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Probing non-covalent interactions with a second generation energy

decomposition analysis using absolutely localized molecular orbitals
Paul R. Horn,1, a) Yuezhi Mao,1 and Martin Head-Gordon1, b)

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California,

Berkeley, CA 94720 and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA,

94720 Phone: 510-642-5957 Fax: 510-643-1255

An Energy Decomposition Analysis (EDA) separates a calculated interaction energy into as many
interpretable contributions as possible; for instance, permanent and induced electrostatics, Pauli
repulsions, dispersion and charge transfer. The challenge is to construct satisfactory definitions
of all terms in the chemically relevant regime where fragment densities overlap, rendering unique
definitions impossible. Towards this goal, we present an improved EDA for Kohn-Sham density
functional theory (DFT) with properties that have previously not been simultaneously attained.
Building on the absolutely localized molecular orbital (ALMO)-EDA, this second generation ALMO-
EDA is variational and employs valid antisymmetric electronic wavefunctions to produce all five
contributions listed above. These contributions moreover all have non-trivial complete basis set
limits. We apply the EDA to the water dimer, the T-shaped and parallel-displaced benzene dimer,
the p-biphthalate dimer “anti-electrostatic” hydrogen bonding complex, the biologically relevant
binding of adenine and thymine in stacked and hydrogen-bonded configurations, the triply hydrogen-
bonded guanine-cytosine complex, the interaction of Cl− with s-triazine and with the 1,3-dimethyl
imidazolium cation, which is relevant to the study of ionic liquids, and the water formaldehyde vinyl
alcohol ter-molecular radical cationic complex formed in the dissociative photoionization of glycerol.

I. INTRODUCTION

Energy decomposition analysis (EDA) methods
are tools for understanding the physical contribu-
tions that give rise to often nuanced intermolecular
(or intramolecular) interactions computed in molec-
ular orbital (MO) calculations using density func-
tional theory (DFT) or other electronic structure
methods. A well-designed EDA can reveal chemi-
cally useful information that can guide future inves-
tigations or shed light on a surprising result. The
terms in an EDA, such as permanent electrostatics
(ELEC), polarization (POL), charge transfer (CT),
Pauli repulsions (PAULI), and dispersion (DISP),
correspond to immensely useful physical concepts
that chemists often appeal to in order to explain
their findings. However, the relative importance of
each of these effects is not always clear from back-of-
the-envelope calculations. It is the goal of an EDA
to associate with each of these chemical concepts a
concrete numerical value describing its contribution
to the intermolecular interaction of interest.
Unfortunately, the physical concepts that

chemists use to make sense of intermolecular
systems do not have unique definitions in the

a)Electronic mail: prhorn@berkeley.edu
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chemically interesting overlapping regime. Due
to this non-uniqueness, many methods have been
developed1 to perform EDA, which vary both
in their level of description of the interactions
and in their formal properties. In light of the
non-uniqueness, it is important to develop EDA
methods that have as many good formal properties
as possible; for example those listed recently2.
We will focus on this challenge for EDA based
on density functional theory (DFT), the most
widely used electronic structure method. DFT
is capable of good accuracy for the treatment of
many intermolecular interactions3–6, thanks to the
development of damped C6 potentials7,8, non-local
correlation (NLC) functionals9,10 and functionals
that are optimized to include such components11–14.

The Kitaura-Morokuma (KM)-EDA15–17 is one
of the oldest EDA methods and divides the inter-
action energy of a cluster of monomers into elec-
trostatic, exchange repulsion, polarization, charge
transfer, and unascribable, mixed interaction com-
ponents. The electrostatic and polarization terms
are both defined using electronic wavefunctions that
are not properly antisymmetric, leading to poten-
tially unphysical terms. This method also depends
on an atomic orbital (AO) basis partitioning to sep-
arate polarization and charge transfer.

The EDA method originally proposed by Ziegler
and Rauk18–20 and further generalized by others21–23

divides the DFT interaction energy into electro-



static, Pauli, and orbital contributions. Con-
tained unseparated within the orbital term are all
contributions from wavefunction relaxation, which
other schemes associate with CT and POL. As
in KM-EDA, the electrostatic interaction is evalu-
ated as the classical Coulomb interaction between
monomer charge distributions computed in isola-
tion and translated to the monomer positions in the
cluster geometry. The Pauli repulsion term in this
method furthermore does not have a definite sign,
so it can be attractive for some model chemistries
(e.g. functionals that account for dispersion without
an obviously separable dispersion correction term),
since it may include dispersion.
The absolutely localized MO (ALMO)-EDA24–26

and block-localized wavefunction (BLW)-EDA27–30

methods rely on fragment-blocking the AO-to-MO
coefficient matrix31–33 to separate POL from CT and
also compute a frozen orbital interaction term eval-
uated with a wavefunction formed from the MOs
of isolated fragments. The ALMO-EDA has also
been extended to wavefunction-based correlation at
the level of second-order Møller-Plesset perturbation
theory (MP2)34. While separating POL and CT is
desirable, the constraint of fragment-blocking has
typically been imposed by using AO basis sets; an
approach that lacks a meaningful complete basis set
(CBS) limit.2,35,36 A separation of the frozen orbital
interaction into classical electrostatic and Pauli re-
pulsion contributions (as well as a dispersion contri-
bution if the form of the exchange-correlation func-
tional permits it)30 can be performed in BLW-EDA
just as it is performed in the generalized Ziegler-
Rauk approach21–23. This separation is explicitly
avoided in the original ALMO-EDA due to the im-
proper treatment of electron antisymmetry in such
decompositions (despite the potential for greater de-
scriptive power in at least some circumstances).
The density-based EDA (DEDA)37,38 also decom-

poses an interaction energy into frozen, polariza-
tion, and charge transfer contributions. Unlike the
ALMO and BLW EDAs, a portion of real space
instead of the AO basis space is ascribed to each
monomer to define the separation of CT from POL.
This choice yields a well-defined CBS limit (at the
price of a new dependence on grid partitioning), but
also changes the physical content of the POL and CT
terms. In DEDA, wavefunction relaxations that de-
localize electrons between monomers contribute to
POL provided that they do not cause a net flow
of charge between the monomers, while these re-
laxations are part of CT in the ALMO and BLW-
EDAs2. Řezáč and de la Lande39 similarly employ
constrained DFT to analyze the charge transfer con-

tributions to interaction energies. The frozen term
in DEDA is also redefined because the monomer
MOs are not frozen but instead are allowed to re-
lax subject to the constraint of a frozen density.
The separation of this “constant density” frozen
energy into electrostatic and Pauli repulsion terms
is also possible, and, by construction, the electro-
static contribution is computed with valid antisym-
metric electronic wavefunctions. However, we have
shown40 that much of the energy lowering in the
frozen density wavefunction optimization is asso-
ciated with the delocalization of electrons across
monomers (i.e. arguably CT in character). Such a
treatment may be beneficial in the construction of
force fields, which lack explicit CT terms, but its
utility for the identification of physical contributions
to quantum-mechanical interaction energies is ques-
tionable.
The Natural EDA (NEDA)41–43 decomposes an

interaction energy into contributions from electro-
statics, polarization, charge transfer, a self-energy
term, and a core term describing Pauli repulsion
and exchange-correlation effects. Separation of per-
manent electrostatics from polarization depends on
the same calculation of classical electrostatic inter-
actions between monomer charge distributions de-
scribed above. Unlike the above methods that sep-
arate a charge transfer component, NEDA is not
variational due to its dependence on the natural
bond orbital (NBO)44,45 procedure to identify po-
larized monomer Lewis-like determinants in the su-
persystem wavefunction. The CT contribution is
then identified as all energy lowering from non-Lewis
wavefunction components, and it is often computed
to be several times larger than the interaction energy
itself43.
Symmetry-adapted perturbation theory

(SAPT)46–53 does not decompose a DFT in-
teraction energy, but rather computes its own
perturbative expansion of the interaction energy
with an accuracy that depends on the order of
perturbation theory and the treatment of monomer
wavefunctions. The electrostatic contribution is
equivalent to the classical electrostatic interaction
of monomers discussed above. The exchange terms
enter at all orders of the expansion as corrections
to enforce proper antisymmetry of the SAPT
wavefunction. Induction, like the orbital term of the
generalized Ziegler-Rauk EDA, contains both POL
and CT contributions. POL and CT are sometimes
separated either by using a partitioning of the one-
particle space52, a scheme which suffers from the
same weaknesses as ALMO-EDA and BLW-EDA,
or by adding additional potentials to discourage
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charge transfer53. Recently Lao and Herbert36 have
explored using a constrained-DFT-based definition
of charge transfer37–39 to separate the components
of the SAPT induction term without dependence
on an AO basis function partitioning.
In this paper, we describe a second generation

of the ALMO-EDA for intermolecular interactions
and apply the method to several example chemical
systems. This advancement was primarily devised
to address two weaknesses of the original ALMO-
EDA. First, the strong basis set dependence of the
POL and CT terms. Second, the minimal de-
scriptive power of a monolithic frozen energy term,
which contains contributions from three conceptu-
ally distinct terms: electrostatics, Pauli repulsion,
and dispersion. The definitions of these modified
terms are discussed in the following section on The-
ory. Ultimately, decomposition schemes must be
judged by their utility in elucidating chemical phe-
nomena. To this end, we apply our new EDA
scheme to the description of interactions in sev-
eral chemically interesting examples. These exam-
ples are as follows: the “anti-electrostatic” hydrogen
bonds (between two anions) which has recently been
controversial54–56, Watson-Crick (hydrogen-bonded)
versus stacked complexes of adenine and thymine57,
the interactions between chloride anion and the 1,3-
dimethyl imidazolium cation58, and finally the in-
termolecular interactions in a ter-molecular complex
that is involved in the photoionization mass spec-
trometry of glycerol59.

II. THEORY

The ALMO-EDA decomposes the intermolecular
interaction energy, ∆EINT, at a particular geometry
into three further interactions, a frozen component,
∆EFRZ, a polarization effect, ∆EPOL, and a charge
transfer contribution, ∆ECT

∆EINT =EFULL −
∑

F

EF (1)

=∆EFRZ +∆EPOL +∆ECT (2)

In Eq. (2), both the complex and the isolated frag-
ments, F , are treated at the geometry of the com-
plex. This means we will not track changes in geom-
etry. If one wants to do so, one adds to ∆EINT the
positive semi-definite “geometric distortion” (GD)
energy for deforming each fragment, F , from its op-
timal isolated geometry to the complex geometry:

∆EGD =
∑

F

EF − E
(F )
F

(3)

The first intermediate energy of the complex, the
frozen energy, EFRZ = E (PFRZ), is obtained with
constraints on the orbitals (or density matrix) to
prevent polarization and charge transfer. The dif-
ference between this energy and the energy of the
fragments defines the frozen interaction introduced
above, ∆EFRZ. Physically, ∆EFRZ contains the
three contributions which arise without any relax-
ation of the fragment orbitals: attractive disper-
sion (DISP) interactions, Pauli repulsion (PAULI)
and permanent electrostatics (ELEC). Separating
only the DISP component isolates a “dispersion-
free” frozen interaction, ∆EFRZ DF, which is the sum
of PAULI and ELEC (these terms are both large in
the overlapping regime and sometimes significantly
cancel each other). Thus we may summarize:

∆EFRZ =EFRZ −
∑

F

EF (4)

=∆EDISP +∆EFRZ DF (5)

=∆EDISP +∆EPAULI +∆EELEC (6)

There are two significant changes in the treatment
of the frozen interaction energy in our new ALMO-
EDA relative to the earlier version. The first change
is that the initial or frozen supersystem wavefunc-
tion, which yields the frozen energy, can be relaxed
subject to the constraints of constant 3-space den-
sity (no polarization) and no CT. This refinement of
the initial supersystem wavefunction can be consid-
erable when Pauli repulsions are very strong (such as
for chemical bond formation)40. However, it is usu-
ally not necessary for intermolecular interactions for
which the relaxation under these constraints lowers
the energy of the initial supersystem wavefunction
only minimally40.
The second and most important change to FRZ

is that we compute an energetically optimal orthog-
onal fragment decomposition60 of the frozen wave-
function of the complex in order to define the DISP,
PAULI and ELEC components (and FRZ DF if de-
sired). In brief, this is accomplished by minimiz-
ing the kinetic energy pressure contribution to the
Pauli repulsion energy, TKEP (defined below), to de-
fine sets of fragment-localized orthogonal orbitals,
that partition the frozen density matrix into a sum of
fragment contributions, PFRZ =

∑

F
P̃F . The tildes

indicate that these fragment density matrices, and
the corresponding densities, ρ̃F , are modified from
the isolated fragment quantities, PF and ρF . The
“kinetic energy pressure” is defined by constrained
minimization of:

TKEP =
∑

F

EF [P̃F ]− EF [PF ] (7)
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with respect to P̃F . Its minimization yields the
smallest increase in the sum of isolated fragment en-
ergies that can be obtained subject to the constraint
of frozen density partitioning.
These fragment densities are first used to evalu-

ate the permanent electrostatics, ELEC. ∆EELEC

describes the contribution from the Coulomb in-
teraction between fragment charge distributions to
binding and is evaluated using the modified frag-
ment densities (after adding in the fragment nuclear
charges: ρ̃totF (r) = ρ̃F (r) + ρnucF (r)):

∆EELEC =
∑

F<G

∫∫

dr1dr2ρ̃
tot
F (r1)r

−1
12 ρ̃

tot
G (r2) (8)

This definition is an alternative to the commonly
employed classical definition, CLS ELEC, which
simply uses the total densities of the isolated frag-
ments, ρtotF (r) in Eq. (8). CLS ELEC is less than
ideal because the sum of the isolated fragment den-
sities does not add up to the frozen density in
the overlapping regime. This means that, while
easy to compute, the electrostatic interaction by
the classical definition computes the coulomb in-
teraction between electrons in a charge distribution
that is not adopted in the initial state and more-
over could potentially never exist within the given
model chemistry. The two definitions agree in the
non-overlapping regime but can differ significantly
at short range, as the modified densities deform ac-
cording to the overlap of the fragment orbitals60.
The modified fragment densities are also used to

evaluate the dispersion term, DISP. ∆EDISP is in-
trinsically attractive, and asymptotically decays as
R−6 between two fragments. It represents the en-
ergy lowering due to correlated fluctuations of elec-
trons on two different fragments that is not captured
in the mean-field permanent electrostatics term. In
the same way as electrostatic interactions can only
be interpreted as multipole-multipole interactions in
the non-overlapping regime, DISP can likewise only
be interpreted as dispersion in the non-overlapping
regime. In the overlapping regime, DISP cor-
responds to “dispersive” interfragment exchange-
correlation effects that smoothly change into true
dispersion as overlap decreases.
In our EDA, DISP is separated from the re-

mainder of interfragment exchange-correlation ef-
fects with the help of an auxiliary density func-
tional that is dispersion-free (DF), EDF

xc . Examples
of DF functionals include Hartree-Fock (HF), the
so-called dispersionless density functional (dlDF)61,
and revPBE62. The optimal choice for EDF

xc clearly
depends upon the form of Exc itself. For instance,

HF may be most appropriate for functionals con-
taining substantial amounts of exact exchange, while
revPBE may be most appropriate for functionals
without exact exchange. The dispersion energy is
naturally defined as that part of the inter-fragment
exchange-correlation energy which is captured by
Exc but is not captured by EDF

xc :

∆EDISP =

(

Exc[PFRZ]−
∑

F

Exc[P̃F ]

)

−

(

EDF
xc [PFRZ]−

∑

F

EDF
xc [P̃F ]

)

(9)

The reminder of the frozen interaction energy is
associated with Pauli repulsion. Pauli repulsion ac-
counts for volume exclusion effects, the dramatic in-
crease in energy observed when two molecules are
compressed. Electronic wavefunction antisymmetry
requires that electrons of the same spin not occupy
the same space, an expression of the Pauli principle,
and the repulsive character of this term is a conse-
quence of the increase in kinetic energy associated
with decreasing the volume available to each elec-
tron due to the presence of all others. An additional
consequence of electron antisymmetry is interfrag-
ment exchange, which, together with any correlation
effects not associated with dispersion, mitigates the
volume exclusion effect. These two physical contri-
butions together yield the Pauli repulsion energy in
the EDA:

∆EPAULI =
∑

F

(

E[P̃F ]− E[PF ]
)

+

(

EDF
xc [PFRZ]−

∑

F

EDF
xc [P̃F ]

)

(10)

The opposite signs of these two contributions to
the PAULI term make it formally of indeterminate
sign though, for proper choices of the dispersion-
free functional (vide infra), the repulsive component
dominates.
After EFRZ, a second constrained variational cal-

culation is performed to uncover the energy lowering
due to polarization (POL). ∆EPOL describes the in-
duced electrostatic interactions resulting from the
intra-fragment density relaxation of each monomer
in response to all other perturbing monomers in the
cluster. Polarization is a response not only to the
electric fields produced by other fragments’ electrons
and nuclei but also, at short inter-fragment separa-
tions, to the kinetic energy pressure exerted by the
electrons of other fragments due to electronic wave-
function antisymmetry.
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This EDA describes polarization using a basis of
fragment electric-field response functions (FERFs),2

which allow each fragment to respond exactly to
weak electric fields. The FERF basis is truncated
at exact response to a uniform field (ε) and its first
derivatives (∂ε/∂R), corresponding to dipolar and
quadrupolar responses (FERF-DQ), which is the
lowest order that correctly reproduces polarization
interactions as inter-monomer overlap approaches
zero2. The FERF-DQ model provides three dipo-
lar and five quadrupolar polarization functions per
occupied MO.
Beginning from the frozen wavefunction, the

FERF-DQ subspaces are used in a constrained vari-
ational calculation allowing only intra-fragment re-
laxation (fragment-blocking the DQ-to-MO coeffi-
cient matrix) to determine an ALMO-SCF energy,
EALMO-SCF, by solving the “SCF for molecular
interactions” (SCF-MI) equations31,33,63,64 in the
FERF-DQ basis. We immediately obtain ∆EPOL =
EALMO-SCF − EFRZ. The FERF-DQ functions can
be constructed from a sufficiently complete basis of
any type (e.g. AO’s, or plane waves, etc), and the re-
sulting EALMO-SCF/FERF-DQ has a meaningful com-
plete basis set limit. This property is an important
improvement on the definition of the polarization
energy in the previous version of the ALMO-EDA.
Finally, the charge transfer (CT) term, ∆ECT ≤

0, accounts for donor-acceptor inter-fragment orbital
interactions that bring about energy lowering in the
system. The energy lowering arises not only from
net charge flow between fragments but also by al-
lowing electrons to delocalize across fragments. This
term also includes the secondary intra-fragment re-
laxations that occur in response to the redistribu-
tion of charge brought about by these inter-fragment
orbital interactions. It is straightforwardly evalu-
ated as the difference between the unconstrained
SCF energy and the ALMO-SCF/FERF-DQ energy:
∆ECT = ESCF − EALMO-SCF/FERF-DQ.

III. RESULTS AND DISCUSSION

A. Computational Details and Validation

Calculations in this work were performed with
a standard version of the Q-Chem 4.4 software
package65,66. The ωB97M-V14 functional, which in-
cludes a VV109 non-local correlation functional de-
scription of dispersion, is used for all calculations.
ωB97M-V is a highly accurate functional for non-
covalent interactions14, and it is therefore ideal for

application to EDA of intermolecular interactions.
The dispersion-free (DF) functional that is neces-
sary to disentangle dispersion interactions was sim-
ply taken as the Hartree-Fock (HF) form, which is
appropriate for a range-separated hybrid functional
such as ωB97M-V60. The large def2-QZVPPD67 ba-
sis was used to compute all the interaction energies
(without counterpoise correction) and their decom-
positions in this work, so that all results are fairly
close to the CBS limit.
Polarization subspaces are FERF-nDQ2 unless

otherwise stated. We also use the antisymmetric
product of monomer wavefunctions as the initial su-
persystem wavefunction throughout this work. Op-
timization of the initial supersystem wavefunction is
unnecessary for the intermolecular interactions that
we will examine, although this relaxation has been
shown to be significant in the context of breaking
covalent bonds.40 Many of the structures come from
other works and will be described in turn. Images
of molecular structures were generated with the help
of IQmol.

We note that the resultant energy components
of an EDA are inevitably functional-dependent.
Nonetheless, this new EDA method is able to pro-
duce reasonable results as long as functionals that
can accurately describe non-covalent interactions are
employed and an appropriately paired DF func-
tional is chosen. As a brief validation, EDA re-
sults for three prototypical non-covalent complexes
from the S2257 dataset are shown in Table I as com-
puted using three functionals that are suitable for
non-covalent interactions. In addition to ωB97M-
V (used for all reported results), we compare to
the pure B97M-V functional13 (using revPBE as the
DF functional), and the conventional B3LYP-D3 (0)
hybrid8,68–70 (using HF as the DF functional).

For each system, no significant changes can be
seen in the resulting energy components when dif-
ferent functionals are employed, keeping in mind the
discrepancy in total interaction energies and the fact
that dispersion corrections are incorporated differ-
ently in these functionals. This validation provides
support for drawing chemical conclusions from the
results using just a single functional later. For the
water dimer, CT is roughly 38-42% of the total inter-
action energy, a bit smaller than results obtained71

with the first generation ALMO-EDA, where POL
is slightly contaminated2,35 with CT. It is also inter-
esting to see that DISP accounts for almost all of the
FRZ binding energy. The two different conformers
of benzene dimer show the expected large difference
in DISP, which is far more important for the stacked
conformer.
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TABLE I: EDA results (in kJ/mol) for three prototypical complexes in the S22 dataset: water dimer
(“hydrogen bonded”), and benzene dimer in T-shaped (“mixed”) and parallel-displaced

(“dispersion-dominated”) configurations. Total interaction energies and energy breakdowns are evaluated
with three functionals (ωB97M-V, B97M-V, B3LYP-D3 (0)) using the def2-QZVPPD basis. As

recommended in Sec. II, Hartree-Fock is chosen as the DF functional for ωB97M-V and B3LYP-D3 (0),
while revPBE is employed for B97M-V. The reference values for the interaction energies of these systems

are -20.87, -11.37, and -11.10 kJ/mol, respectively.72

Water Dimer Benzene Dimer (T-shaped) Benzene Dimer (parallel-displaced)
ωB97M-V B97M-V B3LYP-D3 (0) ωB97M-V B97M-V B3LYP-D3 (0) ωB97M-V B97M-V B3LYP-D3 (0)

ELEC -65.75 -62.77 -66.10 -21.39 -19.94 -20.68 -34.04 -32.22 -33.47
PAULI 65.02 61.66 65.40 31.82 31.24 30.68 59.35 56.70 56.63
DISP -7.66 -6.80 -8.02 -17.85 -16.69 -17.35 -32.53 -29.88 -27.81
FRZ -8.38 -7.91 -8.73 -7.42 -5.39 -7.35 -7.21 -5.40 -4.65

POL -4.61 -4.37 -4.46 -1.43 -1.29 -1.11 -1.59 -1.51 -1.17
CT -7.74 -8.67 -8.80 -2.47 -3.28 -3.11 -3.21 -4.00 -4.20

INT -20.74 -20.95 -21.99 -11.32 -9.96 -11.57 -12.02 -10.90 -10.02

B. Anti-Electrostatic Hydrogen Bonding

The first system that we investigate is
the p-biphthalate dimer, one of the several
controversial54–56 anti-electrostatic hydrogen bond-
ing interactions. In terms of structure (Figure 1),
the optimized dimer exhibits relatively normal
hydrogen bonding motifs, but both monomers
are anions, and the stationary points identified
along the dissociation coordinate are higher in
energy than the isolated monomers due to these net
charges. The computational finding of local minima
in the anion-anion complex is surely correct, and
indeed experimental evidence is emerging for stable
cation-cation complexes in either the solid state73

or in ionic liquids74.

The primary issue is the origin of the bind-
ing, and thus the nature of the hydrogen bond.
This “anti-electrostatic” interaction is seen by
Weinhold and Klein54 (WK) as an indicator of
the profound importance of quantum-mechanical
(i.e. donor-acceptor) orbital interactions in hydro-
gen bonding complexes75. By contrast, the simplest
electrostatic model of charge-charge repulsion would
suggest a purely repulsive interaction. However,
this interpretation is inevitably controversial55,76,
because it ignores other electrostatic effects like fa-
vorable permanent charge-dipole and dipole-dipole
interactions, the stabilization owing to interpene-
tration of fragment charge distributions, as well as
induced electrostatics (i.e. POL). Our new ALMO-
EDA is a suitably unbiased tool with which to ex-
amine these neglected effects, as it is based on the
variational principle combined with physically well-
founded constraints.

HB2

TS2

HB1

TS1

FIG. 1: Structures at minima (HB2 and HB1) and
transition states (TS2 and TS1) for the dissociation
of the p-biphthalate di-anionic dimer as given by
WK54. The dotted magenta lines indicate the
maximum O· · ·O distances between the two
carboxyl groups in contact with each other.
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We take the two hydrogen-bonding minima (HB1
and HB2) and transition state structures (TS1 and
TS2) from WK, unmodified, for direct comparison
(Figure 1). The binding energies (Figure 2(a)) are
quite similar to those presented previously despite
the change in model chemistry, and the relative en-
ergetics are well described by changes in the inter-
action energies alone, allowing us to largely neglect
geometric distortions in this analysis.
Because our EDA scheme shares a common inter-

mediate state, the initial supersystem wavefunction,
with the generalized Ziegler-Rauk EDA employed by
Frenking and Caramori55 (FC) to analyze another
anti-electrostatic hydrogen bonding complex, we will
discuss the results of this scheme as well as our own.
Their approach includes three terms that sum to the
interaction energy, ∆ECoul, ∆EPauli, and ∆EOrb,
which we will refer to as CLS ELEC, CLS PAULI,
and ORB respectively.
We first address the question of why there is a

minimum at all. The interaction energy for TS1,
the final barrier to dissociation, is described almost
entirely by the electrostatic term (ELEC) with neg-
ligible contributions from other terms (Figure 2(b)).
The electrostatic term at this separation is more-
over almost identical to the analogous CLS ELEC
term due to weakly overlapping fragments (Figure
3(b)). We infer that it is dominated by the repulsive
monopole-monopole interaction as the monopole-
dipole couplings will be attractive. Past TS1, the
interaction energy decays because of the decrease
in this unfavorable electrostatic interaction with in-
creasing inter-monomer distance.
At closer separations than TS1, ELEC, DISP,

POL, and CT all become more favorable, and only
the PAULI term becomes more repulsive due to in-
creased inter-fragment overlap. All favorable terms
follow the same energetic ordering as the interac-
tion energy itself, and the Pauli repulsion term pro-
gresses in the opposite way. According to our new
EDA, formation of the hydrogen bonds in this di-
anionic system is quite similar to a conventional
hydrogen bond: permanent electrostatics, induced
electrostatics, dispersion and orbital interactions all
become more favorable on closer approach, counter-
balanced by Pauli repulsion becoming strongly re-
pulsive. Overall, the hydrogen bond is the net re-
sult of a delicate balance between these interactions,
rather than simply reflecting donor-acceptor (CT)
effects as argued by WK54 without the benefit of
the present decomposition.
Concerning permanent electrostatics, we note

from Figure 3(b) that both ELEC and CLS ELEC
are net attractive at HB2. Hence by either defi-
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FIG. 2: Energies in kJ/mol relative to dissociated
monomers, (a), and the associated EDAs, (b), for
the p-biphthalate dimer dissociation coordinate

minima (HB2 RO-O = 2.71 Å, HB1 RO-O = 5.01 Å)
and transition structures (TS2 RO-O = 4.24 Å, TS1
RO-O = 6.87 Å) as given by WK54, where RO-O

denotes the maximum O· · ·O distance between the
two contacting carboxyl groups (indicated by the
dotted magenta lines in Figure 1). At each of the
four stationary points, the y value of each level
indicates the magnitude of the various energy

components. Note that the lines connecting these
levels serve only to guide the eye. Part (a) shows

that geometric distortion (GD) does not
qualitatively affect the relative values of overall
binding (BIND), which justifies decomposition in

(b) of the interaction energy (INT) into
electrostatic (ELEC), Pauli repulsion (PAULI),

dispersion (DISP), polarization (POL), and charge
transfer (CT) contributions. The sum of PAULI
and ELEC, the dispersion-free frozen energy

(DFFRZ), is also plotted.

nition of permanent electrostatics, this most sta-
ble structure is not “anti-electrostatic” in charac-
ter after all! Our new definition, ELEC, is more
attractive than the classical definition, CLS ELEC,
because of overlap-induced changes in the fragment
density. To understand this effect, we consider Fig-
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FIG. 3: Results for different choices in EDA term
definitions computed for the p-biphthalate

structures (in kJ/mol) presented in the same
format as in Figure 2. Part (a) compares the effect
of using orthogonalized (ortho) FERFs versus the
standard option of not orthogonalizing, showing

that the differences are relatively small (largest for
HB2) and do not alter the qualitative description
of the interaction. Part (b) compares results for the
decomposition of the frozen orbital energy (FRZ),

which is nearly unchanged across the four
structures, by the scheme used in this work (ELEC,

PAULI, DISP) and that used in generalized
Ziegler-Rauk EDA18,19,21–23 (CLS ELEC,

CLS PAULI) as employed by FC55.

ure 4, which depicts the change in fragment den-
sities at the HB2 structure upon going from those
optimal for the fragments in isolation (and used to
compute CLS ELEC) to those assigned to the frag-
ments in the properly antisymmetric initial super-
system wavefunction (and used to compute ELEC).
The effect of the antisymmetrization of monomer
wavefunctions is, as always, a depletion of charge
in the inter-fragment region, which in this case both
deshields the hydrogen nuclei and increases density
at the oxygen nuclei that are participating in hy-
drogen bonding. An additional consequence of this
antisymmetrization is the inevitable development of

−2 −1 0 1 2

−2

−1

0

1

2

FIG. 4: Contour plot of the change in density for
the two (Red and Blue) p-biphthalate monomers in
the HB2 complex of WK54 with inter-fragment
hydrogen bond lengths of RO-H = 1.70 Å. Values
plotted are the differences in the 3-space total

spinless density, integrated to a plane
(∆A(x, y) =

∫

dz∆ρA(x, y, z)), for each fragment,
A, upon going from the optimal isolated fragment
density matrix to that assigned to the fragment
within the initial supersystem wavefunction.
Contours are evenly spaced at 0.1 e−/Å3 with
positive contours solid and negative contours

dashed. Dots indicate the positions of nuclei in the
two carboxyl groups (at the top and bottom of the
plot) that form the hydrogen bonds. We note the

presence of seemingly unavoidable minor
orthogonalization tails.

small orthogonalization tails near the nuclei of other
fragments. The resulting short-range electrostatic
interactions are enough to overcome the repulsions
between the excess electrons on the anionic frag-
ments that are roughly located on opposite ends
of the complex. The additional effects that make
CLS ELEC attractive for HB2 include the attractive
interactions between local OH and OC bond dipoles
across the hydrogen bond, which decay as R−3 with
monomer separation distance and the classically per-
mitted interpenetration of fragment charge densities.

Bringing the anion monomers together to finally
form HB2 via TS2 from HB1, which is accessed from
TS1, leads to increasingly unfavorable Pauli repul-
sion contributions for HB1 and HB2. The sum of
ELEC, PAULI, and DISP is the frozen orbital (FRZ)
interaction. Despite the large changes in electro-
static and Pauli repulsion terms across the coordi-
nate, FRZ is, perhaps surprisingly, nearly constant
at each of the four structures (Figure 3(b)). Thus

8



energetic benefits in ELEC and DISP afforded by
shorter separations are largely canceled by the con-
comitant PAULI cost. The frozen orbital interac-
tion is equivalent to the sum of CLS ELEC and
CLS PAULI in generalized Ziegler-Rauk EDA.
The remaining portion of the interaction energy is

derived from intra-fragment polarization (POL) and
inter-fragment charge transfer (CT). These contri-
butions (which sum to the ORB term discussed by
FC) have roughly the same energetic significance in
each of the structures considered, as can be seen in
Figures 2(b) and 3(a). Comparison of POL and CT
is of interest because WK emphasized the impor-
tance of inter-fragment donor-acceptor orbital inter-
actions in hydrogen bonded complexes, notably the
oxygen lone-pair to OH σ∗ charge transfer interac-
tion. Our CT results indeed show important contri-
butions from inter-fragment electron delocalization,
and this likely plays an important role in determin-
ing the details of the fragment orientations in HB1
and HB2 due to the directional nature of orbital in-
teractions. However, the closer contacts needed for
stronger inter-fragment donor-acceptor interactions
cannot occur to the same degree without increas-
ing polarization (POL) to allow intra-fragment re-
laxation that relieves the perturbation due to the
other fragments. Our results in Figures 2(b) and
3(a) show that POL, like CT, is also increasingly
stabilizing as the fragments are brought together.
We find this unsurprising: for an interaction involv-
ing monomers with net charges and local dipoles, in-
duced electrostatic effects should play a significant
role.
Weinhold has argued77 that POL may be greatly

overestimated by treatments involving nonorthogo-
nal one-particle spaces, as we have used here. While
we have reported results2 showing that this is not
the case for our FERF-nDQ model, we also in-
clude results for another polarization model (Fig-
ure 3(a)) that employs subspaces produced by an
energetically cognizant orthogonalization2 of these
same non-orthogonal subspaces. The differences be-
tween the two sets of results for polarization and
charge transfer systematically enhances the CT:POL
ratio from roughly 1:1 without orthogonalization to
roughly 3:2 for the HB1 and HB2 structures (it
changes somewhat less for TS1 and TS2). The two
POL curves can be viewed as upper and lower es-
timates of the polarization contribution. Using the
orthogonalized results does not influence the qual-
itative interpretation of the interaction discussed
above.
In summary, the position54 that charge-transfer

(CT) or resonance effects are absolutely dominant in

hydrogen bonding in the p-biphthalate dimer dian-
ion is not supported by analysis with the new EDA.
Instead a more nuanced picture emerges from Fig-
ures 2 and 3. CT does make an important contri-
bution to binding, but polarization (POL) is close
behind. The effects of these two terms are syner-
gistic, as the molecular complex can substantially
lower its energy by polarizing fragments that are
in close proximity to another molecule, and this
close proximity is necessary for strong orbital in-
teractions. Likewise, the dispersion energy (DISP)
becomes stronger at close separations, and also con-
tributes to stabilizing of the hydrogen-bonded struc-
tures. Finally, at the most stable HB2 structure,
the hydrogen bonds are not anti-electrostatic. The
monopole-based caricature ignores stabilizing con-
tributions from favorable local multipolar interac-
tions and fragment charge interpenetration which
contribute to the attractive permanent electrostat-
ics evaluated either quasi-classically (CLS ELEC),
or quantum mechanically via the ELEC term of the
new EDA.

C. DNA base pairs

We now turn to the biologically relevant interac-
tions between adenine and thymine (A· · ·T) base
pairs with the aim of characterizing the qualitative
differences between the Watson-Crick and stacked
conformations (Figure 5) of this system taken from
the S2257 dataset. The EDA results for these two
interaction energies appear in Table II.
Unlike in the more similar set of structures in-

vestigated above, the more strongly bound complex
does not simply have all attractive terms more fa-
vorable than those of the less strongly bound com-
plex. In particular, the DISP term, which is the con-
tribution to binding from dispersive interactions, is
more than twice as favorable for the stacked com-
plex than for the Watson-Crick complex, due to
the larger number of inter-fragment contacts in the
stacked structure. However, the DISP contribution
in the Watson-Crick complex is still appreciable due
to closer contacts, which, though fewer in number,
bring considerable density from the two fragments
into close proximity (similar to what we observed in
the hydrogen bonds in the previous example).
The Pauli repulsion term in the stacked complex is

large and repulsive for a similar reason though not as
repulsive as in the Watson-Crick complex where the
closer approach of a smaller number of atoms in hy-
drogen bonding motifs is driven by an increased abil-
ity to participate in charge transfer interactions and
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2.83 Å

1.82 Å

1.93 Å

(a) Adenine thymine Watson-Crick structure.

3.09 Å

(b) Adenine thymine stacked structure.

FIG. 5: The adenine thymine complex in the
hydrogen-bonding Watson-Crick and stacked
configurations from the S2257 dataset with

inter-fragment contacts shown. Two hydrogen
bonds (1.82 Å and 1.98 Å) are formed in the

Watson-Crick complex.

facilitated by increased intra-fragment polarization
as well as more favorable electrostatic interactions
with deshielded hydrogen atoms. Charge transfer
and polarization make only minor contributions to
the stabilization of the stacked complex.

In addition, we also investigated the guanine-
cytosine (G· · ·C) complex in the Watson-Crick con-
figuration (Figure 6), and its EDA results are com-
pared to those for the corresponding A· · ·T com-
plex in Table II. While two hydrogen bonds are of
roughly the same lengths as in the A· · ·T complex,
one extra hydrogen bond of even shorter length (1.76
Å) exists in G· · ·C, resulting in an ELEC term that
is larger by over 50% (about 100 kJ/mol). Although
PAULI is also considerably more repulsive (by 80
kJ/mol) due to the formation the third hydrogen
bond, it is outweighed by more stabilizing ELEC and
DISP, which result in a much more favorable FRZ

1.90 Å

1.82 Å

1.76 Å

FIG. 6: The guanine-cytosine complex in the
hydrogen-bonding Watson-Crick configuration with
inter-fragment contacts (three hydrogen bonds)

shown. The geometry is optimized at the
ωB97M-V/def2-TZVPPD level of theory.

term (-35 kJ/mol vs. -8 kJ/mol in A· · ·T). The other
two synergistic components (POL and CT) are also
considerably larger in the G· · ·C complex, which is
especially true for POL whose contribution is almost
doubled. Overall, although only one extra hydrogen
bond is formed in the G· · ·C complex, the magni-
tude of the total interaction energy increases by al-
most two-fold compared to that of A· · ·T (Watson-
Crick), and this “non-linear” enhancement of bind-
ing is a result of the concerted stabilizing effect of
the four favorable components (ELEC, POL, CT,
and DISP).

Let us consider the classical decomposition of the
frozen interaction, FRZ, which is given in Table II
as CLS ELEC and CLS PAULI. FRZ is more fa-
vorable in the stacked structure, which hints at in-
creased dispersion and decreased Pauli repulsions.
However, CLS PAULI is very small in the stacked
structure, leaving CLS ELEC as the only term large
enough to account for the interaction energy. With-
out prior knowledge of this system, the classical de-
composition may lead one to believe that the in-
teraction is almost entirely electrostatic in character
instead of containing a large dispersive contribution.
In fact, the dispersion is at least partly included in
CLS PAULI, disguising its effect in the classical de-
composition. Care should thus be taken in inter-
preting results of the classical decomposition when
modern density functionals capable of describing dis-
persion are employed. This confusion is eliminated
in the new EDA via the DISP term, as discussed
previously.
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adenine-thymine guanine-cytosine
H-bonded Stacked H-bonded

CLS ELEC -113.56 -47.85 -181.76
CLS PAULI 105.40 12.13 146.70
ELEC -185.41 -104.71 -284.78
PAULI 207.69 135.00 289.00
DISP -30.44 -66.02 -39.28
FRZ -8.16 -35.72 -35.06
POL -24.88 -7.80 -50.54
CT -33.68 -7.70 -45.59
INT -66.71 -51.23 -130.69

TABLE II: Energy decomposition analysis results
in kJ/mol for the interaction of adenine with
thymine in the Watson-Crick and stacked

configurations with corresponding structures taken
from the S2257 dataset, and for the interaction
between guanine and cytosine in a Waston-Crick

complex (whose geometry is optimized with
ωB97M-V/def2-TZVPPD). The shortest

inter-fragment heavy-heavy distance in the stacked
structure is RC-N = 3.09 Å. Results for the classical
decomposition (FRZ = ELEC + PAULI + DISP =

CLS ELEC + CLS PAULI) are shown for
comparison.

D. Anion-π interactions between Cl− and

1,3-dimethyl imidazolium and s-triazine

Anion-π interactions are attracting increasing
attention78 as they have become better characterized
and as their relevance in contexts ranging from bio-
logical macromolecules to ionic liquids has emerged.
The interaction of halides with electron-deficient
aromatic rings leads to a variety of stable struc-
tures depending on the halide and the ring system79.
For chloride interacting with s-triazine, for instance,
there is a planar hydrogen-bonded structure, and a
non-planar donor-π acceptor complex, as shown in
Figure 7.
Chloride complexes with 1,3-dimethyl imida-

zolium cation58,80 (which we will abbreviate as
[C1C1im]Cl) are relevant to the complex interactions
occurring within the corresponding ionic liquids81.
The [C1C1im]Cl dimer exhibits the same motifs seen
for chloride-triazine, with a rich range of hydrogen-
bonded isomers, and also an out-of-plane donor-π
acceptor complex. These optimized structures are
also shown in Figure 7. The relative values of the
binding energies for different isomers and their ori-
gin in the components of the new ALMO-EDA will
be the focus of this subsection.

2.13 Å

2.83 Å

2.50 Å

2.52 Å

(a) [C1C1im]Cl side (b) [C1C1im]Cl back

1.99 Å

2.54 Å

2.64 Å2.64 Å

(c) [C1C1im]Cl front (d) [C1C1im]Cl top

2.32 Å

2.75 Å
2.98 Å

(e) [s-triazine]Cl− front (f) [s-triazine]Cl− top

FIG. 7: ωB97M-V/def2-QZVPPD optimized
structures for the [C1C1im]Cl ion pair and the more
weakly bound net anionic [s-triazine]Cl− system.

The interaction energies and their EDA break-
downs are shown in Table III. Considering the two
conformers of [s-triazine]Cl−, it is evident that the
front conformer, which involves a Cl− · · ·H-C in-
teraction, is more stable by about 7 kJ/mol. The
principal origin of the difference is a more favor-
able frozen interaction (by 7 kJ/mol), which in turn
arises primarily from lower Pauli repulsion (by 17
kJ/mol). Both conformers exhibit quite similar POL
and CT values, with POL being the larger contribu-
tion. While both conformers derive the large major-
ity of their binding from POL+CT, the front con-
former is able to achieve these comparable orbital in-
teractions with less Pauli repulsion. The non-planar
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[C1C1im]Cl [s-triazine]Cl−

back side front top front top
ELEC -389.38 -430.70 -468.81 -504.61 -72.33 -74.73
PAULI 132.33 177.31 204.36 219.80 77.93 94.83
DISP -23.38 -27.52 -26.98 -40.04 -12.59 -19.98
FRZ -280.43 -280.92 -291.44 -324.84 -6.99 0.12
POL -37.21 -48.59 -61.42 -49.68 -21.83 -20.99
CT -19.70 -32.11 -48.81 -42.45 -13.39 -14.43
INT -337.34 -361.62 -401.67 -416.97 -42.22 -35.30

TABLE III: Energy decomposition analysis of the
[C1C1im]Cl ion pair and anionic [s-triazine]Cl−

systems in kJ/mol.

donor-π acceptor complex does exhibit a stronger
dispersion interaction as might be expected, but this
only partially mitigates the larger Pauli repulsion.

The [C1C1im]+Cl− complexes are vastly more
strongly bound than the [s-triazine]Cl− complexes
because of the enormous enhancement in the per-
manent electrostatics, ELEC, due to the favorable
monopole-monopole interaction. As a result, the
fragments approach each other more closely, and
Pauli repulsions and dispersion are increased in
magnitude. The energetic ordering of the classes
of structures is also changed relative to the [s-
triazine]Cl− complex. The most stable conformer
is the on-top donor-π acceptor structure, which is
approximately 15 kJ/mol more stable than the anal-
ogous front conformer.

The origin of the change in ordering can be de-
duced from Table IL, which shows that two syn-
ergistic effects (ELEC, DISP) that provide relative
stabilization of the top conformer outweigh two syn-
ergistic effects (POL, CT) that provide relative sta-
bilization of the front conformer. ELEC is more fa-
vorable in the top conformer, overcoming the ex-
cess Pauli repulsion to provide a net dispersion-free
frozen stabilization of about 20 kJ/mol relative to
the front conformer. Thus the more favorable elec-
trostatic interaction between Cl− and the C2 site,
which holds much of the positive charge, is the sin-
gle largest driving force. There is also a synergistic
enhancement of DISP by about 13 kJ/mol relative
to the front conformer, due to the more considerable
intermolecular contact and thus stronger dispersion
interaction between Cl− and the π system. By con-
trast, POL and CT are more favorable in the front
conformer, together providing about 18 kJ/mol of
net stabilization.

The conclusion that electrostatics play a ma-
jor role, supported by dispersion interactions, in
determining the relative energies of the conform-

ers of the [C1C1im]+Cl− complexes is broadly
consistent with other studies using different den-
sity functionals58,80,81. Our ωB97M-V calculations
are consistent with reported CCSD(T), MP2 and
dispersion-corrected B3LYP calculations58 in pre-
dicting that the top conformer is lowest in energy.
Finally, the side and back conformers are incremen-
tally less stable than the front conformer. Though
ELEC and PAULI vary considerably, the FRZ inter-
action itself is relatively constant in this set of struc-
tures, and the sequence of interaction energies can be
largely explained by the trend in POL+CT terms as
binding involves presumably more and more electron
deficient hydrogens in the progression from back to
side to front.

E. Ionized Glycerol Complex

We consider a radical cationic cluster of three frag-
ments (Figure 8) that was identified by Bell et al.59

as a key intermediate in the dissociative photoion-
ization of glycerol and designated as COM1 in that
work. We decompose the interaction energy for this
structure, unmodified, by a complete many-body ex-
pansion of the interaction energy in Table IV.
A similar analysis was performed in the original

work59 though with a different model chemistry and
the older ALMO-EDA, which notably lacks the de-
composition of the frozen orbital interaction and the
bounded treatment of polarization. As a result of
the basis set choice in the earlier study, the change
in model chemistry and polarization treatment has
little effect on the values of FRZ, POL and CT.
The present results therefore largely validate the
prior conclusions, as well as providing new insights
through the decomposition of FRZ into its ELEC,
PAULI and DISP components.
The two-body term between the vinyl alcohol

radical cation (A) and water (W), E2[AW], is the
strongest interaction in the many-body expansion.
The electrostatic term is large and attractive here
as we have seen in other hydrogen bonding sys-
tems above; however, in this case there is a favor-
ably aligned monopole-dipole interaction in the ab-
sence of a repulsive monopole-monopole interaction.
The large, repulsive PAULI term is explained by the
short (RO-H = 1.38 Å) hydrogen bond length be-
tween these two monomers, enabling stronger inter-
fragment orbital interactions (CT) as well as favor-
able permanent (ELEC) and induced (POL) electro-
static interactions with the electron-poor vinyl alco-
hol radical cation. There is also a less important
stabilizing contribution from DISP.
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2.64 Å

1.75 Å

1.38 Å

FIG. 8: The COM1 complex from Bell et al.59 that
has been identified as an important intermediate in
the dissociative photoionization of glycerol with

inter-fragment contacts shown.

E2[AW] E2[AF] E2[WF] E3[AWF] Total[AWF]
ELEC -215.13 -47.50 -80.76 -1.33 -344.71
PAULI 255.08 10.20 102.13 -0.27 367.14
DISP -18.38 -4.06 -10.35 0.29 -32.50
FRZ 21.58 -41.36 11.01 -1.31 -10.07
POL -66.89 -9.14 -7.34 -8.37 -91.74
CT -70.85 -1.32 -13.50 -5.21 -90.88
INT -116.15 -51.82 -9.83 -14.89 -192.69

TABLE IV: Energy decomposition analysis of the
many-body expansion of the strongly-bound,

radical, cationic COM1 complex from Bell et al.59

in kJ/mol. E2 and E3 denote two- and three-body
terms in the expansion. A, W, and F indicate the

vinyl alcohol radical cation, water, and
formaldehyde, respectively.

The two-body term between the vinyl alcohol rad-
ical cation (A) and formaldehyde (F), E2[AF], de-
scribes primarily the electrostatic interaction be-
tween the cation and favorably aligned dipole of
formaldehyde with minor additional stabilization
from POL and even less from DISP. Compared to
the other two-body terms, repulsive PAULI and at-
tractive CT contributions are very small in magni-
tude for E2[AF] due to the large distance between
these two monomers.

The two-body term between water (W) and
formaldehyde (F), E2[WF], is the weakest as it in-
volves no permanent monopoles. The hydrogen
bond length in this case is slightly compressed
(RO-H = 1.75 Å) compared to the ωB97M-V/def2-

QZVPPD optimal bond length (RO-H = 2.02 Å).
While not optimal for this pair interaction, it is op-
timal for the cluster as a whole within the model
chemistry of the original work.59 The consequence
of this shorter bond is a fairly repulsive PAULI
term and larger magnitude stabilizing interactions
across the board relative to an equilibrium water-
formaldehyde interaction, though, by definition,
they do not quite match the energy increase due to
Pauli repulsion.
The three-body term, E3[AWF], is, as in our past

analysis59, dominated by POL and CT contributions
owing to the presence of multiple permanent mo-
ments and to the concerted charge donation from
formaldehyde to water to the vinyl alcohol radical
cation. Classical electrostatic interactions are pair-
wise additive; however, our electrostatic term ac-
counts for the non-additive density deformations ac-
companying the formation of the initial supersystem
wavefunction, and so the three-body electrostatic
term is not explicitly zero though in this case it is
quite small (as are PAULI and DISP).

IV. CONCLUSIONS

We have introduced a second generation ALMO-
EDA with the following key properties:

1. The EDA can work with any single deter-
minant Kohn-Sham density functional the-
ory model chemistry including the exact func-
tional.

2. It produces physically meaningful terms with
correct sign and asymptotic behavior provided
that appropriate pairs of functionals are cho-
sen. Each term has a stable complete basis set
limit that remains physically valid.

3. It is maximally descriptive. The EDA fur-
ther divides the frozen interaction into elec-
trostatic, Pauli and dispersion contributions
without the difficulties of the common sepa-
ration into classical electrostatics and a Pauli
term that is contaminated with some attrac-
tive contributions in calculations using modern
functionals.

4. The EDA is variational and optionally
fully variational for extremely strong inter-
actions where removal of constant density
polarization40 from the initial supersystem
wavefunction is necessary.
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Together with state-of-the-art density functionals
that are capable of accurately describing non-
covalent interaction, this new ALMO-EDA scheme
can be a useful and reliable tool for understand-
ing the often complex interplay of physical contri-
butions to intermolecular binding. In this work,
we have employed this new EDA to analyze sev-
eral different intermolecular interactions including
an anti-electrostatic hydrogen bond, which we re-
vealed to be a balance of several contributions and
not as counterintuitive or surprising as the name
might suggest. The examination of two configura-
tions of the adenine-thymine complex demonstrated
that our EDA is capable of discerning between two
qualitatively different types of interactions, made
possible in large part by the new decomposition of
the frozen energy. Competition between the stabi-
lizing frozen interactions (permanent electrostatics
and dispersion) and orbital interactions (polariza-
tion and charge transfer) also emerges as the key
factor determining the relative energies of complexes
between Cl− and 1,3-dimethyl imidazolium cation,
which are differently ordered than for Cl− and s-
triazine. Finally, in our analysis of the ionized glyc-
erol complex, we demonstrated the utility of the
combination of many-body expansions and EDA,
and, taking advantage of the additional information
provided by the newly added ELEC, PAULI, and
DISP terms, we enhanced our previous description
of this interaction while validating the earlier com-
putational protocol.
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39J. Řezáč and A. de la Lande, J. Chem. Theory Comput.
11, 528 (2015).

40P. R. Horn and M. Head-Gordon, J. Chem. Phys. 144,
084118 (2016).

41E. D. Glendening and A. Streitwieser, J. Chem. Phys. 100,
2900 (1994).

42G. K. Schenter and E. D. Glendening, J. Phys. Chem. 100,
17152 (1996).

14



43E. D. Glendening, J. Phys. Chem. A 109, 11936 (2005).
44A. Reed and F. Weinhold, J. Chem. Phys. 78, 4066 (1983).
45A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev.
88, 899 (1988).

46S. Rybak, B. Jeziorski, and K. Szalewicz, J. Chem. Phys.
95, 6576 (1991).

47B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev.
94, 1887 (1994).

48A. J. Misquitta, B. Jeziorski, and K. Szalewicz, Phys. Rev.
Lett. 91, 033201 (2003).

49A. J. Misquitta, R. Podeszwa, B. Jeziorski, and K. Sza-
lewicz, J. Chem. Phys. 123, 214103 (2005).

50I. C. Hayes and A. J. Stone, Mol. Phys. 53, 83 (1984).
51P. S. Zuchowski, R. Podeszwa, R. Moszyinski, B. Jeziorski,
and K. Szalewicz, J. Chem. Phys. 129, 084101 (2008).

52A. J. Stone and A. J. Misquitta, Chem. Phys. Lett. 473,
201 (2009).

53A. J. Misquitta, J. Chem. Theory Comput. 9, 5313 (2013).
54F. Weinhold and R. A. Klein, Ang. Chem. Int. Ed. 53,
11214 (2014).

55G. Frenking and G. F. Caramori, Ang. Chem. Int. Ed. 54,
2596 (2015).

56F. Weinhold and R. A. Klein, Ang. Chem. Int. Ed. 54, 2600
(2015).

57P. Jurecka, J. Sponer, J. Cerný, and P. Hobza, Phys. Chem.
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