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1 Introduction

Over the last decade, the holographic principle has evolved as a tool to describe the strongly

coupled systems which otherwise were hard to study in a general perturbative approach.

Holographic principle essentially relates the physics behind strongly interacting quantum

systems to that of weakly interacting gravitational theory with one higher dimension. It

has been first used in the context of N = 4 SYM theories [1, 2]. However, the fact that the

holographic principle could be of great help to model the real-world systems as well was re-

alised afterwards. Accordingly, applications towards strongly coupled systems in quantum

chromodynamics were studied in great detail. On the other hand, the holographic principle

is also being used as a framework to understand non-linear hydrodynamics [3], Fermi liquid

behavior [4, 5], transport phenomena [6], high temperature superconductors [7–9] to name a

few, thereby exploring condensed matter systems with the help of classical gravity theories.

Interested readers are referred to the articles [10–14] for detailed reviews in this regard. It
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is therefore safe to say that the holographic principle has become an extremely powerful

method to study strongly-correlated systems, be it in high energy physics or in condensed

matter theory. One of the important aspects of condensed matter systems is to understand

Fermionic system in strong coupling regime. A quantity of interest in strongly coupled con-

densed matter systems, which can be computed using holography, is the spectral function of

the Fermion, which in turn is proportional to the imaginary part of the Fermionic retarded

two-point correlation function. A lot of works were done in this regard in the literature [4,

15, 16], where the Dirac equation for a charged probe Fermion propagating in a gravitational

background is analysed. Many interesting and emergent phenomena seems to emerge out

of these retarded two-point function of the dual Fermionic operator in the boundary theory.

The discovery of superconductivity, on the other hand, in the LaBaCuO ceramics at

30 K by Bednorz and Müller [17] in 1986 has opened the era of high-Tc superconductivity.

Prior to this, the phenomena of superconductivity had been confined to very low temper-

atures. This unexpected result prompted intense activity in the field of ceramic oxides,

both in the experimental as well as theoretical front. These ceramic oxides have a super-

conducting phase with an order parameter having d-wave symmetry. This phase exists

for the hole-doped material over 5% range of doping. However the material behaves like

an antiferromagetic Mott insulator for very low dopings. These two states are connected

by an unconventional phase known as the pseudo-gap. Angle Resolved Photoemission

Spectroscopy (ARPES) [18] has found the presence of a truncated Fermi surface in the

pseudo-gap phase and this truncated Fermi surface in the momentum space is termed as a

Fermi Arc [19–23]. This phenomenon remains a mystery, mostly because of the unconven-

tional electronic properties of the normal state of the superconductor. As is well known,

Landau’s theory of metals predicts continuous closed Fermi surfaces and does not explain

the observed truncated surfaces in momentum space when holes are doped into the copper-

oxide plane. The arc is intermediate between the d-wave node of the superconductor and

the complete Fermi surface of the normal state of the superconductor. On top of that, the

arc appears to be formed by a closing of the energy gap of the superconducting state when

temperature is increased above Tc.

The deviation from standard Landau’s theory of metal is generally taken into account

in two different types of explanations [24]. It is shown that some type of order can set

in [25] to give rise to a Fermi pocket with momentum dependent spectral intensity. This

intensity can be extremely small (almost close to zero) for some range of momenta, giving

rise to the discontinuity of the Fermi surface and thereby generating an arc-like structure

in the momentum space. Secondly, the phenomenon was tried to be explained keeping the

inherent strong coupling nature of the problem in mind, in which zeros of the single-particle

electronic Green function, caused essentially by a divergent self-energy [26, 27] are the

reasons for the vanishing of the surface. It is important to note that Fermi arcs have been

obtained phenomenologically [26] and numerically [28] from the point of view of condensed

matter physics, as well as there have been holographic description of it too [29, 30]. In these

holographic descriptions, the arcs were obtained by condensing the Fermions anisotropically

into p-wave or d-wave superconducting states, but these does not describe the cuprates in

the pseudo-gap phase.
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It is well known that one can implement the holographic prescription in different

ways for finite density Fermionic system. In this paper, we follow the program described

in [24], where, the action for a bulk gravitational system is supplemented with Fermionic

fields which act as source to a Fermionic operator at the boundary of AdS. It has been

shown [4] already that a simple canonical Fermion field in the Reissner-Nordström AdS4

black hole background can give rise to both Fermi liquid and non-Fermi liquid behavior at

the boundary. Although, this kind of constructions [4, 5] can give rise to gapped spectra

depending upon the bulk Fermion mass, it is very difficult to produce pseudo-gap spectrum

without invoking any new coupling. One possible mechanism of obtaining pseudo-gap

proposed by Vanacore et al. [24] is by considering a non-minimal Fermion and gauge field

interaction. The purpose of this paper is to generalize and most importantly dynamically

generate the aforementioned Fermion-gauge interaction by introducing another neutral

scalar field and study its effect on the Fermi arc. We will consider two different scenarios.

Firstly, scalar field in the bulk can act as a neutral order parameter field giving rise to

transition from normal phase to pseudo-gap phase. The phase transition temperature of

this scalar field may be identified with the well known crossover temperature T ∗ in the high-

Tc superconducting phase diagram, below which effects of electronic pairing correlations

become significant [31, 32]. Therefore, in the holographic model this scalar field under

consideration could be related to the pairing phase fluctuation from the dual field theory

point of view. However, to confirm such claim we need to have detailed study on this

issue. In the second scenario corresponding to the scalar field, we assume the existence of

a dual tuning scalar operator which controls the pseudo-gap phase. From our discussion,

it appears that the same neutral scalar field is responsible for both the aforementioned

mechanisms. However, strictly speaking this is not the case. Even though the theory

of scalar field looks same for both the mechanisms, in principle they are different. The

difference can be easily understood if we consider the mass of the scalar field to be above

AdS2 Breitenlohner-Freedman (BF) bound mΦ > −3/2. The scalar field satisfying this

condition will not condensate at any temperature. Therefore, the first mechanism will be

not realisable for this system at all. Detail field theoretical understanding of these two

scenarios could be an important topic of further research.

We organise our paper as follows: in section 2 and 3 we will present a very brief

discussion of the background geometry and the scalar field solution followed by section 4

where we discuss the Fermionic Lagrangian. We present our numerical results, a discussion

on the energy gap in the spectral function and analytical discussion of the spectral function

in sections 5, 6 and 7 respectively. Finally, in section 8 we conclude the paper with a brief

discussion and future directions.

2 Review of background geometry and action

Taking the simplest action coupled to gravity in AdS4 with real massive scalar and

gauge field

S =
1

2κ2

∫

d4x
√−g

[

R+
6

L2
− 1

4
F 2 +

1

λ

(

−1

2
gµν∇µΦ∇νΦ− V (Φ)

)]

(2.1)

– 3 –



J
H
E
P
0
7
(
2
0
1
9
)
0
3
7

with L the AdS curvature radius and F = dA. Here λ is a coupling constant and the

potential V (Φ) is given by

V (Φ) =
1

4L2

(

Φ2 +m2
ΦL

2
)2 − m4

ΦL
2

4
.

The main motivation of choosing the above form of the potential is to have a non trivial

scalar field solution, where mΦ is scalar field mass. In this paper we will neglect the effects

of backreaction from the scalar field by taking λ to be large but include the effects of the

gauge field leading to our electrically charged AdS black hole. For a detailed discussion

the reader is referred to [33]. The equations of motion obtained from action (2.1) are

Rµν −
1

2
gµνR− 3gµν

L2
=

1

2
FµλF

λ
ν − 1

8
gµνF

2 +∇µΦ∇νΦ+ gµν

(

−1

2
∇ρΦ∇ρΦ− V (Φ)

)

,

1√−g∇µ

(√−ggµν∇νΦ
)

− 1

L2
(Φ2 +m2

ΦL
2) Φ = 0. (2.2)

On the other hand, it is well known that black holes are the simplest objects in general

relativity. Assumption of rotational symmetry leads to the fact that the geometry of the

black hole is fully specified by its mass and charge, independent of other details of the

system. Systems which are of relevance in condensed matter physics are mostly finite

density systems, with temperature much smaller than the chemical potential. These type

of systems in the gravity side are described by black holes having charges. We will therefore,

choose a familiar Reissner Nordström (RN) AdS4 black hole as our background geometry

with Φ = 0. The general AdS4 metric is given by the following line element:

ds2

L2
= −gttdt2 + grrdr

2 + gxxdx
2 + gyydy

2 . (2.3)

For RN-AdS4, the metric coefficients are given by

gtt = r2f(r) , grr = r−2f−1(r) and gxx = gyy = r2,

where, after rescaling, the horizon is at r = 1 and all coordinates are dimensionless. The

metric function and the U(1) gauge field At are given by:

f = 1 +
3γ

r4
− 1 + 3γ

r3
, At = µ

(

1− 1

r

)

dt.

Here, we expressed the chemical potential [33], as µ ≡
√
3γ

1

2 and the black hole temperature

as T = 3
4π (1−γ). The parameter γ ranges from 0 to 1 and it controls the temperature and

chemical potential of the system. For γ = 1, we have the extremal black hole with T = 0,

and for γ = 0, we have finite temperature system with zero chemical potential (µ = 0) and

hence zero charge density on the dual field theory.
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3 Scalar field solution

As we have already described, the scalar field in our model plays very distinct role in

controlling the properties of Fermi arc. Properties of solution of such a field in the RN

black hole background is well studied. For completeness let us discuss about the important

behaviour of it. The radial equation of motion for Φ(r) is given by

Φ′′(r) +

(

f ′

f
+

4

r

)

Φ′(r)−
(

Φ(r)2 +m2
ΦL

2
)

r2f
Φ(r) = 0. (3.1)

From this, the asymptotic behaviour of Φ can be written as

lim
r→∞

Φ(r) =
Os

r3−∆
+
Oc

r∆
, (3.2)

where ∆ = 3/2 +
√

9/4 +m2
ΦL

2 is identified with the scaling dimension of the dual field

theory operator. In the above expression, we set L = 1. As has already been emphasised,

one of our goal is to study the evolution of Fermionic spectral function across the phase

transition, we therefore chose the mass of the scalar field within BF bound −9
4 < m2

Φ < −3
2 .

This essentially violates the AdS2 BF bound near the horizon at zero temperature. For

normal quantisation we interpret Os as the source and Oc as response. From equation (3.2)

we can write

lim
r→∞

Φ(r) = Os r
∆−3 +Oc r

−∆ ,

lim
r→∞

rΦ′(r) = Os(∆− 3) r∆−3 −Oc∆ r−∆. (3.3)

Solving for Os & Oc we get

Os = lim
r→∞

[

r3−∆ (∆Φ(r) + rΦ′(r))

2∆− 3

]

,

Oc = lim
r→∞

[

r∆ ((∆− 3)Φ(r)− rΦ′(r))

2∆− 3

]

.

Now, the constants Os and Oc can be computed numerically. In order to solve the equa-

tion (3.1) we further expand Φ(r), f(r) near the horizon r0 as

Φ(r) ≈ Φ(r0) + (r − r0)Φ
′(r0) +

(r − r0)
2

2!
Φ′′(r0) + · · · ,

f(r) ≈ f(r0) + (r − r0)f
′(r0) +

(r − r0)
2

2!
f ′′(r0) + · · · .

Using the above series expansion into the equation (3.1) and demanding the regularity

condition at the horizon, one obtains following constraints on the field at the horizon,

Φ′(r0) =
(Φ(r0)

2 +m2
φL

2)

r20f
′(r0)

Φ(r0).

Thus, the choice of Φ(r0) will automatically fix Φ′(r0), and we can obtain a complete

solutions for Φ(r). As discussed we have considered two possibilities. By shooting from
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Figure 1. Plot of Condensate Oc (left) and horizon value of Φ (right) vs temperature (T/Tc) with

Os = 0. Here m2

Φ
= −21/10 and Tc ≈0.001078. We also found that Tc decreases when m2

Φ
approach

the BF bound.

the horizon with the scalar field value Φ(r0), we studied sourceless condition Os = 0,

which happens only below a critical temperature. For the other case, we studied with

boundary source Os �= 0, at arbitrary temperature. Before we move on, let us understand

the behaviour of the scalar field and its dual nature with respect to the near horizon CFT.

We examine the AdS2 behaviour of the scalar field in the limit r → r0 and T → 0 by

writing the scalar field as

Φ = Φ(r0) + Φ1 (r − r0)
δ. (3.4)

It is the value of δ which controls the conformal dimension of the IR CFT dual operator.

Therefore, by plugging into the equation of motion and solving the coefficients, we get

δ± = −
1

2
±

√

1

4
+ L2

2

(

3Φ(r0) +m2
Φ

)

(3.5)

with L2 being the AdS2 radius. Condition for the dual of the scalar field to be an irrelevant

deformation [33] in the IR CFT is δ = δ+ > 0. This is also consistent with the scalar field

which is going to be constant, Φ(r0), in the near horizon limit. Therefore, under this

neutral scalar field, properties of the back reacted near horizon geometry will remain same.

A more elaborate discussion on this back-reaction issue can be found in [33]. We have

also checked this by our full numerical solution. Therefore, we will mainly focus on the

probe limit of the scalar field which makes our discussion simpler towards understanding

the main goal of our paper. However, at this point we should mention that for a charged

scalar field condensation such as for the holographic superconductor, the back-reaction

near zero temperature has been proved to be very much important [34–37]. To this end let

us emphasis again the reason for considering the scalar field. We will consider two possible

scenarios while calculating the Fermionic spectral function.

Case-I. For this case, we will consider the effect of scalar condensation on the Fermi sur-

face. Therefore, we will consider those solutions of the scalar field, for which the boundary

source Os will be zero. By appropriately tuning the background temperature and the hori-

zon value of the scalar field Φ(r0), one gets the desired solution with the condition Os = 0

and Oc �= 0. In the left panel of figure 1, we showed the conventional condensation of the

– 6 –
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Figure 2. Plot of source Os vshorizon value of Φ(r0) for T > Tc.

boundary dual scalar operator below the critical temperature Tc. As mentioned, we study

how this temperature dependent scalar field profile controls the properties of low energy

behaviour of the holographic Fermions at finite temperature. Our numerical computation

gives Tc ≈ 0.001078. What we will observe is that below this critical temperature, the

holographic Fermi surface develops a pseudo-gap phase in its spectral function. It would

be interesting to investigate the connection between our phase transition temperature Tc

with the well known cross over temperature T ∗ in the high temperature superconductivity

phase diagram. We have plotted the behaviour of the scalar field at the horizon with tem-

perature in the right panel of figure 1. Very close to T=Tc by fitting Oc with δ1(Tc−T )δ, we

found that the exponent δ = 0.49±0.005 and the proportionality constant δ1 is found to be

δ1 ≈ 1.41. Similarly, the behaviour of Φ(r0) vs α1(Tc − T )α gives the constant α1 = 33.24

and the exponent α to be 0.53± 0.02.

Case-II. For this case we will identify Os as a tuning parameter and our goal would be to

study the effect of this source on the boundary Fermionic spectrum. Therefore, this source

can be thought of as doping in the higher temperature superconductivity phase diagram.

In figure 2, we show how the boundary source changes depending upon the horizon value

the bulk scalar field Φ(r0). As it is the horizon value of the scalar field which controls the

Fermion-gauge coupling in the bulk spacetime, study of the effect of the source as a tuning

parameter, on the boundary Fermionic spectrum is an important aspect.

In the next subsection we shall examine the effects of this scalar field in the Fermion

spectral function and see how the Fermi surfaces and Fermi arcs evolve across the phase

transition.

4 Fermion Lagrangian and Dirac equation

In holographic approach to Fermionic systems, there can be a number of ways in which

Fermions are coupled to gravity and gauge fields. One such non-minimal coupling is dipole-

coupling, which was introduced in [38]. Coupling between Fermions with background con-

densation has been studied in [40]. In this work, the authors discuss effects of a supercon-

ducting condensate on holographic Fermi surfaces. They found stable quasiparticles with

– 7 –
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a gap using coupling between the Fermion and condensate. In [38], Fermions coupled to

gauge fields via a dipole interaction in the bulk was studied. By varying the strength of the

interaction, it was shown that a new band in the density of states can be generated where

the spectral density is transferred between bands. Beyond a critical interaction strength, a

gap opens up dynamically. The effects of a superconducting condensate on the holographic

Fermi surfaces was studied in [40]. Choosing a suitable coupling between the Fermion

and the condensate, the work had shown that there exists stable quasi-particles with a

gap. Further, finding similarities with the behaviour of the cuprates high temperature

superconductor, it was found that a stable quasiparticle peak can appear in the condensed

phase in the systems under study whose normal state is a non-Fermi liquid with no sta-

ble quasiparticle. Fermions were also studied in an electrically-probed and asymptotically

AdS-Schwarzschild spacetime [24]. The dual Fermion two-point correlator was computed

and the bulk interactions were shown to create anisotropic gaps in the Fermi surfaces of the

boundary spectrum. Consequently, the chiral symmetry breaking Pauli coupling provided

a holographic model for Fermi arcs.

Our goal of the present paper would be to control the aforementioned coupling by a

scalar field through condensation or by tuning the dual operator at the boundary. We will

consider two different models as discussed above. The motivation to consider two different

Fermion-scalar models is to understand better the mechanism of observing the pseudo gap

in the Fermion spectral function. Further, it is an important question and still a debated

issue in condensed matter physics that whether the Fermi arcs arise due to the partial

gapping of the Fermi surface or due to the certain destruction of quasi-particles. In the

holographic framework we will try to understand this question for both models.

4.1 Model-A

Firstly, we generalise [24] with similar action given by

S(1)
Fermion =

∫

d4x
√−giψ̄

(

/D −m− ipΓΦ/F
)

ψ (4.1)

where the matrix factor, Γ = γrγt(n̂ · ~Γ). Dirac equation of motion for ψ is

(

/D −m− ipΓΦ(r)/F
)

ψ = 0 (4.2)

with ~Γ ≡ (Γx,Γy). By choosing n̂ = x̂ and the following form of the Dirac matrices

γr =

(

−σ3 0

0 −σ3

)

, γt =

(

iσ1 0

0 iσ1

)

γx =

(

−σ2 0

0 σ2

)

, γy =

(

0 σ2
σ2 0

)

(4.3)

For non trivial profile of the scalar field peff = pΦ plays the role of anisotropic coupling

between Fermion and gauge field. By choosing the following ansatz for the Fermion field

– 8 –
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ψ(r, ~xi) = (−ggrr)− 1

4 e−iωt+ik.xψ̃(r, k), one can get rid of the spin connection, and finally

the Dirac equation (4.2) transforms into,

[

1√
grr

γr∂r +
1√−gtt

γt (−iω − iqAt) + γx
ikx√
gxx

+ γy
iky√
gyy

−m− ipΦ
γrγtγx√−gttgrr

γrγt∂rAt

]

ψ̃ = 0 (4.4)

Considering the following component form of the Fermion field, ψ̃ =
(

ψ̃1, ψ̃2

)T

, and ansatz

for the background gauge field Aµ = At with all other components to zero, above equation

can be further simplified to

1√
grr

∂r

(

ψ̃1

ψ̃2

)

=
1√−gtt

(ω + qAt)iσ2 ⊗
(

ψ̃1

ψ̃2

)

−mσ3 ⊗
(

ψ̃1

ψ̃2

)

∓ kx√
gxx

σ1 ⊗
(

ψ̃1

ψ̃2

)

± pΦ√−gttgrr
A′

tσ1 ⊗
(

ψ̃1

ψ̃2

)

+
ky√
gyy

σ1 ⊗
(

ψ̃2

ψ̃1

)

(4.5)

The above equation (4.5), after inserting the background geometry (2.3) becomes

r2
√

f(r)∂rψ̃I =
iσ2
√

f(r)

(

ω + qµ
(

1− r0
r

))

ψ̃I

− σ3mrψ̃I − (−1)Iσ1

(

pΦ(r)µ
r0
r

− kx

)

ψ̃I + σ1kyψ̃J . (4.6)

The asymptotic solutions of (4.6) are given by

ψ̃J = AJ(k)r
m +BJ(k)r

−m

In fact, we can numerically read off the coefficients A and B to obtain the green’s functions,

but alternative approach exists by solving the first order flow equation.

In equation (4.6) we see that with ky 6= 0 the block diagonal form is lost, we now have

mixing of various spinors components. Following the prescription used in [24, 40, 41] to

extract the Green’s function by using two sets of linearly independent boundary conditions

are given by
(

βI1 β
II
1

βI2 β
II
2

)

=

(

s11 s12
s21 s22

)(

αI
1 α

II
1

αI
2 α

II
2

)

, (4.7)

where we further expressed two component spinor as, ψ̃i = (βi, αi)
T . The retarded Green’s

function is defined as

GR(ω,~k) = −i
(

s11 s12
s21 s22

)

· γt, (4.8)

with gamma matrices γt = iσ1. The spectral function is defined as

A(ω,~k) = Im
[

TrGR(ω,~k)
]

. (4.9)
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Along with the definition given in (4.7) and from equation (4.5), we can derive the flow

equation given by

1√
grr

∂rGR + 2mGR =M+ −GRM−GR (4.10)

where,

M± =

(

±W± − kx√
gxx

ky√
gyy

ky√
gyy

±W∓ + kx√
gxx

)

with W± given by

W± =
1√−gtt

(ω + qAt)±
pΦ√
gttgrr

A′
t. (4.11)

Numerically we will integrate equation (4.10) from horizon (r = r0) to infinity in order to

compute the spectral function.The boundary condition for ω 6= 0 is still in diagonal form

given by

GR(r0) =

(

i 0

0 i

)

. (4.12)

4.2 Model-B

Even though most of our discussions will be focused on the previous model, for complete-

ness and comparison specifically in the context of energy gap in the spectral function, we

consider the following dipole model generalising the work of [38] by coupling a scalar field

as part of the controlling parameter

S(2)
Fermion =

∫

d4x
√−giψ̄

(

/D −m− ipΦ/F
)

ψ, (4.13)

where,

/D =eµc γ
c
(

∂µ + ωab
µ − iqAµ

)

, /F =
1

2
γabeµae

ν
bFµν .

The parameter p is a Pauli coupling, eµa , ωab
µ are vielbeins and spin connection. Here, {a, b}

are tangent space indices and {µ, ν} are for the bulk. As shown in appendix B, the Green’s

function is given by

GR(ω, k) = lim
r→∞

1

r2m

(

ζ+ 0

0 ζ−

)

(4.14)

The spectral function defined as

A(ω, kx) = Tr [Im (GR(ω, kx))] . (4.15)

For AdS2 Green’s function we refer to appendix C, which includes the finite temperature

dependent scalar field and how it changes the IR CFT operators.

– 10 –
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5 Numerical results and discussions

5.1 Across the phase transition: without source

As discussed above, we have two different kind of solution for the scalar field. In this

subsection we will discuss case-I, when the scalar field condenses below a critical temper-

ature Tc. Therefore, above Tc we will have free Fermion with well defined Fermi surface.

However below Tc we will have non-trivial properties of the Fermion spectral function. In

the left panel of figure 4, we see the evolution Fermi surface from higher temperature to

lower temperature across the critical temperature Tc. For T > Tc, scalar field does not

condensate leading to the closed Fermi surface. We lowered the temperature, consequently,

Fermi surface starts to develop anisotropic gap which we call pseudo-gap. Important to

mention that even though our results may look similar to the one shown in [24], it is the

evolution of Fermi arc with respect to the temperature below a critical value, which can be

identified with the pseudo-gap region at constant doping for the cuprate superconductor.

Important difference is the arc topology of the holographic Fermi arc compared to the

d-wave symmetric Fermi arc of the real high temperature superconductor. Therefore, we

need to further work on the issue of understanding the d-wave symmetric Fermi arc for our

holographic system. Nonetheless, an important point to emphasise that understanding the

pseudo-gap phenomena is still an active area of condensed matter research. It is interest-

ing to re-emphasise that the holographic dual of our bulk scalar field can be interpreted

as an incoherent phase fluctuation, which was proposed as a potential mechanism for the

pseudo-gap phenomena [31]. We also plotted in figure 4 the evolution of Fermi surface

for higher p value which essentially changes the absolute strength of the gauge-Fermion

coupling. We will further explore on this in the future publication. From pole/zero duality

perspective [39, 44], the appearance of the gap can be realised from the pole and zero in

G11 andG22 which are the diagonal components in the Green’s function. The effective cou-

pling pΦ and the Γ matrix in the n̂-momentum axis inverts the sign of Fermi momentum

kf for negative and positive p values. As a results of this the gap appear in either −kf or

at kf . As the Fermi surface is anisotropic, we now investigate how the magnitude of the

Fermi momentum kf changes as we go along the surface.

In order to find kf in kx-ky plane we will define kx, ky in terms of angle θ in [kx-ky]-

plane as

kx = kf sin θ; ky = kf cos θ, (5.1)

where kf is the distance of the Fermi surface from the centre. In table 1 we tabulate

different values of kf in different directions(θ values) in the kx-ky plane. Numerically we

found that kf is same for all angular coordinate for T > Tc. This is expected from the fact

that in this limit the anisotropic gauge field and Fermion coupling vanishes because of zero

scalar field value. With the definition in equation (5.1), we plotted the spectral function

in figure 3.

– 11 –



J
H
E
P
0
7
(
2
0
1
9
)
0
3
7

0

2

4

6

8

10

Figure 3. Plot of A(kf , θ) in θ − kf . Here p = 1.5 ,q = 1, m = 0, m2
Φ = −21/10 and at very small

T = 10−3Tc. In this plot we see the variation of kf along θ direction.

kf θ

≈1.5240 π
6

≈1.0150 π
3

≈0.9146 π
2

≈0.83633 5π
6

≈0.86388 2π
3

≈0.84776 3π
4

Table 1. Variation of kf for different θ with p=1.5 and q=1.

5.2 At arbitrary temperature: with source

For case-II, as mentioned earlier we will consider the bulk scalar field with non-normalizable

solution. Therefore, we have only one tuning parameter corresponding to the source of the

dual operator which we tune to evolve the Fermi surface at a particular temperature. We

have chosen two different value of p and the plots for the spectral function are shown

in the figure 5. For this particular case we do not have any critical temperature. For a

fixed temperature of the system the Fermi surface evolves as we tune the boundary source,

which essentially control the scalar field profile in bulk. For zero source we will obviously

have closed spherical Fermi surface. In contrast to the previous case-I, the boundary

tuning parameter of present case can be identified with the doping in the high temperature

superconductor. Qualitatively we do not find much difference between the Fermi surface

properties with increasing p as is clear from the figure 4.

6 Energy gap in the spectral function

In this section we consider an important question related to the existence of actual gap in

the Fermion spectral function. As already pointed out before, it is still a debated issue from

the experimental point of view whether the Fermi arcs arise due to the partial gapping of the

– 12 –
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Figure 4. Density plot of spectral function A(kx, ky) with small ω (= 0.0001), q = 1 and fixed

p = 2 (left) p = 0.92 (right). The temperature of above plots from (a)-(d) are 0.99Tc, 0.55Tc, 0.18Tc
and 10−3Tc respectively.

0 5 10 15 20

Figure 5. Plot of spectral function A(kx, ky) for fixed temperature T ≈ 0.00238, q = 1 for p = 1

(left) and p = 2 (right). From [a-d] corresponds to Φ(r0) = 0, 0.5, 1 and 1.3 respectively.
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Figure 6. Spectral function A(ω, k) vs (ω, k) for model-B. Below Tc (≈ 0.001078), the opening of

gap near ω = 0 is seen along kx direction for fixed p = 5 (left) and p = 10 (right), whereas above

Tc the gap disappeared.

Fermi surface or due to the certain destruction of quasi-particles. Therefore, it is important

to examine the situation for our holographic set up. We consider two different models-

(A,B). Figure 6 illustrates the presence of the gap for model-B, which contains dipole

type Fermion-gauge interaction with scalar field dependent effective coupling parameter

peff = pΦ. For the usual no-scalar field dipole model described in [38] the energy gap has

already been found out to be much wider than the present model. However, clearly the

size of the gap increases with increasing p value. At this point, it is also important to note

the symmetric nature of the energy gap for the dipole type coupling. On the other hand

for the model-A, because of the parity breaking Fermion-gauge coupling, we have already

seen the anisotropic Fermi arc figure 4, and that is indeed found to be translated into the

anisotropic energy gap in the spectral function shown in figure 7. For this plot we set

ky = 0 and kx = k. Therefore, in the positive k direction we can clearly see the gap whose

width is monotonically increasing with p value. Thus, in holographic pseudo-gap phase, the

Fermi arcs seem to be intimately connected with the partial gapping of the Fermi surface.

It would, therefore, be interesting to construct a holographic model where partial gapping

is not occurring.

In our subsequent section we will try to understand the low energy properties of the

Fermi surface for both the cases by considering the well known analytic technique in terms

of AdS2 Fermionic spectral function.

7 Analytical study of Green’s function at finite temperature

In this section we will try to understand how the scalar field enters into the Fermi arc

dynamics using analytic treatment. We essentially follow the work of [4, 42] and pin point

the contribution of the scalar field contribution. In the AdS2 limit at temperature T → 0,

eq. (4.6) takes the form (see appendix A)

−ζ∂ζψ̃I = iσ2 (ωζ + qed) ψ̃I − σ3mL2ψ̃I − (−1)Iσ1L2mkψ̃I + σ1L2kyψ̃J (7.1)

– 14 –
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Figure 7. Spectral function A(ω, k) vs (ω, k) for action (4.1) for model-A. Below Tc, the opening

of gap near ω = 0 is seen along kx direction for fixed p = 5 (left) and p = 10 (right).

For finite temperature, the boundary Green’s function is expressed as [43]

GR =
B̃+ + GRT

2νkB̃−

Ã+ + GRT 2νkÃ−

, (7.2)

where, B̃± and Ã± are all matrices. For small ω one can perturbatively expand B̃±, Ã±

in terms of ω. Where, the finite temperature AdS2 Green’s function is GR

GR(ω, T ) = ck (4πT )2νk (7.3)

where, ck is a normalisation constant and νk =
√

m2L2
2
+m2

kL
2
2
+ k2yL

2
2
− q2e2d. Here, νk

plays the role of conformal dimension of dual infrared conformal field theory operator.

L2 = 1/
√
6 is the AdS2 radius in unit of AdS4 radius L, and mk = (Φ(r0)µ− kx). We

have already observed through our numerical calculation the anisotropic and temperature

dependent behaviour of the Fermi surface. It is important to see that those behaviour

is manifested into the expression for the conformal dimension νk through the scalar field

condensation Φ(r0), and component of Fermi momentum (kx, ky). Obviously, at low energy

the boundary Green’s function will be mainly controlled by GR. Fermi surface is associated

with the zeros of Ã±. Therefore at small energy and momentum near the Fermi surface

(|k| = |kf |) the Green’s function can be expressed in the following form [43]

GR =
H̃1

k⊥ − ωV −1

f +D3T − H̃2T
2νkf Fkf (νkf ,

ω
T
)
, (7.4)

where F is given by

Fkf =
Γ(1

2
+ νkf − iω

2πT
+ iqed)

Γ(1
2
− νkf − iω

2πT
+ iqed)

.

In (7.4), H̃1, Vf , H̃2 has the form as in [43] and D3 is a constant which can be obtained by

full numerical calculation.
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Zero temperature limit. When ω
T
→ ∞(zero temperature), F behave as

F ≈ e
−iπvkf

(ω

T

)2νkf
,

which gives us back the zero temperature AdS2 Green’s function. The Fermi surface is

defined by the pole of GR expressed as

det
[

k⊥ − ωV −1
f − H̃2e

−iπνkfω
2νkf

]

= 0

The properties are usually measured by the dispersion relation near the Fermi surface which

is the pole of the Greens’s function,

ωp(k) ≡ ω∗(k)− iΩ(k)

The dispersion relations are parametrized as ω∗(k) ∝ kz⊥ and widths Ω∗(k) ∝ kα⊥ [4].

The exponents are

z =







1
2νkf

for νkf <
1
2

1 for νkf >
1
2

; α =

{

1 for νkf <
1
2

2νkf for νkf >
1
2

Our strategy will be the following: for the mechanism when the neutral scalar field con-

densates below the critical temperature which is very small, the black hole near horizon

geometry can be approximated as AdS2. Near zero temperature similar approximation

can also be made for the other mechanism when the spectral function is controlled by the

external source of dual scalar operator at the boundary. With this assumption in mind we

consider the Green’s function with the horizon value of the scalar field to be temperature

dependent and show the evolution of Fermi arc with temperature. Considering mass of the

Fermion to be zero,

νkf =
√

mkf
2L2

2 + k2yfL
2
2 − q2e2d (7.5)

=

√

1

6
[Φ(r0) (Φ(r0)µ2 − 2µkf cos θ)] + k2f − q2e2d

It is clear and well known that νk = 1/2 encodes the properties of marginal Fermi liq-

uid which has been phenomenologically introduced to describe the strange metal phase of

cuprate. From the above expression of νkf , it is clear that it is the horizon value of the scalar

field Φ(r0) which controls the properties of the Fermion spectral function. When the scalar

field condensates below a critical temperature, νk naturally depends on the temperature

through the scalar field value Φ(r0) at the horizon. Therefore, below Tc as one decreases the

temperature, Φ(r0) increases and consequently the properties of the Fermi surface changes

from Fermi liquid, ν > 1
2 , with long-lived quasi-particles to non-Fermi liquid νk <

1
2 with

well defined quasi-particles shown the figure 8. The anisotropic nature of the Fermi surface

can also be clearly observed. In the figure 9, we have plotted νkf in terms of explicit scalar

field horizon value Φ(r0) for a fixed temperature. For this case the horizon value depends on

the external source at the holographic boundary. One can, therefore, clearly see the quanti-

tative difference between the two mechanisms of controlling the Fermionic spectral function.
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θ=π/8

θ=π/3

θ=π/2

0 5 10 15 20 25

ω

T
0.0

0.2

0.4

0.6

0.8

1.0

νkf

Figure 8. Plot of νkf
as a function of ω/T keeping ω fixed. Behaviour is in the condensed phase

of the scalar field. We considered p = 1,m = 0, q = 1, dashed line corresponds to νkf
=1/2. It

illustrates how νkf
changes for ω

T
→ ∞ as seen in AdS4 Green’s function. As we decrease T for

fixed small ω, νkf
decreases below νkf

= 1/2.

θ=π/3

θ=π/2

0.2 0.4 0.6 0.8 1.0

Φ(r0 )

0.1

0.2

0.3

0.4

0.5

0.6

0.7

νkf

Figure 9. Plot of νkf
as a function of horizon value of the scalar field Φ(r0) associated with non-

zero source at the boundary. Temperature is fixed at T = 0.00238 for q = 1, m = 0, q = 1 and

dashed line is νkf
= 1/2. Here, we take m2

Φ
= −1.4, which is above the BF-bound to avoid the

condensation of the scalar field.

8 Summary and conclusions

Phenomena of pseudo-gap is an interesting area of condensed matter field in high temper-

ature superconductivity. In the context of holographic method, one interesting mechanism

of obtaining pseudo-gap was first proposed by Vanacore et al. [24]. A non-minimal cou-

pling between the Fermion and gauge field has been introduced in the AdS bulk. By

appropriately tuning this free coupling parameter p, anisotropic gap in the Fermion spec-

tral function is generated. In this paper we introduce a real scalar field whose non-zero

profile modifies the aforementioned Fermion-gauge interaction in terms of peff = pΦ, and

thereby controls the boundary Fermi surface. We have considered two possible scenarios of
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generating this coupling. In the first scenario, the scalar field in the bulk acts as a neutral

order parameter field at the boundary which gives rise to a phase transition from normal

phase to pseudo-gap phase at a critical temperature Tc. As emphasised before, this Tc can

be identified with the well known crossover temperature T ∗ in the high-Tc superconducting

phase diagram, below which pseudo-gap appears. For holographic Fermions, parameter νk
plays the role of operator dimension in the AdS2, which controls the behaviour of the low

energy Fermions at the boundary. In our analysis, this νk depends on the scalar field value

at the horizon. This in turn makes νk temperature dependent. We therefore, obtain the

characteristic changes of the Fermi surface while changing the temperature below Tc shown

in figure 4. Because of strong anisotropic nature of the Fermi surface, we also discussed

how the Fermionic properties changes along the Fermi surface from normal (νk < 1/2)

to marginal (νk = 1/2) and marginal to non-Fermi liquid (νk > 1/2) for a given tem-

perature shown in figure 8. In the second scenario, we tune the non-minimal coupling

peff by the dual boundary scalar operator as a source, which essentially corresponds to

the non-normalisable solution of the bulk scalar field. Hence for this system we do not

have any critical temperature. Therefore, we studied this case for a fixed temperature and

tune the boundary source which can be identified with the doping in high temperature

superconductor. However, detail study needs to be done to understand this identification.

Finally we examine an important question related to the existence of actual gap in the

Fermion spectral function. We consider two different holographic models-(A,B), associated

with two different Fermion-gauge coupling prescription. The figures 6 and 7 illustrate

the presence of the gap for both the models. For dipole type coupling the energy gap

is symmetric in nature figure 6, whereas for the other model it is anisotropic figure 6 in

accordance with the anisotropic Fermi arc figure 4. Therefore, in holographic pseudo-gap

phase, the Fermi arcs seem to be intimately connected with the partial gapping of the

Fermi surface. It would, therefore, be interesting to construct a holographic model where

partial gapping is not occurring.
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A AdS2 for Fermi arcs model-A

Since bulk scalar field condensates below the critical temperature which is very small, the

black hole near horizon geometry can be approximated as AdS2. With this assumption we

derive the boundary Green’s function considering the horizon value of the scalar field to be

temperature dependent and show the evolution of Fermi arc with temperature. Therefore,

we begin by expanding the equation (4.6) in the near horizon limit and focus only the

effects of scalar field. Near the horizon(r = 1), f(r) ≈ 6(r − 1)2, At ≈ µ(r − 1), also we

will set L = 1. Thus we arrive with the equation given by

χ∂χψI = L2

[

σ3m+ (−1)Iσ1mk

]

ψI − iσ2
(

χ+ qµL2
2

)

ψI − σ1kyL2ψJ , (A.1)
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with mk = (Φ(r0)µ− kx) and usual scaling given by χ = κ
ωL2

2

(r−1) . Here we note the

dependence of effective mass mk on the horizon value of the scalar field which in turn will

be dependent upon the black hole temperature.

In the low frequency limit χ→ 0, equation (A.1) becomes

χ∂χψI = L2

[

σ3m+ (−1)Iσ1mk

]

ψI − iσ2qedψI − σ1kyL2ψJ , (A.2)

where, L2 is the AdS2 radius given by L2=
1√
6
and µL2

2 = ed. Further we can write the

above equation in a matrix form as

χ∂χψ = Uψ. (A.3)

Here U is a real constant matrix, with ψ written as (ψ1, ψ2)
T . The exact form of the matrix

is given by

U =











mL2 −mkL2 − qed 0 −kyL2

−mkL2 + qed −mL2 −kyL2 0

0 −kyL2 mL2 mkL2 − qed
−kyL2 0 mkL2 + qed −mL2











.

Also U is a matrix with four eigenvalues ∓λI (I=1,2). Note that there are two eigen-

values with negative sign for first I component and positive sign for second component

with λ =
√

m2L2
2 +m2

kL
2
2 + k2yL

2
2 − q2e2d. The presence of non zero ky in this case changes

the dimension of the IR CFT operator.

When block diagonalise equation (A.1) we can write as

[

χ∂χ + iσ2 (χ+ qed)− (−1)Iukσ1
]

ψ1,2 = 0 (A.4)

with uk = L2

√

m2 + (Φ0µ− kx)2 + k2y. Since in equation (A.1) we have a mixing of four

spinors, therefore by following the well known methods in [4, 41] the retarded AdS2 Green’s

function is expressed as

GR(ω, k) = e−iπνk
Γ(−2νk)Γ(1 + νk − iqed)

Γ(2νk)Γ(1− νk − iqed)

× (m− iuk)L2 − νk − iqed
(m− iuk)L2 + νk − iqed

(2ω)2νk , (A.5)

where,

νk =
√

m2L2
2 +m2

kL
2
2 + k2yL

2
2 − q2e2d

νk plays the role of conformal dimension of dual infrared conformal field theory operator.

One can generalise for the finite temperature AdS2 Green’s function as in appendix C.

But the operator dimension νk would still have the same form. Further it is important see

that the dimension is dependent on the temperature through the scalar field condensation,

which is related to the scalar field horizon value Φ(r0). To construct the AdS4 Green’s

function one needs to match the solutions in AdS2 usually called inner region and AdS4
called outer region at their common boundary.
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B Details calculations for model-B

With the Fermions action given in (4.1)

S(2)
Fermion =

∫

d4x
√−giψ̄

(

/D −m− ipΦ/F
)

ψ (B.1)

where,

/D = eµc γ
c
(

∂µ + ωab
µ − iqAµ

)

/F =
1

2
γabeµae

ν
bFµν . (B.2)

The parameter p is a Pauli coupling, eµa , ωab
µ are vielbeins and spin connection. Here,

{a, b} are tangent space indices and {µ, ν} are for the bulk. Simplifying the Dirac equation

from the above action with appropriate choice of gamma matrices, followed by rescaling

ψ(r, ~xi) = (−ggrr)− 1

4 e−iωt+ik.xψ̃(r, k) and rewrite ψ̃ = (ψ̃1, ψ̃2)
T , because of symmetry we

can also set ky = 0, then we have the following equation

r2
√

f(r)∂rψ̃I =
iσ2
√

f(r)

(

ω + qµ
(

1− r0
r

))

ψ̃I

− σ3mrψ̃I − σ1

(

pΦ(r)µ
r0
r

± kx

)

ψ̃I , (B.3)

for I ǫ {1, 2}. We can further write ψ̃I = (βI , αI)
T and define the ratios ζ± = (β1,2/α1,2),

from equation (B.3), we get the following flow equation

r2
√

f∂rζ± + 2mrζ± − (X− ∓ k)− (X+ ± k)ζ2± = 0 (B.4)

where,

X± =
1√
f

(

ω + qµ

(

1− 1

r

))

± pΦµr0
r

Finally the Green’s function is given by

GR(ω, k) = lim
r→∞

1

r2m

(

ζ+ 0

0 ζ−

)

(B.5)

with in-falling boundary conditions at horizon for ω 6= 0 as ζ±(r = 1) = i. We will define

the spectral function as

A(ω, k) = Tr [Im (GR(ω, kx))] . (B.6)

C Finite temperature AdS2 Green’s function

For finite temperature the AdS2 × S2 metric is given by

ds2 =
L2
2

ζ2

(

−f(ζ)dτ2 + dζ2

f(ζ)

)

+
r2∗
L2
d~x2 , Aτ =

ed
ζ

(

1− ζ

ζ0

)

dτ
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where, f(ζ) = 1− ζ2

ζ2
0

. Now the Dirac equation obtained from (B.1) with this metric becomes

∂ζ Ψ̃− iσ2(ω + qAτ )

f(ζ)
Ψ̃ =

L2

ζ f(ζ)
(mk±σ1 +mσ3) Ψ̃ , (C.1)

where,mk± =
√
3pΦ(r0)± k.

Now this equation is exactly the equation in [4], and solution is given by

GR(ω, T ) = (4πT )2νkck± (C.2)

where

ck± =
Γ(−2νk±)

Γ(2νk±)

Γ(1 + νk± − iqed)

Γ(1− νk± − iqed)

Γ(12 + νk± − iω
2πT + iqed)

Γ(12 − νk± − iω
2πT + iqed)

(m− imk±)L2 − iqed − νk±
(m− imk±)L2 − iqed + νk±

(C.3)

Now, the conformal dimension of the operators in the IR = νk± + 1
2 , with νk± given by

νk± =
√

m2L2
2 +m2

k±L
2
2 − q2e2d − iǫ
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