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The study of exotic one-dimensional states, particularly those at the edges of topological materials, demand

new experimental probes that can access the interplay between charge and spin degrees of freedom. One potential

approach is to use a single spin probe, such as a nitrogen vacancy center in diamond, which has recently emerged

as a versatile tool to probe nanoscale systems in a noninvasive fashion. Here, we present a theory describing how

noise magnetometry with spin probes can directly address several questions that have emerged in experimental

studies of 1D systems, including those in topological materials. We show that by controlling the spin degree

of freedom of the probe, it is possible to measure locally and independently local charge and spin correlations

of 1D systems. Visualization of 1D edge states, as well as sampling correlations with wave-vector resolution

can be achieved by tuning the probe-to-sample distance. Furthermore, temperature-dependent measurements of

magnetic noise can clearly delineate the dominant scattering mechanism (impurities versus interactions)—this is

of particular relevance to quantum spin Hall measurements where conductance quantization is not perfect. The

possibility to probe both charge and spin excitations in a wide range of length scales opens new pathways to

bridging the large gap between atomic scale resolution of scanning probes and global transport measurements.

DOI: 10.1103/PhysRevB.98.195433

I. INTRODUCTION

One-dimensional (1D) phases of matter exhibit a myriad

of exotic phenomena including non-Fermi liquid behavior,

charge-spin separation, and power-law scaling of charge and

spin correlations [1–3]. Reinvigorated interest in such phases

resulted from the recent realization of 1D edge states emerg-

ing in topological materials, for instance, quantum spin Hall

states [4–7]. The design of new experimental probes to ac-

cess these interesting and exotic states is highly desirable

but equally demanding. For instance, because in many cases

1D states live at the edges of higher dimensional systems,

several experimental probes are limited by the negligibly

small scattering cross section, e.g., neutron or light scattering.

Furthermore, probes that can bridge the large length-scale gap

between atomic scale resolution of scanning tunneling probes

and global transport measurement are on high demand, in

particular to obtain correlations with wave-vector resolution.

Accessing physics at the nanometer scale, however, impose

stringent requirements on probe size.

Motivated by the rapid progress in magnetic noise spec-

troscopy with single spin qubits, such as nitrogen vacancy

(NV) centers in diamond [8–13], here we outline pathways

to exploit single spin probes to access 1D physics in a broad

range of 1D systems, including those emerging in topolog-

ical materials. Spin probes harness the fluctuating magnetic

field induced by quantum and thermal fluctuations of 1D

charged and spin modes. By measuring the spin relaxation

time T1 as a function of experimentally tunable parameters,

e.g., temperature (T ), probe-to-sample distance (R), and spin

probe polarization, 1D correlations can be obtained. There

are several key advantages of single spin probes. Because

of their atomic size, spin probes enable measurements with

nanometer resolution, much smaller than the micron scales

achievable via NMR [14], and makes the measurement insen-

sitive to boundary effects, such as the contacts. This feature

also grants access to spin fluctuations, which can only be

detected at nanometer scale proximity due to short-range

dipole-dipole interaction and which have been elusive with a

(superconducting quantum interference device) SQUID [15].

In addition, because the electromagnetic coupling between the

probe and the sample decays as a power law, different from the

exponential decay of scanning tunneling currents, single spin

probes can access a broader range of length scales, from few

to a hundred nanometers. Another interesting feature is that,

because spin probes do not require driving fields, i.e., they are

driven by charge and spin fluctuations in the sample, they are

minimally invasive.
The success of this technique in the study of excitations

in higher-dimensional materials, such as metallic surfaces
[10] and ferromagnets [11–13], combined with theoretical
proposals to measure electron viscosity in the hydrodynamic
regime [16], forecasts grand new vistas in 1D. Interestingly,
as compared to larger dimensional systems, we find that
the noise behavior in 1D systems features two fundamental
differences which can be rendered into practical advantages.
First, it was shown that magnetic fluctuations emerging from
metallic surfaces are dominated by transverse charge currents,
thus making noise originating from longitudinal currents (i.e.,
charged modes) and spin fluctuations inaccessible [16]. The
absence of transverse charge currents in 1D grants access to
charge and spin-induced fluctuations simultaneously when the
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FIG. 1. Separating charge and spin fluctuations of one-

dimensional (1D) systems using single spin qubits. For 1D sys-

tems, the spin probe (blue spin) can independently probe (a) charge

fluctuations and (b) spin fluctuations in the quantum wire. Charge

fluctuations induce magnetic noise δBe in the azimuthal direction

(ŷ), whereas spin fluctuations induce magnetic noise δBσ primarily

in the radial (ẑ) and azimuthal (ŷ) directions. The spin degree of

freedom of the probe can be used to filter the charge fluctuations from

the spin fluctuations. To understand how the internal structure of 1D

states affects noise, here we use three prototypical examples: (c) two

counterpropagating channels with an SU(2) degree of freedom; (d)

a spin-polarized edge state comprised of right and left movers with

equal spin polarization; (e) nonchiral helical edge states comprised

of right and left movers with opposite spin polarizations.

probe is sufficiently close to the sample. Second, not only is
it possible to access both charge and spin excitations but also
separate them, even when they are comparable. As shown in
Figs. 1(a) and 1(b), this feature arises because of the spin de-
gree of freedom of the probe, which allows to measure B-field
in different directions: whereas charge fluctuations induce
magnetic fields in the azimuthal direction θ̂ , spin fluctuations
induce magnetic fields in all spatial directions (the radial
and azimuthal components dominate at long wavelengths, see
below). Since the relaxation time of a spin probe is determined
only by magnetic field fluctuations perpendicular to the ori-
entation of the spin probe, we see that charge-induced noise
can be filtered from spin-induced noise by aligning the spin
probe with the azimuthal direction, i.e., the probe acting as
a vector magnetometer [17]. Therefore spin probes represent
an important departure, for instance, from scanning tunneling
probes which cannot separate charge and spin excitations
[18–22]. For example, even if the tunneling tip is spin-
polarized, this technique still requires tunneling of electrons
into the sample and, as such, does not work in insulating
materials with spin excitations.

Besides polarization direction, other experimentally tun-

able parameters are available to access different features of 1D

states, such as scattering and transport. For instance, by tuning

the probe-to-sample distance R and scanning magnetic noise

at different length scales, it is possible to sample correlations

with wave-vector resolution and diagnose transport behavior,

i.e., whether charge and spin density waves propagate ballis-

tically or are pinned by disorder. Furthermore, we find that

scattering is the key factor leading to non-universal power law

behavior of noise versus T ; the specific T dependence hints at

the nature of backscattering, i.e., whether it is single-particle

or interaction-assisted.

We also stress that T1 measurements is one of the many

available experimental protocols to measure correlations in

interacting systems. A variety of dynamic protocols, such as

relaxometry in the presence of driving (dressed methods) or

using special pulse sequences, are discussed in Ref. [23].

Turning our discussion to specific 1D models, we first

note that, at the sub-THz frequencies characteristic of spin

probes in current experimental setups, a good starting point

to describe general 1D systems is the Luttinger liquid (LL)

theory [24–26]. To capture the key aspects of magnetic noise

measurements, we exploit minimal models that qualitatively

describe the effects of scattering, interactions, and internal

structure of 1D states. Because we need at least two 1D chan-

nels to describe scattering, here we mainly focus on nonchiral,

two-channel systems such that one channel is right-moving

and the other is left-moving.

To aggregate the internal structure of 1D states into our dis-

cussion, we consider three minimal models. First, we consider

that each channel has an SU(2) degree of freedom [Fig. 1(c)],

which is the most usual case describing quantum wires or

metallic nanotubes. Second, we consider a spin-polarized LL

[27,28] in which excitations are comprised of left-moving and

right-moving modes with equal spin polarization [Fig. 1(d)].

Third, and motivated by the recent realization quantum spin

Hall states, we consider a pair of counterpropagating helical

edge state. Contrary to the previous case, the right-moving

and left-moving excitations have opposite spin polarizations

[Fig. 1(e)]. The helical state differs from the SU(2) and

spin-polarized states in several important ways. In particular,

when time-reversal symmetry is present, carriers cannot be

backscattered by disorder as this would require a spin flip

[29]; as such, backscattering needs to be assisted by interac-

tions [30–35]. Below we describe how the interplay between

scattering, interactions and internal structure of carriers affect

the noise spectrum.

The outline of the present work is as follows. In Sec. II,

we present the theory of magnetic noise spectroscopy and,

in particular, how T1 can be computed from charge and spin

density correlations of the 1D system. In Sec. III, we focus

on the magnetic noise behavior of clean wires described

within the LL theory, and describe how it varies as a function

of experimentally tunable parameters, in particular probe-

to-sample distance, temperature and interactions strength. In

Sec. IV, we introduce weak, dense disorder (Gaussian dis-

order) and describe how the noise behavior is qualitatively

modified from the LL behavior. In Sec. V, we introduce

sparse, strong impurities (Poisson disorder) and describe the

effect on magnetic noise. In Sec. VI, we discuss scenarios that

go beyond our minimal two-channel model and, in Sec. VII,

we summarize the main results.

II. RELAXATION TIME MEASUREMENT:

GENERAL FORMALISM

We begin by describing a general formalism that allows to

relate the relaxation time T1 with charge and spin density cor-

relations of general 1D systems. With this objective in mind,

we first consider a generic 1D system with charge and spin

dynamics governed by the action S1D (below we introduce

specific microscopic models). The coupled dynamics of the
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wire and the electromagnetic field is described by the action

S = S1D −
∫∫

dtd r[FμνFμν/4μ0 + AμJμ], (1)

where we use standard 4-vector covariant notation, Fμν de-

notes Fμν = ∂μAν − ∂νAμ, Aμ is the vector potential, μ0

is the vacuum permeability, and coordinates are in three-

dimensional space, r = (x, y, z). Assuming wire coordinates

to be r = (x, 0, 0), charge and spin density fluctuations in

the wire act as sources of electromagnetic field via the term

Jμ = J
μ
e + Jμ

σ :

Jμ
e = e[cρe(x, t ), 0, 0, je(x, t )]δ(y)δ(z),

Jμ
σ = (0,∇ × m), m = gσμB

∑

i=x,y,z

ρi (x, t )δ(y)δ(z)êi,

(2)

where c is the speed of light, μB the Bohr magneton, and gσ

the g factor of the spin modes in the wire. For a 1D system,

the carrier density ρe and the current je are related by the

continuity equation, ∂tρe = −∂xje. For systems with a free

SU(2) spin degree of freedom, any of the spin components

ρx,y,z(x, t ) can fluctuate independently; for spin-polarized

systems, we assume that fluctuations are given by ρi = ρσ n̂i ,

where n̂i is the direction of polarization.

In thermal equilibrium, Eq. (1) combined with the sources

in Eq. (2) give rise to fluctuations in electric and magnetic

field induced by ρe and ρσ in the quantum wire, as well as

vacuum electromagnetic fluctuations. A spin probe at posi-

tion r is sensitive to fluctuations in magnetic field δB(r, t )

[36–40]. For concreteness, here we consider a spin-1/2 probe

with an intrinsic level splitting h̄ω. The spin dynamics is gov-

erned by the time-dependent Hamiltonian Hspin = (h̄ω/2)n̂p ·
σ + gsμB[σ · δB(r, t )], where gs is the g factor of the probe.

The direction of the intrinsic polarizing field, n̂p, is deter-

mined by the nature of the spin probe. For instance, in the case

of NV centers in diamond, the NV defect is a C3v defect with

a triplet ground state (the degeneracy is lifted by spin-spin

interaction of the orbital levels). In this case, n̂p is the axis

of the NV defect in the diamond lattice. Without loss of

generality, we align n̂p with the ẑ axis. The relaxation time

can be calculated using Fermi Golden’s rule, which yields

1

T1

=
(gsμB)2

2h̄2

∫ ∞

−∞
dteiωt 〈{δB+(r, t ), δB−(r, 0)}〉, (3)

and quantifies the amplitude of magnetic fluctuations, i.e.,

the magnetic noise in units of sec−1, at the position of the

probe [see derivation in Appendix A]. Importantly, a spin

probe with level splitting h̄ω only couples to magnetic modes

oscillating at frequency ω. In Eq. (3), δB± denotes δB± =
δBx ± iδBy, {, } denotes anticommutation, and 〈.〉 denotes

statistical average on the canonical ensemble at temperature

T . Further, we assume that the probe is far away from any

metallic contact which can produce background noise. Given

that typical band gaps in the bulk of topological and/or sub-

strate materials is much larger than typical level splittings h̄ω

of the spin qubit, we do not expect such sources to produce

sizable magnetic noise.

The calculation of the magnetic noise, Eq. (3), for a generic

1D system can be simplified under several legitimate assump-

tions. First, we assume translational invariance in the direction

of the wire (x̂), which is descriptive of the long wavelength

behavior expected to occur at the characteristic sub-THz

frequencies. Translational-symmetry breaking effects, e.g.,

disorder or commensurability, can be accounted for in terms

of self-energy corrections, as will be described below. Second,

we assume quasistatic dynamics of the electromagnetic field,

such that δBi tracks ρe and ρx,y,z without any retardation

effects; this is generally valid in solid state systems because

excitations propagate with velocities much smaller than c. Un-

der these assumptions, the 1D charge density, ρe, and the spin

densities, ρx,y,z, give rise to four orthogonal electromagnetic

modes:

δB(r, t ) =
1

√
L

∑

qωm

Hm(q, y, z, ω)ei(qx−ωt )ρm(q, ω), (4)

where Hm is the magnetic eigenfunction associated with each

mode m = e, x, y, z, and L is the length of the wire. Vacuum

electromagnetic fluctuations also contribute to Eq. (4), but we

expect these to be negligibly small compared to wire-induced

fluctuations.

The solution of Maxwell’s equation for charge and spin

fluctuations is discussed in Appendix B. To illustrate the qual-

itative behavior, here we present a more intuitive approach

in the simple geometry of Fig. 1(c) in which the probe is

at r = (0, 0, R). Focusing first on charge fluctuations and

assuming quasistatic behavior, we can calculate magnetic field

via Biot-Savart’s law, δBe(t ) = μ0e

4π

∫ ∞
−∞ dx ′je(x ′, t ) x̂×(r ′−r )

|r ′−r|3 ,

with r ′ = (x ′, 0, 0) wire coordinates. Currents can be related

to charge density via the continuity equation ∂tρ = −∂xj ,

i.e., j (x, t ) = (ω/q )ρm(q, ω)ei(qx−ωt )/
√

L, so that δBe(t )

can be rewritten as δBe(t ) = μ0eωρe (q,ω)

4π
√

L

∫ ∞
−∞ dx ′ Reiqx′

q(R2+x ′2 )3/2 ŷ

[here we defined ρ(x) = 1√
L

∑

q ρ(q )eiqx]. Integration in x ′

leads to magnetic field written in the form (4) with

He(q, 0, R, ω) = −
μ0e

2π

⎛

⎝

0

ωK1(qR)

0

⎞

⎠, (5)

where Kn(x) is the nth modified Bessel function of the second

kind. Naturally, δBe points in the azimuthal direction. We

also note that Kn(x) is polynomial in x for x � 1, Kn(x) ∝
1/xn, but decays exponentially for x � 1, Kn(x) ∝ e−x/

√
x.

Physically, such transition at qR ≈ 1 occurs because for large

R there is a negligible signal due to wave interference of the

electromagnetic field.

Contrary to charge density, the spin-induced electromag-

netic field has components in all three spatial directions, but

the radial and axial components (with respect to the axis of

the wire) dominate in the long-wavelength limit, qR ≪ 1. The

components of Hm are given by

Hx (q, 0, R, ω) =
μ0gσμBq2

4π

⎛

⎝

−2K0(qR)

0

2iK1(qR)

⎞

⎠,

Hy (q, 0, R, ω) =
μ0gσμBq2

4π

⎛

⎝

0

K0(qR) + K2(qR)

0

⎞

⎠,

Hz(q, 0, R, ω) =
μ0gσμBq2

4π

⎛

⎝

2iK1(qR)

0

K0(qR) − K2(qR)

⎞

⎠. (6)
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As such, δBe and δBσ can be separated by exploiting the

probe polarization direction. The spin-induced field exhibits

the same power law to exponential transition occurring at

qR ≈ 1 as in the charge-induced field.

To measure correlations of the charge degrees of freedom,

we assume that the spin qubit is aligned in direction ẑ, see

Fig. 1. To measure correlations of the spin degrees of freedom,

we assume that the spin qubit is aligned in the ŷ direction.

After a series of uneventful steps described in Appendix A,

in particular replacing Eq. (4) into Eq. (3), and expressing

density fluctuation in terms of dissipation in the wire, we find

that 1/T1 induced by charge and spin modes is given by

1

T1,m

=
(gsμB

h̄

)2

coth

(

h̄ω

2kBT

)

1

L

∑

q

Fm(q, y, z, ω)

× Im
[

C
R
ρmρm

(q, ω)
]

, m = e, σ. (7)

Here, CR
ρmρm

(q, ω) is the short-hand notation for the re-

tarded density-density correlation function, CR
AB (q, ω) =

−i
∫ ∞

0
dt〈[A(t ), B(0)]〉eiωt . The factors Fm(q, y, z, ω) quan-

tify the electromagnetic coupling between the wire and the

probe and depends on the direction of intrinsic polarization of

the probe. For charge modes, it is given by Fe(q, y, z, ω) =
|H y

e (q, y, z, ω)|2 when the probe is polarized in the x̂ and ẑ

directions, and 0 otherwise. For spin noise, we aggregate the

three components of spin fluctuations ρx,y,z into a single term

1/T1,σ , and quote the results in the case qR � 1 (the general

solution is discussed in AppendixA). For the SU(2) case with

the spin qubit aligned in the ŷ direction, Fσ (q, y, z, ω) ≈
|H z

z (q, y, z, ω)|2 in Eq. (6), where we assumed that 〈ρxρx〉 =
〈ρyρy〉 = 〈ρzρz〉, and that fluctuations in each spin com-

ponent are independent. For spin-polarized states, we find

and Fσ (q, y, z, ω) = |H z
z (q, y, z, ω)|2 sin2 θ cos2 ϕ, where θ

and ϕ parametrize the spin polarization of the sample, n̂ =
(cos θ, sin θ sin ϕ, sin θ cos ϕ).

Interestingly, we note that Eq. (7) resembles the standard

1/T1 equation for NMR relaxation, except for the q and r

dependent form factors. Further, in the case of charge fluc-

tuations, noise measurements can be related to conductivity

σ (q, ω) measurements at finite q and ω. In particular, by

using the continuity equation ωρe = qje and the definition

σ (q, ω) = 〈jq j̄q〉/iω, Eq. (7) can be expressed as 1/T1,e ∝
∑

q q2F (q, y, z, ω)Re[σ (q, ω)]/ω.

Equation (7) captures the essence of the noise measure-

ment by making the connection between T1 and charge and

spin density correlations in a generic 1D system. In particular,

by tuning R =
√

y2 + z2, it is possible to sample fluctuations

at different wave vectors q by changing the weight of the

form factor Fm(q, y, z, ω). For instance, for q � 1/R, the

form factors as a function of q behaves as [q2Fe(q )] ∼ 1 for

charge noise, and [q2Fσ (q )] ∼ q2 for spin noise, i.e., there is

finite sampling of charge and spin fluctuations for all modes

with wave vectors q � 1/R. For q � 1/R, the form factor

for charge noise behaves as [q2Fe(q )] ∼ qe−2qR , and for

spin noise as [q2Fσ (q )] ∼ q5e−2qR . As such, there is a sharp

cutoff in the sampling of fluctuations occurring at q ∼ 1/R

introduced by the exponential q dependence of Fm(q, y, z, ω).

Such wave-vector selectivity allows to study correlations with

wave-vector resolution and which, as we will see, is a useful

feature in the study of disordered systems.

We now proceed to specify microscopic 1D models from

which the density correlation CR
ρmρm

(q, ω) can be computed

explicitly. This is the objective of the next two sections.

III. NOISE FROM LUTTINGER LIQUIDS

To capture the microscopics of the wire, we use the

bosonization description for 1D electronic systems [3]. This

framework is ideally suited for our purposes given the typi-

cally small sub-THz probing frequencies, much smaller than

typical bandwidths in electronic systems, and its ability to

describe 1D states of different flavors. Further, it provides a

good starting point to describe more complex scenarios such

as disordered wires. We set the stage by discussing magnetic

noise in ballistic 1D channels with an SU(2) degree of free-

dom. Afterwards, we describe noise in clean spin-polarized

and helical channels and point out the differences with the

SU(2) case.

A. Case I: SU(2) channels

The motion of spinful fermions in a 1D channel can be

described with a bosonic 1D action with separated charge and

spin degrees of freedom:

S1D =
∫∫

dtdx
∑

m=e,σ

[ i�m∂tφm − Hm(φm,�m)]. (8)

The bosonized degrees of freedom, �m and φm, are canon-

ically conjugate, [φm(x),�m′ (x ′)] = iδmm′δ(x − x ′), and de-

scribe charge (m = e) and spin (m = σ ) excitations. In the

absence of scattering, dynamics is governed by a quadratic

Hamiltonian of the form

Hm(φm,�m) =
h̄vF

2π
[(π�m)2 + (∂xφm)2], m = e, σ,

(9)

where vF is the Fermi velocity. In the long wavelength limit,

charge and spin density are related to the bosonic degrees

of freedom via ρe,σ = −
√

2∂xφe,σ /π . This linear mapping

(ρe, ρσ ) ↔ (φm,�m) is valid up to spatially oscillating terms

with wave vector kF, the Fermi wave vector. Because these

rapidly oscillating density terms produce negligibly small

evanescent magnetic fields at distances larger than a few

atomic sites, we do not explicitly keep track of them. Further,

because of SU(2) symmetry, spin fluctuations in all spatial

directions are equal, CR
ρmρm

(q, ω) = CR
ρσ ρσ

(q, ω). Importantly,

we note that Eq. (9) does not include Coulomb interactions.

This avoids double-counting the Coulomb potential which

is mediated by Aμ(r, t ) already included in the full action

in Eq. (1).

Having established the microscopic model via Eqs. (1),

(8), and (9), and the mapping (ρe, ρσ ) ↔ (φm,�m), we now

proceed to calculate CR
ρmρm

(q, ω) in Eq. (7). The linear nature

of the mapping (ρe, ρσ ) ↔ (φm,�m) simplifies calculations

significantly. First, because Aμ(r, t ) couples linearly to φ and

� in Eq. (1), and the action is quadratic in Aμ(r, t ), we

can integrate exactly the electromagnetic modes coupled to

charge/spin densities and incorporate them into an effective

Hamiltonian 〈Hm〉A with renormalized parameters. Secondly,
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because of the linear mapping (ρe, ρσ ) ↔ (φm,�m), charge

and spin density correlators are two-point correlation func-

tions in the bosonic field, which are straightforward to calcu-

late for quadratic Hamiltonians.

Using these two simplifications, we proceed to obtain

CR
ρmρm

(q, ω). Because of translational invariance in the x̂

direction, it is convenient to rewrite the bosonic fields

in Fourier space, φm(x) = 1√
L

∑

q φm(q )eiqx and �m(x) =
1√
L

∑

q �m(q )eiqx . Spatial integration of the electromagnetic

degrees of freedom result in the effective Hamiltonian

〈Hm〉A(φm,�m) =
h̄vm

2π

[

Km[π�m(q )]2 + q2φ2
m(q )/Km

]

,

(10)

where the parameters vm and Km are the renormalized velocity

and the Luttinger parameter in the charge (m = e) and spin

sectors (m = σ ). The value of Km quantifies the charge (m =
e) and spin (m = σ ) compressibility. In particular, at small

q, renormalization of the Luttinger parameters in the charge

sector is governed by Coulomb energy induced by the charge

density (= ǫ0

2

∫

d r|δEe(r, t )|2), which leads to a ln(1/qr∗)

dependence:

ve = vF

√

1 + δe, Ke = 1/
√

1 + δe,

δe = (e2/4πε0h̄vF )[ln(2/qr∗) − γ ], (11)

where γ = 0.57721 . . . is the Euler constant, r∗ is the effective

radius of the wire, and ε0 is the vacuum permittivity (see

details in Appendix C or Chapter 4 of Ref. [3]). We also

note that both ve and Ke are q-dependent. Integration of

the electromagnetic field induced by spin modes leads to

negligible corrections of the Luttinger parameters on the order

of δσ ≈ μ0μ
2
B/r2

∗ h̄vF ∼ 10−5, where we used r∗ ∼ 1 nm and

vF ∼ 104 m/s. As such, in the spin sector, we use

Kσ = 1, vσ = vF. (12)

For the quadratic Hamiltonian in Eq. (10), calculation of

CR
ρmρm

(q, ω) is straightforward:

SU(2) : C
R
ρmρm

(q, ω) =
2

π

Kmvmq2

(vmq )2 − (ω + iǫ)2
, (13)

where ǫ is an infinitesimal positive constant.

Using CR
ρmρm

(q, ω) in Eq. (7), we find that the relaxation

time induced by charge and spin modes in a LL given by

1/T1,m(ω, T ,R) =
(gsμB)2

8π

∫ ∞

0

dq

2π
Fm(q, y, z, ω)

× Im

[

coth(h̄ω/2kBT )Kmvmq2

(vmq )2 − (ω + iǫ)2

]

.

(14)

Equation (14) summarizes the essence of magnetic noise

measurements in LLs and the key dependencies as a function

of experimentally tunable parameters, namely polarization

direction, R, and T (for the purposes of current experimental

setups, we take ω as fixed). In particular, the probe samples

charge and spin fluctuations at all q wave vectors, but only

picks those modes, which resonate with the spin probe fre-

quency ω. This feature is manifested by the δ function in

the integrand of Eq. (14) introduced by Im{1/[(vmq )2 − (ω +
iǫ)2]} ≈ δ(vq − ω)/ω. Encoded in Eq. (14) is also the ability

to measure independently charge and spin noise, which is

possible due to the spin degree of freedom of the probe.

To give a gauge of T1 values encountered in experiments,

we evaluate Eq. (14) in the regime qR � 1, such that Eqs. (5)

and (6) can be replaced by their asymptotic values, and h̄ω �
kBT such that coth(h̄ω/2kBT ) ≈ 2kBT/h̄ω. This results in

1

T1,e

=
(μ0μBe)2

(2π )2h̄3

g2
s kBT

R2
Ke,

1

T1,σ

=
(μ0μ

2
B)2

(4π )2h̄3

g2
s kBT

R4

g2
σ

v2
F

, (15)

where Ke is evaluated at q = ω/ve, see Eq. (11). The first fac-

tor of 1/T1,m is a combination of universal constants reflecting

the coupling of charge modes with the spin probe in T1,e,

and spin-spin coupling in the case of T1,z; the second factor

contains experimental parameters, namely, the g factor of the

probe gs, the probe-to-sample distance R, and temperature

(T ); the third factor contains 1D system parameters. The

relation 1/T1 ∝ g2
s kT /h̄ resembles the Korringa law [41]

apart from geometrical factors which arise because the spin

probe is not in the system’s bulk.

For estimates, we use gs = gσ = 1, vF ∼ 104 m/s, T ∼
100 K, and Ke ∼ 1. This results in a relaxation time

given by 1/T1,e [s−1] ≈ 103/R [nm]2 and T1,z [s−1] ≈ 5 ×
104/R [nm]4. We note that the relaxation times on the mil-

lisecond to ∼10 second range can be accessed with current

experimental setups using NV centers in diamond at tem-

peratures around 100 K [42]. We also note that, for typical

probe-to-sample distances on the order of a few nanometers,

charge and spin noise are comparable, making the spin degree

of freedom of the probe essential to separate each contribu-

tion. Different noise components can be distinguished, for

instance, by measuring relaxation time of differently oriented

NV center probes in diamond [17].

1. Relaxation time as a function of distance

For generic R values, the behavior of magnetic noise as

a function of distance is straight-forward to obtain because

only a single mode with wave vector q = ω/vm is being

sampled. For R � vm/ω, the form factor in the integral of

Eq. (14) behaves as [q2Fe(q, 0, R, ω)] ≈ 1/R2, such that

the R dependence can be factored out of the integral in

Eq. (14), giving rise to a 1/R2 power law of 1/T1,e. Similar

analysis is valid for spin noise which gives rise to a 1/R4

dependence. At intermediate to large distances, R � vm/ω,

noise in Eq. (14) is obtained by integrating the product of the

form factor [q2Fm(q, 0, R, ω)] ≈ qe−2qR/R, valid for qR �
1, and the spectral density which is a δ-function at q = ω/vm.

This yields charge and spin relaxation time that falls off

exponentially with a characteristic length vm/ω, 1/T1,m(R) ∝
exp(−2Rω/vm)/R.

2. Relaxation time as a function of temperature

For clean systems, the temperature dependence of noise

is governed by the coth(h̄ω/2kBT ) factor in Eq. (14). In

particular, for LLs, the spin probe samples ballistic charge
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and spin density waves with wave vector q = ω/v. Within

the bosonization description, such waves are noninteracting

phononlike modes with T -dependent amplitude |ρe,σ | ∝
√

T ;

this results in charge and spin-induced magnetic noise scaling

as 1/T1,m(T ) ∝ T in the semiclassical limit. The linear be-

havior with T is valid up to kBT ≈ h̄ω, where noise reaches

a minimum value which is due to quantum fluctuations. The

latter regime can be captured with NV centers, given that ω

is on the range GHz-THz and can be comparable to kBT , and

differs from NMR, which operates in the regime h̄ω ≪ kBT .

Both saturation and linear T dependence is captured by the

coth(h̄ω/2kBT ) term in Eq. (14). This simple temperature

behavior is altered by disorder which introduces nonuniversal

power laws, as will be described below.

B. Case II: helical and spin-polarized channels

Spin-polarized states can occur in quantum wires in very

strong magnetic fields (μBB ∼ EF, with EF the Fermi energy)

or in the presence of ferromagnetic interactions with broken

SU(2) symmetry—either due to easy axis or a magnetic field

[27,28]. Helical states arise at the edges of 2D systems with

strong spin-orbit coupling. Both spin-polarized and helical

states introduce several qualitatively distinct behaviors, some

of which are discussed in the present section and others in

the context of disorder. The 1D motion of spin-polarized or

helical fermions can be described with half as many degrees of

freedom than in the SU(2) case. In either case, the 1D bosonic

action is of the form

S1D =
∫∫

dtdx[ i�∂tφ − H0(φ,�)]. (16)

The bosonized degrees of freedom, � and φ are canon-

ically conjugate, [φ(x),�(x ′)] = iδ(x − x ′) and describe

charge/spin excitations of the 1D system. In the absence of

disorder scattering, dynamics is governed by

H0(φ,�) =
h̄vF

2π
[(π�)2 + (∂xφ)2]. (17)

Similar to the SU(2) case, here we do not include Coulomb

repulsion because this is already accounted for in the full

action, Eq. (1). In the long-wavelength limit, charge density

is related to the bosonized degrees of freedom via ρe =
−∂xφ/π . For the spin density ρσ , we assume for concreteness

that the preferential direction is the z axis (see Fig. 1) such that

ρσ = ρz. For spin-polarized states, charge and spin densities

are equal, ρe = ρσ = −∂xφ/π ; for helical states, spin density

is given by ρσ = �. The reason behind this difference is

more evident when carrier density is decomposed into its con-

stituent flavors, namely fields φrσ corresponding to carriers

with chirality r = ±, spin polarization σ =↑,↓, and carrier

density ρrσ = r∂xφrσ /π . Within bosonization, it is standard

to define φ = −(φ+σ − φ−σ ′ ) and � = ∂x (φ+σ + φ−σ ′ )/2π .

As such, for spin-polarized states, the total spin density is

obtained by the sum in density of right and left movers, ρσ =
−∂x (φ+↑ + φ−↑)/π = ρe. For helical states, on the other

hand, the total spin density is obtained by the difference in

density of right and left movers, ρσ = ∂x (φ+↑ − φ−↓)/2π =
�. Excitations in ρx and ρy are assumed to be gapped and

do not contribute to noise—this is valid so long as T is small

compared to the energy scale of the polarizing mechanisms,

e.g., ferromagnetism, spin-orbit coupling or Zeeman splitting.

Integration of electromagnetic modes and calculation of

charge and spin density correlations proceeds exactly as in the

SU(2) case. For spin-polarized states, we find

SP : C
R
ρmρm

(q, ω) =
1

π

Keveq
2

(veq )2 − (ω + iǫ)2
, m = e, σ,

(18)

whereas for helical states, we find

helical : C
R
ρeρe

(q, ω) =
1

π

Keveq
2

(veq )2 − (ω + iǫ)2

C
R
ρσ ρσ

(q, ω) =
1

π

veq
2/Ke

(veq )2 − (ω + iǫ)2
. (19)

In particular, charge correlations have the same form for the

spin-polarized, helical, and SU(2) states (albeit a factor of

two due to spin degeneracy), see Eq. (15). Spin correlations,

however, are different for each of these states:

SP :
1

T1,σ

=
(

μ0μ
2
B

)2

8π2h̄3

g2
s kBT

R4

g2
σKe

v2
e

,

helical :
1

T1,σ

=
(

μ0μ
2
B

)2

8π2h̄3

g2
s kBT

R4

g2
σ

Kev2
e

. (20)

For spin polarized states, because ρσ = −∂xφ/π , we find that

the amplitude of spin fluctuations is proportional to Ke. For

helical states, because ρσ = �, we find that the amplitude

of spin fluctuations is proportional to 1/Ke. Analysis of

the R and T dependence of noise from Eqs. (18) and (19)

leads to the same conclusions as in the SU(2) case. The key

distinction between SU(2), spin polarized, and helical states

in the LL regime is how Coulomb repulsion affect spin noise,

as discussed next.

1. Relaxation time as a function of repulsion strength

The internal structure of carriers has interesting manifes-

tations in the spin noise behavior. We illustrate this effect

by assuming in situ control of Ke while measuring spin

fluctuations. Control of the LL parameters Ke and ve can

be achieved by using gate potentials, see discussion below.

We recall from Eqs. (13), (18), and (19) that the Luttinger

parameter Ke affects the amplitude of spin fluctuations in

different ways: spin fluctuations are proportional to Ke for

spin-polarized states, 1/Ke for helical states, and unity for

SU(2) states. Physically, this characteristic spin noise behav-

ior can be understood as follows: a spin density for spin-

polarized states has to be accompanied by a charge density; as

such, both charge and spin density fluctuations are suppressed

for stronger Coulomb repulsion [Fig. 2(a)]. A spin density

for helical states, on the contrary, can exist in the absence

of a charge density; because spin and charge are conjugate

fields, Coulomb suppression of charge fluctuations enhances

spin fluctuations [Fig. 2(b)]. These two contrasting behaviors,

furthermore, are distinct from that in a spinful 1D metal where

spin noise is unaffected by long-range Coulomb interactions.

As a result, although fluctuations of the charged mode generi-

cally decrease at increasing values of Ke, spin noise can either

increase (helical phase), remain constant (spinful metal) or
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FIG. 2. Effect of tuning repulsion strength on spin noise. (a) Spin

fluctuations (orange) for spin-polarized states are locked to charge

fluctuations (green); as such, both charge and spin fluctuations are

suppressed with increasing Coulomb repulsion (increasing shading

of lines). (b) For helical states, it is possible to have finite spin density

in the absence of charge density; in this case, spin fluctuations are

enhanced with increasing interaction strength. By measuring spin

noise while tuning the interaction strength (c) or the gate potential

(d) it is possible to distinguish a helical, spin polarized or spinful

metal. (Parameters C, ns, and k0
F are defined in the main text.)

decrease (spin polarized phase) depending on the nature of

1D states (Fig. 2).

One possible way to measure the Luttinger liquid parame-

ter and probe the internal structure of 1D carriers is to measure

1/T1,σ while tuning a gate potential Vg. This modifies both

Luttinger parameters Ke and ve. The carrier density in a 1D

channel can be related to Fermi wave vector kF and Vg via

n = nskF/π = nsk
0
F/π + CVg, where k0

F is the Fermi wave

vector at Vg = 0, C is the capacitance between the gate and

the 1D system, and ns is the spin degeneracy of each channel.

In terms of the bare Fermi velocity, this relation can be

written as vF/v
0
F = 1 + πCVg/nsk

0
F. Using Eqs. (15) and (20),

combined with the expression for the Luttinger parameters in

terms of bare parameters, Eq. (11), the relaxation time can

be expressed as T1,σ ∝ v2
F(1 + γ2v

0
F/vF )γ1 , where γ1 = 0 for

the SU(2) case, γ1 = 1/2 for the helical case, and γ1 = 3/2

for the spin-polarized case, and γ2 = (1 − K0
e )/K0

e (K0
e is

the Luttinger parameter at Vg = 0). The power γ1 and the

number γ2 can be considered as fitting parameters which can

be extracted from taking the derivative of T1,σ measurements

as a function of Vg: T1,σ ∂ζ (1/T1,σ ) = γ1−2

1+ζ
− γ1

1+γ2+ζ
, with

ζ = πCVg/nsk
0
F, as shown in Fig. 2(d).

IV. NOISE FROM DIRTY WIRES: WEAK DISORDER

Scattering with a disorder potential couples right to left

movers. There are two qualitatively distinct types of scattering

behaviors, which are usually encountered in 1D systems. The

first case, which is discussed in the present section, is when

impurities are dense and weak enough such that the effect

of a single impurity is negligible but their collective effects

are important (Gaussian disorder) [43–45]. The second case,

discussed in the next section, is when impurities are scarce

but strong (Poisson disorder). Regardless of the details of the

scattering potential, it is known that disorder, no matter how

weak, gives rise to strong deviations from LL behavior, e.g.,

Anderson insulators.

Focusing on Gaussian disorder, it is known that charge

density waves become pinned by the disorder potential below

a characteristic pinning frequency ω∗ [44–46]. The value

of ω∗ is related to the localization length ℓloc of electron

wave functions via ω∗ = ve/ℓloc. Within the long wavelength

bosonization description, we can effectively incorporate the

effects of disorder to describe quenching of long wavelength

fluctuations due to pinning. This approach fails to describe

physics occurring at length scales smaller than ℓloc, as will

be described in more detail below. We begin by discussing

noise in wires with an SU(2) degree of freedom and Gaussian

disorder for ω � ω∗, and compare the resulting noise behavior

with that obtained for LLs in the previous section. Afterwards,

we discuss qualitatively distinct behaviors that appear in 1D

spin-polarized and helical states, also in the regime ω � ω∗. In

the final part of this section, we discuss qualitatively distinct

behaviors that may arise in the pinned phase, ω � ω∗.

A. Case I: SU(2) channels with ω � ω∗

The starting point to discuss disordered wires is the LL

Hamiltonian Hm [Eq. (8)] describing ballistic propagation of

charge and spin density waves. We introduce scattering via the

disorder potential in bosonized form [47]

Hdis(φe, φσ ) =
u(x)

πa
ei

√
2φe (x) cos[

√
2φσ (x)] + H.c., (21)

which describes spin-conserving backscattering. Here a is the

lattice cutoff and u(x) is the continuum limit corresponding to

the 2kF components of the scattering potential [3,47]. The po-

tential is assumed to be uncorrelated in space, 〈u(x)u∗(x ′)〉 =
Dδ(x − x ′). Importantly, although the potential couples to ρe,

the long wave-vector backscattering components of the scat-

tering potential also introduces scattering in the spin sector.

The term Hdis introduces competition between two oppo-

site behaviors, namely ballistic propagation of density waves

promoted by H0, and real-space pinning of the charge density

promoted by Hdis. Pinning of charge density occurs because

it is energetically favorable for φe to track the phase φimp(x)

of the impurity potential, u(x) = |u(x)|eiφimp(x). Several ap-

proaches are available to describe scattering in an effective

fashion both above and below ω∗, each with its own limita-

tions. To keep the formalism as generic as possible, here we

use the memory function formalism, which has been com-

monly used to obtain correlations in a variety of non-Fermi

liquids [46–50].

1. Equations of motion

To describe the effects of disorder, we derive the equations

of motion within the memory function formalism, in order

to give an intuitive picture of how microscopic dynamics is

affected by disorder scattering. The key idea of this approach

is to track only a subspace of relevant degrees of freedom,

namely, [φm(q, t ),�m(q, t )] for a fixed value of q. The

remaining degrees of freedom, which are orthogonal to the

subspace spanned by [φm(q, t ),�m(q, t )], enter the equations

of motion via fluctuation and dissipation terms. It is clear
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from the Hamiltonian H = H0 + Hdis, that only Hdis couples

[φm(q, t ),�m(q, t )] to their orthogonal subspace. In particu-

lar, the operator fm = [Hdis,�m] quantifies the leakage out

of the subspace spanned by [φm(q, t ),�m(q, t )]. Within this

approach, the equations of motion i∂t�m = 1
h̄

[�m,H] and

i∂tφm = 1
h̄

[φm,H] can be exactly expressed as

∂tφm(q, t ) = πKmvm�m(q, t ), (22)

∂t�m(q, t ) = −(vmq2/πKm)φm(q, t )

+ i

∫ ∞

0

dsMm(q, s)�m(q, t − s) + ξm(q, t ).

(23)

For each value of m = e, σ , the equations of motion resemble

those of a damped harmonic oscillator in which φm plays the

role of position, �m of momentum, and 1/πKmvm of mass.

Here, Mm(q, t ) = M′
m(q, t ) + iM′′

m(q, t ) is a memory func-

tion which introduces dissipation and retardation effects, and

ξm(q, t ) is a random fluctuating force. We note that there is

neither memory function nor force term in Eq. (22) because

the scattering potential depends on φm, i.e., [Hdis(φm), φm] =
0, but not on �m. We also note that coupling between �e and

�σ in Eq. (23) is not present because 〈fefσ 〉 = 0.

Although Eqs. (22) and (23) are exact [51], calculating the

exact form of Mm and ξm is challenging. For this reason,

perturbation schemes have been developed to quantify such

terms [46]. To leading order in fm, Mm(q, ω) is given by

Mm(q, ω) =
CR

fmfm
(q, ω) − CR

fmfm
(q, 0)

ω
. (24)

In thermal equilibrium, the fluctuating force and the

memory function are not independent. In particular,

fluctuations are related to dissipation via the fluctuation-

dissipation theorem:
∫ ∞
−∞ dteiωt 〈ξm(−q, t )ξm(q, 0)〉 =

2kBTM′′
m(q, ω)/π h̄vmKm.

Interpretation of Eqs. (22) and (23) is straightforward when

they are rewritten in terms of charge and currents in order

to obtain hydrodynamic equations. In particular, by multipy-

ing Eq. (22) by
√

2q/π , using ρm = −
√

2∂φm/π and jm =√
2vF�m =

√
2Kmvm�m, we recover the continuity equation,

∂tρm = vm∂xjm for charge and spin modes. Similarly, by mul-

tiplying Eq. (23) by vm and assuming for illustrative purposes

that the memory function is local in time and purely imag-

inary, i.e., i
∫ ∞

0
dsMm(q, s)�m(q, t − s) = −νjm(q, t ), we

obtain an equation describing current dynamics in a resistive

circuit: ∂tjm = v2
m∂xρm − νjm(x, t ) + ξm(t ): the first term in

the right-hand side is the driving force for the current (note

that h̄ve∂xρm = ∂xμ is the gradient of the chemical potential),

the second term is a resistive/dissipative term, and the third

term is a random, fluctuating force.

From the equations of motion (22) and (23), it is possible

to compute CR
φmφm

(q, ω), from which it is then trivial to obtain

CR
ρmρm

(q, ω). The first step in this direction is to go into Fourier

space and invert Eqs. (22) and (23):
(

φm

�m

)

=
ξm(q, ω)

(vmq )2 − ω2 − ωMm(q, ω)

(

πKmvm

−iω

)

. (25)

Obtaining CR
φmφm

(q, ω) via Eq. (25) proceeds in two

steps. First, we express the product 〈φm(q, ω)φ̄m(q, ω)〉 in

terms of 〈ξm(q, ω)ξ̄m(q, ω)〉, which can be obtained from

the fluctuation-dissipation theorem: 〈ξm(q, ω)ξ̄m(q, ω)〉 =
2kBTM′′

m(q, ω)/π h̄vmKm. Second, we make the connec-

tion between correlation functions 〈φm(q, ω)φ̄m(q, ω)〉 =
2kBT
h̄ω

Im[CR
φmφm

(q, ω)], which is valid in thermal equilibrium

and in the classical limit kBT ≫ h̄ω. These two steps result in

C
R
φmφm

(q, ω) =
πKmvm

(vmq )2 − ω2 − ωMm(q, ω)
. (26)

From here, it is trivial to obtain charge and spin density

correlators by using the mapping ρm =
√

2∂xφm/π , which

results in

SU(2) : CR
ρmρm

(q, ω) =
2

π

Kmvmq2

(vmq )2 − ω2 − ωMm(q, ω)
.

(27)

2. Memory functions for disorder scattering

Because the disorder potential is short-ranged and

Gaussian, Mm(q, ω) does not depend explicitly on q (see

Appendix D); M(q, ω) does have, however, an implicit

q-dependence via Ke and ve [cf. Eq. (11)]. Further,

because Mm(q, ω) depends on the temperature of the

system, hereafter we show these dependencies explicitly,

Mm(q, ω) ≡ Mm(q, ω, T ).

The memory function can be generically written as

Mm(q, ω, T ) = Ŵm

(

akBT

h̄vm

)αm

Fm

(

h̄ω

kBT

)

, m = e, σ,

(28)

where Ŵm is a constant with units of sec−1, αm is a

number that depends on microscopics, and Fm(x) is

a dimensionless complex function. The details of the

memory functions calculation are given in Appendix D.

Given that spin probes usually operate with ω below

THz frequencies (�4 meV) and temperatures can vary

over a wide range including room temperatures, we focus

on the regime h̄ω � kBT , which is mostly relevant to

experiments. In this regime, we find that Fm(x � 1) is

approximately constant and, therefore, the sign of αm

determines whether the scattering rate increases or decreases

with temperature. In particular, the memory function

behaves as Mm(q, ω, T ) ≈ iβŴm(akBT/h̄vm)Ke+Kσ −2,

where Ŵe = (2π )Ke+Kσ +1DK2
e (ve/vσ )Kσ and Ŵσ =

(2π )Ke+Kσ +1DK2
σ (vσ/ve )Ke (the values of Ke and ve

are q-dependent). Because for repulsive interactions

Ke + Kσ − 2 < 0 is valid, Mm(q, T ) (and the scattering

rate) monotonically decreases as a function of T . As such, the

system behaves more “ballistic”-like as temperature increases.

3. Magnetic noise from disordered wires

Combining Eqs. (27) and (7), we find a relaxation time

induced by charge and spin modes given by

1/T1,m(ω, T ,R)

=
(gsμB)2

8π

∫ ∞

0

dq

2π
Fm(q, 0, R, ω)

×
coth(h̄ω/2kBT )Kmvmq2ωM′′

m(q, ω, T )

[(vmq )2−ω2−ωM′(q, ω, T )]2+[ωM′′
m(q, ω, T )]2

.

(29)
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Equation (29) summarizes the essence of magnetic noise mea-

surements in the presence of disorder. In particular, disorder

couples modes with different q wave vectors and, as such,

charge and spin fluctuations at frequency ω are distributed in q

space. This is qualitatively distinct from clean systems where

fluctuations with frequency ω are dominated by a single wave

vector ω/vm.

In order to simplify the discussion, in what follows we fix

the values of Ke and ve appearing in Mm such that Mm no

longer depends implicitly on q. This approximation is valid

when scattering rate is small, ω � M′′
m, given that most of the

contribution to noise in Eq. (29) comes from a small phase

space region centered at q = ω/ve for 1/T1,e, and q = ω/vF

for 1/T1,σ . For large scattering rate, ω � M′′, a larger region

in q space contributes to noise and, as such, there will be q-

dependent logarithmic corrections to Ke and ve. We neglect

these secondary corrections, which do not alter the qualitative

behavior, but that could easily be incorporated if a detailed

quantitative analysis were needed. The distribution of modes

in q space modifies the dependence of magnetic noise as a

function of distance found for LLs and, furthermore, results

in nonuniversal power law of T , as will be discussed next.

4. Relaxation time as a function of distance

We begin the analysis of Eq. (29) by exploring how modes

in disordered wires are sampled as the probe-to-sample dis-

tance is changed. Let us focus on charge-induced noise, and

focus on the regime kBT/h̄ � ω � ω∗, where it is valid to as-

sume that M′′
m(ω, T ) ≫ M′

m(ω, T ) [see paragraph following

Eq. (28)]. We also assume that scattering rate is large, ω �
M′′

m(ω, T ), such that density waves start to become pinned

by disorder and depart from the LL behavior discussed in

the previous section. Figure 3(a) shows charge-induced noise

as a function of distance from the disordered wire, and the

results are compared to those for clean wires. We recall that,

for LLs, noise decays as 1/R2 until R becomes comparable to

the excitations wavelength ω/ve; beyond this length, magnetic

noise decays exponentially as a function of distance. For

disordered wires at close proximity we find that magnetic

noise also decays as 1/R2 so long as R � ℓd = vm/
√

ωMm,

where ℓd is the scattering length, but its overall magnitude is

smaller due to charge pinning. Interestingly, we find that for

R � ℓd, magnetic noise in a disordered wire decays as a 1/R3

power law and can overwhelm magnetic noise for clean wires,

which decays exponentially with R.

This behavior can be understood as follows. In the regime

in which backscattering dominates, the denominator of the

integrand in Eq. (29) is dominated by the scattering rate

ωM′′
m, and can be approximated as ∼1/[(vmq )4 + (ωM′′

m)2].

As such, the relaxation time integral in Eq. (29) can be written

as
∫ ∞

0
dqFe(q, 0, R, ω)M′′

m/[(vmq )4 + (ωM′′
m)2]. For R �

ℓd, we can use Fe(q, 0, R, ω) ∼ 1/(qR)2, from which a 1/R2

dependence is obtained by pulling the 1/R2 factor out of the

integral. For R � ℓd, we can make the integral dimensionless

by defining x = qR and using ωM′′
e/R

2 ≪ 1 in the denomi-

nator, which results in a 1/R3 power-law behavior, 1/T1,e =
[e2Kω2ℓ2

d/8π2v2R3]
∫ ∞

0
dxx2K2

1 (x) [see Fig. 3(b)]. As such,

the exponential versus power-law behavior of noise as a

FIG. 3. (a) Qualitatively distinct noise behaviors as a function of

probe-to-sample distance for clean (dotted line) and disordered (solid

line) systems. Clean systems exhibit an exponentially decay of noise

as a function of R governed by the length scale ve/ω. For disordered

systems, we find noise decaying as y−3 power law (see discussion

in main text). Here we assume that the spin probe is positioned at

r = (0, y, d ) and the 1D system runs in the r = (x, 0, 0) line. (b) The

temperature dependence of the relaxation time exhibits nonuniversal

power-law behavior. Temperature combined with interactions makes

the system less susceptible to scattering and, as a result, enhances

magnetic noise. For h̄ω � kBT , we find superlinear (sublinear) T

dependence of charge(spin) noise. Here, T 0
1,e relaxation time due to

quantum fluctuations in a clean wire.

function of probe-to-sample distance can be used as diagnos-

tics of pinning of density waves.

5. Relaxation time as a function of temperature: emergence of

non-universal power laws

Disorder results in the emergence of nonuniversal power-

laws of T , one of the key signature of LL. Again, let us

focus on the regime kBT/h̄ � ω � ω∗, where Mm(ω, T ) is

strongly T -dependent and it is valid to assume M′′
m(ω, T ) ≫

M′
m(ω, T ). We also assume that the scattering rate is large,

M′′
m(ω, T ) � ω, such that we are away from LL behavior.

Figure 3(b) shows the dependence of the relaxation time as

a function of T , and the results are compared with those

of clean LLs, which is governed by a coth(h̄ω/2kBT ) fac-

tor. Results are plotted assuming that the probe is close to

the sample, R/ℓdis � 1. We find that 1/T1 has nonuniversal

power law behavior, with charge noise behaving superlinerly,

whereas spin noise behaves sublinearly. This behavior can

be understood as follows. In the regime in which backscat-

tering dominates, the denominator in Eq. (29) can be ap-

proximated using 1/[(vmq )4 + (ωM′′
m)2] and the integral in

q space can be expressed as 1/T1,m ∝
∫ ∞

0
dqqr/[(vmq )4 +

(ωM′′
m)2], where r = 0 for m = e and r = 2 for m = σ .

The relaxation time integral can be made dimensionless

by defining x = vmq/
√

ωM′′
m such that all T -dependent

terms appear as prefactors of the integral. Upon normal-

ization, Eq. (29) gives rise to noise scaling with tempera-

ture as 1/T1,e(T ) ∝ T/
√

M′′
m(T ), and spin noise scaling as

1/T1,σ (T ) ∝ T
√

M′′
m(T ), where the factor T is introduced

by the coth(h̄ω/2kBT ) ≈ 2kBT/h̄ω term in the numerator

of Eq. (29). Using Mm(ω, T ) in Eq. (28) for kBT � h̄ω,
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we find that, when scattering rate is large, charge-induced

noise increases superlinearly with T , 1/T1,e ∝ T 2−(Ke+Kσ )/2,

whereas spin noise increases sublinearly with T , 1/T1,σ ∝
T (Ke+Kσ )/2. We also note that charge fluctuations depend on

Kσ (and viceversa) because the scattering potential in Eq. (21)

couples the charge and spin degrees of freedom.

B. Case II: helical and spin-polarized channels with ω � ω∗

The starting point to discuss disordered spin-polarized and

helical states is the LL Hamiltonian, Eq. (17), describing

ballistic propagation of charge/spin density waves. Proceeding

with our minimal approach, we introduce scattering via a

disorder potential of the form [43]

Hdis(φ) =
un(x)

πa
e2inφ(x) + H.c. (30)

Here, a is the lattice cutoff and un(x) is an uncorrelated

potential 〈un(x)ūn(x ′)〉 = Dnδ(x − x ′). The value of n = 1, 2

reflects the amount of particles involved in scattering and

captures two qualitatively distinct noise behaviors. The case

n = 1 corresponds to the usual direct backscattering term

where u1(x) is the continuum limit of the 2kF components

of the scattering potential [3]. It is often the case, however,

that symmetries of the Hamiltonian do not allow such terms,

e.g., in the quantum spin Hall states wherein helical states

are protected from backscattering by time-reversal symmetry.

Rather than specifying one of the several microscopic models

which have been proposed [30,33,34], here instead we capture

scattering phenomenologically by using n = 2 in Eq. (8),

resembling two particles participating in the backscattering

process, and u2(x) is an effective potential induced by sec-

ond order processes. As we will see, the key effect of n is

to describe whether temperature combined with interactions

enhances or quenches backscattering.

The equations of motion for the helical and spin-polarized

states are the same as those for the SU(2), Eqs. (22) and (23)

but, because the spin degree of freedom is frozen, restricted to

the charge sector m = e. As such, we do not repeat the same

procedure that lead to Eqs. (22)–(27), but only quote the final

result. For spin-polarized states, we find

SP : C
R
ρmρm

(q, ω, T ) =
1

π

Keveq
2

(veq )2 − ω2 − ωM1(ω, T )
,

(31)

where we used the relation ρe = ρσ , and M1 is the memory

function corresponding to the scattering potential in Eq. (30)

for n = 1. For helical states, we have to keep in mind that

the correlator CR
ρσ ρσ

(q, ω) is obtained from CR
��

(q, ω), see

Eq. (25), which results in

helical : C
R
ρeρe

(q, ω, T ) =
1

π

Keveq
2

(veq )2 − ω2 − ωM2(ω, T )
,

C
R
ρσ ρσ

(q, ω, T ) =
1

π

ω2/Keve

(veq )2 − ω2 − ωM2(ω, T )
.

(32)

Here, M2(q, ω) is the memory function corresponding to

Eq. (30) for n = 2.

To give a qualitative picture of the temperature

dependence of Mn(ω, T ), we quote the results in the

regime h̄ω � kBT (details for all values of ω, T are described

in the Appendix D). In this regime, we find Mn(ω, T ) ≈
iγn(akBT/h̄ve )2nKe−2, where γn = (2π )2nKe−2(DnKe/ve ).

For n = 1, any value of repulsive interaction makes the

scattering rate monotonically decreasing as a function of

T ; this behavior is the same as in the SU(2) case. This

indicates that interactions combined with temperature tend

to make the system less sensitive to the disorder. For n = 2,

there is a transition in the temperature dependence of the

M2(ω, T ), which occurs at Kc = 1/2: scattering is enhanced

(suppressed) at larger temperatures for Ke > Kc(Ke < Kc).

The existence of a critical repulsion strength which changes

the importance of scattering at small temperatures is

consistent with proposed microscopic models of scattering in

quantum spin Hall phases (the value of Kc, however, is model

specific).

The analysis of how noise varies as a function of distance

for disordered wires leads to the same power-law behaviors as

those in the SU(2) case described in the previous section, so

we do not reproduce the results here. Instead, here we focus

on how single particle backscattering and interaction-assisted

backscattering lead to qualitatively distinct noise behaviors as

a function of T .

1. Relaxation time as a function of temperature

We consider first the case of single particle backscattering,

n = 1 in Eq. (21), wherein temperature makes modes less

sensitive to disorder. As before, we focus on the regime

kBT/h̄ � ω � ω∗, where M1(ω, T ) is strongly T -dependent

and it is legitimate to assume M′′
1 (ω, T ) ≫ M′

1(ω, T ) [see

paragraph following Eq. (28)], and also that scattering rate

is large, ω � M′′
1 (q, ω), such that we deviate from LL be-

havior discussed in the previous section. Figure 4(a) shows

the dependence of the relaxation time as a function of T

for the spin-polarized case, and the results are compared with

those of clean LLs. The T dependence of noise follows the

same behavior as in the disordered wire with an SU(2) degree

of freedom, see Fig. 3(b), but with a power law that depends

only on Ke. In particular, upon normalization and pulling out

all the T -dependent terms of the integral, Eq. (14) gives rise to

noise scaling with temperature as 1/T1,e(T ) ∝ T/
√

M′′
1 (T ),

and spin noise scaling as 1/T1,σ (T ) ∝ T
√

M′′
1 (T ). Using

M1(ω, T ) described in the previous section for kBT � h̄ω,

we find that charge-induced noise increases superlinearly with

T , 1/T1,e ∝ T 2−Ke , whereas spin noise increases sublinearly

with T , 1/T1,σ ∝ T Ke [see Fig. 4(a) at moderate to high T ].

Helical states exhibit qualitatively distinct noise behavior

as a function of T than the spin-polarized case for weak

repulsion, Ke > 1/2, see Fig. 4(b). For small T , time-reversal

symmetry protects chiral states against backscattering; this

leads to a clean LL behavior at T = 0. At large T , multiparti-

cle interactions assist disorder in backscattering chiral states,

resulting in an enhancement of the scattering rate. To roughly

estimate the T dependence when scattering rate is strong, we

note the magnetic noise integral in q space in Eq. (29) can be

approximated as
∫ ∞

0
dqM′′

2/[(vmq )4 + (ωM′′
2 )2], where we

used the same approximations as in the previous paragraph.
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FIG. 4. The temperature dependence of the relaxation time due

to charge (m = e) and spin (m = σ ) modes exhibits nonuniversal and

qualitatively distinct behaviors for different microscopic phases and

scattering mechanisms. (a) For the disordered spin-polarized phase at

T = 0, backscattering leads to localization and suppression of charge

and spin density fluctuations. Temperature combined with interac-

tions makes the system less susceptible to scattering and enhances

magnetic noise. For h̄ω � kBT , we find superlinear (sublinear) T

dependence of charge(spin) noise. (b) In the helical phase, because

of time-reversal symmetry, disorder backscattering is suppressed

at T = 0 and the system behaves as a perfect LL. Temperature

combined with interactions assists disorder backscattering. For weak

repulsion, we find sublinear (superlinear) T dependence of charge

(spin) noise, see details in main text. In the figures, we use aω/v =
5 × 10−3.

The key distinction with the spin-polarized case is that CR
ρσ ρσ

in Eq. (31) contains an ω2 term in the numerator rather than

a q2 term, thus the sampling weight in q-space is different

than in the spin-polarized case. As such, we find a relaxation

time scaling with temperature as 1/T1,m(T ) ∝ T/
√

M′′
2 (T ).

For h̄ω � kBT , we find a sublinear T -dependent behavior for

the relaxation time, 1/T1,m(T ) ∝ T 2(1−Ke ).

A subtle yet interesting effect is that, because spin fluc-

tuations are locked to charge fluctuations for spin-polarized

and helical states, the magnetic noise due to charge and spin

modes as a function of temperature are also locked. Using the

scaling as a function of T found above, for spin polarized

states, we find that the product 1/T1,eT1,σ T 2 is independent

of T , whereas for helical states, the product T1,e/T1,σ is

independent of T . This behavior suggests a diagnostics of

helical versus spin-polarized 1D channels. A similar behavior

was discussed above for the SU(2) case for strong disorder,

where the charge and spin sectors become coupled by the scat-

tering potential, Eq. (30). For more general 1D systems where

charge and spin degree of freedom are separated and subject

to different scattering potentials, e.g., Hubbard models, charge

and spin noise are no longer locked.

C. Case III: 1D channels with ω � ω∗

While memory functions correctly capture qualitatively

behaviors which are important for our discussion, such as

enhancement/quenching of scattering as a function of tem-

peratures, there are more accurate approaches to describe

the dependence on T and ω particularly in the regime ω �
ω∗. The key limitation of Eq. (24) is that, as soon as ω

FIG. 5. (a) Pinning of wave functions leads to quenching of

charge fluctuations. For strong repulsion, neighboring spins are

coupled via an antiferromagnetic coupling and spin fluctuations are

possible. (b) For weak repulsion, spin form singlet states and spin

fluctuations become gapped. (c) Spatial inhomogeneity and detuning

of noise in the strong impurity regime. For strong, sparse impurities

(empty circles), the wire is cut into segments of size ℓi and finite-size

quantization effects, �εi = h̄v/ℓi , take place. If the level splitting

of the probe ω is sufficiently detuned from �εi , the relaxation time

becomes negligibly small.

approaches ω∗, higher order corrections (in powers of fm)

become necessary. One way to tackle this problem is to

combine the memory function formalism with RG [47], such

that the microscopic parameters Km, vm, and Dm, which are

constant in our model, become T -dependent. This approach,

however, fails to describe physics on the scale of ℓloc which

are important if the probe is located within R � ℓloc.

Another approach, which is valid when kBT � h̄ω ≪
ω∗, is the Gaussian variational approach, which consists of

finding the best quadratic approximation to the disordered

Hamiltonian via minimization in replica-space, in order

to compute two-point correlations [45]. Replica-symmetry-

breaking generates a mass term in the excitation spectrum,

which can be described by replacing −ωM → M + iγ ω in

Eq. (31), where M is a mass term and γ is a T -dependent

factor. The imaginary term iγ ω gives rise to the characteristic

σ (ω) ∝ ω2, which governs conductivity in 1D systems, and

qualitatively agrees with the usual σ (ω) ∼ ω2ln2ω obtained

in the Anderson insulating regime (Ke = 1) as well as in

the Fukuyama-Lee regime (Ke = 0) [44]. Contrary to RG,

this approach fails to account for the renormalization of the

Luttinger parameters. Further, it also fails to describe charge

motion via quantum creep, which gives rise to variable range

hopping [52,53].

Both RG and the Gaussian variational approach are good

to describe quenching of long wavelength charge and spin

fluctuations. Both approaches, however, rely on self-averaging

of the disorder potential. This approximation may become

questionable when accessing dynamics at distances R � ℓloc.

In particular, while we still expect orbital degrees of freedom

to become frozen as the wave function becomes localized in

space due to disorder, the spin degree of freedom can still

fluctuate; long wavelength spin fluctuations are quenched, but

spin fluctuations on the lattice scale remain, e.g., paramag-

netic fluctuations. If Coulomb repulsion is sufficiently strong,

interactions between neighboring spins are antiferromagnetic,

and each spin interacts with ∼kFℓloc nearest neighbors via

random exchange parameters, see Fig. 5(a). This creates
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islands—or rare regions—where spins are strongly correlated

(for a general discussion of spin fluctuations in disordered

systems, see Ref. [54]). As such, spin probes can detect spin-

induced noise induced by paramagentic fluctuations in these

islands, so long as the probe-to-sample distance is on the order

of island size. For weak repulsion, it has been shown that

localization can also lead to localized singlet states in which

spin fluctuations become gapped, see Fig. 5(b) [47]. In this

case, spin induced noise is quenched even on the scale ℓloc.

V. NOISE FROM DIRTY WIRES: STRONG IMPURTIES

A different disorder regime is present when impurities

introduce strong, local scattering potentials which are, on

average, sufficiently separated from each other. In this regime,

a scattering potential of the form U (x) =
∑

i uiδ(x − xi ) is

assumed, such that the separation of impurities is large on

the lattice and excitation wavelength scale, ℓi = xi+1 − xi �
v/ω ≫ a. Further, we assume that ui/a is weak compared

with Fermi energy of 1D electronic states such that bosoniza-

tion is still valid, but large compared to ω. Let us focus first

on the spin-polarized phase. Within the bosonization descrip-

tion, the impurity Hamiltonian introduced by U (x) can be

written as

Himp =
∑

i

ui

πa
cos[2φ(x = xi )], (33)

where unimportant forward-scattering terms are removed.

Following Kane and Fisher [55,56], the key effect of Eq. (33)

is to pin φ(x) to the impurity potential at the positions xi .

Because impurities are relevant for Ke < 1, for small enough

temperatures, the system flows to strong coupling (in the RG

sense) and can be interpreted as a set of finite, decoupled

1D metallic segments; there is zero transmission across the

impurity at T = 0, and a power law behavior as a function

of T .

Under this simplistic picture, we expect two main effects

on the relaxation time behavior in the strong disorder regime.

First, finite-size quantization effects for each segment will

take place such that the energy level splitting of the segments

will be, on average, �ε ∼ h̄vnimp, with nimp the impurity

density. As such, if ω � �ε, then the probe will unlikely

couple to the sample. More quantitatively, the probability of

finding a segment of size ℓi � v/ω is exponentially small,

p ∼ exp(−nimpℓi ). This analysis allows to define a minimum

segment size in order to couple the spin probe to the sample.

For instance, for sub-THz frequencies, we expect the minimun

segment size to be on the order of ℓi � v/ω ∼ 100 nm (here

we used v = 104 m/s and ω � 100 GHz).

Second, because the distribution of lengths in each segment

is expected to be random, we also expect highly inhomoge-

neous magnetic noise as a function of x. This is qualitatively

different than the weak disorder case where, because the probe

samples a large number of defects which are available within

a distance R, noise is expected to be relatively homogeneous

across x due to self-averaging.

Introducing an SU(2) degree of freedom leads to the same

conclusions as the spin polarized state, namely, charge and

spin density waves are perfectly reflected at the impurity

for any value of repulsive interactions (for small enough

T ). Interestingly, if one breaks the SU(2) spin symmetry

but preserves a spin U(1), then mixed phase are possible

in which charge density waves are perfectly reflected and

spin density waves are perfectly transmitted (or vice versa)

[55]. By separating charge and spin fluctuations, this peculiar

behavior can potentially be detected with spin probes.

VI. BEYOND THE MINIMAL TWO-CHANNEL MODEL

One-dimensional systems can feature physics beyond our

minimal two-channel model. The simplest extension to our

model is adding orbital degrees of freedom, for instance,

ladders or carbon nanotubes. Extension of our formalism to

these cases follow the same lines as in the SU(2) spin degree

of freedom case, i.e., increasing the number of fields, all of

which satisfy Eq. (8) separately but with orbital-dependent

Luttinger parameters. The large range of possibilities avail-

able for coupling the degrees of freedom via scattering or

interactions give rise to a wide range of regimes in which

noise can be dominated by different types of fluctuations, e.g.,

superconducting or ferromagentic fluctuations.

In addition, although our attention was mainly on the quali-

tative features of noise, 1D physics is sensitive to microscopic

details. It is often the case that several microscopic models ex-

plain, up to some degree, some experimental observation. Two

notable examples are non-quantized conductivity for quantum

spin Hall states, and the case of the 0.7 anomaly observed

in conductance measurements in quantum wires [57–59]. In

the former case, several backscattering mechanism have been

proposed for quantum spin Hall states, such as trapping of

electrons in quantum dots, or disordered Rashba coupling

[30–35]. In the latter case, two opposite pictures, namely a

transition into a 1D Wigner crystal and the formation of a

Kondo impurity, have been proposed to explain the data. By

exploiting both the spatial and spectral (via T ) resolution of

spin probes, it may be possible to shed light on the operating

mechanisms in these two interesting and somewhat controver-

sial cases.

In addition, low-energy excitations may exhibit quasi-1D

behavior. Such is the case of edges in the quantum Hall

regime and edge magnetoplasmon, wherein charge density

fluctuations at the edge induce not only edge currents but also

bulk currents [60]. While the above discussion remains valid,

it is now necessary to account for lateral currents (towards the

bulk) in addition to the already studied edge currents. While

not pursued here, an intriguing possibility is using spin probes

to map the conducting channels in quantum Hall systems.

VII. SUMMARY

The ability to sample charge and spin fluctuations in a

wide range of length scales render spin probes an invalu-

able probing technique of 1D systems, particularly when the

coupling between charge and spin modes is important. We

outlined protocols that exploit the spin degree of freedom of

the probe to measure charge and spin fluctuations in a wide

range of 1D systems. Furthermore, we discussed the effects of

scattering, interactions and internal structures of 1D carriers

on temperature and probe-to-sample distance dependence of

noise. We showed that these features can be accessed using
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readily available NV-based diamond probes. In the same

spirit, spin probes are also promising candidates to explore

a whole zoo of phenomena in 1D systems, such as Kondo

impurities and ladders, thus opening intriguing new pathways

to access charge and spin fluctuations in general 1D systems.
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APPENDIX A: RELAXATION RATE OF THE SPIN PROBE

There are two important protocols used to study mag-

netometry in solid-state system. In the first approach, static

magnetic fields can be measured by determining the Zeeman

splitting of the spin probe. This approach, which allows to

observe magnetic textures, has been used for single spin

imaging [61] and domain walls [62]. In the second approach,

which is the one discussed in the present work, the relaxation

time of a spin-probe prepared in a pure state is measured.

The relaxation time is governed by the time-dependent

Hamiltonian Hspin = (h̄ω/2)σz + gsμBσ · B(t ), where we

assume a spin-1/2 probe with an intrinsic level splitting h̄ω.

Without loss of generality, we assume that the intrinsic po-

larizing field is in the ẑ direction (here, gs is the probe g

factor, μB the Bohr magneton, and B(t ) the wire-induced

magnetic field). We also assume that the 1D system is in

thermal equilibrium, described by the density matrix ρ1D =
∑

n ρn|n〉〈n|, where n are eigenstates with energy εn and

ρn = e−εn/kBT . The absorption rate 1/Tabs and emission rate

1/Tem is obtained from Fermi Golden’s rule using the initial

state |i〉 = |−〉 ⊗ ρ1D and |i〉 = |+〉 ⊗ ρ1D:

1/Tabs,em =
2π (gsμB)2

h̄

∑

nm

ρnB
±
nmB∓

mnδ(ω ∓ εnm). (A1)

Here, B±
nm denotes 〈n|B±|m〉, with B± = Bx ± iBy , and εmn

is the energy difference between states n and m, εnm =
εn − εm. The relaxation rate is defined as 2/T1 = [1/Tabs +
1/Tem]. It is straightforward from Eq. (A1) that 1/T1 and can

be expressed in terms of the anticommutator

1

T1

=
(gμB)2

2h̄2

∫ ∞

−∞
dteiωt 〈{B−(t ), B+(0)}〉. (A2)

For calculation purposes, it is convenient to cast Eq. (A2)

in terms of retarded correlation functions. As such, we use

the fluctuation-dissipation theorem to express the correlation

function in Eq. (A2) as
∫ ∞

−∞
dteiωt 〈{B−(t ), B+(0)}〉

= coth

(

h̄ω

2kBT

)

×Im

[

−i

∫ ∞

0

dteiωt 〈[B−(t ), B+(0)]〉
]

.

(A3)

As a result, the relaxation time is given by

1/T1 =
(gμB)2

2h̄2
coth

(

h̄ω

2kBT

)

Im
[

C
R
B−B+ (ω)

]

, (A4)

where we denote CR
AB (ω) = −i

∫ ∞
0

dteiωt 〈[A(t ), B(0)]〉.

APPENDIX B: WIRE-INDUCED

ELECTROMAGNETIC MODES

Here we calculate the electromagnetic modes induced by

charge and spin densities in a 1D system. Following the

convention in the main text, the wire is aligned in the x̂ axis,

and r⊥ = (y, z) are the coordinates transverse to the wire.

Without loss of generality, we also assume that the probe is

in position r = (0, 0, R). In the following sections, we first

find the eigenfunctions G
μ
m(q, r⊥, ω) associated to the vector

potential

Aμ(r, t ) =
1

√
L

∑

qωm

Gμ
m(q, r⊥, ω)ei(qx−ωt )ρm(q, ω), (B1)

for charge (m = e) and spin (m = x, y, z) modes, and then

compute Hm(q, r⊥, ω) in Eq. (4) by taking the curl of

G
μ
m(q, r⊥, ω).

1. Charge-induced electromagnetic modes

The electromagnetic mode associated with the 1D charge

density is given by the solution of
[

(ω/c)2 − q2 + ∇2
r⊥

]

Gμ
e (q, r⊥, ω) = δ(r⊥)dμ(q, ω),

dμ(q, ω) = (1, ω/q, 0, 0).

(B2)

Here, we focus on evanescent wave solutions, q � ω/c, be-

cause typical excitation wavevectors q are on the order of

q ∼ ω/vF, with vF ≪ c. The 4-vector dμ(q, ω) originates the

continuity equation, ∂tρe + ∂zje = 0. The explicit solution of

Eq. (B2) is

Gμ
e (q, r⊥, ω) = −[dμ(q, ω)/2π ]K0(λ|r⊥|), (B3)

where Kn denotes the nth modified Bessel function of the

second kind, and λ =
√

q2 − (ω/c)2. The magnetic field at

the position of the probe r = (0, 0, R) is given by Eq. (5),

where Hm(q, r⊥, ω) is found by taking the curl of Eq. (B2).

2. Spin-induced electromagnetic modes

Similarly, the electromagnetic modes corresponding to the

spin source are given by the solution of

[(ω/c)2 − q2 + ∇2
r⊥

]Gμ
m(q, r⊥, ω) = [0,∇ × (δ(r⊥)êm)],

(B4)
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where ∇ reads ∇ = (iq, ∂y, ∂z). The explicit solutions of

Eq. (B4) are

Gμ
x =

1

2π

⎛

⎜

⎜

⎝

0

0

λK1(λr ) sin θ

−λK1(λr ) cos θ

⎞

⎟

⎟

⎠

,

Gμ
y =

1

2π

⎛

⎜

⎝

0

−λK1(λr ) sin θ

0

iqK0(λr )

⎞

⎟

⎠
,

Gμ
z =

1

2π

⎛

⎜

⎜

⎝

0

−λK1(λr ) cos θ

−iqK0(λr )

0

⎞

⎟

⎟

⎠

. (B5)

By taking the curl of Eq. (B5) and using ω/c ≪ q, we find

Hm(q, r⊥, ω) at r = (0, 0, R) given by Eq. (6).

APPENDIX C: RELAXATION TIME AND

DENSITY-DENSITY CORRELATORS

The relaxation rate can be obtained from inserting the

magnetic field induced by charge [Eq. (5)] and spin [Eq. (6)]

modes into Eq. (3). To measure charge-induced fluctuations,

we assume that the probe is polarized in the ẑ direction, such

that δB± = δBx ± iδBy (see Fig. 1). As a result, we find that

〈[δB−, δB+]〉 =
∑

q Fe(q )〈[ρe, ρe]〉, where

Fe(q ) =
(μ0eω

2π

)2

K2
1 (qR). (C1)

For spin modes, we assume that the probe is polarized in the

ŷ direction, such that δB± = δBz ± iδBx . For system with an

SU(2) spin degree of freedom, we find that 〈[δB−, δB+]〉 =
∑

q Fσ (q )〈[ρσ , ρσ ]〉, where

Fσ (q ) =
(μ0gσμBq

4π

)2
[

(K0 − K2)2 + 8K2
1 + 4K2

0

]

, (C2)

where we used the fact that 〈ρxρx〉 = 〈ρzρz〉 = 〈ρσ ρσ 〉.
In the limit qR � 1, we find that Fσ is dominated by

Fσ ≈ (
μ0gσ μBq

4π
)
2
K2

2 (qR). Instead, for spin-polarized systems

with polarization angles ρx = ρσ cos θ , ρy = ρσ sin θ sin ϕ,

and ρz = ρσ sin θ cos ϕ, we find 〈[δB−, δB+]〉 =
∑

q Fσ (q )〈[ρσ , ρσ ]〉, where

Fσ (q ) =
(

μ0gσμBq2

4π

)2
{

4(K0 + K1)2 cos2 θ

+
[

(K0 − K2)2 + 4K2
1

]

sin2 θ cos2 ϕ
}

. (C3)

Here we assume that the direction of polarization has some

finite components in the direction transverse to the wire

[otherwise, magnetic noise will be a factor (qR)2 smaller for

distances R < 1/q]. In the limit qR � 1, we find that Fσ is

dominated by Fσ ≈ (
μ0gσ μBq

4π
)
2
K2

2 (qR) cos2 θ sin2 ϕ.

APPENDIX D: MEMORY FUNCTION FOR DISORDER

For the SU(2) case, the memory functions are de-

fined in terms of the retarded correlator CR
fmfm

(q, ω),

where fm(x) = [�m(x),
∫

dx ′Hdis(x
′)] captures the momen-

tum relaxation rate of �m. Explicitly, fm(x) takes values

fm(x) = (2vmKm/a)u(x)ei
√

2φe (x) cos[
√

2φσ (x)] + H.c. Cal-

culations of correlations functions where the field φm(x) ap-

pears in the exponent is straightforward but tedious. A detailed

step-by-step procedure is discussed in Appendix C of Ref. [3].

Using 〈u(x)ū(x ′)〉 = Dδ(x − x ′), the correlation function can

be expressed as in Eq. (28) with parameters

Ŵm = (2π )Kt+1DK
2
mvKt

m /vKe

e vKσ

σ ,

αm = Kt − 2,

Fm(x) = sin(πKt/2)

×
B(Kt/2 − ix, 1 − Kt ) − B(Kt/2, 1 − Kt )

x
,

(D1)

where B(x, y) is the Beta function and Kt = Ke + Kσ . For

repulsive interactions, our numerical estimates show that that

the dimensionless function Fm(x) can be approximated as

Fm(x � 1) ≈ βi, where 1 � β � 5 for a wide range of Ke,σ

and x values.

The same procedure holds for the scattering potential in

Eq. (30), where f (x) = (veKe/a)un(x)ei2nφe (x) + H.c. As-

suming an uncorrelated scattering potential, 〈un(x)un(x ′)〉 =
Dnδ(x − x ′) leads to Eq. (28) with parameters

Ŵn =
22nKe−2

π

DnKe

ve

, αn = 2nKe − 2,

Fn(x) = sin(πKe )
B(Ke − ix, 1 − 2Ke ) − B(Ke, 1 − 2Ke )

x
.

(D2)

For n = 1 and repulsive interactions, our numerical estimates

show that that the function Fn(x � 1) can be approximated as

f1(x) ≈ β1i, where 1 � β1 � 3 for a wide range of Ke and x

values. For n = 2, the function Fn(x) can be approximated as

F2(x � 1) ≈ β2i, where 0.1 � β2 � 1 for a wide range of Ke

and x values.
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