
 

Probing the black hole metric: Black hole shadows and binary
black-hole inspirals

Dimitrios Psaltis,1 Colm Talbot,2 Ethan Payne ,3,4 and Ilya Mandel3,4,5
1
Steward Observatory and Department of Astronomy, University of Arizona,

933 North Cherry Avenue, Tucson, Arizona 85721, USA
2
LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA

3
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia

4
OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery,

Clayton, Victoria 3800, Australia
5
Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy,

University of Birmingham, Birmingham B15 2TT, United Kingdom

(Received 3 December 2020; accepted 22 March 2021; published 18 May 2021)

In general relativity, the spacetimes of black holes have three fundamental properties: (i) they are the
same, to the lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass when
expressed in geometric units; and (iii) they are described by the Kerr metric. In this paper, we quantify the
upper bounds on potential black-hole metric deviations imposed by observations of black-hole shadows
and of binary black-hole inspirals in order to explore the current experimental limits on possible violations
of the last two predictions. We find that both types of experiments provide correlated constraints on
deviation parameters that are primarily in the tt components of the spacetimes when expressed in areal
coordinates. We conclude that, currently, there is no evidence for deviations from the Kerr metric across the
8 orders of magnitude in mass and 16 orders in curvature spanned by the two types of black holes.
Moreover, because of the particular masses of black holes in the current sample of gravitational-wave
sources, the correlations imposed by the two experiments are aligned and of similar magnitudes when
expressed in terms of the far-field, post-Newtonian predictions of the metrics. If a future coalescing black-
hole binary with two low-mass (e.g., ∼3 M⊙) components is discovered, the degeneracy between the
deviation parameters can be broken by combining the inspiral constraints with those from the black-hole
shadow measurements.
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I. INTRODUCTION

Over the past century, numerous predictions of the theory
of general relativity (GR) have been tested against multiple
experiments and astrophysical observations [1]. Even
though all these investigations aim to test the same theory,
they nevertheless address different combinations of its
ingredients and different aspects of its predictions, and they
are performed on widely different scales. A very stringent
constraint imposed in one setting does not necessarily
preclude the importance of testing different predictions of
the theory in a different setting.
At one level, it is common to distinguish between

gravitational tests that test Einstein’s equivalence principle
and those that test the field equation [1]. The former search
for violations of the weak equivalence principle, of the local
Lorentz invariance, and of the local position invariance.
The latter assume the validity of Einstein’s equivalence
principle, and therefore, that spacetime is endowed by a
metric, and that test particles and photons follow geodesics
in this metric. These tests then use observations to map the

metric of an object and test whether its parameters are
consistent with GR predictions.
Among metric tests, there is a critical distinction between

those that measure parameters of time-independent metrics
and those that probe the dynamics of the theory. For example,
all Solar System tests and many of the tests involving binary
pulsars explore equilibrium metrics [2], whereas gravita-
tional-wave tests with pulsar timing [3], direct gravitational-
wave observations [4–6], and cosmological tests [7] explore
dynamical metrics. A different distinction between metric
tests separates those that involve vacuum metrics from the
ones in which the coupling of matter with the gravitational
field plays an important role. The latter category includes not
only the cosmological tests, for which the feedback ofmatter
to thegravitational field determines the evolution of structure
formation, but also tests of scalar-field gravity with pulsars,
in which the presence of matter in the strong gravitational
fields of theneutron stars gives rise to dipole radiation (which
has not been observed) [8,9].
Even though the breadth of gravitational tests explores

many aspects of the underlying theory and its predictions,
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it is usually impossible to assess the relative significance of
any one particular upper limit on possible deviations. This
is true because there is no compelling alternative to GR that
is based on fundamental physics arguments and that leaves
observable signatures at the scales of most experiments. In
other words, without a plausible alternative to the theory to
guide the tests and our thinking, it is not viable to ask how
large a deviation one would expect from any test.
For these reasons, awidevariety of gravitational tests have

been performed with objects and in settings that probe a vast
range of scales: from sub-mm-length scales to the size of the
observable Universe, from the GM=Rc2 ∼ 10−9 potentials
[10] of terrestrial experiments to the order-unity potentials of
black holes, and from the GM=R3c2 ∼ 10−12 cm−2 curva-
ture scales of neutron stars to the ∼10−57 cm−2 curvature
scale of the cosmological constant [11].
The differences in the qualitative character between the

gravitational tests, the observables used, and the tools
employed hamper our ability to cross-compare the resulting
constraints of any deviations from GR. If a specific
modification to the GR field equations is considered, then
the complete theory can be used to make predictions for
and be compared against all types of observations and
astrophysical systems. However, translating empirical con-
straints on general modifications from one setting to
another poses serious challenges. For example, it is very
hard to ask in a theory-independent way how the results of
cosmological tests affect the predictions for the gravita-
tional-wave emission from coalescing neutron stars.
Perhaps more importantly for the design of future experi-
ments, it is often impossible to understand whether existing
constraints on modifications from GR already preclude the
detection of beyond-GR phenomena in a previously unex-
plored setting.
In recent years, a new set of gravitational tests has

emerged that probe a previously unexplored regime: that of
the near-field regions of astrophysical black holes. The
LIGO/Virgo detection of gravitational waves from coa-
lescing black holes and neutron stars has led to tests of
the dynamics of GR with stellar-mass objects during the
inspiral and ringdown stages of the events [4–6,12]. The
constraints from gravitational-wave tests are typically
expressed in terms of upper limits on deviations from
the GR predictions on a set of parametric post-Newtonian
terms in the waveform expression. These terms amalgamate
potential deviations in the metrics of the individual black
holes from the Kerr solution (when they are at large
distances), as well as potential deviations in the strength,
polarization, and angular distribution of the radiated
gravitational waves—i.e., the dynamics of the theory.
Moving to the larger masses and smaller curvatures of

the supermassive black holes in the centers of galaxies, the
monitoring of the orbits of stars within a few thousand
Schwarzschild radii from the black hole in the center of the
Milky Way, Sgr A*, has led to the application of two

classical GR tests to this black-hole environment: the
measurement of the gravitational redshift (which leads to
a test of the equivalence principle) [13,14] and the detection
of orbital precession of the nearest star [15]. As in the case
of the precession of Mercury in the Solar System, the
constraints from the latter test are expressed in terms of the
usual coefficients of the parametric post-Newtonian (PPN)
framework [2]. Additional constraints can be imposed on
equivalence principle violations via potential changes in the
fine-structure constant [16], or on the Yuwaka strength and
scale of a putative fifth force [17].
More recently, the Event Horizon Telescope (EHT) has

detected the shadow of the black hole in the high-resolution
image obtained from the center of the M87 galaxy [18].
Comparing the observed shadow size to that predicted for
the mass of the black hole that was known a priori from
stellar dynamics has led to constraints on the possible
deviation of the black-hole spacetime from the Kerr metric
[19]. These constraints were expressed in terms of upper
limits on parameters of metrics that have been designed to
be different from Kerr, while ensuring that no pathologies
are present outside the horizons [20–23]. They were further
translated into constraints on the post-Newtonian expan-
sions of these metrics, in order to compare them with earlier
weak-field tests.
A common denominator among many of these avenues

of testing GR with black holes or other stellar objects is the
set of constraints they impose on the equilibrium metrics of
objects with different compositions and masses. However,
as discussed above, these constraints are expressed in
different ways that are specific to each test, because they
are merged with parameters that quantify the dynamics of
the theory (as is the case with the gravitational-wave tests)
or employ complexity that is necessary to avoid pathologies
(as is the case with the shadow tests).
The aim of this series of papers is to combine all existing

tests of metrics of astrophysical objects in order to test three
important GR predictions for the metrics of black holes,
that: (i) the metric of a black hole, expanded to first order in
spin, is identical (when expressed in geometric units) to that
of a slowly spinning star—i.e., it is the Schwarzschild
spacetime with the first-order frame-dragging terms; (ii) all
black holes, independent of mass or curvature, are
described by the same metric; and (iii) the black-hole
spacetime is described by the Kerr metric.
The approach wewill follow here is to use the constraints

that are imposed with each type of test and calculate their
implications for the values of the various terms in a
parametric post-Newtonian expansion of the equilibrium
black-hole metrics. It is important to emphasize here that, in
many cases involving black-hole tests, we will not be
testing post-Newtonian expansions of the metrics. Instead,
we will be constraining the parameters for regular, well-
behaved metrics that deviate from the GR predictions and
then use these constraints to place bounds on deviations of
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the corresponding post-Newtonian parameters of these
metrics.
Albeit not comprehensive, this approach allows for a

comparison between the results of various tests and
identifies the unique aspects of equilibrium metrics that
each test is sensitive to. Moreover, this approach facilitates
the comparison of the new constraints to those imposed by
previous Solar System, pulsar, and cosmological tests,
which we will address in forthcoming papers.
In this first paper, we will focus on the tests that involve

the black-hole shadow and the inspiral phase of coalescing
black holes and aim to address the latter two GR predictions
discussed above. Section II introduces the formalism and
coordinate system for the parametric post-Newtonian equi-
librium metric used throughout this series of papers.
Section III presents the black-hole shadow constraints in
terms of several parametric metrics that deviate from Kerr
without introducing pathologies and translates them into the
parametrization of the post-Newtonian expansion of the
equilibrium metrics. Section IV follows the same approach
for tests that use LIGO/Virgo observations of gravitational
waves emitted during the inspiral phase of compact binary
coalescence. In Sec. V, we discuss the key results and future
prospects.

II. PARAMETRIC METRICS OF ISOLATED

STATIC OBJECTS

As discussed in Sec. I, the goal of this work is to translate
the constraints imposed by various gravitational tests
into bounds on deviations from the GR solution for the
equilibrium metric of an isolated object. This first paper
will focus on the results of two types of observations: those
of the black-hole shadow images obtained with the EHT,
and those of the gravitational waves from coalescing black
holes detected with LIGO/Virgo.
The shadow of a Kerr black hole is highly circularly

symmetric, up to near-extremal values of the spin, and has a
diameter that depends very weakly on the spin of the black
hole, for all observer inclinations. This is a consequence of
a fortuitous near cancellation of two leading-order terms in
the deviation of a shadow from a circle: the mass quadru-
pole and current dipole moments [24]. Frame dragging, the
magnitude of which is measured by the dipole mass-current
moment, tends to make the shadow prolate with respect to
the spin axis. The quadrupole mass moment, on the other
hand, tends to make the shadow oblate. When the dipole
and the quadrupole moments take their Kerr values, the two
effects nearly cancel each other, leaving behind a nearly
circular shadow shape. The extremely weak dependence of
the shadow diameters on spin was also shown to be
preserved in several metrics that are parametrically differ-
ent from Kerr [25,26]. Moreover, the constraints on
deviations from the Kerr metric imposed by the diameter
measurement of the shadow in M87 were shown to depend
very weakly on the assumed spin [19].

In the case of the black-hole binaries observed with
LIGO/Virgo, the predicted inspiral waveforms do depend
on the spins of the black holes, starting at the 1.5 post-
Newtonian (PN) order (see, e.g., Ref. [27]). However, the
majority of coalescing black holes observed to date are
consistent with having low or moderate spins, χ≲ few
tenths [5,28]. Because both sets of measurements provide
very weak bounds on the spins of the black holes, the focus
of this work will be on their implications for the equilib-
rium spacetimes of nonspinning, isolated objects.
In GR, Birkhoff’s theorem ensures that the external

spacetime of a spherically symmetric, isolated object is
unique and is described by the Schwarzschild metric. The
theorem is not necessarily valid in other metric theories of
gravity; spherically symmetric isolated objects may be
described by different metrics depending on the gravita-
tional potential, the curvature, or even the nature of the
object. For example, in scalar-tensor modifications to
gravity with quadratic couplings [9] or with chameleon
screening [29,30], the external spacetime of a stellar object
depends on the density of matter in its interior. In the first
class of theories, the modifications are important in the
strong fields of neutron stars, whereas in the second class of
theories, the modifications become significant in the low-
density envelopes of giant stars. However, in all such
theories, the unique external spacetime of a nonrotating
black hole remains the Schwarzschild solution [31]. For
this reason, the external spacetimes of objects of different
composition, mass, or nature (i.e., stellar objects vs black
holes) may not be the same. Indeed, demonstrating con-
clusively that the external spacetimes of two different
spherically symmetric static objects, when expressed in
gravitational units, are not the same would serve as direct
evidence that GR will have to be modified.
The external spacetime of a spherically symmetric com-

pact object can be written in many forms and coordinate
systems. In order to facilitate comparison with earlier
constraints, especially those at weak gravitational fields,
we will translate our results into predictions for a general
post-Newtonian parametrization of the metric of a spheri-
cally symmetric object. In doing so, we will be implicitly
assuming that the values of the various parameters depend
on the mass, gravitational potential, gravitational curvature,
or nature of the object under consideration.
For comparison with other GR tests, the gravitational

potential

ϵ≡
GM

rc2
ð1Þ

and curvature

ξ≡
GM

r3c2
ð2Þ

probed by various gravity tests are shown in Table I and
Fig. 1. These include the black-hole shadow tests of M87
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and, in the near future, of Sgr A* (evaluated at
r ¼ 3GM=c2), the inspiral test of GW170608 and
GW190924 (evaluated at the range of separations that
are detectable by the LIGO/VIRGO detectors; see below),
the periapsis precession test with the S2 star around Sgr A*
[15] (evaluated at the periapsis distance), and two classical
Solar System tests with Cassini and the perihelion pre-
cession of Mercury [2].

A. Parametric post-Newtonian metrics for

nonspinning objects

The traditional GR tests in the Solar System with the
parametric post-Newtonian (PPN) framework have been
performed with a metric written in terms of isotropic
coordinates [1]—i.e.,

ds2 ¼ gtt;Idt
2 þ grr;Iðdr2I þ r2IdΩÞ; ð3Þ

where the subscript I denotes that the coordinates are
isotropic.

Following the PPN approach, and denoting the tradi-
tional 1PN parameters as β1 and γ1, the nonzero metric
components in isotropic coordinates become

gtt;I ¼ −1þ 2

rI
−
2β1

r2I
þ 3β2

2r3I
þOðr−4Þ;

grr;I ¼ 1þ 2γ1

rI
þ 3γ2

2r2I
þOðr−3Þ; ð4Þ

where G ¼ c ¼ M ¼ 1. In GR, the values of all PPN
parameters for the Schwarzschild spacetime, as defined
here, are equal to unity.
In contrast, testing GR with black-hole shadows or

inspiral waveforms is more naturally performed using
parametric metrics in areal coordinates—i.e.,

ds2 ¼ gtt;Sdt
2 þ grr;Sdr

2

S þ r2SdΩ; ð5Þ

where the subscript S denotes the fact that the area of a
closed surface at coordinate rS is always equal to 4πr

2

S. This
is because it has been recently shown that, in areal
coordinates, the diameter of the shadow of a nonspinning
black hole and the inspiral waveform during a coalesence
event depend only on the tt components of the met-
rics [19,32].
Converting between isotropic and areal radial coordi-

nates is, nevertheless, trivial using the transformation

rI ¼ rS − γ1 þ
ð2γ2

1
− 3γ2Þ
4rS

þOðr−2S Þ: ð6Þ

For the parametrization shown in Eq. (4), the result is

gtt;S ¼ −1þ 2

rS
−
2ðβ1 − γ1Þ

r2S
þ 2

r3S

�

1

4
½2ðγ2

1
− 1Þ

−8ðβ1γ1 − 1Þ þ 3ðβ2 − 1Þ þ 3ðγ2 − 1Þ�
�

þOðr−4Þ ð7Þ

and

TABLE I. Fields probed by different gravitational tests.

Test Mass ðM⊙Þ Distance (cm) Potential ϵ Curvature ξ (cm−2Þ
Cassini (Shapiro) 1 7 × 1010 2 × 10−6 4 × 10−28

Mercury (perihelion) 1 5 × 1012 3 × 10−8 2 × 10−33

GW170608 19 ∼ð2–9Þ × 107 1=30–1=6 ∼5 × 10−18–6 × 10−16

GW190924_021846 14 ∼ð1–8Þ × 107 1=38–1=6 ∼5 × 10−18–1 × 10−15

S2 star (periapsis) 4 × 106 2 × 1015 3 × 10−4 1 × 10−34

Sgr A� (shadow) 4 × 106 2 × 1012 1=3 9 × 10−26

M87 (shadow) 6.5 × 109 3 × 1015 1=3 4 × 10−32

FIG. 1. Characteristic gravitational potential and curvature
probed by two Solar System tests (the perihelion precession of
Mercury and the light deflection measured with Cassini), as well
as the same quantities probed by the detection of gravitational
waves from the LIGO/Virgo events GW170608 and GW190924,
by the detection of periapsis precession in the S2 star around Sgr
A�, and by the observation of the black-hole shadow in the M87
and Milky Way galaxies (after Ref. [11]).
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grr;S ¼ 1þ 2γ1

rS
þ γ2

1
þ 3γ2

r2S
þOðr−3Þ: ð8Þ

If, as in Ref. [19], the various PN parameters were
introduced instead in the expansion of the metric compo-
nents written in areal coordinates as

gtt;S ¼ −1þ 2

rS
þ 2

X

N

i¼1

ð−1Þi ζi

riþ1

S

; ð9Þ

then the coefficients of the various order become

ζ1 ¼ β1 − γ1;

ζ2 ¼
1

4
½2ðγ2

1
− 1Þ − 8ðβ1γ1 − 1Þ

þ3ðβ2 − 1Þ þ 3ðγ2 − 1Þ�; ð10Þ

etc., when expressed in terms of the present parametrization.
In the Solar System, the PPN parameter γ1 is constrained

via measurements of the deflection of light and of the
Shapiro delay for signals that graze the solar surface [2].
The most stringent limit to date has been achieved with the
Cassini mission and is jγ1 − 1j < 2.3 × 10−5. On the other
hand, the PPN parameter β1 is constrained, in combination
with γ1, via measurements of the perihelion precession of
Mercury and of the Nordtvedt effect in lunar ranging [2].
The most stringent limit to date is jβ1 − 1j < 8 × 10−5.
Albeit proven to be very effective [33], the expansion of

the metric in a series over inverse powers of the coordinate
radius is, of course, formally valid when the series con-
verges. This is expected to be true, as long as there are no
pathologies in the metric down to the radius probed by a
particular test and the expected deviations from GR
increase in strength as the radius from the central object
decreases (i.e., not when searching for Yukawa-type
corrections). However, even if formally converging, inter-
preting different astrophysical settings requires a careful
assessment of the truncation errors in comparison to the
measurement uncertainties. We will address these conver-
gence issues for the black-hole shadow tests in Sec. III and
for the inspiral tests in Sec. IV.

B. Expected magnitude of deviations

Because of the lack of compelling alternatives to GR that
arise from fundamental physics arguments and lead to
astrophysically relevant effects, there is no first-principles
approach to estimate the expected magnitudes of correc-
tions to the various PPN parameters. This is especially true
for tests with black holes, since the Kerr metric is a solution
to many simple modifications of the Einstein field equa-
tions supplemented with an additional field characterized
by constant coupling coefficients [31]. Obtaining non-Kerr
black-hole solutions for modifications to the field equations
arising from, e.g., the addition of quadratic terms in the

Riemann tensor, requires couplings that are described
by dynamical fields. One example of such non-Kerr black
holes occurs in the so-called Einstein-dilaton-Gauss-
Bonnet (EDGB) theories, originally obtained in Ref. [34],
and further studied in Refs. [35–39].
One might naively expect deviations from the

Schwarzschild/Kerr metrics only in black holes with
masses that are comparable to the scale at which the
Einstein-Hilbert action of GR is modified. It is straightfor-
ward to show, however, that this is not necessarily the
case. As a proof of principle, we will use the nonspinning
black-hole solution for EDGB gravity, when the coupling
coefficients are linear functions of the dynamical fields
[35]. The Lagrangian action of this theory is

S ¼
Z

d4x
ffiffiffiffiffiffi

−g
p fκRþ a1θR

2 þ a2θRabR
ab

þ a3θRabcdR
abcd þ a4θR

�
abcdR

abcd

−
β

2
½∇aθ∇

aθ þ 2VðθÞ�g; ð11Þ

where R, Rab, and Rabcd are the Ricci scalar, Ricci tensor,
and Riemann tensor, respectively; VðθÞ ≃ ð1=2Þmθθ

2 is the
potential of the dynamical scalar field; a1;…; a4 are the
coupling coefficients of the Gauss-Bonnet terms; and β is
the coupling coefficient of the dynamical scalar field.
Hereafter, we set the latter to unity, as it can be reabsorbed
in a redefinition of the scalar field [36].
The presence of the dynamical field forces the non-

spinning black-hole solution to deviate from Schwarzschild.
When expressed in areal coordinates, the two nontrivial
components of the metric for this solution are [35]

gtt;S ¼ −1þ 2

rS
−

λ

3r3S
þOðr−4Þ ð12Þ

and

grr;S ¼ 1þ 2

rS
þ 4 − λ

r2S
þOðr−3Þ; ð13Þ

where λ ¼ a2
3
=ðκM4Þ, and we have explicitly shown the

dependence on the mass of the black hole M that can be
measured by, e.g., monitoring the orbits of stars at large
distances. Comparing this solution to the PPN expansions
[Eqs. (7) and (8)] leads, for this theory, to

β1 ¼ 1;

γ1 ¼ 1;

β2 ¼ 1þ a2
3

9κM4
;

γ2 ¼ 1 −
a2
3

3κM4
: ð14Þ
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In other words, this particular modification to GR leads to
nonspinning black-hole spacetimes that have the same 1PN
expansion as the Kerr metric but differ only at the 2PN and
higher orders. Moreover, the deviation depends only on the
dimensionless ratio λ.
In principle, the a3 coupling of the quadratic term can be

substantially different from the mass of the black hole.
However, as long as there is substantial scale separation
between the couplings of the quadratic field and the Planck
mass, then the metrics of black holes with masses
M ∼ ða2

3
=κÞ1=4 will show order-unity deviations from the

Schwarzschild solution at the 2PN (and higher) orders. This
argument was discussed explicitly in Ref. [40], where an
expression was derived for the effective cutoff scale Λ of
the EDGB gravity. Deviations from GR reach order unity
for a black hole of mass M when the cutoff scale is

Λ ∼ 7

�

M

M⊙

�

−2=5

TeV: ð15Þ

It is important to emphasize here that, among all
gravitational tests with black holes, the ones with the
smallest masses will lead to the tightest constraints in this
theory. This would lead to the conclusion that the stellar-
mass black holes involved in gravitational-wave tests
generate the most stringent limits on any possible devia-
tions. This conclusion, however, is an artifact of the
assumption intrinsic to this modification that the various
couplings are proportional to the dynamical field θ.
Different (and perhaps more complex) coupling functions
(see, e.g., Refs. [34,38]) could easily reverse this trend, as is
the case with many modifications of gravity that involve
various screening mechanisms (see, e.g., Ref. [29]).
Finally, even if corrections to the fundamental theory

appear at scales that are very different from the masses of
astrophysical objects, the presence of horizons surrounding
black holes might give rise to horizon-scale classical metric
perturbations [41]. The consequence of such perturbations
would be the presence of time-variable, order-unity sto-
chastic deviations of black-hole metric parameters, with
observable effects both in gravitational-wave emission [42]
and in the images of black-hole shadows [43]. If the
timescale of variability of such deviations is longer than
the ∼10 h it takes for the EHT to obtain a single snapshot
image, then these deviation parameters will be frozen to
some arbitrary combination of values.

III. BLACK-HOLE SHADOW TESTS

The EHT generated a high-resolution image of the center
of the M87 galaxy [18] that is characterized by a deep
brightness depression surrounded by a ring of emission.
This image has been interpreted as the shadow of the
central supermassive black hole, cast on the emission from
the surrounding plasma. When measured from the recon-
structed images, the fractional width of the ring of emission

was constrained to be comparable to the nominal resolution
of the array [44]. On the other hand, when inferred by
fitting phenomenological emission models directly to the
interferometric visibility data, the fractional width of the
ring was constrained to ≲0.2, at least for one of the four
days of observations [18].
This observed property of the emission ring—i.e., that it

is narrow and that it surrounds a deep (more than a factor of
10) brightness depression—makes it possible to use it as a
proxy for measuring the size of the shadow itself. A large
suite of synthetic EHT data based on general-relativistic
magnetohydrodynamic (GRMHD) simulations have dem-
onstrated that, when the black-hole image is dominated by
an emission ring, the latter always straddles the shadow. In
fact, the uncertainty in the bias between the diameter of the
bright emission ring and that of the shadow was found
to be comparable to the width of the ring. This is
a direct consequence of the fact that gravitational lensing
in the vicinity of the photon orbit is the only known way of
generating in a black-hole image a long-lived, nearly
circular ring of emission that surrounds a deep bright-
ness depression [45]. This qualitative result depends
very weakly on the detailed assumptions employed in
the GRMHD simulations. Generating a bright, circu-
lar emission ring that is displaced from the black-hole
shadow would require contrived constructions, such as the
presence of ad hoc narrow emission rings at arbitrary radii
in the accretion flows (as advocated, e.g., in Ref. [46]),
artificially truncating the plasma emission at the radius of
the innermost stable circular orbit (as is done, e.g., in
Refs. [47–49]).
Taking the astrophysical uncertainties into account, the

inferred size of the shadow was found to be within ∼17% of
the value predicted by the Kerr metric [18] using the
a priori known mass-to-distance ratio of the M87 black
hole that was based on observations of the motions of stars
in its vicinity [50]. As proposed in Ref. [51], this constitutes
a null-hypothesis test of the various assumptions that enter
this inference—i.e., that the brightness depression in the
image is indeed the black-hole shadow, that the analysis of
stellar dynamics provides an accurate measurement of the
black-hole mass, and that the black-hole spacetime is
described by the Kerr metric.
Reference [19] used the inferred size of the M87 shadow

to perform a bona fide metric test: how much could one
deform the Kerr metric and still be consistent with the
measurement? Using a variety of parametrically deformed
metrics, they showed that, as in the case of Kerr, the shadow
size depends very weakly on the spin of the spacetime
(defined as the specific angular momentum measured at
infinity, divided by the mass of the black hole). Moreover,
they demonstrated that, for spherically symmetric space-
times, the radius of the shadow measured by a distant
observer depends only on the tt component of the metric,
when expressed in areal coordinates—i.e.,
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rsh ¼
rph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gttðrphÞ
p ; ð16Þ

where

rph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gttðrphÞ
q

�

d
ffiffiffiffiffiffiffiffi

−gtt
p

dr

�

�

�

�

rph

�

−1

¼ 2gttðrphÞ
�

dgtt

dr

�

�

�

�

rph

�

−1

ð17Þ

is the coordinate radius of the photon orbit. Finally, they
calculated the constraints imposed by the existing shadow-
size measurements on deformed spacetimes that show no
deviations at the first PN order (as is the case for, e.g., the
black-hole spacetimes in the modified gravity theory
discussed in Sec. II) and are, therefore, fully consistent
with all Solar System tests. Because, as discussed above,
there is no guarantee in a general modified-gravity theory
that the Solar System constraints are applicable to black-
hole spacetimes, this was offered as a proof of principle that
shadow observations with current capabilities can be used
to impose new and tighter constraints on potential devia-
tions from the Kerr metric for supermassive black holes.
In this paper, we extend the work of Ref. [19] to explore

general forms of deviations from Kerr within multiple
phenomenological descriptions without imposing the Solar
System bounds and translate the resulting bounds into
limits on the PPN parameters of equilibrium black-hole
metrics.

A. Deformed metrics without pathologies

The outline of a black-hole shadow is the locus of the
photon trajectories on the screen of a distant observer that,
when traced backwards, become tangent to the surfaces of
spherical photon orbits hovering just above the black-hole
horizon [52]. The coordinate radius of the photon orbit for a
Schwarzschild spacetime is at rS ¼ 3M and is reduced to
rS ¼ M (i.e., the coordinate radius of the horizon) for a
prograde photon orbit around a maximally spinning black
hole. Because the Kerr spacetime is regular everywhere
outside the horizon and the photon orbits always lie outside
the latter, Kerr black holes of all spins are characterized by
shadows that can bewell defined, at leastmathematically (the
same is not true for super-spinning Kerr black holes [53]).
However, this is not true in general for deformed Kerr

spacetimes. Introducing any naive parametric deformation
violates, by construction, the no-hair theorem, which states
that the only asymptotically flat vacuum spacetime that is
Ricci flat, is free of singularities outside the horizon, and is
free of closed time-like loops is the one described by the
Kerr metric (we do not consider here charged black holes)
[54]. Indeed, early attempts to deform the Kerr metric while
keeping it Ricci flat led to spacetimes with significant
pathologies [22]. Calculations of black-hole shadows with

these deformed spacetimes required excising in an ad hoc

manner the regions with pathologies and limited the
solutions to slowly spinning black holes, such that the
radii of photon orbits remained outside the pathologies
[24,55]. Moreover, the presence of these pathologies
effectively precluded any GRMHD simulations of accre-
tion in such spacetimes.
The only way to deform the Kerr metric while removing

any pathologies outside its horizon (at least for a broad range
of deformation parameters) is to ignore explicitly the
requirement that the metric be Ricci flat. In recent years,
this has led to a number of parametrically deformed metrics
that are free of pathologies but allow for deformations to be
dialed in with different phenomenological parameters: the
Johannsen-Psaltis metric (hereafter JP) [20,22] and its
extensions by Cardoso, Pani, & Rico [56] and Carson &
Yagi [57], the modified-gravity bumpy Kerr metric of
Vigeland, Yunes, and Stein [21] (hereafter MGBK), etc.
In a different approach, a general metric can be written in
terms of polynomial or rational functions with free coef-
ficients such that, when a particular discrete set of coef-
ficients is chosen, the metric approximates non-Kerr
solutions to various modified-gravity field equations; if
the non-Kerr solution is free of pathologies, so is the
polynomial or rational expansion [58]. This is the approach
followed in the Rezzolla-Zhidenko metric (hereafter RZ)
[59,60], which has found some use in numerical explora-
tions of black-hole shadows from known non-Kerr met-
rics [61,62].

B. Post-Newtonian expansions of deformed metrics

When written in areal coordinates, the tt component of
the JP metric of a nonspinning compact object is [22]

gJPtt ¼ −

�

1 −
2

rS

��

1þ
X

∞

i¼2

α1i

riS

�

−2

; ð18Þ

where α1i is an infinite sequence of deformation parame-
ters, which are equal to zero for the Schwarzschild metric.
In Ref. [22], the coefficient α12 was set to zero in order to
force β1 ¼ 1. In this paper, for reasons discussed above, we
will allow potential deviations even at the 1PN order.
Written in terms of the PN parametrization discussed in
Sec. II, the result is

ζJP
1
¼ −α12;

ζJP
2
¼ α13 − 2α12;

ζJP
3
¼ −α14 þ 2α13 þ

3

2
α2
12
; ð19Þ

etc.
Written in areal coordinates, the tt component of the

MGBK metric for a nonspinning compact object is [21]
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gMGBK
tt ¼−

�

1−
2

rS

��

1−γ1ðrSÞ−2γ4ðrSÞ
�

1−
2

rS

�	

: ð20Þ

This expansion appears to terminate at the r−2S order
because the deformed Kerr metric was designed such that
it is characterized by an approximate Killing tensor of that
same order. However, the two functions γ1ðrÞ and γ4ðrÞ are
arbitrary and can be expanded in series—e.g.,

γA ¼
X

∞

n¼2

γA;n

rnS
; ð21Þ

where A ¼ 1 or 4 and γA;n are infinite sequences of
dimensionless deformation parameters, and the n < 2

terms are equal to zero in order for the metric to be
asymptotically flat and have the correct Newtonian limit.
Keeping only a few lower-order coefficients, the metric
becomes

gMGBK
tt ¼ −1þ 2

rS
þ γ1;2 þ 2γ4;2

r2S

þ −2γ1;2 þ γ1;3 − 8γ4;2 þ 2γ4;3

r3S
þOðr−4Þ; ð22Þ

such that the PN parameters in areal coordinates are

ζMGBK
1

¼ −γ1;2 − 2γ4;2;

ζMGBK
2

¼ −γ1;2 þ
1

2
γ1;3 − 4γ4;2 þ γ4;3; ð23Þ

etc.
Finally, the tt component of the RZ metric for a non-

spinning compact object, written in areal coordinates,
is [59]

gRZtt ¼ −

�

1 −
r0

rS

�

½1 − ϵð1 − xÞ

þða0 − ϵÞð1 − xÞ2 þ ÃðxÞð1 − xÞ3�; ð24Þ

where

x≡ 1 −
r0

rS
; ð25Þ

ÃðxÞ ¼ a1

1þ a2x

1þa3x

…

; ð26Þ

r0 is the coordinate radius of the infinite redshift surface
(heuristically identified with the horizon, if no pathologies
exist at larger radii), and ϵ, a1, a2;… are a sequence of
deformation parameters. Writing all radii in terms of the
mass of the black hole as measured at infinity fixes one of
the parameters to

ϵ ¼ −

�

1 −
2

r0

�

: ð27Þ

Under these assumptions, the PN parameters of the RZ
metric become

ζRZ
1

¼ 1

2
a0r

2

0
;

ζRZ
2

¼ 1

2

�

1 −
2

r0
þ a0 −

a1

1þ a2
1þa3

…

	

r3
0
; ð28Þ

etc.

C. Photon orbits and shadows of deformed metrics

The three different parametrizations [Eqs. (18), (20), and
(24)] for the deformed metric of a nonspinning object share
a common characteristic: they all involve expansions in
power series after the factor ð1 − 2=rSÞ has been removed
from the tt component of the metric. This ensures that the
metric has a surface of infinite redshift (a “horizon”) for a
large range of deformation parameters, which helps in
hiding the pathologies introduced by the deformations from
the observable Universe. However, because of this factor-
ing, a single PN parameter ζi in areal coordinates corre-
sponds to either a finite combination (for the JP and MGBK
metrics) or an infinite complex function (for the RZ metric)
of the deformation parameters of each metric. Nevertheless,
in each case, there is a trivial transformation between the
PN parameters ζi and the deformation parameters of the
corresponding metric. For this reason, we will use the JP
parametrization given by Eq. (19) to place constraints on
plausible metric deviations from the measurement of the
black-hole shadow diameter. One can then use transforma-
tions (19), (23), or (28) to convert them into constraints on
the particular deviation parameters for the other metric
parametrizations.
Using Eq. (18) with Eq. (17) yields an expression for the

coordinate radius of photon orbits—i.e.,

rJPph ¼ 3þ 2

9
α12 þ

1

9
α13 þ

4

81
α14 þ � � � ; ð29Þ

where only linear terms in the deformation parameters have
been retained. This is consistent with the power-series
expansion of the metric shown in Eq. (18). Moreover, terms
that involve higher powers in the deformation parameters
are negligible compared to the corrections introduced by
the black-hole spin, which are not measurable with current
data and are neglected here. For example, the first nonlinear
term is −2α2

12
=243 ≃ 0.008α12. Evaluating the tt compo-

nent of the metric at the radius of the photon orbit gives

gttðrphÞ ¼ −
1

3
þ 2

81
α12 þ

10

729
α14 þ � � � ; ð30Þ
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which remains regular unless the deformation parameters
take extremely large values. Note that the α13 contribution
to this expression is vanishing at linear order.
Expressed in terms of the PN parameters in areal

coordinates, the radius of the photon orbit of the JP metric
becomes

rJPph ¼ 3 −
52

81
ζ1 þ

17

81
ζ2 −

4

81
ζ3 þ � � � : ð31Þ

Finally, inserting Eq. (29) into the general expression
(16) for the shadow radius gives

rJPsh ¼ 3
ffiffiffi

3
p �

1þ 1

9
α12 þ

1

27
α13 þ

1

81
α14 þ � � �

�

: ð32Þ

Expressed in terms of the PN parameters in areal coor-
dinates, the shadow radius becomes

rJPsh ¼ 3
ffiffiffi

3
p �

1 −
19

81
ζ1 þ

5

81
ζ2 −

1

81
ζ3 þ � � �

�

: ð33Þ

It is important to emphasize that the shadow tests
performed here and in Ref. [19] do not employ a parametric
post-Newtonian metric. Indeed, the coefficients of the
various terms in Eq. (33) are different from the expression
obtained if calculating the size of a black-hole shadow
using the PN metric directly [Eq. (9)]. Instead, the shadow
tests are performed using metrics that remain regular all the
way down to their horizons, and constraints are imposed on
the parameters of these regular metrics. However, in order
to compare the shadow tests to those of earlier, weak-field
tests, these constraints are then translated into equivalent
constraints on the post-Newtonian parameters of these
metrics.
The convergence properties of the series in Eqs. (32) and

(33) are difficult to explore formally. Nevertheless, the
coefficients of the terms in Eq. (32) are decreasing by
successive powers of 3, and those in Eq. (33) by successive
powers of ∼4–5. This is expected, given that they are all the
result of power-series expansions in 1=rS, and the radius of
the photon orbit, which determines primarily the size of the
shadow, is rS ¼ 3 for the Schwarzschild metric. In order for
higher-order terms to have a significant impact on the size
of the shadow, they need to be successively increasing by
corresponding powers of ∼3–5.

D. Metric constraints from the measured size

of the M87 shadow

Our goal is to place constraints on possible deviations
from the Kerr metric using the inferred size of the black-
hole shadow in M87, given the mass of the black hole
measured at large distances, in the Newtonian limit, as prior
information. However, as discussed earlier, the EHT
imaging observations of M87 do not directly measure

the size of the shadow, but rather the size of the bright
ring of emission that surrounds it.
In order to connect the two, we use the model described

in Ref. [18] that incorporates a number of steps in order to
convert the prior mass measurement to a prediction of the
size of the bright ring. In particular, we quantify the prior in
terms of the angular size in the sky of one gravitational
radius for a black hole of mass M at a distance D—i.e.,
θg ≡GM=ðc2DÞ. We introduce the correction factor a

between the angular diameter d̂m of the peak emission and
the angular diameter of the shadow 2rsh such that

d̂m ¼ 2arsh: ð34Þ

Finally, we calculate the angular size of the shadow for a
given prior mass-to-distance ratio for the black hole, while
allowing for a possible fractional deviation δ in the
prediction of the Kerr metric such that

d̂m ¼ 2að1þ δÞrsh ¼ 2að1þ δÞ3
ffiffiffi

3
p �

GM

Dc2

�

: ð35Þ

Even though δ represents any possible deviation, for the
particular model discussed above, it is equivalent to

δ ¼ 19

81

�

−ζ1 þ
5

19
ζ2 −

1

19
ζ3 þ � � �

�

: ð36Þ

Equation (35) allows us to infer or constrain the deviation δ
from the Kerr metric predictions, given the prior informa-
tion on the mass-to-distance ratio M=D of the black hole,

the measurement of the diameter d̂m of the bright ring of
emission with the EHT, and a model for the correction
factor a.
The prior PðθgÞ on the angular size in the sky of one

gravitational radius for the black hole in M87 has been
measured using stellar dynamics in Ref. [50] and quantified
in Ref. [44]. Here we use the full numerical information on
the prior, which peaks at θg;0 ∼ 3.62 μas and is asymmetric

(it can be represented approximately as θg;s¼3.62þ0.60
−0.34 μas).

A second measurement of θg exists that is based on gas
dynamics [63] and results in a substantially smaller value;
this measurement can be represented approximately as
θg;g ¼ 2.05þ0.48

−0.16 μas. The accuracy of the latter technique
has been questioned on a number of astrophysical grounds,
and it often leads to underestimated black-hole masses, as
seems to be the case for M87 (see Sec. 3 of Ref. [64]).
However, in order to allow for the possibility that either
of these two distinct measurements is accurate, we consider
them as two separate models and assign equal prior
probabilities between them.
The correction factor a has been calibrated using ∼100

synthetic images from accretion-flow simulations that span
different black-hole spins, magnetic field configurations in
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the accretion flows, and models for the plasma physics.
Even though the particular simulations used in the cali-
bration were performed for the Kerr metric, the primary
source of the error budget arises from the thermodynamic
properties of the plasma in the inner accretion flow; the
properties of the metric enter predominantly in the imprint
of gravitational lensing on the image, which is the size and
shape of the black-hole shadow. We use here a Gaussian

distribution for a with a mean value 6
ffiffiffi

3
p

a0 ¼ 11.35 and a
standard deviation of σa=a0 ¼ 11.4% (see Table 4 and
Fig. 26 of Ref. [18]). Note that the width of this distribution
incorporates the small (�4%) spread in the predicted
shadow size due to the unknown black-hole spin and
observer inclination [24].
The EHT observed the black hole in the center of M87

for four days across the span of a week in April 2017.
Interferometric data were collected in two frequency bands
(HI and LO), and images were generated for each day and
each frequency band separately [44]. Moreover, two differ-
ent geometric model images as well as images generated
from GRMHD simulations were fit directly to the inter-
ferometric visibility data, in order to infer the geometric
parameters of the emission rings [18]. Both the image-
domain and visibility-domain analyses led to inferred
image sizes that are consistent with each other and across
the different days of observation and different frequency
bands. Here, we use the posteriors for the measurement of
the diameter of the ring of emission inferred using the
xs-ringgauss model for the combined HIþ LO data-
sets, in all four days of observations. We denote the most
likely value of each measurement by d̂ and its uncertainty
by σd (see Table 3 of Ref. [18]).
The posterior over the deviation parameter δ is given by

Pðδjd̂; σdÞ ¼ C

Z

dδ

Z

da

Z

dθgL½d̂; σdjθg; a; δ�

× PðδÞPðθgÞPðaÞ; ð37Þ

where C is an appropriate normalizaton constant and
L½d̂; σdjθg; a; δ� is the likelihood of measuring a ring of

size d̂ given the model parameters θg, a, and δ. Hereafter,
we will assume a flat prior in the fractional deviation δ, with
limits that are much larger than unity. Assuming a Gaussian
distribution for both the likelihood function and the model
correction factor a, we perform two of the integrals
analytically such that

Pðδjd̂; σdÞ

¼
Z

dθgPðθgÞ
1
ffiffiffiffiffiffi

2π
p

Σ

× exp

�

−
108a2

0
ð1þ δÞ2θ2g − 12

ffiffiffi

3
p

a0ð1þ δÞθgd̂þ d̂2

2Σ2

	

;

ð38Þ

where

Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

108ð1þ δÞ2θ2gσ2a þ σ2d

q

: ð39Þ

We calculate the posteriors for the stellar- and gas-
dynamic mass measurements by folding in the two priors
over θg;s and θg;g, respectively, and performing the last
integral numerically. We show the result in Fig. 2. As
discussed extensively in Ref. [44], the two priors result in
two distinct solution islands, with the posteriors calculated
using thegas dynamics prior being inconsistentwith theKerr
predictions at the ≥99% level. For brevity, we will be
displaying hereafter only the posteriors based on the stellar
dynamicsmodel, which allow for theKerr solution, although
in principle, amodification to themetric that predicts δ ≃ 1 is
consistent with the shadow size measurement.
For the 5 April 2017 observations, the result is

δ ¼ 0.03þ0.20
−0.16 (68% credible level) and is approximately

the same for the remaining days. This implies that the limit
on the deviation parameters becomes

−0.55 ≤ −ζ1 þ
5

19
ζ2 −

1

19
ζ3 þ � � � ≤ 0.98: ð40Þ

It is possible to use the inequalities in Eq. (40) in order to
constrain any individual parameter ζi, allowing for only that
parameter to attain a nonzero value, as was done, e.g., in
Ref. [19]. However, because the shadow for a nonspinning

FIG. 2. The posterior over the fractional deviation δ between
the size of the shadow predicted using the Kerr metric for the
M87 black hole and the size inferred for the four days of the
2017 EHT observations. The solid lines correspond to the stellar
dynamics measurement of the mass-to-distance ratio for the black
hole, taken as a prior, whereas the dashed lines correspond to
the gas dynamics measurement. The posteriors incorporate the
uncertainty introduced by the difference between the size of the
black-hole shadow and that of the bright ring of emission, as well
as the uncertainty due to the unknown black-hole spin and
observer inclination. For the April 5 observations and the stellar
dynamics mass, the result is δ ¼ 0.03þ0.20

−0.16 (68% credible level)
and is approximately the same for the remaining days.
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compact object is circularly symmetric, its image provides
only a single data point: its radius. For a general parametric
extension of themetricwith an infinite sequence of deviation
parameters, it is evident from the above inequality that this
single data point can only constrain the linear combination
(40) of the infinite series of parameters. Because of this
complete degeneracy, it is impossible to quantify credible
levels for each of the deviation parameters separately by
marginalizing over the remaining parameters.
Nevertheless, the coefficients of each parameter in the

sum of Eq. (40) appear to be decreasing by a factor of ∼4–5
between successive orders. As a result, if the deviation
parameters are comparable to each other or are also
decreasing with increasing order, then the series will be
converging within a very small number of terms. In fact,
even if the 3PN parameter ζ3 is of order unity, the resulting
correction to the predicted shadow size will be at the ∼1%
level—i.e., smaller than the measurement uncertainty of
≲20%. Assuming that only the first two PN parameters, ζ1
and ζ2, provide contributions that are measurable with the
current observations, the inequality of Eq. (40) results in the
correlated upper limits shown in Fig. 3.

IV. BLACK-HOLE INSPIRAL TESTS

The LIGO/Virgo detectors [65,66] have observed gravi-
tational waves emitted during the inspiral, coalescence, and
ringdown phases of several black-hole binaries and used
them to place constraints on potential deviations from
various GR predictions for black-hole spacetimes [4–6].
The tests performed to date can be broadly categorized into

three large groups: (i) those involving the inspiral phase,
when the coalescing black holes are at distances larger than
their horizons; (ii) those involving the ringdown phase of
the remnant black hole that is shedding its short-lived
gravitational hair; and (iii) the tests involving the polari-
zation and propagation of gravitational waves from the
binary to the Earth. The various categories are, of course,
not independent from each other, and substantial informa-
tion can be obtained by exploring, e.g., whether the black-
hole parameters inferred from the inspiral phase of an event
with GR waveforms are consistent with those inferred from
the ringdown phase.
In this paper, we will focus only on the tests involving

the inspiral phase for three reasons: First, the majority of
the individual black holes coalescing in the various detected
events appear to have small spins (see Ref. [28] for a
detailed discussion of the spin distribution and the evidence
for nonzero spins in some of the observed systems), in
contrast to the remnant black holes ringing down, for which
the inferred spins are ∼0.7. Second, during the inspiral
phase, the coalescing black holes are at separations larger
than the effective radius of the innermost stable circular
orbit in the system, so that their individual spacetimes are
mildly perturbed away from the equilibrium solutions.
Moreover, the relatively large separations allow for useful
constraints to be obtained even with a post-Newtonian
expansion of the waveforms. Finally, modeling the inspiral
phases allows us to place constraints on deviations from the
GR predictions for the equilibrium black-hole metrics that
can be directly compared to those obtained using the EHT
observations, as discussed in the previous section.
To date, the LIGO Scientific Collaboration and Virgo

Collaboration have confirmed the observation of gravita-
tional waves from 47 compact binary coalescences with a
false alarm rate below 1 per year, including 44 binary
black-hole systems, two binary neutron-star systems, and
GW190814, which is likely a binary black-hole system
[28]. In this paper, we reanalyze the LIGO/Virgo data for
three sources, focusing exclusively on tests of GR during
the inspiral phase of three events: (i) GW150914, the first
and highest signal-to-noise-ratio binary black-hole merger
observed to date; (ii) GW170608, the low-mass system
with the strongest constraints on GR deviations to date; and
(iii) GW190924_021846, the lowest-mass binary black-
hole system observed to date. We analyze these three out of
the large number of available systems in order to explore
the mass dependence of the constraints.
Figure 4 shows the frequency of the emitted gravitational

waves as a function of the binary separation for the three
sources we analyze here. For the purposes of this figure, we
set the total mass of GW150914 to M ¼ 65 M⊙, that of
GW170608 toM¼19M⊙, and that of GW190924_021846
to 14 M⊙ [28]. The stars denote the gravitational-wave
frequencies (∼20 Hz) at which the signal amplitudes
become discernible above the noise of the detectors.

FIG. 3. Correlated bounds on the 1PN and 2PN parameters ζ1
and ζ2 imposed by the measurement of the size of the black-hole
shadow in M87. The bounds were calculated with the JP
parametrization of deformations from the Kerr metric, and the
shaded regions show the regions of the parameter space with
deviation δ that is within the 68% and 95% credible intervals for
the April 5 observations. The bounds assume that all higher-order
deviation parameters provide negligible corrections to the pre-
dicted shadow size, which is true when jζij ≲ 1 for i ≥ 3.
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The filled squares represent the frequencies at which the
orbital separation is 6GM=c2—i.e.,

f6 ¼
1

6
ffiffiffi

6
p

π

�

GM

c3

�

−1

: ð41Þ

Finally, the filled circles represent the frequencies at which
we terminate the analyses of the early inspiral phases of the
events in order to ensure that our constraints are driven
solely by the inspiral regimes (see below). The solid lines
identify the range of frequencies and corresponding binary
separations that primarily inform the tests of deviations
from GR predictions based on the inspiral phases.

A. Post-Newtonian tests of black-hole binary inspirals

In the study of potential deviations from the GR
waveforms during the inspiral phases, the LIGO/Virgo
Collaboration has been employing, among others, the
IMRPhenomPv2 waveform model [67], which is a pre-
cessing modification to the aligned-spin waveform model
IMRPhenomD [27]. For this model, the phase evolution
during the inspiral phase up to the third PN order is exactly
the TaylorF2 post-Newtonian model:

ΦGRðfÞ ¼ 2πftc − ϕc − π=4

þ 3

128η
ðπfMÞ−5=3

X

7

i¼0

ϕiðπfMÞi=3; ð42Þ

where i ¼ 2p is twice the PN order (in the counting system
used here), and tc and ϕc are the time and phase at
coalescence. Here M ¼ m1 þm2 is the total mass of the
system, and η≡m1m2=M

2 is the symmetric mass ratio.
Beyond this, there are additional phenomenological cor-
rection terms at higher orders. Neglecting spin corrections,
the first few ϕi terms in GR are

ϕ0 ¼ 1;

ϕ1 ¼ 0;

ϕ2 ¼
3715

756
þ 55

9
η;

ϕ3 ¼ −16π;

ϕ4 ¼
15293365

508032
þ 27145

504
ηþ 3085

72
η2: ð43Þ

The deviation from the GR predictions are then usually
parametrized as a fractional shift δϕ̂i in ϕi as described in
Ref. [68]. Note that, throughout this section, we have
reverted to showing explicitly the dependence of the
various terms on the mass of the binary, because of the
impact of the actual value of the mass on the correlations
between the inferred parameters, as we describe below.
The particular values of the phase are, of course,

arbitrary, and can be masked by an adjustment in the phase
ϕc. Instead, the inference of the model parameters is driven
primarily by the evolution of the phase of the gravitational
wave with frequency. In the Fourier domain, where the
IMRPhenomPv2 model is defined, this is captured by the
first derivative of the phase of the waveform with respect to
frequency—i.e.,

dΦðfÞ
df

¼
X

7

i¼0

dΦiðfÞ
df

; ð44Þ

with

dΦiðfÞ
df

¼ M

128η
ði−5Þπði−5Þ=3ðfMÞði−8Þ=3ϕið1þδϕ̂iÞ; ð45Þ

where again i ¼ 2p is twice the PN order.
In order to explore the convergence of this series, we first

focus on theGR case—i.e., we set δϕ̂i ¼ 0—and express the

frequency in terms of f6 by setting f̂ ≡ f=f6. Figure 5
shows the relative importance of the various PN orders with
respect to the 1PN order. At the lowest frequencies acces-
sible with LIGO/Virgo—e.g., f̂ ∼ 0.1 for GW170608—the
relative contributions of the 2PN and 3PN orders are
comparable to each other and ∼10% with respect to the
1PN order. As expected, their relative contribution increases
(to ∼1=2) as the event approaches the end of the inspiral
phase and the PN expansion becomes less accurate.

FIG. 4. The frequencies of the emitted gravitational waves as a
function of the binary separation, for the three black-hole binary
events that we explore here. The stars denote the lowest frequency
analyzed; in each case this is 20 Hz. The filled squares denote the
frequency at which the separation is ∼6GM=c2; the filled circles
denote the frequencies at which we terminate the analyses of the
early inspiral phases of the events. The solid lines identify the
range of frequencies and corresponding binary separations that
contribute to the constraints on deviations from the GR pre-
dictions explored here.
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Incorporating potential deviations from the GR wave-
forms leads to (showing only the integer PN orders, which
describe potential deviations from Kerr of the equilibrium
black-hole metrics; see below)

dΦðfÞ
df̂

∼ −
8.9

f̂2
ð1þ δϕ̂2Þ −

3.5

f̂4=3
ð1þ δϕ̂4Þ

−
8.3

f̂2=3
ð1þ δϕ̂6Þ; ð46Þ

where, for clarity, we have set η ¼ 1=4. If we evaluate this
expression at f ¼ ð1=10Þf6—i.e., approximately when the
LIGO and Virgo interferometers start detecting the signal
from GW170608—we obtain

dΦðfÞ
df̂

�

�

�

�

f̂¼1=10

≃ −1002ð1þ 0.89δϕ̂2 þ 0.08δϕ̂4

þ0.04δϕ̂6 þ � � �Þ: ð47Þ

The convergence becomes increasingly slower as the binary
separation decreases towards 6GM=c2 and the frequency of
the wave increases towards f6.
We show later in this section that the constraints on the

various deviation parameters are actually driven by the
second derivative of Φ with respect to frequency, because
changes in the first derivative can be masked by an
adjustment in the coalescence time tc. Had we considered
the convergence of the second derivative with frequency,
we would have reached a similar conclusion.

The rate of convergence for the waveforms of coalescing
binary black holes (see, e.g., Fig. 5) is similar to the rate
of convergence of the series [Eq. (33)] used in tests
involving the size of the black-hole shadow. This might
appear counterintuitive, since the separations of the binaries
in the inspiral phase are in the range ∼ð6–40ÞGM=c2,
whereas the radius of the photon orbit is at 3GM=c2. The
reason lies in the fact that the coefficients of the various PN
orders in the phase evolution of the waveforms are
increasing rapidly with PN order: for a binary system with
equal masses, Eq. (43) gives ðϕ1;ϕ2;ϕ3;ϕ4;ϕ5;ϕ6;…Þ≃
ð0;6;−50;46;154;−652;…Þ.
Previous tests of the compact binary phase evolution

have mostly allowed for just one parameter to deviate at a
time (but see Ref. [4] for the analysis of GW150914, in
which multiple parameters were varied simultaneously).
This is done in order to improve the constraints at specific
post-Newtonian orders and reduce computational chal-
lenges. When all deviation parameters are allowed to vary,
their posteriors are highly correlated and, for the 1PN and
higher terms, span a range comparable to that imposed by
the priors (see Ref. [4]). In fact, if all post-Newtonian
coefficients are allowed to deviate from the GR values, the
problem is underdetermined. The number of free param-
eters governing the intrinsic phasing of the inspiral, which
includes the masses, the spins, and the deviation terms δϕ̂i,
is greater than the number of post-Newtonian coefficients.
Therefore, even if all coefficients were to be measured
perfectly in the absence of noise, the physical parameters
and deviation terms can only be constrained to lie on a
degenerate hypersurface whose dimensionality is given by
the number of excess parameters relative to the number of
measured post-Newtonian terms. However, in order to
compare the LIGO/Virgo constraints to those imposed
by the measurement of the black-hole shadow in M87,
we are interested specifically in the correlations between
the various deviation parameters.
Another complication in using the inspiral gravitational

waveforms to constrain the equilibrium spacetimes of
black holes, which is our aim here, is the need to have a
model for the radiative (or dissipative) properties of the
underlying theory. In fact, it is well known that several
modifications to GR give rise to altered waveforms, even
though the black-hole metrics in these modified theories
remain identical to the Kerr solution [69]. This is the reason
why the post-Newtonian constraints imposed by the LIGO/
Virgo events on, e.g., the phase evolution of the detected
gravitational waves amalgamate the potential deviations of
both the equilibrium spacetimes (i.e., the conservative
properties of the theory) and the gravitational-wave emis-
sion and propagation (the dissipative and radiative proper-
ties of the theory).
In order to break the complete degeneracy between

varying the physical parameters of the black-hole binaries
and the deviation terms of the metrics, we explore a different

FIG. 5. The relative importance of different PN orders in the
calculation of the frequency derivative of the phase of the
waveform, as a function of the wave frequency. The PN order
is p ¼ i=2, as in Eq. (44), and all contributions are normalized to
the 1PN order. The wave frequency is expressed in units of f6, the
frequency at a separation equal to 6GM=c2, at which point the
inspiral phase ends. All terms have been calculated for a binary
with equal masses—i.e., η ¼ 1=4—and zero spins.
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cross section of the parameter space of possibilities com-
pared to previous work (e.g., Ref. [6]). In accordance with
our goal to use gravitational-wave observations to constrain
the equilibrium spacetimes of black holes, we will consider
the case where the radiative aspects of the theory are the
same as in GR and allow for only the black-hole spacetimes
to deviate from the GR solutions. The emission of gravi-
tational waves, which drives the phase evolution of the
waveforms, will again start at the 2.5PN order, as in GR, and
the gravitational-wave amplitude will be proportional to the
second time derivative of the quadrupole moment of the
spacetime. However, this derivative will be determined by
the time-dependent relative positions of the two black holes
in the orbit, which in turn depend on the equilibrium
spacetimes of the individual black holes. This is how the
PN parameters that we are concernedwith in this study enter
the calculation of thewaveforms and can be constrainedwith
observations [70].

B. Modeling inspiral data with ppE waveforms

In accordance with the reasoning described above, we
will follow the procedure outlined in Refs. [32,71,72] for
calculating the waveforms of gravitational waves during the
inspiral phase based on the parametric post-Einstein (ppE)
phenomenological approach [73] and using effective one-
body dynamics [74,75]. This enables us to compare model
waveforms to LIGO/Virgo data by allowing for simulta-
neous deviations at more than a single PN term while
reducing the extent of correlations discussed above.
Because we will be using the ppE formalism, we are also
able to incorporate amplitude and phase information in
our model.
As shown in Ref. [32], the waveform evolution during

the inspiral phase depends only on the tt components
of the black-hole metrics as written in areal coordinates.
In the ppE formalism, the waveform during the inspiral
phase of a binary, written in the frequency domain, is given
by [73]

h̃ppEðfÞ ¼ AGRðfÞð1þ αppEu
appEÞ

× exp fi½ΦGRðfÞ þ βppEu
bppE �g; ð48Þ

where AGR and ΦGRðfÞ are the GR predictions for the
amplitude and phase of the waveform, u≡ ðπMfÞ1=3,
M ¼ Mη3=5 is the chirp mass, M ¼ m1 þm2 is the total
mass,m1 andm2 are the masses of the two black holes, and
η ¼ m1m2=M

2 is the symmetric mass ratio, as before. The
various parameters with the “ppE” subscripts describe
potential deviations from the GR predictions. In order to
incorporate the individual PN orders, we write

h̃ppEðfÞ ¼ AGRðfÞeiΦGRðfÞ
Y

3

p¼1

AppE;pe
iΦppE;p ; ð49Þ

AppE;p ¼ ð1þ αppE;pu
appE;pÞ;

ΦppE;p ¼ βppE;pu
bppE;p : ð50Þ

The two ppE parameters that affect the phase evolution
of the gravitational wave, which we will use here, are the
amplitude βppE and the power-law index bppE. The latter is
fixed for each successive post-Newtonian order p by [32]

bppE;p ¼ 2p − 5: ð51Þ

The former depends on the particular parametrization of the
PPN metric in areal coordinates. For the metric (7), the
application of Eq. (11) of Ref. [32] for the pth PN order
gives

βppE;p ¼ ð−1Þpþ1
5ðpþ 1Þð2pþ 1Þ

8ð2p − 8Þð2p − 5Þη2p=5 ζp: ð52Þ

Applied to the 1PN and 2PN orders, we obtain

βppE;1 ¼
5ζ1

24η2=5
¼ 5ðβ1 − γ1Þ

24η2=5
;

βppE;2 ¼ −
75ζ2

32η4=5

¼ −
75

128η4=5
½2ðγ2

1
− 1Þ − 8ðβ1γ1 − 1Þ

þ3ðβ2 − 1Þ þ 3ðγ2 − 1Þ�: ð53Þ

Note that there is one important difference between the
phase evolution during the inspiral phase of the ppE wave-
form [Eq. (48)] and the IMRPhenomPv2 model [Eq. (42)]
that arises when terms at the 2.5PN and higher orders are
considered: the IMRPhenomPv2 model involves logarith-
mic correction terms in frequency, whereas the ppE
waveforms do not. Nevertheless, the magnitudes of these
logarithmic corrections are subdominant for the cases we
consider here and can be neglected.
The amplitude terms are directly related to the phase

terms via [32]

appE ¼ 2p ð54Þ

and

αppE ¼ ð−1Þpþ1ðpþ 1Þð2p − 1Þ
3

ζp

η2p=5
: ð55Þ

Using Eqs. (48)–(53), it is also straightforward to
connect the fractional deviations δϕ̂i, inferred from the
LIGO/Virgo measurements [6] to the ppE coefficients and
to the various PN parameters of the metric (7). The results
for the 1PN and 2PN orders are
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ζ1 ≡ β1 − γ1 ¼
ð743þ 924ηÞ

1344
δϕ̂2 ð56Þ

and

ζ2 ¼ −
ð3058673þ 5472432ηþ 4353552η2Þ

10160640
δϕ̂4: ð57Þ

We use the waveform in Eq. (48) to explore the
correlations in the expanded parameter space through the
ensemble Markov chain Monte Carlo sampler emcee [76]
as implemented in Bilby [77]. In order to reduce the burn-
in time, we choose our starting ensemble by taking samples
from the posterior distributions obtained for the case where
GR is assumed to be correct [78] and draw starting samples
for the non-GR parameters from tightly peaked distribu-
tions around zero. We ensure convergence of the MCMC
ensemble by visually inspecting the chains.
We employ the same prior distribution on the GR

parameters as in Ref. [78] and impose uniform priors on

the post-Newtonian terms ζp ∈ ½−1000; 1000�. We analyze
four seconds of data for GW150914 and sixteen seconds of
data for GW170608 and GW19092_021846, with the
trigger time placed two seconds before the end of the
analyzed data. We neglect the effect of calibration uncer-
tainty in our analysis, as it has been shown to be negligible
for these events [79]. We use noise power spectral density
estimates obtained with the BayesLine algorithm
[80,81]. In order to ensure that our constraints are driven
solely by the inspiral regime, we impose upper frequency
cutoffs of 120 Hz, 120 Hz, and 50 Hz for GW170608,
GW190924_021846, and GW150914, respectively.
Figure 6 shows the one- and two-dimensional margin-

alized posterior distributions for the ζp PN deviation
parameters and the chirp mass for GW170608 and
GW190924_021846. (The results are not shown for
GW150914, since too few cycles from the inspiral regime
were observed and the deviation parameters are much less
constrained.) All deviation parameters are highly correlated
with each other and with the chirp mass of the system.

FIG. 6. Correlated uncertainties between the chirp mass M and the parameters ζp that describe deviations from the GR metrics at
various post-Newtonian orders. These results were obtained for two relatively low-mass binary black-hole mergers, GW170608 and
GW190924, which have total masses of ∼19 M⊙ and ∼14 M⊙, respectively. There are tight mass-dependent correlations between the
ppE parameters. The mass dependence of these correlations creates the wedge structure in the two-dimensional posterior distributions.
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Since gravitational-wave interferometers are more sensitive
to the phase evolution of the source than to the amplitude,
the posteriors here are not significantly more constraining
than when we allowed for just the phase to deviate from the
GR prediction.
In this analysis, although we allow for the black holes to

have nonzero spins, we have neglected the effects of
spins on the corrections to the GR waveforms. In order
to explore the impact of this assumption on our results,
we repeat the analysis while fixing the black-hole
spins to zero. In Fig. 7, we compare the one- and two-
dimensional marginalized posterior distributions obtained
for GW170608 when including and excluding spin effects
in the GR waveform template. Due to degeneracies
between black-hole mass and spin in the evolution of
the gravitational waveform, fixing the spins to zero leads to
marginally tighter constraints on other parameters. This
translates into slightly narrower credible intervals on the
non-GR parameters.
We aim to develop a simple understanding of the

correlations using the following arguments. The similarity

of two waveforms h̃1ðfÞ and h̃2ðfÞ is expressed through
their normalized match

Oðh̃1; h̃2Þ ¼
I12
ffiffiffiffiffiffiffiffiffiffiffiffi

I11I22
p ;

I12 ≡ℜ

Z

df
h̃1ðfÞh̃�2ðfÞ

SnðfÞ
; ð58Þ

where SnðfÞ is the frequency-dependent noise power
spectral density of the interferometer. If the normalized
match is close to unity, then the noise-weighted residuals
from match-filtering waveform h̃1 against h̃2 are low. In
other words, if h̃1 represents the actual signal in the data
and h̃2 the waveform model used for parameter estimation,
the likelihood of observing the data given the model is high.
Assuming that the two waveforms differ only in the

phase evolution, as it is the dominant effect measured by
the interferometers, and expanding the phases around a
fiducial frequency f0, we obtain

FIG. 7. Comparing correlated uncertainties between the chirp mass M and the parameters ζp that describe deviations from the GR
metric at various post-Newtonian orders for GW170608, when including or excluding spin effects in the GR waveform. Including spin
effects in the GR waveform does not significantly change the posterior distributions for the non-GR parameters.
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h̃iðfÞ ¼ A exp ½iΦiðfÞ�

∼ A exp

�

iΦiðf0Þ þ i
dΦi

df

�

�

�

�

f0

ðf − f0Þ

þ i

2

d2Φi

df2

�

�

�

�

f0

ðf − f0Þ2 þ � � �
	

: ð59Þ

In the stationary phase approximation and ignoring the
overall phase of the integral, which can be incorporated into
ϕc and is marginalized over during the analysis, the overlap
integral becomes

I12 ¼
Z

df

SnðfÞ
exp

�

i

�

dΦ1

df
−
dΦ2

df

�

ðf − f0Þ
	

þ
Z

df

SnðfÞ
exp

�

i

2

�

d2Φ1

df2
−
d2Φ2

df2

�

ðf − f0Þ2
	

þ � � � : ð60Þ

The first of these two integrals amounts to a time offset [cf.
the term 2πftc in the waveform phase in Eq. (42)] and is
also marginalized over. As a result, to leading order, the
likelihood is maximized when the rapidly oscillating term
inside the second square bracket is close to zero—i.e.,
when the second derivatives of the phase functions are
similar at the frequencies of interest.
Requiring that the second derivative of the GR waveform

at a frequency f0 be equal to the second derivative of the
waveform when the deviation parameters ζ1 and ζ2 are
allowed to take nonzero values results in the anticorrelation

ζ2 ∼
2

5π2=3ðf0MÞ2=3 ζ1

∼ 4.2

�

f0

100 Hz

�

−2=3
�

M

19 M⊙

�

−2=3

ζ1; ð61Þ

where we have evaluated the various expressions for
η ¼ 1=4 and chosen f0 ¼ 100 Hz, roughly the frequency
at which the LIGO and Virgo noise spectral density is
minimal, as the fiducial frequency value. This captures
the correlation seen in the results of the comparison of the
model to the data (Fig. 6). The mass dependence in this
expression also accounts for the wedge shapes of the
correlations between the various deviation parameters.
A similar understanding of the correlations could be
obtained with a traditional Fisher matrix analysis.
Surprisingly, for the masses of the two sources analyzed

here, the direction of this correlation is nearly parallel to the
one between the PN parameters of the metric, as inferred
from the measurement of the size of a black-hole shadow
[cf. Eq. (40)]. The slope of the correlation, however,
depends on the mass of the system. More massive systems
spend too few cycles in the inspiral regime to be useful for
probing post-Newtonian coefficients. However, lower-mass

binary black holes are particularly promising in breaking
the degeneracy with EHT observations and providing a
complementary test. Binary neutron stars have even lower
masses, but neutron stars may exhibit different couplings
than black holes in alternate theories of gravity.
Alternatively, a change in the detector’s typical sensitive
frequency band, represented by f0, would allow future
third-generation ground-based detectors and particularly
the LISA space instrument to provide constraints with very
different correlations.

V. DISCUSSION

In this paper, we explored the constraints imposed on
potential deviations from the Kerr metric by the observation
of the black-hole shadow in the M87 galaxy and the
detection of gravitational waves during the inspiral phase
of binary black-hole coalescence. There are a number of
similarities and differences between these two types of tests
of the Kerr metric.
The shadow observations probe the equilibrium space-

times of black holes, whereas the detections of gravitational
waves also probe the dynamics of the theory. For this
reason, when comparing the two types of tests, we only
consider the constraints placed by gravitational-wave
observations on the metrics of the black holes. On the
other hand, the shadow observations probe length and mass
scales that are 8 orders of magnitude larger and curvature
scales that are 16 orders of magnitude smaller than those
measured by LIGO/Virgo data. It is therefore conceivable
that the stellar-mass black holes probed by gravitational-
wave observations and the supermassive black holes
probed by shadow observations might not be described
by the same metric. In that case, the constraints imposed by
the two types of tests cannot be combined, but only offer
complementary information.
There is limited information available from either type of

observation on aspects of the spacetime that are controlled
by the black-hole spins. For the case of the shadows, this is
a consequence of a fortuitous near cancellation of the
effects of frame dragging and of the quadrupole moment
of the spacetimes, both of which depend on spin [24]. For
the gravitational-wave observations, there seems to be a
paucity of merging binary black holes in the Universe with
substantial spins [28], although merger products have
dimensionless spins of ∼0.7, and their impact on the
ringdown portion of the waveform has been explored
[6]. Neglecting the effects of black-hole spins, as we have
done here, substantially reduces the complexity of the
problem.
We have chosen here to express the constraints on

possible deviations from the Kerr metric in terms of the
coefficients of the parametric post-Newtonian expansions
of the metric predictions for weak-field tests (even though
for the case of the shadow tests, we use metrics that remain
regular all the way to the horizons). This might appear not
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to be warranted by the fact that both tests probe strong
gravitational fields, for which the post-Newtonian expan-
sion converges slowly. Indeed, the radius of the photon
orbit is at ∼3GM=c2, the radius of the shadow is
∼5GM=c2, and the frequencies detected by LIGO/Virgo
probe typical separations of 6−30GM=c2 during the
inspiral phases. However, the relatively low accuracy of
the observations allows us to construct such post-
Newtonian expansions without significant concerns. For
example, the size of the black-hole shadow in M87 has
been measured to be consistent with the Kerr predictions to
within an accuracy of ∼17% [18]. If naturalness forces all
post-Newtonian terms to have coefficients of the same
order of magnitude, then successive terms are a factor of
∼4–5 smaller than the previous ones; at the 3PN order, the
correction is at the percent level—i.e., below the current
observational uncertainty. The same argument can also be
made for the post-Newtonian expansion of the gravitational
waveforms and their observations, though these coeffi-
cients are known to increase at higher PN orders (see
Sec. IVA). The situation is, of course, starkly different in
the case of Solar System tests only because the fractional
observational uncertainties there are as small as 10−5 and
therefore require an expansion that converges more rapidly
(as the PPN expansion does) [2].
When we consider only the constraints from the gravi-

tational-wave observations on the metrics of nonspinning
black holes and not on the dynamics, both the shadow-size
tests and the gravitational-wave tests depend only on the tt
component of their metrics written in areal coordinates
[19,32]. Because of another fortuitous coincidence, the
correlations between the deviation parameters constrained
from the shadow test are degenerate with the correlations
constrained from the gravitational-wave tests, for binary
black holes with a total mass of ∼20 M⊙ and detectors with
a peak sensitivity around 100 Hz. This similarity in the
degeneracy between the two types of tests is shown
explicitly in Fig. 8 for the 1PN and 2PN deviation
parameters, as is the expected degeneracy [Eq. (61)] that
we derived in the previous section.
The similarity in the degeneracy between the various PN

parameters in the two types of tests allows us to project
both the EHTand the LIGO/Virgo correlated constraints on
a single parameter—i.e., the fractional deviation δ defined
in Eq. (36), which is directly related to the deviation of the
shadow size from the GR prediction. The resulting pos-
terior distributions for this parameter obtained for both the
shadow-size and the inspiral tests are shown in Fig. 9. The
GR prediction is indicated by the solid black vertical line.
This figure shows that current imaging and gravitational-
wave data provide similar constraints on any deviations of
slowly spinning black-hole spacetimes from the Kerr metric
across the mass and curvature scales probed by the two
experiments. We note that implicit in the analysis that
led to Fig. 9 is that the deviations at the fourth and higher

FIG. 8. Comparison of the correlated posteriors over the two
PN parameters ζ1 and ζ2 as inferred from the black-hole shadow
test (green slanted contours) and the two coalescing events
GW170608 (blue) and GW190924_021846 (orange). The blue
and orange contours show the 1-, 2-, and 3-σ credible regions. For
both tests, we assume that the 3PN parameter jζ3j < 10 and all
higher-order PN parameters introduce negligible corrections.
Because of a fortuitous coincidence, the inspiral tests for binary
black holes with a total mass of ∼20 M⊙ and detectors with a
peak sensitivity around ∼100 Hz lead to correlated uncertainties
that are parallel to those of the black-hole shadow tests. The
dashed lines indicate the expected correlation from Eq. (61). The
red curve indicates the expected correlation for a binary black-
hole system with a low total mass of 6 M⊙. The detection of such
a binary system can assist in breaking the degeneracies between
the deviation parameters.

FIG. 9. Posterior distributions for the fractional deviation δ

[Eq. (36)] of the tt component of the metric from the GR solution,
as imposed by the EHT measurement of the size of the black-hole
shadow in M87 (green), and the LIGO/Virgo measurements of
the inspiral phases of events GW170608 (blue) and GW190924
(orange). Both EHT and LIGO/Virgo measurements are consis-
tent with no deviations from GR and lead to bounds of
comparable magnitude.
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post-Newtonian orders are negligible, as are deviations in
the dynamics of the theory, which are described by the half-
integer orders in the gravitational waveforms, and nonlinear
combinations of the ζi. For this figure, we additionally
impose that jζij < 10 for all non-GR correction terms; not
including this constraint approximately doubles the width
of the posteriors for the GW events.
A future detection of a low-mass binary black hole, as

well as observations with future ground-based and space
detectors that are sensitive to a different range of gravita-
tional-wave frequencies, would provide constraints with
degeneracies that are not parallel to those of the shadow
test. This is shown explicitly in Fig. 8, where the expected
line of degeneracy for a 3 M⊙ þ 3 M⊙ black-hole binary is
shown. Under the assumption that the black-hole metrics
do not depend on the mass or curvature of the objects
involved, such an inspiral test can be combined with the
shadow tests in order to break the degeneracies and
constrain the individual deviation parameters.
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Note added.—We recently became aware of Ref. [87]. The
authors of that paper argue that, if more than one metric
deviation parameter is allowed to vary freely, the posteriors
on each of them individually is broad and uninformative.
This conclusion was already discussed in Ref. [19], which
pointed out that, in such a case, a size measurement will
instead lead to a constraint on a linear combination of
these parameters. In the current paper, we show explicitly
this correlation in Fig. 3; the conclusion of Ref. [87] is
simply a consequence of the fact that, if one were to
marginalize over one of the two parameters in this
figure, the lack of compact support of the posterior
(i.e., the fact that there are no limits on the individual
parameters) would lead to a noninformative posterior.
However, even in this case, the multidimensional posterior
is highly informative, as the vast amounts of the parameter
space that lie outside the color bands are inconsistent with
observations.
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