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The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In
many-body systems quantum-mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide
a complete experimental analysis of the shot-to-shot variations of interference-fringe contrast for pairs of independently created one-
dimensional Bose condensates. Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected
in a characteristic change in the distribution functions from poissonian to Gumbel type, in excellent agreement with theoretical
predictions on the basis of the Luttinger-liquid formalism. We present the first experimental observation of quasi-long-range order
in one-dimensional atomic condensates, which is a hallmark of quantum fluctuations in one-dimensional systems. Furthermore, our
experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system.

The probabilistic nature of Schrödinger wavefunctions and
the uncertainty principle are crucial aspects of the modern
understanding of quantum matter. Starting with the famous Bohr–
Einstein debates, intrinsic quantum-mechanical noise has been
the subject of numerous discussions and controversies1 and the
starting point of many new developments: the analysis of noise
in non-classical states of light was an important step towards
the foundation of quantum optics2. In solid-state systems current
fluctuations enable us to probe the nature of electrical transport
in mesoscopic systems3,4 and to investigate quantum correlations
and entanglement in electron interferometers5,6. In atomic physics,
noise correlation analysis7 was used to study quantum states in
optical lattices8,9, pair correlations in Fermi gases10, the counting
statistics in an atom laser11 and the Hanbury Brown–Twiss effect
for both bosons and fermions12,13.

Interference experiments provide a different powerful tool,
which was used, for example, to study critical fluctuations14,
thermal fluctuations in elongated condensates15 and the
Berezinskii–Kosterlitz–Thouless transition in a two-dimensional
quantum gas16. Recently, it has been suggested that the full statistics
of fluctuations in the contrast of interference fringes can be used
to probe high-order correlation functions and reveal non-trivial
phases of low-dimensional condensates17,18.

Here we combine the two ideas and investigate the interplay
between quantum and thermal noise in one-dimensional (1D)
systems. Earlier experiments with weakly interacting Bose gases
have studied thermal noise by phase15,19 and density20 fluctuations
in the 1D–3D crossover, whereas experiments with 1D condensates
in optical lattices observed manifestations of strong correlations
in the three-body recombination rate21, the total energy22 and

the momentum distribution of atoms23. In our experiments we
analyse the shot-to-shot variations in the interference of two
independently created 1D condensates. For large system sizes we
find that both the average contrast and its variations are dominated
by thermal fluctuations. For short system sizes we demonstrate that
the distribution functions of fringe contrast provide unambiguous
signatures of quantum fluctuations. Our results provide a clear
demonstration of quasi-long-range order and the power-law nature
of the correlation functions, which is the hallmark of 1D quasi-
condensates. It constitutes the first measurements of the full
distribution functions of quantum noise in an interacting many-
body system.

EXPERIMENTAL PROCEDURE

Our experiments are carried out using two independent
1D quantum degenerate atomic Bose gases created in a
radio-frequency-induced microtrap24–26 on an atom chip27,28. Each
sample contains typically 3,000–5,000 atoms in the 1D regime29,30,
with both temperature T < 80 nK and chemical potential
µ≈ h×1–2 kHz fulfilling kBT ,µ < hν⊥, where ν⊥ =3.0 kHz is the
trapping frequency of the harmonic transverse confinement. When
the two independent 1D condensates are released, they recombine
in time of flight and the resulting interference pattern is recorded
using standard absorption imaging (Fig. 1a).

Examples of the observed fringe patterns are shown in Fig. 1b.
Although the interference patterns have high local contrast,
the interference fringes as a whole are not straight lines. This
meandering character shows that the relative phase between the
two condensates is not constant but fluctuates from point to point.
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Figure 1 Experimental set-up and observed interference patterns. a, Two independent 1D Bose gases are created by first splitting a single highly elongated magnetic trap
on an atom chip holding a thermal ensemble of atoms into a double well using radio-frequency-induced potentials. In a second step the separate parts are evaporatively
cooled to degeneracy, producing two individual 1D condensates (schematic diagram on the left). The two systems are then simultaneously released from the trapping
potential and the resulting interference pattern is recorded with standard absorption imaging. The vertical orientation of the initial system is chosen so that the interference
pattern can be imaged along its transverse direction, parallel to the atom chip (illustration on the right). b, Colour-coded images of the resulting density patterns. The
observed interference fringes show a meandering over the length of the system (z direction), which is due to the local differences in relative phase between the two original
1D condensates. Consequently, this waviness of the patterns contains information about the phase correlations in the individual condensates.
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Figure 2 Analysis of the observed interference patterns. For quantitative analysis, we integrate over central slices of varying length L of the density profiles in the
longitudinal direction as indicated by the shading in the top row, to obtain multiple transverse line-density profiles. We then extract the interference amplitude |AQ| by Fourier
transforming these profiles and extracting the Fourier coefficient corresponding to the fringe spacing Q. To illustrate contrast reduction with increasing L, the fringe patterns
shown in the bottom row are normalized. Modulated cosine fits to these profiles then yield contrasts C (L ), which decrease with L. Note that the interference amplitude |AQ|

as defined in equation (1) is related to this contrast as |AQ| = n1D L×C. Consequently, as can be seen from equation (2), |AQ (L )| increases with L, whereas the contrast C (L )
decreases with L.

These phase variations originate from both quantum and thermal
fluctuations in the original 1D condensates and reflect the non-
mean-field character of low-dimensional systems. Integrating local
interference patterns over a finite length L leads to summing

interference patterns that are not in phase with each other
and results in a reduction of the total fringe contrast (Fig. 2).
This reduction of the interference contrast, and its statistical
fluctuations, contains important information about the phase
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correlations of the individual 1D condensates and is the main
quantity addressed in this work.

THEORETICAL MODEL

Before we proceed to the statistical analysis of the experimental
data we present a quick overview of the theoretical foundations
of our study. The analysis is carried out in two steps. In the first
step we analyse the average amplitude of interference fringes as a
function of the integration length L; the second step then analyses
the quantum and thermal noise contributions to the shot-to-shot
fluctuations in the average contrast.

Our interference patterns show a periodic density modulation
at the interference wavevector Q = md/h̄t , where m is the mass of
the atoms, d is the in-trap separation of the two 1D systems and
t is the expansion time. Assuming ballistic expansion, the complex
amplitude of this density modulation after integration over a length
L is given by17,31

AQ(L) =

∫ L/2

−L/2

dz a†
1(z)a2(z). (1)

Here a1,2 are the boson annihilation operators within the two
original 1D condensates before the expansion. The phase of AQ(L)
describes the position of interference fringes and is determined by
the relative phase between the two condensates averaged between
−L/2 and +L/2.

Because we carry out interference experiments with
independent condensates, the phase of AQ is random, and the
expectation value 〈AQ〉 is zero. This does not imply the absence of
fringes but shows the unpredictable random phase in individual
interference patterns32–34. Consequently, to study the contrast
statistics of the interference patterns we have to consider the
quantity 〈|AQ(L)|2

〉. This quantity is independent of the overall
phase difference but is strongly affected by phase twisting within
each condensate.

In the case of ideal non-fluctuating condensates we expect
to find perfect contrast for any size of the system. This implies
〈|AQ(L)|2

〉 ∝ L2. In the opposite regime of short-range phase
correlations with finite correlation length ξφ, the net interference
pattern comes from adding up fringes in L/ξφ uncorrelated
domains. In this case the net interference pattern is strongly
suppressed and appears only as a square root fluctuation,
〈|AQ(L)|2

〉 ∝ Lξφ.
More precisely, 〈|AQ(L)|2

〉 is determined by the integral of the
two-point correlation function:

〈|AQ(L)|2
〉 =

∫ L/2

−L/2

dz1

∫ L/2

−L/2

dz2 〈a†
1(z1)a1(z2)〉〈a†

2(z2)a2(z1)〉.

A special feature of 1D systems of interacting bosons is the
dramatic enhancement of fluctuations. Even at T = 0, true long-
range order is not possible and only quasi-condensates with a
power-law decay of the correlation function 〈a†(z2)a(z1)〉 exist35.
At finite temperatures we find exponential decay of the correlation
function for distances |z2 − z1| exceeding a thermal correlation
length29 ξφ(T).

To adequately describe these systems, a beyond-mean-field
theory is required. A powerful non-perturbative approach that
describes the long-distance behaviour of the correlation functions
of 1D systems is the Luttinger liquid theory (see the Methods
section and refs 36–38), on which we base our further analysis.

Using a standard expression for the two-point correlation
function in Luttinger liquid theory we obtain

〈|AQ(L)|2
〉 = n2

1DL2

(
ξh

L

)1/K

f

(
ξφ(T)

K L
,K

)
. (2)

Here, K = πh̄
√

n1D/gm is the Luttinger parameter for the weakly
interacting 1D Bose gas, with n1D being the 1D line density,
g = 2hν⊥as the effective 1D coupling constant and as the s-wave
scattering length. ξh = h̄/

√
mgn1D is the healing length and

ξφ(T) = h̄2n1Dπ/mkBT is the thermal correlation length of the
1D condensates (for the weakly interacting regime). The function
f (x,K ) is given by

f (x,K ) =

∫ 1

0

∫ 1

0

du dv

(
π

xsinh( π|u−v|
x

)

)1/K

. (3)

It shows how quantum and thermal fluctuations in the 1D
condensates affect 〈|AQ(L)|2

〉. Note that the finite number of
particles can in principle lead to corrections to equation (3)
(refs 31,39). We checked that for our parameters this shot noise is
of no importance even for the smallest L we investigate.

Let us first discuss the case of low temperatures and/or small
system sizes (L/ξφ(T) ≤ 1). Here we need to consider only
quantum fluctuations, which originate from interactions between
atoms. Non-interacting bosons at zero temperature have no phase
fluctuations; their interference patterns show perfect contrast,
leading to 〈|AQ(L)|2

〉 ∝ L2. In the other extreme, impenetrable
bosons (Tonks–Girardeau gas) have very strong fluctuations and
their interference pattern corresponds to short-range correlations,
〈|AQ(L)|2

〉 ∝ L (see the discussion above equation (2)). For finite
interaction strength we find something in between, resulting in the
scaling 〈|AQ(L)|2

〉 ∝ L2−1/K .
Finite temperature introduces thermal fluctuations, which

create phase fluctuations with a temperature-dependent correlation
length ξφ(T). When L > ξφ(T), thermal fluctuations dominate and
the interference amplitude scales as 〈|AQ(L)|2

〉 ∝ Lξφ(T).
The experimentally observed interference patterns provide us

with more information than just the average value 〈|AQ(L)|2
〉.

As a second step of our analysis we consider the shot-
to-shot fluctuations of individual measurements, which are
characterized by the higher moments 〈|AQ|

2n
〉 and ultimately

by the entire distribution function W (|AQ(L)|2). To visualize
the shot-to-shot fluctuations of the interference amplitude,
it turns out to be convenient to consider the normalized
variable α(L) = |AQ(L)|2/〈|AQ(L)|2

〉 and its distribution function
W (α(L)). The importance of the higher moments 〈|AQ|

2n
〉 is that

they are directly related to the higher-order correlation functions of
the 1D interacting Bose gas17.

In the following, we summarize only the scaling of the
distribution function; a formal theoretical approach is discussed
in the Methods section. In the case of non-interacting ideal
condensates, that is, perfect interference patterns in each
measurement, the distribution function W (α(L)) approaches a
delta function. When interactions are weak but finite, we expect
a narrow distribution of width 1/K and W (α(L)) to approach
a universal Gumbel-like distribution31,40. In the limit of long
integration lengths, L � ξφ(T), thermal fluctuations dominate. As
discussed above, in this case the net interference pattern comes
from adding local interference patterns from many uncorrelated
domains, resulting in the distribution function being poissonian.
For integration lengths comparable to ξφ(T) both quantum and
thermal fluctuations are important. In this regime we expect
W (α(L)) to show a double-peak structure, with the peak at small
amplitudes coming from the thermal noise and the peak at finite
amplitude from quantum noise.

ANALYSIS OF THE AVERAGE INTERFERENCE AMPLITUDE

We now turn to the analysis of our experimental data, starting with
the average interference amplitude square 〈|AQ|

2
〉 and its variation

with system size L.
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Figure 3 Length dependence of the average contrast. The data points show the
measured 〈|AQ|

2
〉 for three different temperatures T. Error bars indicate the s.e.m.

Each data point contains 50 individual interference measurements. The solid lines
are fits of equation (2) to the data with T as free parameter (see the Methods
section). K and ξh are determined independently from measurements of n1D and ν⊥.

To extract |AQ| from the observed interference patterns, we first
obtain transverse density profiles integrated over the longitudinal
direction for different lengths L, as shown in Fig. 2. We then
fit a cosine function with a gaussian envelope to the resulting
fringe profiles to extract the relative phase and the interfering
amplitude |AQ| as functions of L (see the Methods section).
To ensure homogeneous 1D density, we restrict our analysis to
the central 50% of the system. In this region the longitudinal
confinement is well approximated by a harmonic potential with
oscillator frequency ν‖ ≈ 5 Hz. For the largest L considered, n1D(z)
varies at most by ∼15% from the peak density at the trap centre.
This modulation is ignored and we obtain a single value for n1D by
averaging over the atomic density in this centre region.

Figure 3 shows the experimentally observed average
interference amplitude squares 〈|AQ|

2
〉 for three different

temperatures, with the density n1D =50(4) µm−1 and the transverse
trapping frequency ν⊥ = 3,020(10) Hz (µ ≈ h × 1.5 kHz, K = 42
and ξh = 0.3 µm) identical for all three data sets. The higher-
temperature data sets are obtained by waiting for different times
after the initial preparation of the two condensates. During this
waiting time, the system heats owing to residual noise in the
magnetic trapping fields.

To compare measurement and theory, we fit the function
equation (2) to the experimental data (Fig. 3) with the temperature
T as a free parameter (see the Methods section). We find the
functional behaviour of the measured contrasts to be in very good
agreement with the theoretical predictions. This is of particular
interest, as the shape of these curves is determined by both the
quantum and thermal contributions to the average contrast, as
discussed above. For integration length longer than 20–30 µm we
observe a linear dependence of 〈|AQ(L)|2

〉 on L. This corresponds
to the L � ξφ(T) regime where thermal fluctuations dominate.

For shorter segment lengths, quantum fluctuations are
important. However, the analysis presented in Fig. 3 is not
sufficient to make the case for quantum fluctuations. The Luttinger
parameter for our system is K = 42, and it is impossible to observe
the L−1/K correction to the ideal-case (noise-free) power law L2 in
the limited range of lengths available. From Fig. 3 we cannot prove
that fluctuations are present at all for such small system sizes. We
will address this in the next part of our analysis by demonstrating
that quantum fluctuations are manifest unambiguously in the shot-
to-shot fluctuations of |AQ(L)|2, rather than in the 〈|AQ(L)|2

〉
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Figure 4 Distribution functions of the measured interference contrasts for
different lengths L. a, The length-dependent normalized interference contrasts
α (L )= |AQ (L )|2/〈|AQ (L )|2〉 of 170 individual experimental realizations with
identical parameters (n1D = 59(5) µm−1, ν⊥ = 3,020(10) Hz, K = 46) are shown as
histograms. The red curves show the corresponding calculated distributions for
T= 31 nK (ξφ (T )= 35 µm). The blue (black) curves show the calculated
distributions for the upper (lower) error bounds F±1F. These error estimates
include uncertainties in the experimental parameters n1D, ν⊥ and L and the
temperature T determined from the contrast averages. The resulting error on F is
1F/F≈ 15%. b, Histograms of 200 individual measurements with the same
parameters as in a, but higher temperature T= 60 nK (ξφ (T )= 18 µm). For both
sets we observe very good agreement between experiment and theory. In particular,
the predicted change of overall shape of the distribution functions from single peak
to poissonian with decreasing F= ξφ (T )/L (increasing L and T ) is very well
reproduced by the experimental data.

From the fits we obtain the temperatures T = 33(7), 47(6)
and 68(6) nK for 0, 50 and 100 ms waiting time, respectively. The
increase of the temperature with longer waiting times is consistent
with the heating rates in our experiments determined at higher T .
We note here that this method measures the temperature of
collective excitation in the condensate. We cannot confirm that this
temperature is identical to that of the residual thermal atoms in the
trap. Reliable detection of the thermal background is possible only
down to T ≈ 80 nK in our set-up.

The contrast method we present here can be used to
measure the temperature of collective modes of 1D Bose gases at
extremely low temperatures and small atom numbers, suggesting
the usefulness of this method for precise thermometry of 1D
condensates when conventional methods fail.

ANALYSIS OF THE FULL DISTRIBUTION FUNCTIONS

We now analyse the full information contained in the statistics of
the interference contrast.

In Fig. 4, we show histograms of the measured distributions
W (α(L)) for four different length scales L and two different
temperatures, T =31(6) nK (upper row, Fig. 4a) and T =60(5) nK
(lower row, Fig. 4b), obtained using the contrast average method
discussed in the previous section. For these data sets we determine
density and transverse confinement as n1D = 59(5) µm−1 and
ν⊥ = 3,020(10) Hz, resulting in µ ≈ h×1.9 kHz and K = 46.

For a detailed comparison between measurement and theory,
we numerically calculate the distribution functions for the
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corresponding experimental parameters for each histogram (see the
Methods section and ref. 41). We emphasize that once we know the
temperature of the system there are no free parameters remaining
in this analysis. It is remarkable that the experimentally measured
distribution functions are in such excellent agreement with the
theoretical prediction (Fig. 4). In particular, we clearly observe the
transition from the regime dominated by quantum fluctuations
for small L at low temperature to the one dominated by thermal
fluctuations for large L and higher temperature.

More quantitatively, the shape of the distribution functions
is determined by a single dimensionless parameter F = ξφ(T)/L.
For large F, accessed either at low temperature T or small system
length L, we find a single asymmetric peak in the distribution
function W (α), resulting from a universal extreme-value-statistics
Gumbel-like distribution31,40, which is a smoking-gun signature
of quantum fluctuations and the power-law behaviour of the
correlation functions.

The Gumbel distribution has a characteristic asymmetric
shape and typically appears when describing rare events such as
stock market crashes or earthquakes, which go predominantly in
one direction. This suggests that suppression of the contrast of
interference fringes due to quantum fluctuations is dominated by
rare but strong fluctuations of the phase of the bosonic fields
a1,2(z). Most of the time we find very small phase meandering,
which does not affect the contrast significantly. Only occasionally
is there a strong fluctuation leading to a noticeable decrease of the
interference fringe contrast.

For larger system sizes L and higher temperatures T , we observe
that the distribution functions become poissonian, characteristic
for the dominance of thermal fluctuations and the exponentially
decaying correlations. The system can be thought of as consisting
of domains of size ξφ(T), with uncorrelated phases in each of
the domains. In this case, adding up interference amplitudes
(complex numbers) is similar to carrying out a random walk
in two dimensions, and the total amplitude (distance travelled)
is proportional to the number of steps, resulting in the net
interference contrast being proportional to 1/

√
L.

Finally, for intermediate lengths and temperatures, we observe
the formation of a double-peak structure in the distribution
functions, characterized by a peak at zero, originating from thermal
noise, and a peak at finite amplitude α originating from quantum
noise31,41. In this crossover regime the relative effects of quantum
fluctuations are diminished but not completely suppressed, so
that both quantum and thermal fluctuations are of importance
in determining the shape of the distribution functions. We also
find very good agreement between experiment and theory in this
crossover regime.

DISCUSSION AND SUMMARY

It is interesting to note that the above analysis is based on the
Luttinger liquid theory of interacting bosons in one dimension,
which is accurate for calculating the long-range part of the
correlation functions but does not capture the short-distance part
on the scale of the healing length ξh. For system size L � ξh

it is this long-distance part of the correlation functions that
gives the dominant contribution to the integrals determining
the interference amplitude (see equation (2)). This sensitivity
to the long-distance part of the correlation functions is the
unique feature of interference experiments, which makes them a
powerful tool for analysing quantum and thermal fluctuations in
low-dimensional condensates.

Alternative approaches, such as measurements of density
fluctuations in expanding condensates19, probe correlation
functions on the scale of the healing length. This short-range part of

the correlation function is hardly sensitive to the quasi-long-range
nature of quantum fluctuations in 1D systems. This makes
it difficult to observe quantum effects by direct measurement
of density fluctuations: they reveal the role of interactions20

but the transformation of short-range correlations into density
fluctuations masks the quantum correlations.

In summary, we have studied quantum and thermal noise in
1D systems of interacting quantum degenerate bosons using the
full distribution function of the interference amplitude. The shot-
to-shot fluctuations in the contrast contain information that can
be related to high-order correlation functions of the 1D system.
Our results provide the first experimental measurements of the full
distribution function of quantum noise in an interacting many-
body system. By analysing these distribution functions we provide
direct experimental evidence of quasi-long-range order in 1D
condensates. The remarkable agreement between our experimental
findings and theoretical predictions on the basis of Luttinger liquid
model provides an experimental confirmation of this theoretical
approach as an effective low-energy theory of interacting bosons
in one dimension and demonstrates the power of quantum noise
analysis in studying strongly correlated many-body systems.

We expect our experiments to pave the way for other
methods of characterizing many-body systems using the analysis
of quantum noise such as particle number fluctuations42 and
spin noise43–45. From the point of view of analysing systems with
strong interactions and correlations, this should enable cold-atom
experiments to provide a complementary and different perspective
to that provided by electron systems.

METHODS

PREPARING TWO INDEPENDENT 1D CONDENSATES ON AN ATOM CHIP
We start the experiment with a thermal ensemble of ∼105 87Rb atoms in the
|F = 2,mF = 2〉 state at a temperature T ≈ 5 µK in a single highly elongated
magnetic trap on an atom chip27,28. This initial sample is prepared using
our standard procedure of laser cooling, magnetic trapping, and evaporative
cooling46. The initial trapping configuration is then deformed in the transverse
direction into a highly anisotropic double-well potential by means of radio-
frequency- (rf-)induced adiabatic potentials24,26. In particular, we use the
rf-trap set-up presented in ref. 25, where the combination of two rf fields
generated by wires on the atom chip enables the realization of a compensated
symmetric double-well potential in the vertical plane. The final cooling of
the two separate ensembles leading to the two 1D condensates is achieved by
carrying out forced evaporative cooling in the dressed state potential47. We
observe the onset of quantum degeneracy at T ≈ 400 nK in each of the two
potential tubes.

The potential barrier between the two systems is controlled by the
amplitude of the rf fields and the gradient of the static magnetic trap26. We
realize a barrier height V ≈ kB ×4 µK to ensure a complete decoupling of the
two systems during the final cooling stage.

After cooling and a relaxation time of 300 ms to ensure each system is in
equilibrium (a constant rf knife is kept on during this time to prevent heating),
each potential tube contains 3,000–5,000 atoms at typical temperatures
T < 100 nK. The atoms are trapped in a strong transverse harmonic
confinement of ν⊥ ∼ 3.0 kHz (longitudinal confinement ν‖ = 5 Hz) at a
distance of 75 µm from the atom chip surface. Each individual degenerate
atomic ensemble is in the 1D regime, with both temperature T and chemical
potential µ fulfilling kBT ,µ < hν⊥ (refs 29,30).

EXTRACTING THE FRINGE AMPLITUDE FROM INTERFERENCE PATTERNS
We observe the interference pattern created by the two expanding, overlapping
atomic clouds using standard absorption imaging. For the vertical double-well
orientation used in the experiments, the observed interference fringes in the
atomic density are horizontal, parallel to the atom chip surface. This enables us
to image the interference pattern along the transverse direction of the system.
The used imaging system has a spatial resolution of 3.4 µm and a noise floor
of ∼3 atoms per 3×3 µm pixel. From a single interference image we obtain
line profiles for different L by integrating the two-dimensional absorption
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image over various lengths along the longitudinal direction of the system. The
obtained line densities are then Fourier transformed, and we extract AQ as
the value of this Fourier transform at the wavevector Q corresponding to the
observed fringe spacing. This spacing is determined from fitting the interference
patterns with a cosine function with a gaussian envelope plus an unmodulated
gaussian to account for the contrast reduction. The free parameters of these
fits are the relative phase θ, the contrast, and the fringe spacing. The width,
amplitude, and centre position of the total cloud are determined independently
from a gaussian fit to the full integrated density pattern of the central area of
each image. Note that the absolute value of the interference amplitude |AQ|

(as defined in equation (1)) and the contrast C are related as |AQ| = n1D L×C.

AVERAGE INTERFERENCE AMPLITUDE FITS
To compare the experimentally observed length dependence of the average
interference amplitude to theory, we perform a least-square fit of the theoretical
prediction equation (2) to the data. Because the line density n1D is extracted
directly from the absorption images and the transverse trapping frequency ν⊥

is measured precisely by parametric heating experiments, the only unknown
experimental parameter is the temperature T . In addition to T as a fit
parameter, we include a scaling factor (〈|AQ|

2
〉measured = S ∗ 〈|AQ|

2
〉real) to

account for reduced contrast in the experimental data due to technical aspects.
For all data sets we find S ≈0.4, which is consistent with the maximum observed
interference contrast of 65%. This contrast reduction is in agreement with an
analysis of our imaging system, taking into account its limited resolution and
focal depth, as well as a tilt of the imaging axis with respect to the double well.

LUTTINGER LIQUID
A 1D gas of ultracold bosonic atoms can be described by the Lieb–Liniger model
of bosons interacting via a pointlike repulsion22,48,49. The effective approach to
the Lieb–Liniger model, capturing the long-distance behaviour of all correlation
functions, is known as the Luttinger liquid formalism36–38. The essence of this
approach is to represent the original bosonic field in terms of the two phase fields
a(z) = (n1D + ∂θ(z))1/2eiφ(z) and keep only the terms quadratic in φ(z),θ(z)
in the hamiltonian. The resulting theory has a linear spectrum of bosonic sound
waves and shows algebraic decay of all correlation functions at zero temperature
(for example 〈a†a〉∼ |z1 −z2|

1/2K ) and exponential decay for finite temperature
(for example 〈a†(z1)a(z2)〉 ∼ n1D[π/(ξT n1D sinh(π(z1 − z2)/ξT ))]1/2K ).

Here K is the fundamental parameter of the theory, the so-called Luttinger
parameter, and ξT = ξφ(T)/K . The last expression applies down to the
short-distance cut-off given by the healing length. The value of K is uniquely
determined by the dimensionless ratio characterizing the original microscopic
model: γ = mg/h̄2n1D, where g is the 1D interaction strength. In the weakly
interacting regime studied here, K ≈π/

√
γ . Recent analysis showed50 that the

Luttinger liquid formalism provides an extremely accurate description of the
correlation functions of the Lieb–Liniger model for both long distances and
distances just beyond the healing length.

CALCULATION OF THE DISTRIBUTION FUNCTIONS
Computation of the distribution functions requires, in principle, the knowledge
of all moments of the interference fringe amplitude. One approach to overcome
this problem of moments was introduced in ref. 18, where methods of
conformal field theory and special properties of exactly solvable models were
used to compute the distribution function for periodic boundary conditions
at zero temperature. Another method, which enables us to compute the
distribution functions for all boundary conditions, arbitrary temperature, and
in all dimensions41, is based on the mapping of the problem to a generalized
Coulomb gas model and a related problem of fluctuating random surfaces (for
a review, see ref. 31). This is the approach which we use in our analysis.

The full distribution function W (α) is defined by the normalized moments
of the interference fringe contrast as

〈αm
〉 = 〈|AQ|

2m
〉/〈|AQ|

2
〉

m
=

∫
∞

0

W (α)αm dα.

Using Luttinger liquid theory, these moments can be expressed17 as the
micro-canonical partition functions of the Coulomb gas of 2m particles

〈αm
〉 = α−m

0

∫ 1

0

. . .

∫ 1

0

du1 . . . dvm

× exp

[
1

K

∑
i<j

{G(ui ,uj)+G(vi ,vj)}−
1

K

∑
i,j

G(ui ,vj)

]
,

where

α0 =

∫ 1

0

∫ 1

0

du1 dv1 exp

[
−

G(u1,v1)

K

]
.

Here G(x,y) is the interaction potential, whose precise form depends
on the geometry of the problem and the temperature. At zero
temperature G(x, y) = log|x − y|, whereas at non-zero temperature
GT(x, y) = log((ξT/πL)sinh(π|x − y|L/ξT)). Real and symmetric
G(x,y) can be decomposed as G(x,y) =

∑n=∞

n=1 GnΨn(x)Ψn(y). Such
decomposition is similar to diagonalization of a symmetric matrix by finding
its eigenvectors and eigenvalues. Eigenfunctions Ψn(x) and eigenvalues Gn of
the interaction potential G(x,y) can be used to construct the height variable
h(x,{tn}) =

∑
n tn Tn(x)− Tn(x)2/2, where Tn(x) =Ψn(x)

√
Gn/K and tn

are fluctuating noise variables. Introducing g({tn}) =
∫

dxexp[h(x,{tn})], the
distribution function can be written as31,41

W (α) =

∞∏
n=1

∫
∞

−∞
dtne−t2

n /2

√
2π

δ[α−α−1
0 g({tn})g({−tn})]. (4)

We compute this function using a Monte Carlo algorithm. Random variables
{tn} are chosen from the gaussian ensemble, and 1D integrals g({tn}),g({−tn})

are evaluated for each realization of {tn}. According to equation (4), the
distribution function W (α) coincides with the distribution function of the
product α−1

0 g({tn})g({−tn}). In the limit of large parameters F equation (4)
can be evaluated explicitly to show that the distribution approaches one of the
extreme-value statistics distributions (similar to a Gumbel form)31,40.
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