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Two separate lines of investigation have recently converged to produce a highly detailed picture of the 
behavior of helium atoms physisorbed on graphite basal plane surfaces. Atomic beam scattering experiments 
on single crystals have yielded accurate values for the binding energies of several· states for both 4He and 'He, 

as well as matrix elements of the largest Fourier component of the periodic part of the interaction potential. 

From these data, a complete three-dimensional description of the potential has been constructed, and the 
energy band structure of a helium atom moving in this potential calculated. At the same time, accurate 

thermodynamic measurements were made on submonolayer helium films adsorbed on Grafoil .. The binding 
energy and low-coverage specific heat deduced from these measurements are in excellent agreement with 

those calculated from the band structures. 
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I. INTRODUCTION 

As a result of a series of recent developments, the 
interaction between a helium atom and a graphite sur
face has become one of the most accurately known prop
erties in surface physics. These developments have in
cluded several very different kinds of experiments,' as 
well as a greatly improved theoretical description of the 
system. The purpose of this article is to review these 
developments and the picture of the helium-graphite 
system they have given us. 

The basic m(.)tivation for interest in thi$ problem .de
rived from the discovery (Thorny and Duval, 1969, 

1970; Bretz and Dash, 1971) that exfoliated graphite 
presents a uniquely homogeneous substrate for studies 
of physically absorbed monolayer films. In particular, 

films of =i!e and 4He absorbed on a commerCial product 
called Grafoil1 were found to exhibit a rich variety of 
phases, transitions, and other phenomena (Bretz e t al., 

1973; Elgin and Goodstein, 1974; Dash and Schick, 
1979). It became a matter of fundamental theoretical 
importance to sort out which of these phenomena can be 
ascribed to the behavior of two.;.dimensional (2D) mat
ter in general, and which are a consequence of the spe
cific helium-graphite interaction: 

In 1978, Boato, Cantini, and Tatarek reported mea
surements of bound-state energies for 4He atoms in the 

1union Carbide Corp. 
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graphite surface potential. These had been deduced 
from bound-state resonances in atomic beam elastic 

. scattering experiments, using techniques we shall dis
cuss in Sec. II below. They reported that the ground
state energy of the system agreed within a few percent 
with the zero-temperature binding energy for 4He on 
Grafoil that had been measured thermodynamically by 
Elgin and Goodstein (1974). 

Using the data of Boato et al., Carlos and Cole (1978) 
deduced the form of the helium-graphite potential as a 
function of the distance of the atom from the surface, 
and used the result to predict bound-state energies for 

=i!e on graphite. Their prediction for the ground-state 
energy was confirmed in thermodynamic measurements 
(Elgin, Greif, and Goodstein, 1978) of the T=O binding 
energy of 3He on Grafoil. More precise helium-graph
ite scattering measurements (Derry et al., 1979) and 
band-structure calculations (Carlos and Cole, 1980b) 
sharpened the predictions, and brought about even bet
ter agreement with the thermodynamic results for both 
3He and 4He, The present status 9f the ground-state 
energies is shown in Table I. 

As we shall see in Sec. II, the atomic beam scatter
ing experiments ,yielded sufficiently detailed informa
tion to permit evaluation of a quantitative helium
graphite potential, not only depending on distance from 

the surface, but also varying periodically in directions 
paralle-l to the basal plane surface. As a result of 
these periodic lateral variations, ahelium atom on a 
graphite surface has an energy spectrum consisting of 

TABLE I. Ground-state energies of He isotopes on basal plane 
graphite (in meV). 

Technique 

Scattering a 
Thermodynamic b 

-12.22 ± 0.13 

-12.27 t 0.17 
-11.73 ±0.09 
-11.72 ±0.17 

aData of Derry et al. (1979), as modified by band-structure cal

culations computed by Carlos and Cole (1980b). 
b From Elgin and Goodstein (1974) and Elgin, Greif, and Good
stein (1978); the 4He result includes a 2D condensation energy 
(0,05 meV) calculated by Novaco and Campbell (1975). 
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2D bands similar to the three-dimensional (3D) energy 
bands of electrons in metals. The existence of these 
bands had first been predicted by Dash (1968), and an 
early attempt to calculate them was made by Hagen, 
Novaco, and Milford (1972). Their prediction was that 
the bands are nearly free-particle~like, with only nar
row gaps, corresponding to an input potential which 
varies relatively little across the surface. This was 
consistent with specific heat data at low coverage 
(Bretz et al., 1973), which approached the 2D high

temperature limit C =NkB for T"" 4 K (Dash and Schick, 
1979). Very recently, however, the scattering data of 
Boato et al. (1979) and of Derry et al:-(1979) have im
plied that the potential is more corrugated than was pre
viously believed, due to the anisotropic covalent bonding 
of graphite (Carlos and Cole, 1980a, 1980b). The cor'
respondingly larger band-structure effects are mani
fested in the specific heat as a deviation from unity in 

· C/NkB at higher T (Si~va-Moreira, Codona, and Good
stein, 1980). 

In Sec. II of this paper, the atomic beam scattering 
experiments and their interpretation are discussed, · 

together with the determination of the helium-graphite 
potential and the consequent band structure. In Sec. III 
we describe the thermodynamic procedures which have 
yielded measurements of the binding energy for 3He and 
4He and confirmed the existence of the bands. The sit
uation is summarized and the significance of these de
velopments for other adsorbates is discussed in Sec.-IV. 

II. ATOMIC BEAM MEASUREMENTS 

A. Diffraction and selective adsorption 

In 1929 Estermann and Stern observed the diffraction 
of a beam of He atoms by a LiF crystal (Estermann 

and Stern, 1930). This was an important fundamental 
experiment,' since it verified the idea, advanced only 
four years earlier by de Broglie, that beams of heavy 
particles possess wave properties, 

Current interest in atom diffraction stems from its 
capability as a surface probe for structural information 
on the atomic scale. Appropriate wavelengths, .of the 
order of an angstrom, are possessed by low-mass 
atoms with energies of order 10 meV, as well as by 
electrons with energies of order 100 eV. Such electrons 
are only slightly penetrating into solids and are widely 
used for surface analysis by the technique called LEED 
(Low-Energy Electron Diffraction; see, for example, 

Pendry, 1974). Since the atoms are essentially non-
penetrating, they should, in principle, be capable of 

even higher surface sensitivity. Attempts to develop 
this capability are now underway in several laborator
ies around the world. Recent reviewsare given by 
Goodman (1977), Cole and Frankl (1978), and Frankl 
(1980). 

Two kinematic relations governing elastic scattering 
of particles from a 2D periodic array of scattering cen
ters (viz. a crystal surface) are the Laue equations 

·K1 =K1 +G, 

l'f 2 
E(K1) +E.= 2m k;. 

(2.1) 

(2.2) 

Here k; is the wave vector of the incident beam and K 1 
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its projection parallel to the surface. K1 is the corre
sponding final-state 2D wave vector and G one of the 
reciprocal lattice vectors of the surface mesh. Equa
tion (2.1) states the familiar theorem that, in a periodic 
structure, wave vectors that are congruent modulo re
ciprocal-lattice vectors are equivalent. Equation (2.2) 

is simply a statement of energy conservation, E(K1) and 
E. being the energies associated with the parallel and 
perpendicular parts of the motion in the final state, al

though in some cases this separation is quite artificial. 
Two classes of final states may satisfy these equa

tions. 

1. Free particle states. For these the separation is 
valid and 

(2.3) 

Thus solutions exist for all G-vectors leading to posi
tive,E •. i.e.,· for all G such that 

(K1 +G)2 -"" k~. (2.4) 

Graphically, these are all the G's lying within a. circle 
of radius k 1 centered at -K1 , which is the two-dimen
sional counterpart of the well known "Ewald sphere" 
(see, for example, Zachariasen, 1945). They designate 
the allowed diffraction beams, also called "open chan
nels." 

2. Bound states, i.e., states in which the particle is 
held close to the surface by forces of attraction. For 
such-states, Ez is negative. Hence Eq. (2.2) can be 
satisfied only if (K1 + G )2 > k~. In other words, the G 's 
must lie outside the Ewald sphere. All the incident en
ergy plus the binding energy is transformed into E(K1 ), 

the energy of motion parallel to the surface. 
In the lowest-order approximation, the latter is 

treated as free-particle motion in two dimensions, and 
only then is the separation really valid for bound states. 
Thus Eq. (2.3) still holds and Eq. (2.2) becomes 

This equation describes a circle in the G plane centered 
at -k1 , or alternatively, a set of circles in the K 1 plane, 
centered at -G. Since the bound-state energies E. are 
discrete, there should be a discrete set of such circles 
for each G vector. If they can be identified, their radii 

yield the corresponding values of JE.J by Eq. (2.5). 
Resonant transitions into. such bound states are ob

served as sharp "anomalies" in the intensities of vari

ous elastic beams as functions of the incidence condi-. 
tions (energy or angles). Such anomalies in the form of 
localized minima were seen in some of the earliest ex
periments (Frisch and Stern, 1933), and their identifi
cation was proposed by Lennard-Jones and Devonshire 
(1936, 1937), who gave them the name" selective adsorp
tion.'' Only in the last" few years, however, has a quan
titative understanding of the phenomenon begun to 
emerge. The earlier elastic theories all predicted 
maxima in the intensity, of the (0,0) beam, whereas the 
earlier experiments gave only minima. Starting with 
the work of Chow and Thompson in 1976, however, it 
has become clear that elastic scattering can lead to 
minima in some cases, maxima in others, and possibly 
"mini-max" patterns in yet others. In the case of heli-
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urn scattering from very rigid lattices such as ionic 

crystals, the agreement of exp~riment with these scat
tering theories is very good (Frankl et al., 1978;Harvie 
and Weare, 1978; Garcia, Celli, and Goodman, 1979). 

An important reslllt of the elastic scattering theory 
was the prediction of slight deviations from the circles 
of Eq. (2.5). These circles are, as stated above, based 
on the assumption of free-particle motion (i.e., plane
wave wave functions) in two dimensions. In actuality, 

the adsorbed atoms move in a two-dimensional period
ic potential. Thus their wave functions are Bloch waves 
(modulated plane waves), and their allowed energies lie 
in bands separated by gaps. The energy gaps occur at 
Brillouin-zone boundaries, which correspond to degen
eracies of the free-particle states, i.e., intersections 

of the circles. 
The effect can be treated by simple perturbation the

ory in most cases. If only two states are involved, the 
wave function is written as a linear superposition of 
the two zero-order (free-particle) wave functions. As 
will be discussed in more detail later, first-order de
generate perturbation theory then leads to two K values 
which deviate from the free-particle circles by amounts 

related to the matrix element 

V:!i!'~· = Lc <P!(z)Va-a•(z)<Pn•(z)dz, (2.6) 

where V 0 (z) is a two-dimensional Fourier component of 
the periodic potential, and the <Pn(z) are eigenfunctions 
of a one-dimensional Schrodinger equation, as dis

cussed below. In regions remote from the intersections 
the deviations inK are negligible. They become appre
ciable near the intersections, which are then split into 
two distinct features, the extent of the splitting being a 
measure of the magnitude of the corresponding matrix 

element. One may recognize here a two-dimensional 
analog of the nearly-free-electron theory of solids. In 
addition, the surface problem is enriched by the pres
ence of several vibrational states n, so that another 
kind of degeneracy (n ¢n ').can occur. 

With this theoretical background, the experimental 
procedure is as follows. 

1. A series of survey scans are made, varying either 
the polar or the azimuthal angle of incidence, to locate 
the main features in the specular intensity, and roughly 
to ascertain their loci in the K plane. An example for 
4He graphite is shown in Fig. 1. 

2. Working-in regions as far as possible from inter
sections, careful measurements are made to locate the 
features as precisely as possible. This requires abso

lute measurement of the angles. The azimuthal angle is 
no problem, as it can be referenced to an easily identi
fied symmetry direction. The polar angle is, however, 
very difficult to measure absolutely, owing to the 
faceted nature of the surfaces. This is especially true 
of the natural single-crystal graphite flakes needed for 
these studies. A rather elaborate extrapolation proce
dure was used to ascertain the true zero of the polar 

angle in this cas~ (Derry et al., 1979). 
3. The measured e, <P, and k values are inserted in 

Eq. (2.5) to determine the discrete eigenvalues E of the 
energy E • of perpendicular motion. The G value to be 
used ih each case is determined from the fit of a close-
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FIG. 1. Specular intensity as function of polar angle. Points 
are measured values. Lines drawn in only as an aid to the 
eye. Reprinted from Derry et al. (1980). 

ly spaced cluster.of measured points to a circle. Ex
amples of such determinations are shown in Fig. 2. The 
results for 3He and 4He on graphite are giv~n in Table 

II. 
4. Turning next to the splittings, sets of closely 

spaced scans are taken through the regions where sim
ple (i.e., twofold) degeneracies occur. Then, n ', G, G' 

values are determine.d from the foregoing results and 
thus values of I {n 1 V a-a jn ')I are obtained. In the case 
of 4He graphite, the. most extensive studies of such 
splittings have been made by the Genoa group (Boato 

et al., 1979). Their results are shown in Fig. 3 and 
listed in Table III. Many of the latter values have been 
verified under quite different conditions of incidence by 
the Pennsylvania State group (Derry et al., 1980). 

The result of this work is a set of zero-order energy 
levels and matrix elements of Fourier components of 
the periodic part of the potential. The use of this in

formation in calculating the properties of-absorbed He 
atoms is described in the next section. 

B. Determination of the potential energy 

1. Physical origin of the interaction 

_ The ingredients of the helium-graphite interaction are 
qualitatively similar to those of interatomic potentials 
(Margenau and Kestner, 1969). At a large separation 

FIG. 2. K -plane loci of specular. intensity minima for 4He on 
graphite at 17.3 meV incident energy. Lines are circles cen
tered at various reciprocal lattice points. Reprinted from 
Derry et al. (1979). · 



202 Milton W. Cole, D. R. Frankl, and David L. Goodstein: Probing the helium-graphite interaction 

TABLE II. Energy eigenvalues En for helium graphite (meV). a 

n 4He 3He 

0 -12.06 -11.62 
1 -6.36 -5.38 

2 -2.85 -i.78 

3 -1.01 

4 -0.17 

aoerry et al. (1979). Uncertainties are about ±0.1 meV, 

z, V(r) is due to attractive van der Waals forces. For 
z greater than a few lattice constants, but not so large 
("" 100 A) that retardation .is important, its form 

V(r)- -C3 z'" 3 (2.7) 

can be understood in terms of the interaction between 
the fluctuating -dipole moment of the atom and its image 

in the substrate. In fact, the expression (MacLachlan, 
1964) 

C3= 4 ~ J(:~!~~~Da(i~)dr» (2.8) 

has the same dependence on dielectric function 1:: ~s that 
for the image of a point charge outside the solid. For 
the case of graphite, 1:: is taken to be the geometric 
mean of the two distinct polarizabilities corresponding 
to the principal crystallographic directions (Bruch and 

Watanabe, 1977). Since f: and the He polarizability a 
are known experimentally, Eq. (2. 7) can be evaluated, 
yielding C 3 <>< 186 meV A 3 (Vidali, Cole,' and Schwartz, 

1979). Experimental evidence for this value is dis,.. 
cussed in Sec. IU. 

For closer approach, Eq. (2.7) fails because of the 
increased role of higher multipole dispersion forces 
and the commencement of repulsion due to charge over
lap. The· latter region has been investigated by Free-

Kxlk 

FIG. 3. Detailed behavior of K -plane loci of specUlar intensity 
minima in the vicinity of intersections. The incident wave
vector magnitude is k =6.82 A.-1 (E =24.4 meV) for the insert 
and 6.49 A - 1 (E =22.0 meV) for the main part of the figure. 
Reprinted from Boato et al. (1979). 
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TABLE III. The absolute value of experimental matrix ele

ments (m IVtoln) for 4He (meV).a 

n""m 
0 1 2 3 

0 0,28 ± 0,01 

1 . 0.195 ± 0.015 0,185 ±0,02 

2 0.125 ± 0.02 0,16 ±0.015 0.12 ±0,015 

3 0.09 ± 0.015 0.10 ±0.01 0.11 ±0.015 0.08 ±0.025 

4 0,03 ± 0,02 

aBoato et al. (1979). 

man (1975) using the Gordon-Kim version of the density 
functional method (Gordon and Kim, 1972). As noted by 

Garcia et al. (1980), the simple-procedure of adding Eq. 
(2.7) to Freeman-'s potential gives a reasonably accurate 
representation of V(r); the potential is of approximately 
the correct depth but is not sufficiently corrugated to 
account for the matrix elements and diffraction intensi
ties determined by Boato et al. The approximation of 
simply adding the dispersion term is, in any case, not 
well justified, although it is fairly common (Landman 
and Kleiman, 1977; Zaremba and Kohn, 1976, 1977; 

van Himbergen and Silbey, 1977). 

2. Evaluating the interaction potential 

An alternative and more conventional approach to de
riving the potential assumes that it can be written as a 
sum of He-C pair interactions: 

(2.9) 

where the sum is over a half-space of C atoms at posi
tions R1• This is plausible in the absence of screening 
or other many-body .effects (Bennett, 1974). For exam
ple, the dispersion contribution to the interatomic po
tential can be written as U(Jd)- -C 6 x- 6 , where 

x= jr-R1 j. For large z, the sum in Eq. (2.9) can,be 
replaced by an integral, yielding Eq. (2. 7) with 

C 3 =trnC 6 /6, where n is the number density of atoms in 
the solid. This agrees with Eq. (2.8) if the Clausius
Mossotti relation is valid and if na solid« 1, which is the 
condition for negligible screening. For graphite, 

nasolld"" 0.3, indicating that corrections to Eq. (2.9) may 
be important (Cole, Garrison, and Steele, 1980). Op
timistically, one might simply assume the validity of 
Eq. (2.9), recognizing that U·would then be an "effective 
pair potential." Most efforts to treat this problem have 
in fact utilized this relation, employing a model pair 
potential with parameters estimated from "combining 
rules" (Poshkus, 1965; Steele, 1974). This approach, 
for example, takes the Lennard-Jones parameter a to 
be 2.98 A, which is the sum of the He radius and one
half the graphite layer spacing. Such assumptions have 
now been tested by the recent scattering experiments, 
leading to revisions of our qualitative understanding of 
V(r). 

The first helium-graphite bound-state resonance 
eigenvalues (Boato et al., 1978) were soon found to be 
inconsistent with the conventional pair interaction pa
rameters; for example, a=2.74 A is an optimal choice 
(Carlos and Cole, 1978) rather than 2.98 A. Before. long 
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it became evident that a more fundamental assumption 
is invalid. Specifically U(x) had traditionally been as
sinned to depend on only the magnitude of x. This is 
naive, as had been appreciated by Bonino et al. (1975), 
because the anisotropic bonding and polarizability of the 
C atoms lead to a rather anisotropic pair interaction. 
Carlos and Cole (l980a) showed that the scattering data 
(bound-state eigenvalues of Derry et al., 1979, matrix 
elements of Boato et al., 1979) are consistent only with 
pair potentials which incorporate this anisotropy. In 
particular, since the polarizability perpendicular to the 

basal plan,e is small comparec;l to the surface-parallel 
value, the attractive part of the pair interaction has its 

. minimum magnitude for a given ·jxJ when the He atom 
. is positioned directly above a C atom. By evaluating 
this anisotropic variation (nearly a factor of two as the 
angle varies) from the graphite dielectric properties 
they showed that the net potential V(r) is considerably 
less smooth than had previously been believed; the site
to-site potential energy barrier (3.6 meV) is more than 
a factor of 2 larger. Confirmation of this qualitative 
conclusion·aomes from a band-structure calculation 
that does not assume pairwise summation and from 
·thermodynamic data, both of which are described below. 

Figure 4 displays the potential energy obtained with 
the anisotropic 6-12 pair potential by Carlos and Cole 
(1980a). The probability density ¢~ shown2 for 4He cor
responds to (z)=2.92 A and .a.zrms=0.25 A. Some sup
port for the former value has been obtained from neu
tron diffraction data by Passell and co-,workers 
(Carneiro et al., 1980). They determined the enhance
ment of the graphite [002] Bragg peak due to an ab
sorbed He monolayer: The result (z) =(2.85 ± 0.05) A is 
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FIG. 4. The full curves are potential-energy of an He atom 
above the graphite symmetry points shown in the lower right 
corner. The dashed curve is the probability density .P~(z) for 
a 4He atom in the laterally averaged potential Vo(z). After 
Carlos and Cole (1980a). The arrows at the right designate the 

experimental bound-state resonance energies for 3He and 4He 
atoms, after Derry et al. (1979). 

2A fully three-dimensional calculation (Cole and Toigo, 1980) 
yields .(z) = 2.89 A.. 
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in favorable agreement with the prediction. 3 

In closing this discussion of potentials, we describe 
for completeness a series of calculations of the scatter
ing intensity per se. The first efforts (Chow, 1979; 
Chow and Thompson, 1979) are of only qualitative value 
because they employed the less accurate isotropic pair 
potentials. More recently several groups (Garcia et al. 

(1980); Celli, Garcia, and Hutchison (1979); and 
Hutchison and Celli (1980)] have used model potentials 
adjusted to fit the bound-state resonance data. For 
computational facility, these make the fairly crude as
sumption that a corrugated hard wall represents the 
repulsive part of V(r). Nevertheless, they are able to 
succeed moderately well in characterizing the extant 
scattering intensity data, including resonance line 
shapes. 

C. Band-structure calculation 

An extremely useful aspect of the scattering experi
ment is that the data can be used quite directly to de
termine the dispersion relation E(K) for He atoms on 
graphite (Carlos and Cole, 1980b). The method is for
mally analogous to that applied to electron bands in 
solids, but here we have more experimental input avail:. 
able than is customary in that problem. 

The basis states for this calculation are eigenfunc
tions ¢.(z) of the Schrodinger equation using the lateral
ly averaged potential: 

V0(z)=A -t f d2R V(R,z). (2.10) 

These eigenfunctions take the form, for a given K, 

Jn,G) == ¢,.(z) expf i(K +G) • R]. (2.11) 

The solution for the full potential is a linear combina
tion of such functions, the mixing arising from the 
periodic part of the potential. Thus 

l/J(K)= L o.;ajn,G); 
n,G 

(2.12) 

and the Schrodinger equation becomes 

O=[E.+1i2(K+G)2/2m -E]o., 0 + L (njVa-a'Jm)a,,a' . 
m,G' 

(2.13) 

This can be solved by matrix diagonalization. The E" 

values and off-diagonal matrix elements are taken from 
experimental values of Derry et al. (1979) and Boato 
et al. (1979). In general, it is necessary to supplement 
these by values which have not been measured. These 
can be computed from the ansiotropic 6-12 potentiar 
described above. Their inclusion, however, has only a 
very small effect on the low-energy region of principal 
interest. The computed dispersion relation, shown in 
Fig. 5, reveals considerable departure from free-par
ticle character. For example, the direct gap at the Q 

point of the Brillouin zone is 0. 7 m~V wide for 4He. 

3rt is, in contrast, not consistent with the best fitting Yuka
wa-6 .potential, which has (z) =_2.45 A (Carlos and Cole, 
1980a), or with the value {z) = 3.25 A obtained with the sum
med 6-12 potential with the parameters used prior to the scat
tering experiments (Noyaco, 1976). 
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FIG. 5. Band structure of 4He on graphite (full curve) for 
wave vector K along sym~etry directions in the 2D Brillouin 
zone, shown in the insert. The dashed curve is the corre
sponding free-particle energy. After Carlos and Cole (1980b). 

This amounts to about 70% of the lowest bandwidth, and 
is more than 50% larger than that calculated with an 
isotropic pair interaction (Hagen, Novaco, and MUford, 
1972). The ~ownward shift of the ground-state energy 
due to band-structure effects is E 0 -E r = 0.16 meV 
(0.11 meV for 3He). While quite small on the scale of 
the energies themselves, these shifts have been con

firmed by thermodynamic measurements summarized 
in Table I and described below. The smaller band
structure effects for 3He arise from the larger exten
sion of the wave function outward from the corrugated 
region of the potential. 

The density of states per unit area 

N(E)~A- 1 L1ifE-E"(K)], (2.14) 
v.K 

where v is the band index, has been computed from the 
band structure. Figure 6 compares it with the free-
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FIG. 6. Density of states of 4He on graphite (full curve) com
puted from the band structure. Energies are reckoned from 
the ground-state energy. The dashed curve is the correspond
ing free-particle density of states N 0(E) of Eq. (2.16). 
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particle density of states 

N0(E) =(m/27T1i2) ~e(E -En), (2.15) 
n 

which would result in the hypothetical case of a smooth 
surface (vanishing matx;ix elements). This function has 
steps at each En due to the excited states of vibration 
perpendicular to the surface. The most dramatic dif
ference, apart from computational "noise," is the gap 
evident in N(E). A thermal distribution of particles 

among these states at temperature T will have a total 
energy reflecting this difference. A resulting dip in the 
the classical 2D free particle value C =Nk8 has been 

confirmed in thermodynamic. measurements described 
below. 

Also evident in the density of states is a mass en

hancement: m*/m=1.06 for 4He and 1.03 for 3He. 
There exists a possibility that this enhancement helps 
to explain the ·discrepancy between the low-coverage 

specific heat and the values calculated from a virial ex
pansion (Siddon and Schick, 1974). Other factors which 
must be incorporated in such a comparison are the 
averaging of the interaction over motion perpendicular 
to the surface, ancl modification of the interparticle in
teraction by the substrate. While there is strong evi

dence for such effects, the predicted mass enhancement 
has not yet been confirmed quantitatively (Vidali and 

Cole, 1980). 

Ill. THERMODYNAMIC MEASUREMENTS 

A. Binding e~;~ergy 

Thermodynamics is a discipline which gives relation
ships between changes in various properties of a sam
ple as it goes from one state of thermal equilibrium to 

another. If the sample is a film adsorbed on a solid 
substrate, the equilibrium properties that can be mea
sured are the temperature T and the pressure P of the 
vapor in equilibrium with the film. In addition; it is 

possible to know the number of adsorbate atoms ad
mitted to the system, and, from the volumes and temp
erature of all parts of the system, to deduce the amount 
adsorbed, N. One can also measure the amount of heat 
required to pass from one pressure and temperature to 

another. From such measurements it has been possi
ble, in the case of helium adsorbed on Grafoil, to find 
highly accurate values for the bindin·g energy of a sin

gle atom to the graphite basal plane at T = 0 K, and to 
demonstrate the existence of energy bands. The pur
pose of this section is to explain how those results 
were obtained. 

The thermodynamics of physical adsorption has pro
duced a vast literature, both experimental and· theoret
ical (for reviews, see Young and Crowell, 1962, or 
Steele, 1974). Largely the domain of physical chem
ists, adsorption techniques were traditionally directed 
at obtaining two principal parameters: the surface area 
of a finely divided substrate, and the heat of adsorption 
for a given adsorbate-substrate system. The surface 
area may be estimated from a particularly simple kind 
of measurement, the adsorption isotherm. Heats of · 
adsorption may be measured calorimetrically, or may 
be deduced from neighboring adsorption isotherms, 
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much as the heat of vaporization of a liquid may be de
duced from its vapor pressure curve using the C lausi
us-Clapeyron equation. Heats of adsorption are, of 
course, related to the binding energy of adsorbate to 
substrate, but the relationship is complicated by ther

mal effects, and by the fact that most substrates are 
very far from being homogeneous, or even from being 
reproducible from one laboratory to another. Never
theless, attempts have been made by traditional meth
ods to estimate the helium-graphite binding energy. 
Values of (13.3± 0.8) and (11.2± 2) meV were found by 
Grayson and Aston (1957) and Lerner and Daunt (1973), 

respectively, for 4He. 

When the special properties of Grafoil as a substrate 
were first found (Bretz and Dash, 1971), the quantita
tively uncertain situation improved dramatically in a 
number of ways. For one thing it was found that mea
surements were highly reproducible in different labor
atories (Bretz et al., i973; Elgin and Goodstein, 1974). 

For another, a sharp heat capacity peak observed at 
roughly 3 K and 0.6 layers (in both 3 He and 4He) turned 
out to be due to a lattice-gas ordering transition to a 
phase having one helium atom occupying every third 

carbon hexagon in the plane (Bretz et al., 1973). Since 
the lattice constant of graphite is well known, the or

dering peak at the critical coverage N • affords a means 
of making a precise evaluation of the surface area of 
any Grafoil sample. Finally, although the adsorbing 

surface is not perfectly homogeneous, the number of 
inhomogeneities· is sufficiently small that it seems rea
sonable to treat them as a perturbation. The behavior 
of a film on an ideal graphite surface could then be de
duced by a kind of iterative thermodynamic modeling 
procedure (Elgin and Goodstein, 1974). There is one 

other advantage, not unique to this system but impor
tant for the story we are telling: At very low temper

ature, where there is no desorption, the heat capacity 
of the graphite substrate becomes so small that the 
contribution of even a small fraction of a monolayer of 
helium can be measured. 

The result of all of these advantages has been to 
prompt extensive thermodynamic investigations of 

submonolayer 3 He and 4He films adsorbed on Grafoil by 
workers at the University of Washington and at Caltech. 
The Washington data emphasize low-T heat capacities 
while the Calt_ech contributions have been vapor pres
sure data at higher T and N, and combined vapor pres
sure and heat capacities in a region that overlaps the 
Washington data. Recently, some thermodynamic data 
have been presented for helium adsorbed on other 

graphitized substrates (Bretz, 1977), but in no case 
other than Grafoil do there exist the extensive and 
complete data that make possible the kind of analysis 
to which we are directing attention. 

The phases and· phase transitions which have excited 
so much interest in these systems are indicated in Fig. 
7, in the form of a specific-heat contour map for 4 He 
on Grafoil. The phenomena which seem particularly 
well established include a solid phase at high N and 
low T, bounded by a melting transition which leads to a 
fluid phase. The fluid phase is, at !ower densities, a 
nearly ideal 2D gas with quantum virial corrections 
(Siddon and Schick, 1974; Elgin and Goodstein, 1974). 
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T (K) 

FIG. 7, Contours of constant specific heat for 4He adsorbed on 
Grafoil, in the density-temperature plane. Heavier lines re
present integer values of C/Nk B· The upper left region corre
sponds to an incommensurate solid. For a- 1 <><6,2 nm- 2 and 
T s 3 K, the atoms form a ,J3 by ,(3 phase in registry with 
the hexagonal substrate.· The second layer starts forming at 
approximately 11 atomsnm- 2, Reprinted from Elgin and 
Goodstein (1974). 

The heat capacity is dominated by the effects of in
homogeneity at very low coverage, and by excitation in
to higher vibrational states perpendicular to the surface 
at high temperatures. As noted above, there is also a 
lattice-gas ordering transition. 

It is possible, given data of the kind. available for 3H e 
and 4 He on Grafoil, to construct complete thermodyna

mic descriptions of these systems. Such a description 
consists of a tabulation of an appropriate free energy 
of the system in terms of its proper variables. Any 
thermodynamic quantity of interest, e.g., the absolute 
entropy or the isothermal compressibility, may in 
principle be deduced from the tabulation if it is suffi

ciently complete and accurate. A formal description 
of how the available data may be turned into such a tab
ulation is given by Elgin and Goodstein (1974). We shall 

concentrate here on how the quantities of direct interest 
in this paper are obtained. 

At high T and N, vapor pressure measurements give 
P and T of the 3D gas in the system. The chemical po
tential of the film, IJ., is equal to that of the gas, which 
is easilydeduced from the data· since the gas is nearly 
ideal. Thus for this range of N and T one has obtained 
in tabular form the function IJ.(T ,N). From these da~a 
alone, one can, for example, find the absolute entropy 
S(T ,N) of the film, provided the data extend to very 
low N where S necessarily approaches zero. 

At lower temperatures, the gas pressure becomes 
too low to measure directly, but here data are availa
ble for the. heat capacity at constant coverage, CN. In 
addition, there is an overlap region where both vapor 
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pressure and heat capacities (thermodynamically cor
rected .to eliminate the heat of desorption) are mea
sured. From these data one can construct a table of 

the absolute entropy by integrating CN!T at each cover
ageN: 

S(T ,N)=S(O,N)+ !T ;~ dT'. (3.1) 
0 

In the case of 4He, comparison of the results of this 
procedure carried to high T, with the absolute entropy 
determination from vapor pressure data only, men
tioned above, gives S(O,N) = 0 for all N, within experi
mental uncertainty (Elgin and Goodstein, 1974), indi

cating that the system is indeed in equilibrium. For 
3He, the situation is more complicated owing to the 
nuclear spin degeneracy which is not completely re
moved at the lowest temperatures studied (roughly 
5o mK), but this uncertainty has negligible effect on 
the_ results of interest to us here. 

From S(T,N), one finds the temperature dependence 

of J.1. at each coverage using the Maxwell relation 

(3.2) 

Thus, given values of j.J.(T ,N) in the vapor pressure re
gion, one may find J.1. at a lqwer temperature T 0 and 
the same N by integrating this equation: 

J.I.(T ,N)= JJ.(T0 ,N)- LT (:~) dT. 
T 0 T 

(3.3) 

Having JJ.(T0 ,N), one can evaluate the equilibrium pres
sure of the gas when it is far too low to measure by 
any other means (Taborek and Goodstein, 1979). More 

importantly for our purposes, in the limit T 0 - 0, we 
have the quantity 

dE(N) 
JJ.(O,N)= dN ' (3.4) 

where E(N) is the ground-state energy of N atoms on 
graphite. 

Some results of this procedure for 3He on Grafoil are 
shown in Fig. 8, together with high-temperature values 
of J-1.(1' ,N) from which JJ.(O,N) values are obtained. At 
very low N, the quantity -J.I. is large, due to the pres
ence of activated sites (inhomogeneities) on the surface. 
However, after the adsorption of just a few percent of a 
monolayer, J.i.(O,N) settles down to a constant value, 

136:1: 2 K, the uncertainty being an estimate of the max
imum systematic error in the measurement. A plot of 

J.i.(O,N) for 4He on Grafoil over a wider range of N is 
shown in Fig. 9, where it is compared to values of J.1. 

for 3D 4He at suitable scaled densities. In the case of 
4He, the plateau value of -J.i.(O,N) is 143±2 K. The 
effect of heterogeneity on the low-coverage variation of 
J-L(O;N) has been evaluated (Elgin and Goodstein, 1974) 
in terms of a plausible distribution of binding energies. 
The assumed form leads to the result that the binding 
energy of the Nth site, starting from the most activa
ted, is 

(3.5) 

where E~ is the binding energy on a uniform surface. 
At 0 K, -JJ.(O;N) should correspond closely to Eb(N). 
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FIG. 8. Chemical potential versus coverage for 3He on Ora
foil. N0 is the ordering density, equal roughly to 0.6 layers. 

Triangles are measured values at T =4.18 K. Circles are 
thermally corrected to T= 0 K, as explained in text. The c,urve 
is a plot of Eq. (3.5) with No= 0.025 and E~= 136. Reprinted 
from Elgin, Greif, and Goodstein (1978). 

The fit in Fig. 8 is obtained by letting N 0 ""'- 0.025 layers 

(N0 is roughly the number of activated sites) and the 
factor of 2 binding energy variation as N goes from 
zero to large values is interpreted as arising from the 
occasional intersection of two basal plane surfaces. 

The quantity of theoretical interest is the binding en

ergy of a single atom on a uniform graphite surface. 
This differs slightly from -J.I. on an ideal surface be
cause the latter includes He-He interactions. In the 
limit of zero coverage and temperature, the difference 
equals tl).e binding energy of the 2D liqui9, which has 
been calculated for 4He by Novaco and Campbell (1975) 

to be 0.62 K= 0.053 meV. No condens'atioh is predicted 

for 3He. The 4He correction is incorporated in the 
binding energy values of Table I. The agreement with 
the values derived from the empirical band-structure 

calculation is observed to be excellent. 

B. Band-structure effects 

We turn now to the way in which the thermodynamic 
data have been used to ascertain the role of band struc-

0 +150 

..!. 
a 

liquid ( atoms) 
---nrrT 

5.0 

- 20~o::'-"=='="~,-L-.L.J-L_.,.,,oso,-L-.L.J-L_-,5so:-'--.l..J-l.-:!o o.o 

fL(K) 

FIG. 9. Chemical potential of 4He at T= 0 K, for film adsorbed 

on Grafoil (lower abclssa, right ordinate) and for bulk matter 
(upper abclssa, left ordinate). Reprinted from Elgin and 

Goodstein (1.974). 
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ture. An ideal, monatomic gas in two dimensions 

should have a specific heat given by CN/Nk8 = 1. Prior 
to the use of Grafoil, various attempts to produce ex
perimental 2D matter were deemed unsuccessful be
cause of a failure to find a nearly ideal gas region. In 
contrast, one of the first dramatic successes of Grafoil 
was the large flat region, where CN/Nk8 ""'1, as may be 
seen in Fig. 7. 

Investigators then set out to examine the departures 
from CN/Nk8 = 1 in that region. In particular, Siddon 

and Schick (1974) calculated the quantum-mechanical 
second virial coefficient for 3 He and 4He in two dimen
sions with interaction parameters taken from 3D virial 
data for the same isotopes. Their results gave a good 

semiquantitative account of the data, being particularly 
successful at explaining the differences in departures 
from ideality in 3He and 4He. 

Although clearly on the right track, the theory of 
Siddon and Schick neglected a number of quantitative 
effects. One significant consideration is that the low
coverage data to which the theory must be compared is 
strongly influenced by inhomogeneities. To make a 

more accurate assessment, Silva-Moreira, Codona, 
and Good.stein (1980) undertook to correct the data to 

reveal idea-surface values. Their method makes use 
of the full data-set available and is based on the distri
bution of binding sites mentioned above. We shall re
count it briefly here. 

To simplify the discussion, let us imagine for a mo
ment that the surface consists of regions of two kinds, 
"ideal'' and "activated,'' where the activated regions 
simply have a higher binding energy than the ideal re

gions. In equilibrium, the density of the film on the 
activated regions will be higher than that on the ideal. 
The activated portion will thus have a disproportionate 

fraction of the N atoms in the system, and will contri
bute a heat capacity characteristic of a higher-density 
film on an ideal surface at the same temperature. This 
effect can be corrected iteratively if the chemical po
tential and heat capacity are known at all N and at 
neighboring values ofT, and if the extent and excess 
binding energy of the activated region is known. 

In fact there is not one kind of activated region, but 
rather a continuous distribution corresponding to Eq. 
(3.5). The total heat capacity is the sum of the subsys
tem heat capacities plus a correction term due to the 

transfer of atoms between subsystems as the tempera
ture is changed isosterically (i.e., at constant N). Thus 

(Silva-Moreira et al., 1980) 

CN=(aE) =LCN.-TL(a/J.;) {aN;)' 
aT N 1 • 1 aT N; \aT N 

(3.6) 

where the distribution in Eq. (3.5) has been replaced by 
a large number of discrete subsystems referred to by 
subscript i. We can solve Eq. (3.6) for CNo. and thereby 
obtain CN (T,N0 ), the ideal surface heat capacity, by 
evaluatin~ all other terms in Eq. (3.6) from the experi

mental data. 
The entire process may be checked by varying the 

number of subsystems used to simulate Eq. (3.5), and 
by altering a device used to put an upper limit· on the 
subsystem densities. It is found that the results are 
insensitive to those changes for coverages above about 
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0.2 layers. One could presumably do better (i~e., get 

ideal-surface results at lower coverage) by performing 
additional iterations of the procedure, but it is suffi
cient for present purposes to restrict the remaining 
analysis to results in the region above 0.2 layers. 

Once the data have been corrected.for inhomogenei
ties, the next task is to analyze them for quantum virial 
gas behavior. A 2D gas whose departure from ideality 
may be described by a second virial coefficient, B(f3), 

where f3 = (k8 Tt1 , is expected to have a specific heat 
given by 

CNo = 1 _ R 2 d2B 
N k Per d"'2 ' o B t"' 

(3.7) 

where Po is the two-dimensional density. The standard 
analysis consists of plotting CN/N0k8 versus Po for each 
temperature. The results should be a straight line with 
intercept 1 and slope {3 2d 2B/d{3 2 • An example of such a 

plot is given in Fig. 10. 
Silva-Moreira et al., found straight lines, but their 

intercepts differed systematically from 1 by amounts 
that were small but outside of experimental uncertainty. 

These departures from ideality in data already correc
ted to zero density on a perfect graphite surface are 
due to the periodic carbon lattice. 

In particular, the specific heat of atoms moving in the 
periodic potential can be evaluated from the band
structure calculation inthe limit of very small cover
age (Carlos and Cole, 1980b). The result is shown in 
-Fig. 11, where the experimental results are compared 
to theory. The departure of the predicted C 0 from 1 is 
due to the density of states in the band structure. As 
T is raised, C 0 first rises as the excess states below 
the gap are populated, falls as the gap itself is en
countered, then rises again as the states above the gap 
begin to be filled. This is accompanied by a contribu
tion due to excitation of the second vibrational state of 
motion perpendicular to the. surface. The rise due to 
promotion above the gap is clearly seen in the 4He data, 
while the 3He data, which are more complete in the 

virial gas region, show both the decrease as the gap is 
encountered and the rise as it .is overcome. [L. W. Bruch 
(prep-rint, 1981) has done an analytic treatment of band

structure effects in the statistical mechanics.] 

C. Thick films 

Adsorption isotherms for multilayer films can be 

used to evaluate the coefficient C, of the asymptotic 

1.1 

1.0 

0.9 

0.8 

0.2 0.4 0.6 

N(FRACTION OF MONOLAYER) 

FIG. 10. Virial analysis of specific heat data, 4He on Grafoil, 
showing intercept differing from CN/Nk8 =1. Data have been 
corrected tq ideal-surface values as explained in the text. 
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FIG. 11. Specific .heats in the limit of zero coverage (the in
tercepts of plots like Fig. 10) plotted versus temperature and 
compared to theory, for 4He and ~eon Grafoil. Solid points 
are· intercepts from experimental data, and curves are pre
dictions of band-structure theory. 

z"3 potential. This procedure entails use ofthe Frenk
el-Halsey-Hill equation, which relates the thickness D 

to the vapor pressure saturation ratio P /P 0 : 

D = (tl.C3 /kB )113x , (3.8) 

where 

x = [T ln(P 0 /P)]·J/3. (3.9) 

This result can be derived for thick films by a variety 
of alternative approximations which are essentially 
equivalent to the assumption that film growth proceeds 
by addition of bulk liquid (Steele, 1974 and 1980). The 

parameter tl.C 3 =C 3 -C~, where C~= 10 meV },.3 , is the 
coefficient of the van der Waals interaction of the He 
atom with a hypothetical "substrate" of bulk liquid 

(Sabisky and Anderson, 1973; Vidali, Cole, and 
Schwartz, 1979). 

A related a_nsatz is that the total number N of ad

sorbed atoms includes an excess quantity Nex due to 
film compression near the substrate. Using Eq. (3.8), 

(3 .1 0) 

where n is the liquid density and A is the surface area. 
Equation (3.10) can be tested with recent data (Fig. 12) 

of Bienfait, Dash, and Stoltenberg (1980). For thick 
films, clustering or capillary condensation causes de
viation from Eq. (3.10). A linear dependence on x does 
occur, however, over· an intermediate thickness range 
(9-18 A) for four temperatures, the pressure varying 
by more than an order of magnitude. From the slope 

and known area (25 m 2 ) we deduce tl.C 3 = (190± 15) meV 
A3 • This corresponds to a value C3 = (200± 15) meV A3 , 

which is in reasonable agreement with the prediction 
186 meV A3 of Vidali, Cole, and Schwartz (1979). Sim
ilar consistency has been found recently by Roth, Jela
tis; imd Maynard (1980). 

Als;o of interest is the intercept value of N•x• which 
yields N.,.IA = 0.092 k•. This,is about 0.8 of the mono
layer capacity and is in fairly good agreement with· re-
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(•), T =1.98 K (o), and T =2.539 K (o) for 4He on graphite foam 
taken by Bienfait, Dash, and Stoltenberg (1980); a few off
scale points are omitted. The dashed curve corresponds to 
Eq. (3.10). 

cent results of Polanco and Bretz (1980). The latter 
authors found a ratio 100:70: 64:56 for the first four 
layers, giving an excess equal to 0.66 of the first layer. 
(Their substrate was the more homogeneous form ZYX 

graphite, which would plausibly have a smaller value 
of N .... ) Thus the relation (3.10) is at least semiquanti

tatively confirmed by these experiments, with plausible 
values of both Nex and tl.C 3 • 

IV. FUTURE WORK 

Remarkable progress has been made in the last few 
years toward understanding the helium-graphite inter

action. This is due primarily to the comprehensive 
thermodynamic and scattering measurements described 
above. It is opportune to address the remaining prob
lems and their prospects for future resolution. 

As dJscussed in Sec. II, the potential derived from 
summing anisotropic He-c pair interactions works 
well in fitting the extensive scattering data. Unfor
hmately, however, a rigorous microscopic theory 
does not exist. A major obstacle lies in knowing 
how to merge the overlap repulsion with the dispersion 
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part; this difficulty is common to the analogous pro
blem of interatomic potentials (Margenau and Kestner, 
1969; Ahlrichs, Penco, and Scoles, 1977). The sur-

. face problem is exacerbated by our knowing only the 
leading term (-z-3) of the dispersion interaction. Fur
ther effort in this general area is certainly justified. 

On the. experimental side, a similar situation pre
vails. A search by the scattering technique for very 
weakly bound resonance states can reveal information 
about the tail of the attractive interaction. The signa

ture of such states is faint, however, because their 
wave functions extend so far from the surface that they 

are only-weakly coupled to the incident beam. Never
theless, some success is likely; for example, the n = 3 
level of 3He should be observable near the predicted 
value of -0.5 meV. 

A worthwhile goal of calorimetric studies is syste
matic analysis of adsorption on more uniform sub
strates than Grafoil. This would mitigate the arduous 

and uncertain task of deconvoluting the effects of heter
ogeneity. 

Other techniques, such as low-energy electron dif

fraction (Shaw and Fain, 1979), electron appearance 
,potential fine structure (den Boer et al:, 1980), and 
extended x-ray adsorption fine structure (Stern, 1978), 
have been used recently to probe adsorption. Unfor
tunately, these are not well suited to the case of He on 
graphite because of its weak binding and lack of tightly 

bound electronic core levels. Nevertheless such great 
strides have been made in this area that one should not 
be unduly·pessimistic. 

It is beyond the scope of this paper to describe re

sults for other adE?orbates on graphite. Obviously the 
ideas and techniques discussed here have applications 
to those cases. For example, the anisotropic pair in
teraction is also appropriate here and will yield a less 
smooth potential than has been used to date. In view of 
forthcoming scattering experiments, we are optimistic 
about the prospects of comparable success in under
standing such problems as have been found for He. 
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