(xa − x̂a)2

σ 2
xa

+ (ya − f x̂a − g − εsa)2

σ 2
ya

)
. (E.1)

The parameter x̂a stands for the point on the fit line to eval-
uate the χ2. The other parameters f , g and ε are the fitting
variables. These parameters are chosen to minimize the χ2.
The minimization condition for x̂a is given by

∂χ2

∂ x̂a
= − 2

xa − x̂a
σ 2
xa

− 2 f
ya − f x̂a − g − εsa

σ 2
ya

= 0, (E.2)

then

x̂a = σ 2
yaxa + f σ 2

xa(ya − g − εsa)

σ 2
ya + f 2σ 2

xa
. (E.3)

Substituting it to the original χ2, we obtain

χ2 =
∑
a

(ya − f xa − g − εsa)2

σ 2
ya + f 2σ 2

xa
. (E.4)

The stability conditions for the rest of the variables are

∂χ2

∂ f
= −2

∑
a

(ya − f xa − g − εsa)( f σ 2
xa(ya − g − εsa) + σ 2

ya xa)

(σ 2
ya + f 2σ 2

xa)
2

= 0, (E.5)

∂χ2

∂g
= −2

∑
a

ya − f xa − g − εsa
σ 2
ya + f 2σ 2

xa
= 0, (E.6)

∂χ2

∂ε
= −2

∑
a

sa
ya − f xa − g − εsa

σ 2
ya + f 2σ 2

xa
= 0. (E.7)

These conditions show us the χ2 minimum, which is zero in
the present work because of the additional parameter ε. We
calculate the χ2 minimum as a function of ε. Writing it as
χ2

ε , the fit quality is measured as χ2
ε /dof, where dof = 1 in

our analysis.
The extension to the case of more than three isotope pairs

or more than two transitions is straightforward.

References

1. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Single-
ion atomic clock with 3×10−18 systematic uncertainty. Phys. Rev.
Lett. 116, 063001 (2016). https://doi.org/10.1103/PhysRevLett.
116.063001

123

http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.116.063001
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.116.063001


Eur. Phys. J. C (2017) 77 :896 Page 11 of 11 896

2. W.H. King, Comments on the article peculiarities of the isotope
shift in the samarium spectrum. J. Opt. Soc. Am. 53, 638–639
(1963). https://doi.org/10.1364/JOSA.53.000638

3. C. Delaunay, R. Ozeri, G. Perez , Y. Soreq, Probing Atomic Higgs-
Like Forces at the Precision Frontier. arXiv:1601.05087 [hep-ph]

4. J.C. Berengut et al.,ProbingNewLight Force-Mediators by Isotope
Shift Spectroscopy. arXiv:1704.05068 [hep-ph]

5. C. Frugiuele, E. Fuchs, G. Perez, M. Schlaffer, Constraining
new physics models with isotope shift spectroscopy. Phys. Rev.
D 96(1), 015011 (2017). https://doi.org/10.1103/PhysRevD.96.
015011. arXiv:602.04822 [hep-ph]

6. C. Delaunay, C. Frugiuele, E. Fuchs, Y. Soreq, Probing new spin-
independent interactions through precision spectroscopy in atoms
with few electrons. arXiv: 1709.02817 [hep-ph]

7. S.A. Blundell et al., A reformulation of the theory of field isotope
shift in atoms. J. Phys. B At. Mol. Phys. 20, 3663 (1987). https://
doi.org/10.1088/0022-3700/20/15/015

8. V.V. Flambaum, A.J. Geddes, A.V. Viatkina, Isotope shift, non-
linearity of King plot and search for nuclear island of stability and
new particles. arXiv:1709.00600 [physics.atom-ph]

9. E.C. Seltzer, K X-ray isotope shifts. Phys. Rev. 188, 1916 (1969).
https://doi.org/10.1103/PhysRev.188.1916

10. R.H. Helm, Inelastic and elastic scattering of 187-Mev electrons
from selected even–even nuclei. Phys. Rev. 104, 1466 (1956).
https://doi.org/10.1103/PhysRev.104.1466

11. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu,
The AME2016 atomic mass evaluation (II). Tables, graphs and
references. Chin. Phys. C. 41, 3, 030003 (2017). https://doi.org/
10.1088/1674-1137/41/3/030003

12. N.H. March, Self-Consistent Fields in Atoms (Pergamon Press,
Pergamon, 1975)

13. R. Latter, Atomic energy levels for the Thomas–Fermi and
Thomas–Fermi–Dirac potential. Phys. Rev. 99, 510 (1955). https://
doi.org/10.1103/PhysRev.99.510

14. F. Gebert, Y. Wan, F. Wolf, C.N. Angstmann, J.C. Berengut, P.O.
Schmidt, Precision isotope shift measurements in calcium ions
using quantum logic detection schemes. Phys. Rev. Lett. 115,
053003 (2015). https://doi.org/10.1103/PhysRevLett.115.053003

15. A.-M. Mårtensson-Pendrill, D.S. Gough, P. Hannaford, Isotope
shifts and hyperfine structure in the 369.4 − nm6s − −6p1/2 res-
onance line of singly ionized ytterbium. Phys. Rev. A 49, 3351
(1994). https://doi.org/10.1103/PhysRevA.49.3351

16. K. Sugiyama, A. Wakita, A. Nakata, Diode-laser-based light
sources for laser cooling of trapped Yb+ ions conference on pre-
cision electromagnetic measurements. Conf. Dig. CPEM (Cat.
No. 00CH37031) 2000, 509–510 (2000). https://doi.org/10.1109/
CPEM.2000.851105

17. D. Hanneke, S. Fogwell, G. Gabrielse, New measurement of
the electron magnetic moment and the fine structure constant.
Phys. Rev. Lett. 100, 120801 (2008). https://doi.org/10.1103/
PhysRevLett.100.120801. arXiv:0801.1134 [physics.atom-ph]

18. J.P. Lees et al. [BaBar Collaboration], Search for a dark pho-
ton in e+e− collisions at BaBar. Phys. Rev. Lett. 113(20),
201801 (2014). https://doi.org/10.1103/PhysRevLett.113.201801.
arXiv:1406.2980 [hep-ex]

19. Y.S. Liu, D. McKeen, G.A. Miller, Electrophobic scalar boson and
muonic puzzles. Phys. Rev. Lett. 117(10), 101801 (2016). https://
doi.org/10.1103/PhysRevLett.117.101801. arXiv:1605.04612
[hep-ph]

20. S. Andreas, C. Niebuhr, A. Ringwald, New limits on hid-
den photons from past electron beam dumps. Phys. Rev. D
86, 095019 (2012). https://doi.org/10.1103/PhysRevD.86.095019.
arXiv:1209.6083 [hep-ph]

21. H. Leeb, J. Schmiedmayer, Constraint on hypothetical light inter-
acting bosons from low-energy neutron experiments. Phys. Rev.

Lett. 68, 1472 (1992). https://doi.org/10.1103/PhysRevLett.68.
1472

22. Y.N. Pokotilovski, Constraints on new interactions from neutron
scattering experiments. Phys. At. Nucl. 69, 924 (2006). https://doi.
org/10.1134/S1063778806060020. arXiv:hep-ph/0601157

23. V.V. Nesvizhevsky, G. Pignol, K.V. Protasov, Neutron scat-
tering and extra short range interactions. Phys. Rev. D
77, 034020 (2008). https://doi.org/10.1103/PhysRevD.77.034020.
arXiv:0711.2298 [hep-ph]

24. H. An, M. Pospelov, J. Pradler, New stellar constraints on dark
photons. Phys. Lett. B 725, 190 (2013). https://doi.org/10.1016/j.
physletb.2013.07.008. arXiv:1302.3884 [hep-ph]

25. J. Redondo, Helioscope bounds on hidden sector photons. JCAP
0807, 008 (2008). https://doi.org/10.1088/1475-7516/2008/07/
008. arXiv:0801.1527 [hep-ph]

26. T. Ederth, Template-stripped gold surfaces with 0.4-nm rms rough-
ness suitable for force measurements: application to the Casimir
force in the 20–100-nm range. Phys. Rev. A 62, 062104 (2000).
https://doi.org/10.1103/PhysRevA.62.062104

27. E. Fischbach, D.E. Krause, V.M. Mostepanenko, M. Novello, New
constraints on ultrashort ranged Yukawa interactions from atomic
force microscopy. Phys. Rev. D 64, 075010 (2001). https://doi.org/
10.1103/PhysRevD.64.075010. arXiv:hep-ph/0106331

28. A.J. Krasznahorkay et al., Observation of anomalous internal pair
creation in Be8: a possible indication of a light, neutral boson.
Phys. Rev. Lett. 116(4), 042501 (2016). https://doi.org/10.1103/
PhysRevLett.116.042501. arXiv:1504.01527 [nucl-ex]

29. J.L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T.M.P. Tait,
P. Tanedo, Protophobic fifth-force interpretation of the observed
anomaly in 8Be nuclear transitions. Phys. Rev. Lett. 117(7),
071803 (2016). https://doi.org/10.1103/PhysRevLett.117.071803.
arXiv:1604.07411 [hep-ph]

30. J.L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T.M.P.
Tait, P. Tanedo, Particle physics models for the 17 MeV anomaly
in beryllium nuclear decays. Phys. Rev. D 95(3), 035017 (2017).
https://doi.org/10.1103/PhysRevD.95.035017. arXiv:1608.03591
[hep-ph]

31. J.D. Lewin, P.F. Smith, Review of mathematics, numerical fac-
tors, and corrections for dark matter experiments based on elastic
nuclear recoil. Astropart. Phys. 6, 87 (1996). https://doi.org/10.
1016/S0927-6505(96)00047-3

123

http://dx.doi.org/https://doi.org/10.1364/JOSA.53.000638
http://arxiv.org/abs/1601.05087
http://arxiv.org/abs/1704.05068
http://dx.doi.org/https://doi.org/10.1103/PhysRevD.96.015011
http://dx.doi.org/https://doi.org/10.1103/PhysRevD.96.015011
http://arxiv.org/abs/602.04822
http://arxiv.org/abs/1709.02817
http://dx.doi.org/https://doi.org/10.1088/0022-3700/20/15/015
http://dx.doi.org/https://doi.org/10.1088/0022-3700/20/15/015
http://arxiv.org/abs/1709.00600
http://dx.doi.org/https://doi.org/10.1103/PhysRev.188.1916
http://dx.doi.org/https://doi.org/10.1103/PhysRev.104.1466
http://dx.doi.org/https://doi.org/10.1088/1674-1137/41/3/030003
http://dx.doi.org/https://doi.org/10.1088/1674-1137/41/3/030003
http://dx.doi.org/https://doi.org/10.1103/PhysRev.99.510
http://dx.doi.org/https://doi.org/10.1103/PhysRev.99.510
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.115.053003
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.49.3351
http://dx.doi.org/https://doi.org/10.1109/CPEM.2000.851105
http://dx.doi.org/https://doi.org/10.1109/CPEM.2000.851105
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.100.120801
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.100.120801
http://arxiv.org/abs/0801.1134
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.113.201801
http://arxiv.org/abs/1406.2980
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.117.101801
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.117.101801
http://arxiv.org/abs/1605.04612
http://dx.doi.org/https://doi.org/10.1103/PhysRevD.86.095019
http://arxiv.org/abs/1209.6083
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.68.1472
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.68.1472
http://dx.doi.org/https://doi.org/10.1134/S1063778806060020
http://dx.doi.org/https://doi.org/10.1134/S1063778806060020
http://arxiv.org/abs/hep-ph/0601157
http://dx.doi.org/https://doi.org/10.1103/PhysRevD.77.034020
http://arxiv.org/abs/0711.2298
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2013.07.008
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2013.07.008
http://arxiv.org/abs/1302.3884
http://dx.doi.org/https://doi.org/10.1088/1475-7516/2008/07/008
http://dx.doi.org/https://doi.org/10.1088/1475-7516/2008/07/008
http://arxiv.org/abs/0801.1527
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.62.062104
http://dx.doi.org/https://doi.org/10.1103/PhysRevD.64.075010
http://dx.doi.org/https://doi.org/10.1103/PhysRevD.64.075010
http://arxiv.org/abs/hep-ph/0106331
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.116.042501
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.116.042501
http://arxiv.org/abs/1504.01527
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.117.071803
http://arxiv.org/abs/1604.07411
http://dx.doi.org/https://doi.org/10.1103/PhysRevD.95.035017
http://arxiv.org/abs/1608.03591
http://dx.doi.org/https://doi.org/10.1016/S0927-6505(96)00047-3
http://dx.doi.org/https://doi.org/10.1016/S0927-6505(96)00047-3

	Probing new intra-atomic force with isotope shifts
	Abstract 
	1 Introduction
	2 Non-linearity of the isotope shift
	2.1 The field shift
	2.2 The particle shift
	2.3 Non-linearity

	3 Numerical analysis
	3.1 Experimental data of isotope shifts
	3.2 Current experimental bounds and future prospects

	Acknowledgements
	Acknowledgements
	Appendix A: Wave function inside the nucleus
	B. The nuclear charge density and the potential with the Helm distribution
	C. Generalization of the linearity
	D. The Thomas–Fermi potential
	E. Statistics
	References


