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Abstract

Infections with Mycobacterium tuberculosis are substantially increasing on a worldwide scale and new antibiotics are
urgently needed to combat concomitantly emerging drug-resistant mycobacterial strains. The diarylquinoline TMC207 is a
highly promising drug candidate for treatment of tuberculosis. This compound kills M. tuberculosis by binding to a new
target, mycobacterial ATP synthase. In this study we used biochemical assays and binding studies to characterize the
interaction between TMC207 and ATP synthase. We show that TMC207 acts independent of the proton motive force and
does not compete with protons for a common binding site. The drug is active on mycobacterial ATP synthesis at neutral and
acidic pH with no significant change in affinity between pH 5.25 and pH 7.5, indicating that the protonated form of TMC207
is the active drug entity. The interaction of TMC207 with ATP synthase can be explained by a one-site binding mechanism,
the drug molecule thus binds to a defined binding site on ATP synthase. TMC207 affinity for its target decreases with
increasing ionic strength, suggesting that electrostatic forces play a significant role in drug binding. Our results are
consistent with previous docking studies and provide experimental support for a predicted function of TMC207 in
mimicking key residues in the proton transfer chain and blocking rotary movement of subunit c during catalysis.
Furthermore, the high affinity of TMC207 at low proton motive force and low pH values may in part explain the exceptional
ability of this compound to efficiently kill mycobacteria in different microenvironments.
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Introduction

Tuberculosis causes approximately 2 million deaths per year

and an estimated 1/3 of the world population harbors Mycobac-

terium tuberculosis in a dormant or latent form [1,2]. Infections with

multidrug-resistant and extensively drug-resistant mycobacterial

strains as well as co-infection with HIV pose a global health

challenge [3–5]. Existing drug regimens need to be administered

for at least 6 month, and up to 24 months in case of drug-resistant

tuberculosis [4,6]. To counteract development of drug-resistant

strains and to shorten tuberculosis treatment the discovery of new

drugs, validation of new target proteins, and understanding of

drug/target interactions are essential [6–8].

Energy metabolism has emerged as a new target-pathway for

development of new anti-tubercular drugs [8,9]. The diarylquino-

line TMC207 (Figure 1A) is a highly promising candidate for

treatment of drug-resistant tuberculosis and for shortening of

tuberculosis treatment [10–12]. TMC207 acts on a novel target,

mycobacterial ATP synthase [13] and is highly active on

replicating as well as on dormant mycobacteria [14,15]. In phase

II clinical trials addition of TMC207 to standard therapy

antibacterial regimens strongly accelerated conversion to a

negative sputum culture as compared to placebo [16]. TMC207

acts in a highly selective manner, with only minimal effect on

human ATP synthase and only minor side effects in human

patients [10,16,17].

ATP synthase is a ubiquitous key enzyme in energy metabolism

of virtually all cells that utilizes the energy stored in a trans-

membrane electrochemical potential difference of a coupling ion

for production of ATP [18]. In mycobacteria, ATP synthase has

been proven essential for growth on both fermentable as well as

non-fermentable carbon sources [19]. Bacterial ATP synthase is

composed of a membrane-embedded F0 sector with the subunit

composition a1b2c10–15 and a hydrophilic F1 part, consisting of

subunits a3b3cde (Figure 1B). Proton flow through F0 triggers

rotation of the oligomeric subunit c ring that is coupled to rotation

of the c subunit within the (ab)3 hexamer of F1 and finally drives

synthesis of ATP [20–22]. A significant step in proton transport is

proton binding to an essential acidic residue in the central, trans-

membrane part of subunit c [23]. TMC207 binds to purified

mycobacterial subunit c [13] and mycobacterial sensitivity for

TMC207 is influenced by point mutations located in the vicinity of
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the acidic residue in subunit c (Glu61 in M. tuberculosis, Figure 1B)

[10,13,24–26]. These findings suggest that TMC207 may bind in

that central, mostly hydrophobic part of subunit c. Based on

docking studies it has been proposed that TMC207 binds at the

interface of subunits c and subunit a [27]. The drug is predicted to

mimic a conserved basic residue in the proton transfer chain,

arginine186, subsequently interfering with the rotary movement of

subunit c. [27]. However, no high-resolution structure is available

for mycobacterial ATP synthase or its subunits. Moreover,

biochemical data on TMC207/target interaction to test the

predictions from the docking studies are scarce.

In the present report we used biochemical assays and binding

studies to investigate the mode of binding between TMC207 and

mycobacterial ATP synthase. We study factors potentially

influencing drug/target interaction, such as the proton motive

force, the pH value and buffer ionic strength. The results are

correlated with proposed models for the TMC207 binding site and

discussed in view of TMC207 being active in different microen-

vironments.

Materials and Methods

Bacterial strains and growth conditions
Mycobacterium smegmatis mc2155 was kindly provided by B.J.

Appelmelk, Department of Molecular Cell Biology & Immunol-

ogy, VU University Medical Center Amsterdam, the Netherlands.

Replicating cultures of M. smegmatis were grown in Middlebrook

7H9 broth (Difco) with 10% Middlebrook albumin dextrose

catalase enrichment (BBL) and 0.05% Tween-80 at 37uC to the

late exponential phase.

Preparation of inverted membrane vesicles
Inverted membrane vesicles (IMVs) of M. smegmatis were

prepared as described previously [13]. Briefly, cells were pelleted

by centrifugation at 5000 g for 20 min and washed once with

Phosphate-buffered saline (PBS, pH 7.4). Five grams of cells (wet

weight) were resuspended in 10 ml of 50 mM MOPS-KOH

(pH 7.5), 2 mM MgCl2 including protease inhibitors (complete,

EDTA free; protease inhibitor cocktail tablets from Roche).

Lysozyme (1.2 mg/ml), 1500 units of deoxyribonuclease I

(Invitrogen) and 13 mM MgCl2 were added and cells were

incubated with stirring at room temperature for 45 minutes. The

cells were broken by three passages through a pre-cooled French

pressure cell at 20000 psi (Thermo Electron, 40K). The lysate was

centrifuged at 5000 g and 4uC for 20 min to remove unbroken

cells. The supernatant was centrifuged at 370000 g and 4uC for

1 h and the pellet of IMVs was washed with 50 mM MOPS-KOH

(pH 7.5), 2 mM MgCl2. After the second centrifugation step, the

inverted membrane fraction was resuspended in an appropriate

volume of 50 mM MOPS-KOH (pH 7.5), 2 mM MgCl2.

Assay of ATP synthesis
ATP synthesis activity was measured as described previously

[17] with the modifications described below. IMVs (1 mg/ml)

were incubated in either 50 mM MES-KOH (pH 5.25) or 50 mM

MOPS-KOH (pH 6.0–7.5) containing 2 mM MgCl2, 2 mM

ADP, 20 mM KH2PO4, 100 mM P1,P5-di(adenosine-59) penta-

phosphate (Ap5A), 25.4 mM glucose, 11.8 U/ml hexokinase

(Sigma) and protease inhibitors (complete, EDTA-free; protease

inhibitor cocktail tablets from Roche). To manipulate the proton

motive force samples were supplemented with varying concentra-

tions of uncoupler SF6847. Samples (0.25 ml) were incubated with

vigorous stirring in 18-ml flasks at 37uC. The concentration of

NADH to initiate the reaction was varied between 5–15 mM.

After 1 h, each reaction was stopped with 25 mM EDTA,

followed by transfer to ice. Samples were transferred to Eppendorf

tubes, boiled for 5 min and centrifuged (10000 g, 20 min) to

remove denatured protein. In the supernatants, the synthesized

glucose-6-phosphate was oxidized by 2.5 mM NADP in the

presence of 3 U/ml of glucose-6-phosphate dehydrogenase

(Roche). NADPH formation was monitored using a spectropho-

tometer at 340 nm. The 50% inhibitory concentrations (IC50s)

were determined using GraphPad Prism version 5.00 for

Macintosh, GraphPad Software, San Diego California USA.

The data were fitted with a model describing a one-site binding

hyperbola.

BIAcore binding studies
Binding studies using Surface Plasmon Resonance technology

were carried out using a BIAcore 2000 machine with a

carboxymethyl (CM-5) analytical chip. An amine-analog of

TMC207, which carries an amino group instead of the bromine

[13], was bound to the chip at 25uC as follows. 30 ml of an

equimolar mixture of 1-ethyl-3-(3-dimethylaminopropyl) carbodii-

Figure 1. TMC207 and its target mycobacterial ATP synthase. (A) Structure formula of TMC207. (B) ATP synthase subunit composition with
subunit c in grey. A homology model of a subunit c monomer from Mycobacterium tuberculosis is shown enlarged. The acidic residue Glu61, essential
for proton transport, is depicted in red. Point mutations that influence mycobacterial sensitivity for TMC207 are indicated in colour.
doi:10.1371/journal.pone.0023575.g001
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mide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) was

used to activate the carboxy-methyl surface of the chip.

Subsequently, 30 ml of the TMC207 amine analog (50 mM) in

10 mM Hepes-KOH (pH 7.5), 2 mM MgCl2, 150 mM NaCl was

bound to the activated chip at a flow rate of 2 ml/min. Non-

reacted activated EDC/NHS on the chip surface was blocked by

the infusion of 50 ml of 1 M ethanolamine.

Subunit c from Mycobacterium tuberculosis was purified as

described in previously [13]. The purified subunit c (13 mM) was

injected onto the compound-linked Biacore chip at a flow rate of

30 ml/min in 10 mM Hepes-KOH (pH 7.5), 2 mM MgCl2, 0.5%

Triton X-100 containing 50 mM, 150 mM or 300 mM NaCl

(37uC). Association, dissociation and equilibrium dissociation

constants were determined using GraphPad Prism version 5.00

for Macintosh, GraphPad Software, San Diego California USA.

Results and Discussion

TMC207 does not compete with protons for a common
binding site

We investigated the effect of the proton motive force on ATP

synthesis inhibition by TMC207. TMC207 may interfere with

ATP synthesis by competing with protons for the same binding site

on ATP synthase. A high proton motive force may then

outcompete TMC207 from its binding site, leading to reduced

drug/target binding. Conversely, a decreased proton motive force

then would lead to increased TMC207 binding. Moreover, the

proton motive force not only supplies the energy required for

synthesis of ATP, but also constitutes an important factor

regulating the conformation of ATP synthase (for review see

[28]). Consequently, the affinity of several known ATP synthase

inhibitors depends significantly on the proton motive force [29–

31].

The proton motive force across inverted membrane vesicles

(IMVs) of Mycobacterium smegmatis was monitored with the ACMA

quenching method as in [32] and modulated using an uncoupler,

SF6847 (Figure 2A). As expected, with increasing uncoupler

concentration the ATP synthesis activity decreased in a dose-

dependent manner, with ,10% residual activity in the presence of

10 mM uncoupler (Figure 2B). We then tested three selected

concentrations of TMC207 (2.5 nM, 5 nM and 7.5 nM), which in

the absence of uncoupler decreased ATP synthesis activity by

respectively 25%, 50% and 67%. As depicted in Figure 1B the

inhibitory effect of TMC207 did not significantly change at lower

proton motive force. The drug concentrations for half-maximal

inhibition (IC50) values were determined to 5.0–7.5 nM TMC207

for all three uncoupler concentrations investigated. As a control,

for membrane vesicles carrying the resistance mutation D32V in

subunit c [10], no inhibition by 7.5 nM TMC207 was detected

(Figure 2B). As a further control, inhibition by sodium azide

(10 mM), an inhibitor known to act in a proton motive force

dependent manner [29,30], increased from ,5% in the absence of

uncoupler to .50% in the presence of the highest uncoupler

concentration (data not shown). Thus, the proton motive force

does not significantly influence the target’s ability for binding of

TMC207, neither by inducing conformational changes in ATP

synthase, nor by outcompeting TMC207 from its binding site.

These data strongly suggest that TMC207 does not directly

compete with protons for a common binding site.

TMC207 inhibits ATP synthesis at low and neutral pH
values

Next, we investigated if (de-) protonation of TMC207 or of

mycobacterial ATP synthase affects drug/target interaction. The

membrane vesicles from M. smegmatis were capable of detectable

ATP synthesis activity over the whole pH range investigated

(pH 5.25–pH 7.5). As shown in Figure 3, the external pH did not

significantly influence the inhibitory action of TMC207 between

pH 5.25–7.5, with IC50 values determined to 5.0–7.5 nM for all

pH values tested. Thus, neither (de-) protonation of TMC207 nor

(de-) protonation of the target in the pH range investigated

significantly changed the drug’s ability to interact with its target.

The dimethyl-amino group of TMC207 can take up a proton,

which can be observed by a peak shift from 1.87 ppm to 2.18 ppm

in the 1H NMR spectrum (data not shown). A pKa value of 9.0–

10.0 in aqueous solution is predicted, although this value may be

Figure 2. ATP synthesis inhibition by TMC207 at low proton motive force. (A) Inverted membrane vesicles from Mycobacterium smegmatis
were diluted to 0.18 mg/ml in buffer containing 2 mM ACMA. To detect the proton motive force, quenching of ACMA fluorescence was investigated
after addition of 5 mM succinate in the presence of increasing concentrations of the uncoupler SF6847. At the indicated time point, 1 mM of
uncoupler SF6847 was added as control to collapse the proton gradient. (B) ATP synthesis by membrane vesicles of M. smegmatis (1 mg/ml) was
measured in the presence of TMC207 and varying concentrations of uncoupler SF6847 to modulate the proton motive force. Samples were incubated
at 37uC for 1 h in the presence of an ADP-regenerating system, and produced ATP was quantified spectrophotometrically by monitoring oxidation of
glucose-6-phosphate with NADP+. As a control, 100 mM DCCD was added.
doi:10.1371/journal.pone.0023575.g002
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lower in a hydrophobic membrane environment. Most of the

inhibitor molecules will be protonated at neutral or acidic pH and

the concentration of protonated TMC207 will not change

significantly during a titration between pH 5.25 and 7.5 (,1.1fold

increase according to the Henderson-Hasselbalch equation,

assuming a pKa of 9.5). The concentration of unprotonated

TMC207 is expected to decrease strongly from pH 7.5 to pH 5.25

(.100fold according to the Henderson-Hasselbalch equation).

The lack of pH dependency observed in our experiments thus

suggests that the protonated form of TMC207 is the active drug

entity.

Electrostatic interactions are important for binding of
TMC207

Docking studies predict that electrostatic interactions play an

important role in binding of TMC207 to ATP synthase [27,33].

To test this prediction, we determined the effect of buffer ionic

strength on TMC207 action. ATP synthesis by M. smegmatis

membrane vesicles was susceptible to TMC207 at all ionic

strengths conditions investigated (0 mM, 300 mM and 600 mM

NaCl) (Figure 4A). However, sensitivity was clearly lower at high

ionic strength, with IC50 values increasing from 3.9 nM at 50 mM

NaCl, 5.0 nM (300 mM NaCl) to 12.9 nM (600 mM NaCl).

To support this finding, we used Surface Plasmon Resonance

Sensing to characterize the interaction between TMC207 and

purified ATP synthase subunit c. For these experiments we used

an analog of TMC207, which carries an amino group instead of a

bromine group [13] and thus can be conveniently linked to a

BIAcore chip. As shown in Figure 4B, subunit c from M. tuberculosis

bound to this TMC207 amino-analog [13] linked onto the chip.

Subsequently, we tested the influence of various the salt

concentrations (50–300 mM) in the subunit c sample and in the

running buffer on drug/target interaction. Increasing concentra-

tions of shielding ions significantly decreased binding affinity

(Figure 4B). The equilibrium dissociation constants (KD) in the

presence of 50 mM, 150 mM and 300 mM NaCl were deter-

mined to 1.5 mM, 4.2 mM and 19.7 mM, respectively. The

deviation between KD values and IC50 values may be explained

by subunit a contributing to the TMC207 binding site as well

[13,27,33]. The stronger ionic strength dependency observed in

the BIAcore binding assays may be due to full accessibility of both

drug and target for the salt ions, whereas in the membrane vesicle

ATP synthesis assay the binding site of TMC207 supposedly is less

accessible for the salt ions.

Our results suggest that electrostatic forces are an important

factor for binding of TMC207 to ATP synthase, more specifically

to its subunit c.

TMC207 binds to a distinct binding site in ATP synthase
ATP synthase is a complex membrane protein and in particular

its membrane spanning regions may provide multiple binding sites

for a predominantly hydrophobic molecule, such as TMC207.

Therefore, we investigated if the inhibition of synthesis by

TMC207 can be explained by binding of a single molecule

TMC207 per ATP synthase complex. As depicted in Figure 5A,

the dose-dependent inhibition of the ATP synthesis by TMC207

could be fitted accurately (R2.0.99) with a simple one-site

saturation-binding curve. This indicates that interaction of

TMC207 with a distinct binding site in ATP synthase is

responsible for inhibition of ATP synthesis.

In order to corroborate this result, we also determined if binding

of TMC207 to purified subunit c from M. tuberculosis or to the

purified ATP synthase holoenzyme from Bacillus PS3 is consistent

with a one-site binding mechanism. The Surface Plasmon Reso-

nance studies showed that both M. tuberculosis subunit c and Bacillus

PS3 ATP synthase bound to the TMC207 amine-analog

immobilized on a BIAcore chip (Figure 5B and C). In both cases

the obtained binding curves could be fitted well (R2.0.99) with a

simple mono-exponential model, indicating only one type of

binding site (Figure 5B and C). Taken together, our results suggest

that TMC207 binds to a distinct drug-binding site in mycobac-

terial ATP synthase, most likely one molecule TMC207 is

sufficient to block the target enzyme’s activity.

Mechanism of TMC207/target interaction
Insight in the mode of binding of antibacterial drugs to their

target proteins is an important step in understanding the

mechanism of drug action. Moreover, new drug derivates may

be designed based on knowledge of drug/target interaction [33].

Previously, docking studies based on free energy minimization

predicted a binding niche for TMC207 in mycobacterial ATP

synthase [27,33]. This site is mainly made up by subunit c,

supplemented with residues from subunit a. More specifically,

TMC207 in an extended conformation [34] has been proposed to

interact via its protonated basic amino group with the carboxyl

group of glutamate61 in subunit c [27,33].

Our results show that TMC207 binds to a distinct drug-binding

site within ATP synthase with electrostatic interactions playing an

important role in drug binding. Most likely, the protonated form of

TMC207 is the active molecule. These results are consistent with

the model proposed by de Jonge et al., as the predicted interaction

of the protonated amino group of TMC207 with Glu61

predominantly is electrostatic in character and contributes signifi-

cantly to efficient drug binding. These electrostatic interactions are

expected to be accompanied by hydrophobic and stacking

interactions between aromatic rings of TMC207 and aromatic

side chains in subunit c [33], which may explain why in our

experiments even at high salt concentrations still significant

binding was observed. The observed lack of competition between

TMC207 and protons for a common binding site suggests that

protonated TMC207 may interfere with conformational changes

Figure 3. Effect of TMC207 on mycobacterial ATP synthesis at
low pH. ATP synthesis in the presence of TMC207 and varying external
pH values was measured for Mycobacterium smegmatis inverted
membrane vesicles (1 mg/ml). Samples were incubated at 37uC for
1 h in the presence of an ADP-regenerating system, and produced ATP
was quantified spectrophotometrically by monitoring oxidation of
glucose-6-phosphate with NADP+. As a control, 100 mM DCCD was
added.
doi:10.1371/journal.pone.0023575.g003

Interaction of TMC207 with ATP Synthase

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23575



Figure 4. Electrostatic interactions are important for binding of TMC207. (A) ATP synthesis in the presence of TMC207 and increasing
sodium chloride concentrations was measured for inverted membrane vesicles of Mycobacterium smegmatis (1 mg/ml). Samples were incubated at
37uC for 1 h in the presence of an ADP-regenerating system, and produced ATP was quantified spectrophotometrically by monitoring oxidation of
glucose-6-phosphate with NADP+. As a control, 100 mM DCCD was added. (B) BIAcore binding studies. Purified subunit c from wild-type
Mycobacterium tuberculosis was injected onto a chip with immobilized amine analog of TMC207 in the presence of 50, 150, and 300 mM NaCl at 37uC.
doi:10.1371/journal.pone.0023575.g004

Figure 5. TMC207 binds to a defined binding site in ATP synthase. (A) The dose-dependency of ATP synthesis inhibition by TMC207 in
inverted membrane vesicles of Mycobacterium smegmatis was fitted with a one-site binding hyperbola (Y = 104.9X/6.3+X, R2.0.99) (B) Binding of
purified ATP synthase subunit c from Mycobacterium tuberculosis to an amine analog of TMC207 linked onto a BIAcore chip was fitted using mono-
exponential binding models (Association = Req*(12exp(21*53737X)) and Dissociation = 165.654*exp(21*0.002295*(X245)) R2.0.99) and (C)
Binding of purified ATP synthase from Bacillus PS3 to an amine analog of TMC207 linked onto a BIAcore chip was fitted using mono-exponential
binding models (Association = Req*(12exp(21*153.7X)) and Dissociation = 8575.97*exp(21*0.0001030*(X21187)) R2.0.99).
doi:10.1371/journal.pone.0023575.g005
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in ATP synthase, e.g. block the rotary motion of subunit c. This

result is consistent with the hypothesis that TMC207 prevents

rotation of subunit c by mimicking the function of arginine186 in

subunit a [27], a conserved basic residue in the proton transfer

chain [35].

Taken together, our results are consistent with previous

predictions based on docking studies. TMC207, bound in a

defined niche at the interface of subunits c and subunit a, may

interfere with proton transfer and subsequently block conforma-

tional changes associated with ATP synthase activity.

TMC207 can be active in a broad range of physiological
microenvironments

Mycobacteria can persist in a mammalian host in ‘‘low energy’’

environments due to exceptional metabolic flexibility [36], e.g. in

poorly aerated parts of the lung, within encapsulated lesions or

within the endosome system of host macrophages [37]. Bacteria in

these microenvironments are notoriously difficult to kill with

antibacterials, such as isoniazid or ethionamide [38,39]. Previous-

ly, it was demonstrated that mycobacteria cultivated in vitro in low

oxygen tension model systems were efficiently killed by TMC207

[14,15]. However, in addition to low oxygen tension, mycobac-

terial microenvironments can display nutrient limitation, which

may allow for only a low proton motive force across the

cytoplasmatic membrane [40]. Moreover, mammalian granuloma

can be acidic due to active inflammation, with pH values as low as

5.0 [9]. The high affinity of TMC207 for its target at both low

proton motive force and low pH values may contribute to the

drug’s ability to render infected tissue culture-negative in mice

faster than current first- and second-line antibiotics [10–12].

Conclusion
Our results show that TMC207 binds to a distinct drug-binding

site in its target and we provide experimental support for a binding

model previously proposed based on docking studies [27]. The

drug most likely interferes with proton transfer and blocks

conformational changes associated with proton flow.

TMC207 efficiently interacts with its target independent of

environmental conditions such as the local pH and the proton

motive force. These properties, combined with the essentiality of

the target, may explain how TMC207 can act as a highly potent

antibacterial drug.
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