
1.5 mM MgCl2, 420 mM KCl, 25% glycerol and 0.2 mM EDTA) Both buffers contained

1 mM dithiothreitol, 1 mM phenylmethylsulphonyl fluoride, 0.5 mg ml21 leupeptin and

1 mM pepstatin. Each brain was homogenised in 5 ml of buffer A; nuclear proteins were

eluted in 1 ml of buffer C. Extracts were not dialyzed. We carried out western blot transfers

of CBP and p300 in cold transfer buffer containing 0.1% SDS for 2 h at 400 mA. HATassays

were done as described, with the nonspecific control antibody GST Z-5 (ref. 13). Western

blot analysis of immunoprecipitates following the HAT assays showed that equivalent

amounts of CBP or p300 precipitated from mutant and wild-type extracts (data not

shown). We used equal amounts of wild-type and mutant total nuclear protein for western

blot analysis and HAT assays.
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Protein folding is inherently a heterogeneous process because of
the very large number of microscopic pathways that connect the
myriad unfolded conformations to the unique conformation of
the native structure. In a first step towards the long-range goal
of describing the distribution of pathways experimentally,
Förster resonance energy transfer1 (FRET) has been measured
on single, freely diffusing molecules2–4. Here we use this method
to determine properties of the free-energy surface for folding that
have not been obtained from ensemble experiments. We show
that single-molecule FRET measurements of a small cold-shock
protein expose equilibrium collapse of the unfolded polypeptide
and allow us to calculate limits on the polypeptide reconfigura-
tion time. From these results, limits on the height of the free-
energy barrier to folding are obtained that are consistent with a
simple statistical mechanical model, but not with the barriers
derived from simulations using molecular dynamics. Unlike the
activation energy, the free-energy barrier includes the activation
entropy and thus has been elusive to experimental determination
for any kinetic process in solution.

The basic concepts of our FRETexperiment are shown in Fig. 1. A
green fluorescent donor dye and a red fluorescent acceptor dye were
attached to cysteine residues introduced at the amino and carboxy
termini of the cold-shock protein from the hyperthermophilic
bacterium Thermotoga maritima (CspTm). This protein was
selected for study because of its high stability, which makes it
tolerant to structural perturbations, and the simplicity of its
thermodynamic and kinetic behaviour in ensemble measurements5.
If a folded CspTm molecule diffuses into the volume illuminated by
a focused laser beam, then excitation of the donor dye results in
rapid energy transfer to the acceptor dye because the termini are
separated by only 1 nm, and most of the fluorescence photons are
emitted by the acceptor. On addition of a chemical denaturant the
protein unfolds, which results in a larger average distance between
the donor and acceptor dyes. Consequently, the energy transfer rate
is decreased and the fraction of photons emitted by the acceptor is
lower. To help us interpret the results quantitatively, we used a
control system consisting of two different lengths of type II polypro-

letters to nature

NATURE | VOL 419 | 17 OCTOBER 2002 | www.nature.com/nature 743© 2002        Nature  Publishing Group



line helices labelled with the same dyes (Fig. 1). Polyproline provides
a rigid spacer between donor and acceptor6–8, which means that the
interdye distance is independent of denaturant concentration,
whereas all other parameters are expected to vary in the same way
that they do in the protein.

Figure 2a and b shows parts of two typical data sets for the
polyproline control. For (Pro)6, the bursts of counts (that is, the
detected photons) above background resulting from diffusion of
single molecules into the illuminated volume come mostly from the
red fluorescing acceptor dye, which shows that FRET is occurring
(Fig. 2a). In (Pro)20 there is a larger separation between the dyes
(Fig. 1) and, on average, comparable numbers of green and red
counts are observed in each burst (Fig. 2b). The apparent FRET
efficiency (E app) for each burst is calculated as the ratio of acceptor
counts to the sum of acceptor plus donor counts. Figure 2c and d
shows the E app distributions for (Pro)6 and (Pro)20 as a function of
the concentration of guanidinium chloride (GdmCl). For (Pro)20,
the distribution of E app peaks near 50%. This E app is higher than
might be expected from the 6.2-nm polyproline helix, considering
that R0 (the distance at which our dye pair is expected to exhibit
50% transfer) is 5.4 nm. It results from the long flexible linkers of the
dyes (Fig. 1), which allow the dyes to approach each other during
the fluorescence lifetime of the donor. The additional maximum at
E app < 0 arises from (Pro)20 molecules in which the acceptor dye
has been chemically altered by photodestruction, or from (Pro)20

molecules labelled only with the donor dye that were not completely

removed during preparation.
For CspTm, three subpopulations are clearly resolved in the

histograms of E app (Fig. 2e), corresponding to folded molecules
with large E app, unfolded molecules with intermediate E app, and
molecules with E app < 0 owing to a missing or inactive acceptor, as
found for (Pro)20. The finding of only folded and unfolded
populations, whose relative proportions change with increasing
GdmCl concentration, is exactly what is expected for this protein,
which, like unlabelled CspTm5,9, shows two-state behaviour in
ensemble equilibrium and kinetic measurements (Supplementary
Information). Similarly, two populations have been resolved in
single-molecule FRET measurements4 of chymotrypsin inhibitor 2
(CI2), which is also known to show two-state behaviour from
ensemble measurements10.

Each E app distribution for CspTm was fit with a sum of one
gaussian and two lognormal functions, for the unfolded, folded and
donor-only protein peaks, respectively. Figure 3 shows how the
means and widths of the E app distributions for (Pro)20 compare
with those of the protein. As pointed out previously4, resolving the
FRET efficiencies for the folded and unfolded subpopulations can
expose changes in kE appl for the unfolded protein that cannot be
extracted from equilibrium ensemble measurements. For unfolded
CspTm, kE appl clearly increases between 3 and 0 M GdmCl (Fig. 3b).
Solvent effects on the dyes can be excluded as a source of the
increased FRET efficiency for the unfolded protein, because kE appl
for (Pro)20 shows almost no change over this range of GdmCl

Figure 1 Schematic structures of protein and polyproline helices labelled with donor

(Alexa 488) and acceptor (Alexa 594) dyes (using the program MOL/MOL). a, Folded

CspTm, a 66-residue, five-stranded b-barrel protein (Protein Data Bank accession code

1G6P)31; b, unfolded CspTm; c, (Pro)6; and d, (Pro)20. A blue laser excites the green-

emitting donor dye, which can transfer excitation energy to the red-emitting acceptor dye

at a rate that depends on the inverse sixth power of the interdye distance1,8. In each case,

the functional form of the FRET efficiency E versus distance (blue curve) is shown, as well

as a representation of the probability distribution of distances between donor and acceptor

dyes, P (red curve).
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concentrations (Fig. 3a). Therefore, we must be observing a decrease
in the average end-to-end distance, which indicates collapse to more
compact denatured structures at low denaturant concentration. The
change in the size of the unfolded protein is qualitatively consistent
with predictions of an approximate mean field theory for a weakly
hydrophobic sequence11. But the predicted continuous expansion of
the chain between 3 and 6 M GdmCl is not observed for CspTm
(Fig. 3b) and is also not observed in either ensemble FRET12 or
small-angle X-ray scattering experiments on unfolded cytochrome c
(ref. 13). The most obvious explanation is that above 3.0 M GdmCl
the unfolded polypeptide binding sites become saturated with
denaturant molecules.

Important dynamical information is contained in the widths of
the E app distributions, that is, the range of FRET efficiencies
observed for individual bursts of photons. Notably, the width of
the peak corresponding to the unfolded protein is the same to
within experimental error as that observed for (Pro)20 (Fig. 3c), in
spite of the large difference in flexibility between the two polypep-
tides. Because the end-to-end distance of polyproline is fixed, the
FRET efficiency is nearly the same for all molecules and so a sharp
distribution would be expected (Fig. 1). The width of the distri-
bution observed for (Pro)20 arises primarily from fluctuations in
E app owing to the small number of photons detected in each burst
(see below). By contrast, an unfolded protein has a broad distri-
bution of end-to-end distances (Fig. 1b), which makes the resulting
transfer efficiency distributions sensitive to the polypeptide
dynamics (Fig. 4). If the chain motion were infinitely slow relative
to the observation time t, then every molecule diffusing through the
focus would show a different FRET efficiency, resulting in an
extremely broad distribution (Fig. 4a). If, in the opposite limit,
the chain motion were sufficiently rapid for the unfolded protein

molecule to explore most of its accessible conformational space
during the observation time, then the same FRET efficiency would
result for every molecule (in the absence of noise and other effects
not related to distance, Fig. 4b).

The lack of any width in the E app distributions for the unfolded
protein in excess of that observed for (Pro)20 (Fig. 3c) indicates that
the end-to-end distance distribution for the unfolded protein does
not contribute to the distribution of transfer efficiencies. The
unfolded protein must therefore be reconfiguring fast relative to t.
The relaxation time of the FRETefficiency autocorrelation function,
tE, is given by tðj2

app 2 j2
0Þ=2j2

E for tE , t (ref. 14), where
j app

2 is the variance in Eapp for the unfolded protein, j0
2 is the

variance owing to noise and other effects not dependent on the
interdye distance, and jE

2 is the variance of the FRET efficiency
resulting from the underlying equilibrium distance distribution
(Fig. 4a). For a gaussian chain with a mean squared end-to-end
distance kr2l¼ R2

0, this relationship yields a polypeptide reconfigu-
ration time of t0 ¼ 9:8tðj2

app 2 j2
0Þ: Equating j0

2 with the variance
for (Pro)20 and recognizing that, to within experimental error, japp

cannot be more than 25% larger than j0 (Fig. 3c), the maximum
value for t0 consistent with our observations is t/40. Variation in the
time intervals used in the data collection indicates that the average t
is about 1 ms, so that the upper limit for t0 is about 25 ms.

Our interpretation of the Eapp distributions is different from
those given previously3,4, in which the additional width beyond that
predicted from shot noise (the variation in count rates about fixed

Figure 2 FRET trajectories and histograms. a, b, Donor (green) and acceptor (red)

channel time traces using 1-ms bins for labelled (Pro)6 (a) and (Pro)20 (b). Arrows indicate

photon bursts for which the sum of the counts in the two channels is greater than 25.

c–e, Histograms of measured FRET efficiencies (E app) at various GdmCl concentrations

for labelled (Pro)6 (c), (Pro)20 (d) and CspTm (e). The black curves are the best fits to the

data using lognormal and/or gaussian functions. The red dashed curves were calculated

from the b-distribution15 P E app

ÿ �
¼ E knAl

app 1 2 E app

ÿ �knDl
; where kn Al and kn Dl are the

average number of detected acceptor and donor photons in the significant bursts.

Figure 3 Dependence of the means and widths of the measured FRET efficiency (Eapp) on

the concentration of GdmCl. a, kE appl for (Pro)20. b, Single molecule mean values

(filled circles), ensemble FRET efficiencies (open circles), and associated two-state fit

(unbroken curve) for CspTm. The dotted curve is a third-order polynomial fit to the

unfolded protein data that was matched (dashed curve) to the ensemble data between 4

and 6 M GdmCl. c, Standard deviations (j) taken from the gaussian fits to the (Pro)20 data

(squares) and unfolded CspTm data (circles) in Fig. 2. Error bars indicate uncertainty in the

fits.
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means due to the discrete nature of the signals; ref. 15 and Fig. 2d, e)
was attributed to fluctuations of interdye distances on a timescale
comparable to or slower than the observation time. Although the
possible pitfalls were recognized3,4,15, Förster’s equation, E¼ 1=ð1þ
r6=R6

0Þ (ref. 1), was used in those studies to transform the Eapp

histograms for the folded and unfolded populations into histo-
grams of interdye distances, r. But Eapp widths very similar to those
of unfolded CI2 (ref. 4) were observed previously for double-
stranded DNA labelled with the same donor and acceptor dyes16.
Consequently, it is unlikely that there is a significant contribution to
the E app widths for CI2 from a distribution of distances, in
agreement with our interpretation of the widths measured for
unfolded CspTm. Therefore, the widths in excess of shot noise of
the Eapp distributions for CspTm and CI2 must be caused by other
sources, such as nonrandom photon emission intervals resulting
from triplet state formation or intensity variation across the focal
volume. Quantifying these contributions to the width of the Eapp

distributions will require detailed experimental and theoretical
investigation, but this issue does not affect any of the conclusions
reached below.

The finding of a reconfiguration time less than 25 ms can be
related directly to important theoretical considerations in protein
folding. Extensive studies suggest that essential features of the
dynamics of folding can be captured by describing the process as
diffusion on a low-dimensional free-energy surface. The free energy
as a function of global coordinates, such as the fraction of native
inter-residue interactions17–19, contains the depths and average
properties of the wells that correspond to thermodynamic states,
and the positions and heights of the free-energy barriers separating
these states which dictate the rates. Conventional equilibrium and
kinetic studies yield the free-energy differences between the ther-
modynamic states, and the rates connecting them, but not the
heights of the free-energy barriers. But Kramers theory, which
accurately reproduces the kinetics for simplified representations
of proteins20–22, shows how the free-energy barrier height can be
obtained if the polypeptide reconfiguration time is known. Kramers
equation23 for the folding time t f is

tf ¼
2pqmint0

qmax
exp

D

kBT

� �
< 2pt0 exp

D

kBT

� �
ð1Þ

where qmin and qmax are, respectively, the frequencies that charac-
terize the curvature of the (one-dimensional) free-energy surface in
the harmonic well of the unfolded state and at the barrier top, D is
the height of the folding free-energy barrier, kB is Boltzmann’s
constant, T is the absolute temperature, t0ð¼ kBT=mq2

minDÞ is the

reconfiguration time in the unfolded well, and D is the diffusion
constant for motion along the coordinate. Assuming the simplest
case in which qmin < qmax, as found in lattice20 and off-lattice
models21, we can determine D from tf and t0. A lower bound of 4kBT
is obtained from the upper limit on t0 of 25 ms (calculated above)
and the corresponding ensemble folding time of tf ¼ 12 ms at 20 8C
(at 0 M GdmCl) for the dye-labelled protein from stopped-flow
kinetic measurements (Supplementary Information). An upper
bound can be estimated from the reconfiguration time for a
gaussian chain, which is simply kr2l/3D, where kr2l < 22 nm2 is
the mean-squared end-to-end distance for the unfolded protein
that can be calculated from kEappl < 0.7 in the absence of de-
naturant (Fig. 3b and Supplementary Information), and D is the
relative end-to-end diffusion constant. Using D , 1:7 £

1026 cm2 s21 from a study of end-to-end contact rates in disordered
peptides24, t0 . 40 ns and D , 11kBT: We regard this value of D as
an upper limit because it has been determined for peptides contain-
ing about 30% glycines; it is expected to be smaller for CspTm
because of side chain interactions and the smaller fraction of
glycines (15%) in the protein sequence.

Using different and less rigorous arguments, estimates of the pre-
exponential factor in equation (1)—that is, 2pkBT=mqminqmaxD—
have ranged from 0.05 ms (ref. 25) to 1 ms (ref. 26) for a generic small
protein, as compared with 0.3 ms to 0.2 ms for the specific protein
studied here. The final result is that we have placed bounds on the
free-energy barrier to folding of 11kBT . D . 4kBT: Together with
the (viscosity-corrected) activation enthalpy for folding of 5kBT
(Supplementary Information), these bounds on the free-energy
barrier correspond to an activation entropy between 26kB and
þ1kB. The small activation entropy presumably results from can-
cellation of two large contributions upon forming the transition
state ensemble—the entropy loss from ordering the polypeptide and
the entropy gain from forming hydrophobic contacts.

The determination of bounds on a free-energy barrier height
provides a previously unavailable benchmark for theoretical free-
energy surfaces27. Although there are no detailed theoretical calcu-
lations for CspTm as yet, two other cold-shock proteins, CspA and
CspB, that have the same structure and folding rates as CspTm have
been studied. Using a simple statistical mechanical model that
considers only inter-residue interactions present in the folded
structure, free-energy barriers of 15kBT, 11kBT and 7kBT have been
calculated for CspB as the allowed number of native stretches of
polypeptide in the molecule was increased from one to two to three,
respectively28. Our experimental results are, not surprisingly27,
inconsistent with the single-sequence approximation but are con-
sistent with double- and triple-sequence approximations. In con-
trast, calculations of a free-energy surface derived from molecular
dynamics simulations that also only consider native interactions in
an a-carbon representation of CspA show no free-energy barriers
under folding conditions29. In addition, the radius of gyration of the
simulated unfolded CspA protein at the folding temperature is only
1.4 nm (where a barrier exists but is only 1.5kBT), compared with
2.3 nm calculated from kEappl for unfolded CspTm at the midpoint
concentration of denaturant. The free-energy surface for CspA
calculated from all-atom molecular dynamics simulations at room
temperature also predicts the absence of a barrier29, whereas the
observation of exponential folding kinetics30 for CspA suggests a
free-energy barrier crossing, as found for CspTm.
Note added in proof: C. L. Brooks (ref. 29) has communicated to us
that the calculated free energy surface for an a-carbon represen-
tation of CspB is more consistent with our experimental results,
showing a barrier under folding conditions of about 1k BT and a
radius of gyration of 2.0 nm for the unfolded state at the folding
temperature. A

Figure 4 Two limiting cases for polypeptide dynamics in experiments on freely diffusing

molecules. a, If the end-to-end distance of the protein does not change during the

observation period in the illuminated volume (blue), then the distribution of transfer

efficiencies reflects the equilibrium end-to-end distance distribution of the molecules and

consequently results in a very broad probability distribution of FRET efficiencies, shown

here for a gaussian chain (red curve, see Supplementary Information). b, If the molecule

reconfigures fast relative to the time it takes to diffuse through the illuminated volume,

then the FRET efficiency averages completely and (in the absence of shot noise and other

broadening effects) is the same for every molecule.
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Methods
Synthesis and labelling of CspTm and polyproline
Cysteine residues were introduced at the N terminus after Met 1 and at the C terminus by
site-directed mutagenesis to provide functional groups for the specific attachment of the
dyes. To exclude potential complications owing to proline cis–trans isomerization in
CspTm, Pro 57 was replaced with glycine. We carried out expression and purification as
described31. Dye labelling was carried out by procedures described by the manufacturer
(Molecular Probes). Alexa Fluor 488 maleimide was reacted with the protein, and singly
labelled protein was separated from unlabelled and doubly labelled protein by ion
exchange chromatography (MonoQ HR 5/5, Amersham Pharmacia). The fractions
containing singly labelled CspTm, as confirmed by electrospray ionization mass
spectroscopy, were labelled with Alexa Fluor 594 maleimide. Doubly labelled protein was
again separated from singly labelled protein by ion exchange chromatography.

We synthesized polyproline peptides containing 6 and 20 prolines using standard
FastMoc chemistry, and incorporated a C-terminal cysteine and an N-terminal glycine as
reactive groups for dye labelling. After cleavage and HPLC purification, fractions
containing the pure peptide, as confirmed by mass spectroscopy, were labelled with Alexa
Fluor 488 maleimide. Singly labelled peptide was purified by size-exclusion
chromatography (Amersham Pharmacia) and labelled with Alexa Fluor 594 succinimidyl
ester. Doubly labelled peptide was again purified by size-exclusion chromatography.

For single-molecule experiments, samples of labelled protein or peptide were diluted to
a concentration of 75 pM or 38 pM, respectively, in 50 mM sodium phosphate (pH 7) plus
0.01% Tween 20 to prevent surface adhesion of the polypeptides. We carried out ensemble
experiments on a spectrofluorometer (Spex Fluorolog 2) under identical buffer conditions
at protein concentrations of 10 nM. Sequanal Grade GdmCl (Pierce) was used for
denaturation experiments. Steady-state polarization measurements of the attached dyes
resulted in anisotropies between 0.06 and 0.09 for all samples, indicating sufficient
rotational averaging during the fluorescence lifetime of the dyes to justify using k2 ¼ 2=3
(ref. 4). We calculated1 a value of R 0 ¼ 5.4 nm from the donor emission and acceptor
absorption spectra of singly labelled CspTm, and a donor fluorescence quantum yield of
0.5, which was measured relative to the manufacturer’s quantum yield for the free dye. The
raw data shown in Fig. 2 were corrected for the refractive index change with increasing
GdmCl concentration, according to the n24 dependence of Förster theory1, to determine
the values in Fig. 3.

Confocal fluorescence microscope
Observations of single-molecule fluorescence were made using a custom confocal optical
system with a 1.4 NA £100 microscope objective (Nikon CFN Plan Apo 85025) and the
488-nm line of an argon ion laser (Lexel 95-5) as an excitation source. Sample fluorescence
passed through a 100-mm diameter pinhole in the image plane of the objective. The
fluorescence was separated into donor and acceptor components using a dichroic mirror
(Omega 560DCLP), and two final filters (Omega 525AF45 for the donor and Omega
600ALP for the acceptor). Each component was focused onto a photon-counting
avalanche photodiode (PerkinElmer Optoelectronics SPCM-AQR-15), and output pulses
were collected in intervals of 1 ms. To minimize saturation effects owing to excitation of
the donor dye before the acceptor dye had returned to the ground state, we reduced the
laser intensity to an acceptable level on the basis of power dependence experiments.

Data reduction
Background (usually between 0.5 and 2 counts), obtained in each experiment from
independent measurements of solutions without labelled samples, was subtracted from
the counts in each 1-ms interval. The signal was considered significant if the sum of counts
in the donor and acceptor channels was greater than 25, thereby ensuring that no more
than one burst per thousand was due to background. We combined significant signals
from adjacent intervals, because the probability that they arose from different molecules
was negligible. Finally, the sums of donor counts (nD) and acceptor counts (nA) for each
burst were used to compute an apparent FRET efficiency using the relation Eapp ¼

nA=ðnA þ gnDÞ;where g¼ ðfAhAÞ=ðfDhDÞ is a factor that corrects for the difference in the
fluorescence quantum yields of the acceptor (fA) and the donor (fD) (in the absence of
acceptor), as well as differences in the detection efficiencies of the donor and acceptor
channels of the instrument, hD and hA, respectively. Comparison of the single-molecule
instrument with a detector-calibrated fluorometer was made using solutions of the
protein singly labelled with donor and acceptor dyes at concentrations that resulted in
equal optical densities at 488 nm (100 nM and 2.2 mM, respectively). These experiments
showed that at the laser intensities used in the single-molecule measurements g is close to
1, the value we therefore used in our analysis. Slight deviations of g from 1 were observed
with increasing radiant flux.
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2),
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