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Yearslong time series of high-precision brightness measurements have been assembled for thousands of
years with telescopes operating in space. Such data have allowed astronomers to measure the physics of
stellar interiors via nonradial oscillations, opening a new avenue to study the stars in the Universe.
Asteroseismology, the interpretation of the characteristics of oscillation modes in terms of the physical
properties of the stellar interior, brought entirely new insights in how stars rotate and how they build up
their chemistry throughout their evolution. Data-driven space asteroseismology has delivered a drastic
increase in the reliability of computer models mimicking the evolution of stars born with a variety of
masses andmetallicities. Suchmodels are critical ingredients formodern physics as awhole because they
are used throughout various contemporary and multidisciplinary research fields in space science,
including the search for life outside the Solar System, archaeological studies of the Milky Way, and the
studyof single andbinary supernovaprogenitors, amongwhich are future gravitationalwave sources.The
specific role and potential of asteroseismology for thosemodern research fields are illustrated. The review
concludes with current limitations of asteroseismology and highlights how they can be overcome with
ongoing and future large infrastructures for survey astronomy combinedwith new theoretical research in
the era of high-performance computing. This review presents results obtained throughmajor community
efforts over the past decade. These breakthroughswere achieved in a collaborative and inclusive spirit that
is characteristic of the asteroseismology community. The review’s aim is to make this research field
accessible to graduate students and readers coming from other fields of physics, with incentives to enjoy
and join future applications in this domain of astrophysics.
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I. LOOKING DEEP INTO STARS

In his “News and Views” published in the journal Nature,
Gough (1985b) announced the “beginnings of asteroseismol-
ogy.”1 He explained that this is “the science of determining the
internal structure of stars from the properties of dynamical
oscillations,” following the earlier introduction of the term in
the scientific community by Christensen-Dalsgaard (1984)
during a conference in Meudon. Gough ends his Nature article
with the exciting prospect of “getting direct information about
the stratification of the energy-generating core of a distant
star,” which sounded like a revolutionary idea at the time. A
decade later, a less optimistic view was expressed by Brown
and Gilliland (1994) in the introduction of their review: “The
Sun is (and will likely remain) the outstanding example of the
progress that can be made using seismological methods.”
It is remarkable that a cosmologist was more optimistic on

the matter than the experts, as expressed by Longair (2001) in
his invited reflection: “At the same time, we need to under-
stand the internal structures of the stars. In 1915, the break-
through came with the plotting of the Hertzsprung-Russell
diagram for a few hundred stars for which distances had been
measured. The counterpart for the 21st century will be
asteroseismology, the direct measurement of the internal
structure of the stars by measuring their normal modes of
oscillation. It is salutary to note that helioseismology has
revolutionized our understanding of the interior of the Sun in
ways which could not necessarily have been predicted. The
precise location of the boundary between the radiation- and
convection-dominated zones and their three-dimensional
structures are spectacular advances—a major goal of the
astronomy of the future must be to perform the same studies
on the stars present in the Hipparcos Hertzsprung-Russell
diagram.”
Meanwhile, we have Gaia Hertzsprung-Russell diagrams

(HRDs) based on space astrometry with microarcsecond
precision for more than 109 stars in the Milky Way and
beyond (Babusiaux et al., 2018), and asteroseismology for
tens of thousands of those. Indeed, the past decade has seen
the assembly of long-duration (up to four uninterrupted years)
photometric data thanks to dedicated space missions, leading
to the time-variable properties of stars derived with precisions
of micromagnitude (μmag). This corresponds to flux varia-
tions at levels of parts per million (ppm). The primary research
goal of several of those missions was the search for exo-
planets around distant stars, but this is fine: the machinery
delivered the data appropriate for asteroseismology (quite
often, derogatorily, called “stellar noise” by exoplanetologists,
while it actually concerns beautiful stellar signals; see the
later discussion of Fig. 3. Asteroseismology based on these
space photometric light curves meanwhile delivered interior
rotation rates, stratification properties, and ages of thousands
of distant stars, with impressive relative precisions unachiev-
able by other methods; see Aerts, Mathis, and Rogers (2019),
Table 1. The past few years, we have even reached the status of

being able to derive the core rotation frequency for more than
a thousand stars and the near-core mixing for many of them.
The Sun is no longer the outstanding example to assess the
properties of the deep interiors of stars. Those properties have
become accessible thanks to the detection and interpretation of
hundreds of nonradial oscillations with probing capacity of
the deepest internal layers of the stars. Such modes have now
been identified in stars across almost the entire stellar mass
range and have turned stellar interiors into observational
territory.
History has shown the optimistic daring views to be

visionary and at the same time entirely justified. The study
of stellar interiors is currently a data-driven modern topic. As
we highlight in this review, asteroseismology not only reveals
the need for better models of stellar structure and evolution
but is paving the way toward them. It brings us into the
renaissance of stellar evolution theory and does so from a
multidisciplinary approach relying on space science and
technology coupled with mathematical modeling. More par-
ticularly, asteroseismology involves data analysis methods
such as time-series analysis, pattern recognition, and statistical
modeling, while relying on various fields of physics and
chemistry such as thermodynamics, nuclear and atomic
physics, and quantum mechanics. The bridging of these
scientific fields, starting from the appropriate observational
input, allows us to achieve the long-awaited calibration of the
physical properties of stellar interiors. We anticipate that the
asteroseismically calibrated stellar models will be highly
beneficial for various fields of research in astronomy, and
in computational physics in general.
We now provide concise discussions of some key obser-

vational and data analysis aspects of asteroseismology, omit-
ting many of the details, which can be found in the referenced
literature. The bulk of the review then focuses on calibrating
and improving the physics of stellar interiors, much in line
with the previous quotations and with the purpose of Reviews
of Modern Physics.

A. Stars and their “good” vibrations

Stellar variability is omnipresent in the HRD, which is a key
diagnostic diagram used to evaluate stellar evolution theory.
Such evaluations are often done by comparing the position of
observed stars in this diagram with evolutionary tracks, such
as the ones indicated by the full lines in Fig. 1. These tracks
are based on particular versions of stellar evolution theories, of
which there are many variants, as further outlined in Sec. II.A.
Those types of comparisons between observations and theory
are merely a crude evaluation because the HRD relies on only
two quantities: the effective temperature of the star Teff and its
luminosity L (usually expressed in solar luminosity L⊙). As
detailed in Sec. II.A, stellar models contain a multitude of free
parameters and rely on input physics suffering from uncer-
tainties. The evaluation of these models therefore requires
additional observational diagnostics to accompany the posi-
tion of an observed star in the HRD. Surface abundances
derived from high-precision spectroscopy offer important
constraints in this respect, among various other observational
diagnostics of the stellar atmosphere. These typically reach

1For the etymology of this specific term in astrophysics, see
Gough (1996) in response to the anecdote on the terminology raised
by Trimble and Leonard (1996).
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relative precisions of 1% to 5% for the best cases; see Table 1
given by Aerts, Mathis, and Rogers (2019).
A new view on stellar variability in the HRD is offered by

data from the European Space Agency (ESA) Gaia satellite
(Eyer et al., 2019). Using 22 months of calibrated photo-
metric, spectrophotometric, and astrometric Gaia data, this
study showed how the large-amplitude radial modes of
classical variables, such as Cepheids, RR Lyrae stars, and
Miras (indicated in Fig. 1), makes them “move” in the
observational analog of the HRD, i.e., a color-absolute

magnitude diagram, during their pulsation cycle. This
introduces a new “time” dimension in the evaluation of
stellar evolution theory. These radial pulsators remain of vast
interest and importance for observational cosmology
(Soszyński et al., 2016; Anderson and Riess, 2018) but
are not considered in this review. Our attention is directed
entirely to stars exhibiting multiple nonradial oscillations,
which in the context of asteroseismology deserve to be
called “good vibrations” after the eponymous 1966 song by
the Beach Boys.

FIG. 1. Hertzsprung-Russel diagram (HRD) showing the position of different classes of pulsating stars. The abbreviation of the classes
follows the nomenclature used by Aerts, Christensen-Dalsgaard, and Kurtz (2010) in Chap. 2, to which we refer for extensive
discussions of all indicated classes in terms of the excitation mechanisms, along with the typical periods and amplitudes of the
oscillations. The hatching line style used in each of the ellipses marks the dominant type of oscillation mode in each class: == for gravity
modes and nn for pressure modes. The recently discovered stochastic low-frequency (SLF) variability in O-type stars and blue
supergiants is discussed in the text and has been added as a compararison with previous versions of this plot. The solid black lines and
the black dotted line represent standard evolutionary model tracks, with birth masses and evolutionary timescales as indicated. The
borders of the classical instability strip are plotted with gray lines, while the double line represents the zero-age main sequence (ZAMS).
Early versions of this figure were made by Jørgen Christensen-Dalsgaard (Aarhus University) and Pieter Degroote (KU Leuven).
Adapted from Pápics, 2013.
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From a physical viewpoint, nonradial oscillation modes are
solutions to the equation of motion of a star that gets perturbed
from its equilibrium. The modes are classified into two main
groups according to which of the two forces, the pressure force
or the buoyancy force of Archimedes, is dominant in restoring
the equilibrium. Modes dominantly restored by the pressure
force are called pressure modes, or “p modes” for short. These
mainly have large amplitude in the envelopes of stars and are
characterized by dominant radial motions. Gravity modes, or
“g modes,” are dominantly restored by the buoyancy force of
Archimedes and attain large amplitudes in the deep interior of
the star; they are characterized by dominant horizontalmotions.
As stars evolve, a powerful type of mode having a pressure-
mode character in the envelope and a gravity-mode character in
the deep interior emerges. These so-called mixed modes have
excellent probing power throughout the entire star.
A formal mathematical definition of nonradial oscillation

modes is given in Sec. II. However, it is instructive to already
know what the modes look like. One can consider nonradial
modes of a 3D spherical star as the analogy of the vibration
modes of a 1D string. Each vibration mode of a string makes it
deviate from its equilibrium position and is characterized by
three numbers: its frequency, its amplitude, and its number of
nodes n. The nodes are points where the string does not move
during the vibration cycle. One adopts the terminology that
n ¼ 0 corresponds to the fundamental vibration mode of the
string:n ¼ 1 to the first overtone, n ¼ 2 to the second overtone,
etc. Each nonradial mode of a 3D star makes the gas particles in
this star deviate from their equilibrium position and is also
characterized by a frequency and an amplitude, but now three
integer numbers are needed to indicate the positions of the
nodes of the displacement vector with respect to a symmetry
axis of the star. Given that it concerns a 3D spherically
symmetric body whose fluid elements get displaced from their
equilibrium position by a vector ξ ¼ ðξr; ξθ; ξϕÞ, the angular
geometry of this vector is described in terms of a spherical
harmonic function, containing a Legendre polynomial Pm

l as a
function of colatitude θ and a harmonic function in terms of
azimuth ϕ. The rotation axis is usually taken as the symmetry
axis of the modes. Thus, for each nonradial oscillation mode,
three labels ðl; m; nÞ are used to indicate the nodes of the mode,
where l is the total number of nodal lines on the stellar surface
and jmj of those nodal lines pass through the symmetry axis.
The n value again indicates the overtone of the mode, which
now concerns the number of nodal shells situated inside the star
that do not move during the oscillation cycle. The special case
of a radialmode has l ¼ m ¼ 0 and displaces the fluid elements
inside the star in the radial direction only.
The symmetry axis of the oscillations is “inclined” with the

line of sight of a distant observer by an unknown angle called
the inclination angle i. Figure 2 gives a visual representation
of the radial component of the displacement vector ξr for some
typical nonradial modes “observed” under an inclination angle
of 60°. The term observed is a bit misleading here because
stellar surfaces cannot be resolved well enough to study the
majority of nonradial oscillations of stars, except for the Sun.
Rather, the signatures of the oscillation modes are “detected”
in observables that are stellar quantities integrated over
the part of the stellar disk that is visible for an observer.

The nonradial oscillations make some parts of the star move
up (indicated in blue in Fig. 2), while others are going down
(red patches in Fig. 2) periodically according to the eigen-
frequency of the mode. Such motions imply small local
changes in the velocity, temperature, and radius of the stellar
gas, creating local flux variations. These flux variations
change periodically in time during the oscillation cycle,
i.e., half a cycle further the red patches in Fig. 2 will have
become blue, and vice versa. The surface-integrated effect due
to each nonradial mode measured in flux or velocity variations
by an observer depends on the inclination angle because it is
determined by the position of the surface nodal lines in the line
of sight. This interplay between the geometry of the mode and
the value of i gives rise to so-called partial cancellation due to
integration over the visible stellar disk, which increases as the
degree of the mode increases; see Figs. 1.4 and 1.5 given by
Aerts, Christensen-Dalsgaard, and Kurtz (2010). In particular,
when nonradial modes are seen under their angle of complete
cancellation, they do not lead to variability, while the latter is
maximal when seen under their optimal angle of least
cancellation. For the values of these special mode angles,
we refer to Table B.1 in Appendix B of Aerts, Christensen-
Dalsgaard, and Kurtz (2010). It is also noteworthy that
partial cancellation works differently in photometric versus

FIG. 2. Snapshot of the angular dependence of the radial
component of the displacement vector ξr at one point in the
oscillation cycle for various nonradial modes, seen under an
inclination angle of 60°. White bands indicate the positions where
ξr ¼ 0; red and blue represent areas at the stellar surface moving
in (out) at the chosen time. Shown from left to right are first row,
axisymmetric (m ¼ 0) modes with l ¼ 1; 2; 3; second row,
sectoral (l ¼ jmj) modes with l ¼ 1; 2; 3; third row, tesseral
(l ≠ jmj) modes with ðl; jmjÞ ¼ ð3; 1Þ; ð6; 4Þ; ð15; 5Þ. High-de-
gree modes such as the two in the third row are usually not
detected in space photometry due to cancellation effects when
integrating the flux variations across the visible stellar disk.
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spectroscopic data, because the integrated flux is highly
sensitive to limb darkening but the integrated velocity is less
sensitive to it. In addition, the effect is different for p and g
modes. The sensitivity to limb darkening is smaller for p
modes because their ξr is dominant in the line of sight, while g
modes have dominant ξθ and ξϕ and are hence much more
prone to limb-darkening effects for an observer.
Measuring the small flux or velocity variations during an

oscillation-mode cycle allows us to derive the mode’s period
without having to resolve the stellar surface. This is how the
time-variability aspect of asteroseismology works. It is in
principle an easy aspect of the research provided that one has
data with a high duty cycle, which is defined as the fraction of
the mode period covered with data expressed as a percentage.
In practice, the overall beating cycle encapsulating the global
pattern due to all active modes of the star has to be covered
with a high duty cycle. Moreover, the data need to have noise
levels below the amplitudes of the modes in the appropriate
frequency regime. These scientific requirements become
easier to meet the longer the time series and the more data
points that one has available. Detecting oscillation mode
frequencies and estimating their uncertainty is also much
easier to do from uninterrupted data with a high duty cycle
than from gapped time-series data with a low duty cycle.
Ledoux (1951) proposed the occurrence of two nonradial p

modes in a rotating star as the explanation for the detected
variable velocity behavior of the star β Canis Majoris. His
landmark paper provided the first correct interpretation and
understanding of the observed biperiodic variability (i.e.,
caused by two simultaneously active p modes) of a rotating
star in terms of the physics of nonradial oscillations. As a
member of the class of βCep stars, β Canis Majoris was thus
the first star with confirmed nonradial modes occupying the
proper ellipse in Fig. 1. It took another 41 years until the
excitation mechanism of those nonradial oscillations was
understood in terms of a heat mechanism, also known as
the opacity mechanism (Moskalik and Dziembowski, 1992).
We return to mode excitation mechanisms in Sec. III.A.
During the half century following Ledoux’s insightful 1951

paper, the search for and identification of nonradial oscil-
lations in time-series observations became an active research
field. Inventories of nonradial modes and their identification in
terms of the spherical wave numbers l and m (see Sec. II and
Fig. 2) grew steadily. Nevertheless, asteroseismology in the
spirit of Gough and Longair, i.e., with the aim to improve the
interior physics of stars undergoing nuclear fusion, was
nowhere near the horizon. Major successes were, however,
booked for g modes of white dwarfs along their cooling track
in the HRD; see Fig. 1. Brown and Gilliland (1994) indeed
discussed the category of the stars “unlike the Sun.” They
illustrated that white-dwarf asteroseismology based on weeks-
long ground-based multisite monitoring of nonradial oscil-
lations was furthest advanced, and that the next best cases of
the rapidly oscillating Ap (roAp) and δ Sct stars (see Fig. 1)
were still limited in terms of physical interpretation. For none
of the other classes of nonradial pulsators in Fig. 1 did one
come anywhere near making inferences on how to improve the
physics of their interiors from exploitation of the available
detected nonradial oscillations.

Although major achievements were obtained in the decade
after this first review on asteroseismology by Brown and
Gilliland (1994), mainly from ground-based multisite network
campaigns for pulsating white dwarfs (Winget et al., 1991),
hot subdwarfs (Kilkenny et al., 1999; Brassard et al., 2001),
roAp stars (Kurtz et al., 2005), δ Sct stars (Breger et al., 2005),
and βCep stars (Handler et al., 2006), the plea by Brown and
Gilliland (1994) to replace photometric ground-based network
observations with data to be taken with spaceborne telescopes
was fully justified. Space data not only would provide much
lower noise by avoiding disturbances due to Earth’s atmos-
pheric variability but also would allow one to increase the duty
cycles of the data significantly, without large daily interrup-
tions of the time series that plague data from ground-based
observatories. Indeed, even successful multisite campaigns
remained below 50% duty cycle, meaning that the oscillation
cycles were never covered appropriately, except for white
dwarfs, subdwarfs, and roAp stars, all of whose oscillations
have periods of only a few to tens of minutes and dominant
mode amplitudes of the order of millimagnitudes, correspond-
ing with levels of parts per thousand (ppt) when considering
the star’s flux variability rather than its change in brightness
expressed in magnitude. In retrospect, the gain from space
photometry was illustrated by Zwintz et al. (2000), who
analyzed ten years of Fine Guidance Sensors photometry of
tens of thousands of supposedly constant guide stars observed
with the Hubble Space Telescope to stabilize the satellite.
They found variability in about 20 stars, among them four K
giants revealing periods of a few hours. They reported this to
be incompatible with rotational variability but did not interpret
it in terms of oscillations, which we now know are the cause.
While awaiting space photometry, the hunt for solarlike

oscillations in solar twins from radial-velocity time series
grew fast after the predictions published in the seminal paper
by Kjeldsen and Bedding (1995). The ever increasing pre-
cision reached by spectrographs led to the first firm discov-
eries of individual solarlike oscillation modes in the nearby
Sun-like stars η Boo (Kjeldsen et al., 1995), β Hyi (Bedding et
al., 2001), and α Cen A (Bouchy and Carrier, 2001), after
earlier unconfirmed attempts to find them in Procyon (Brown
et al., 1991). Oscillation modes were also detected in radial-
velocity variations of the red giant ξ Hya (Frandsen et al.,
2002). By the time of space asteroseismology, detections of
solarlike oscillations had been achieved for about 25 bright
stars; see Figs. 2.2 and 2.3 given by Aerts, Christensen-
Dalsgaard, and Kurtz (2010) for summary plots. All those
spectroscopic data revealed mode frequencies as expected
from scaling those of the Sun, which was in line with the
predictions made by Kjeldsen and Bedding (1995).

B. The beginnings of space asteroseismology

A half century of intense monitoring of pulsators with
nonradial oscillation modes from ground-based observatories
since Ledoux’s 1951 analysis took place. Despite heroic
achievements in terms of number of detected nonradial mode
frequencies in δ Sct stars [as summarized byBreger (2000), its
pioneer], the struggle with daily alias frequencies due to
periodic gaps in the data and the lack of unambiguous
identification of their (l, m) could hardly be overcome.
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This disappointing situation got placed in a new light thanks to
an opportunity that occurred by accident, and that is to be
taken literally. The NASA Wide Field Infra Red Explorer
(WIRE) lost its coolant after launch and could not perform the
science it was designed for. Buzasi convinced NASA to
reorient the WIRE satellite project into a proof-of-concept
asteroseismology mission by using its onboard 5 cm tracker
telescope and camera to monitor the variability of various
kinds of bright stars uninterruptedly and with high cadence
during several weeks. Despite major instrumental effects due
to telescope jitter (the machinery was absolutely not built to do
what it was used for), this blessing in disguise immediately
showed the potential gain that could be achieved should a
dedicated specifically designed asteroseismology space mis-
sion become available: Buzasi (2000) discovered oscillation
modes in the red giant α UMa, as anticipated by Brown and
Gilliland (1994). Despite having been an unplanned pioneer,
WIRE achieved ppt-level amplitude detections and above all
illustrated the great improvement of being able to observe
uninterruptedly from space. Among other results, it led to
detections of oscillations in K giants (Stello et al., 2008),
showed nonradial modes to be present in the bright δ Sct star
Altair (Buzasi et al., 2005), where ground-based monitoring
had failed to find any, and drastically improved light curves of
eclipsing binaries (Southworth, Bruntt, and Buzasi, 2007).
Canada’s first space mission, Microvariability and

Oscillations of Stars (MOST, launched in 2003) (Walker
et al., 2003), was also the first space mission dedicated to
space asteroseismology, although it observed all sorts of
stellar variability. Given its modest aperture of 15 cm, it is
known in the asteroseismology community as the HST
(“Humble Space Telescope”) baptized as such by its principal
investigator (PI) Jaymie Matthews. MOST data revealed
numerous oscillation modes in stars belonging to almost all
classes indicated in Fig. 1, such as red giants (Barban et al.,
2007), roAp stars (Huber et al., 2008), δ Sct and γ Dor stars
(Rowe et al., 2006; Sódor et al., 2014), emission-line OB stars
(Walker et al., 2005a, 2005b; Saio et al., 2007), isolated and
cluster slowly pulsating B stars (SPBs) (Aerts et al., 2006;
Cameron et al., 2008; Gruber et al., 2012), pre-main-sequence
(pre-MS) stars (Zwintz, 2008, 2009), and many more [see
Matthews (2007) for an early status report]. Even though it
could monitor stars for a period of only about six weeks
maximally (limiting the precision of the oscillation frequen-
cies) and its photometric precision in the time domain was of
the order of ppt, it revealed many more oscillation modes than
what had been achieved from ground-based campaigns. In
many respects MOST was a highly successful (and in-
expensive) planned pioneering mission.
The first “major” space mission dedicated to the monitoring

of numerous nonradial pulsators with the aim of space
asteroseismology (along with exoplanet hunting) was the
French-led CoRoT mission. It was launched in 2006 into a
low-Earth orbit and was operational until 2012 (Auvergne et
al., 2009; Baglin et al., 2009). Its original acronym CoRot
stood for “convection and rotation,” but later in the project the
exoplanet hunting was added to get the mission funded and
hence the “t” was changed to uppercase to represent “con-
vection, rotation, and exoplanetary transits.” CoRoT carried a
27 cm telescope and was dedicated to asteroseismology of

tens of bright stars (V magnitude between 5 and 9) monitored
with a cadence of 32 s and exoplanet hunting around
thousands of faint stars (V magnitude between 11 and 16)
measured every 15 min during each of its pointings; see
Auvergne et al. (2009) for the technical and operational details
pertaining to the mission. Because of its construction and low-
Earth orbit, CoRoTwas able to point in the center or anticenter
direction of the Milky Way over five uninterrupted months (its
so-called long runs), between which it did short runs of about
a month in duration. This meant that the target selection and
the choice of the fields of view (FOVs) to point at were critical
and had to be optimized to meet the wishes of two until then
hardly collaborating communities, the asteroseismologists and
the exoplanet hunters, from the numerous countries that
funded the mission. This “astrosociological” aspect of the
mission led to heated debates (in various languages) during the
so-called CoRoT weeks, which were preparatory workshops
held twice a year to optimize the mission planning and
exploitation. Had it not been for the heroic leadership of
the mission PI Annie Baglin, we would have kept on changing
our minds about the pointings until the day of the launch.
CoRoT was a major success on various fronts. It properly

allowed asteroseismology of Sun-like stars, as done by
Appourchaux et al. (2008), Michel et al. (2008), Benomar
et al. (2009), García et al. (2009), Deheuvels et al. (2010),
Mathur et al. (2010), and Ballot et al. (2011), where the last
study treated an exoplanet host star. It also led to the discovery
of nonradial oscillations in red giants (De Ridder et al., 2009),
opening up the major unexploited parameter space of so-
called solarlike oscillations in evolved stars, as studied by
Barban et al. (2009), Hekker et al. (2009), Miglio et al.

(2009), Kallinger et al. (2010), and Mosser et al. (2010).
Applications to other types of nonradial pulsators are too
numerous to mention, but a few breakthroughs were the
discovery of outbursts with accompanying mass loss in Be
stars due to the nonlinear interaction between nonradial modes
observed in real time (Huat et al., 2009), the occurrence of
stochastic nonradial oscillations in B-type stars [see Belkacem
et al. (2009), Degroote et al. (2010b), including in the
gravitoinertial regime, Neiner et al. (2012); explanation of
these types of modes is given later], asteroseismic modeling of
an O9 star (Briquet et al., 2011), the discovery of low-
frequency variability in O-type stars that remained unex-
plained at that time [see Blomme et al. (2011); interpretations
are given later], and several eclipsing binaries with tidally
induced or tidally affected nonradial oscillations, such as
given by Maceroni et al. (2009, 2013) and da Silva et al.

(2014). Many other results remain unmentioned here. A
special volume of the journal Astronomy and Astrophysics

2

was dedicated to 55 CoRoT papers and offers the reader an
extensive review on the mission’s instrument performance and
scientific results.
And then came the successful NASA Keplermission (Koch

et al., 2010), launched in 2009, delivering light curves of
unprecedented quality, as shown in Fig. 3 for a few stars
observed in its long-cadence mode (29.43 min). Kepler

2Journal volume available in open access at https://www.aanda
.org/component/toc/?task=topic&id=9.
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delivered light curves with a duration of four years, for about
200 000 low- and intermediate-mass stars in one FOV in the
northern sky. These data have a 10 times longer time base and
deliver a factor ∼100 better precision for the oscillation
frequencies than the CoRoT data, thanks to the larger aperture
of the telescope (0.95 m), the longer pointing, and the more
stable Earth-trailing orbit. The nominal Kepler mission lasted
four years and had a dedicated asteroseismology program
(Gilliland et al., 2010), monitoring several hundred low-mass
stars at a short cadence of 58.85 s. After the nominal four-year
mission, the Kepler spacecraft lost two of its four working
reaction wheels. The mission was then repurposed as a space
project monitoring fields in the ecliptic, making clever use of
the solar radiation pressure to stabilize the satellite. This
mission operated under the name K2 and monitored 19 fields,
each of which during maximally ∼80 d between February
2014 and October 2018, adopting the same cadence types as
Kepler (Howell et al., 2014). Because of its superior quality,
most of the results discussed in this review are based on
Kepler (or K2) data, so we do not summarize results here as
we did for the other space missions.
The Bright Target Explorer constellation (BRITE; launched

in 2014 and currently operational) is a set of Austrian,
Canadian, and Polish nanosatellites assembling multicolor
photometry of the brightest stars in the sky for variability

studies and asteroseismology (Weiss et al., 2014). BRITE is
unique in that it offers two-band photometry based on a narrow
blue and a broad red filter.While the data reductionwas initially
a challenge, given the limited weight and pointing stability of
the small satellites, its photometric precision currently reaches
ppt per data point. It can monitor selected stars during about
half the year (Pablo et al., 2016). BRITE ismonitoring a variety
of bright variables. Its data of high-mass stars is complementary
to the Kepler data in terms of targets. BRITE revealed several
more nonradial oscillation modes than what has been found in
ground-based data for OB- and Be-type pulsators (Baade et al.,
2016; Pigulski et al., 2016; Handler et al., 2017; Kallinger
et al., 2017; Ramiaramanantsoa et al., 2018). Combined
BRITE data and archival data assembled from extensive
ground-based (multisite) campaigns or data that are currently
being assembled by the NASA Transiting Exoplanet Survey
Satellite (TESS) (Ricker et al., 2016) hold good potential for
asteroseismology of the highest-mass nearby stars with high-
amplitude oscillation modes to perform modeling of their
interior properties.
Handler et al. (2019) illustrated the TESS potential in

revisiting bright B-type pulsators discovered from the ground
but lacking sufficient identified pulsation modes. The nominal
TESS mission is scanning almost the full sky, delivering high-
precision space photometry for millions of stars with time

FIG. 3. Excerpts of 110 d duration (of the total ∼1500 d) extracted from the Kepler long-cadence (∼30 min per point) light curves (in
black dots) of seven slowly pulsating B stars (cf. Fig. 1) indicated with their Kepler input catalog identification (KIC) (Brown et al.,
2011). The amplitude spectrum obtained from a Fourier transform of the full Kepler light curves is overplotted in red. These stars exhibit
nonradial gravity modes with individual mode periods of the order of 1 d. The light curves reveal a gallery of diverse beating patterns
among the modes and a gradual shift in maximum amplitude from low to high frequency as their rotation frequency changes from low in
the top panel to high in the bottom panel. Despite their large amplitudes of several to ∼12 ppt, none of these stars were known to have
nonradial oscillations prior to the Kepler mission; it is notoriously difficult to detect modes with such periodicities from ground-based
data given their similarity with the rotation period of Earth. Adapted from Pápics et al., 2017.
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bases between 27 and 352 d for each of the hemispheres, with
similar cadences as Kepler. This difference in duration of the
monitoring is due to its operational scheme of observing in
sectors (13 per hemisphere), each monitored over 27 d.
Increasing partial overlap between the consecutive sectors
occurs for areas in the sky closer to the ecliptic pole, with a
maximum of continuous observation over 352 d for stars in
the TESS continuous viewing zone (CVZ). TESS samplings
changed to 10 min and 20 s for the long- and short-cadence
modes, respectively, in the extended mission (started in mid
2020). Owing to the more limited time base it delivers far less
precise oscillation frequencies for asteroseismology than
Kepler, but it opens up the entire sky to provide large samples
of pulsators. Some of these samples were not yet treated by
CoRoT and Kepler, including metal-poor high-mass stars in
the Large Magellanic Cloud (LMC). Thus far large aster-
oseismology samples have essentially been limited to red-
giant pulsators. In that sense, TESS will bring major advances
for a variety of stars across the HRD in Fig. 1, from low-mass
unevolved Sun-like stars (Schofield et al., 2019), including
exoplanet hosts (Campante et al., 2016b), all the way up to the
most massive stars.
The past decade brought us to a golden era for asteroseis-

mology, with the BRITE and TESS missions ongoing, the
Planetary Transits and Oscillations of stars mission (PLATO)
(Rauer et al., 2014) on the horizon, and an immense amount of
Kepler data yet to be interpreted in the true meaning of
asteroseismology, i.e., with the aim of improving the physics
of stellar interiors. How to achieve that is discussed in the rest
of the review.

C. Asteroseismology to improve stellar evolution

The HRD in Fig. 1 reveals that pulsational variables occupy
many phases of stellar evolution. The periods of nonradial
oscillations covered by stars and stellar remnants range from
seconds to months, or even years, and their amplitudes of
brightness variations cover the range of a magnitude to the
current detection threshold of μmag (corresponding to hun-
dreds of ppt to ppm in flux variability). We refer to Table A.1
given by Aerts, Christensen-Dalsgaard, and Kurtz (2010) for a
summary of the pulsation characteristics. The basic properties
and the excitation mechanisms of all known classes of
nonradial pulsators indicated in Fig. 1 were discussed in
great detail in Chap. 2 given by Aerts, Christensen-Dalsgaard,
and Kurtz (2010). Noteworthy discoveries of nonradial
oscillations not yet firmly established from ground-based
data were made for red giants from CoRoT (De Ridder et

al., 2009) and for blue supergiants from MOST (Saio et al.,
2006), Hipparcos (Lefever, Puls, and Aerts, 2007), and Kepler
(Aerts et al., 2017). While oscillations were already discov-
ered in red giants from ground-based spectroscopy, it was still
heavily debated whether or not it concerned radial or non-
radial oscillations (Frandsen et al., 2002). Both red giants and
blue supergiants were established as nonradial pulsators from
early Kepler (Bedding et al., 2010), K2 (Bowman et al.,
2019b), and TESS data (Pedersen et al., 2019). Hence they
received their own ellipse and Fig. 1 was adapted accordingly.
The Kepler spacecraft led to the discovery of more than 20

000 red giants with nonradial oscillations (Hon et al., 2019),

and TESS will undoubtedly provide a factor of 10 more.
Numbers for blue supergiants discovered from K2 and TESS
are much lower, of the order of a few hundred, because these
are rare objects. Moreover, they were omitted from the
nominal Kepler FOV so as not to “disturb” the exoplanet
hunting. The variability of O-type dwarfs and blue supergiants
is caused by a complex interplay between various phenomena,
which may involve internal gravity waves (IGWs) (Rogers et
al., 2013), rotational modulation (Ramiaramanantsoa et al.,
2018), subsurface convection (Grassitelli et al., 2015), wind
variability (Krtička and Feldmeier, 2018), magnetism
(Sundqvist et al., 2013), nonradial g modes (Moravveji,
Moya, and Guinan, 2012), and binarity (Sana et al., 2012).
The discovery of ubiquitous low-frequency power excess in
hundreds of OB dwarfs and supergiants in the upper HRD
from K2 and TESS space photometry by Bowman et al.

(2019b) and Pedersen et al. (2019) granted them an ellipse in
Fig. 1 labeled “SLF” for stochastic low-frequency variability.
Gautschy and Saio (1995, 1996) announced that the

importance of nonradial oscillation studies would grow as
monitoring capacities to detect ever smaller amplitude vari-
ability would improve: a visionary outlook a few years before
space asteroseismology came about with WIRE. Figure 1
shows that stars across almost the entire mass range will
encounter nonradial oscillations at particular stages of their
evolution. The characteristics of these nonradial oscillation
modes (their periods or frequencies, amplitudes, and mode
lifetimes) offer great diagnostic value for inferences of the
stellar interior. As outlined in detail in Sec. II, the mode
frequencies or periods allow high-precision views of the
physical properties inside stars that are not accessible by
classical “snapshot-type” data assessing only the surface or
atmospheric properties at a particular time of the variability
cycle (such as single-epoch spectroscopy, color indices, or
interferometry). The combination of high-cadence time-series
data covering the overall pulsational variability cycle, along
with observables representing the position in the HRD
ðTeff ; L=L⊙Þ and surface abundances from spectroscopy,
constitute an optimal starting point for asteroseismic model-
ing. The power of combining such a classical and astero-
seismic approach for stellar modeling was illustrated by
Lebreton, Goupil, and Montalbán (2014) in their Fig. 13,
with major improvement for stellar aging. In practice, the
addition of asteroseismology to stellar modeling permits one
to reach levels of ∼10% precision in stellar ages. Precise
values for the stellar luminosity L or the stellar radius R⋆ of
low- and intermediate-mass stars can now be obtained from
Gaia astrometry (Brown et al., 2018) and interferometry,
respectively. Following the extensive review on how to bridge
asteroseismology and interferometry by Cunha et al. (2007),
this synergy turns out to be highly successful for the brightest
pulsators with space asteroseismic data, as highlighted by
North et al. (2007), Bazot et al. (2011), Huber et al. (2012),
and White et al. (2013, 2018).
To conclude this section, nonradial oscillations occur all

over the HRD. This offers the opportunity to perform
asteroseismology for members of the classes indicated in
Fig. 1 and to couple the conclusions into a coherent picture
across stellar evolution. Such a metastudy has been done for
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asteroseismic estimates of the interior rotation of low- and
intermediate-mass stars, leading to the conclusion that the
theory of angular momentum transport in stellar interiors
already needed improvement from the earliest stages of stellar
evolution. We come back to this in Sec. III but stress here that
a global perspective of stellar evolution across all life phases
proved to be necessary to assess the weaknesses of one
particularly important aspect of stellar evolution theory: the
transport of angular momentum is much more efficient than
predicted by theory; see Fig. 4 given by Aerts, Mathis, and
Rogers (2019), which summarizes a global result based on
major efforts by many scientists in the asteroseismology
community. This is just one example of how asteroseismology
paves the way toward better stellar evolution models. Data are
now being assembled by the TESS mission to reach the same
impact for high-mass stars. For the rest of this review, we
adopt the same definition as Aerts, Mathis, and Rogers (2019)
to discriminate between stars of low (M⋆ ≲ 1.3M⊙), inter-
mediate (1.3≲M⋆ ≲ 8M⊙), and high (M⋆ ≳ 8M⊙) mass.

D. Working in the Fourier domain truly helps

Figure 3 is a textbook illustration of how stars of inter-
mediate mass exhibiting g modes behave in flux as their
interior rotation increases (from top to bottom in the plot). We
explain in Sec. II how to arrive at such a conclusion about their
interior rotation, but for now the message is that this result
cannot be “seen” easily in the time domain (i.e., in the light
curve in gray), while it can be directly distilled from the
Fourier spectrum overplotted in red. It is impressive how
much information about the stellar interior is contained in a
Fourier transform of a light curve: the art is to get it out, and
asteroseismologists are experts in this regard.
We see in Fig. 3 that the duty cycle of theKepler data is high,

but not 100%, because the satellite had to be turned every three
months to keep its solar panels pointed to the Sun. Moreover,
one-month data downlink and momentum dump desaturation
interruptions occurred approximately every 3 d. Moreover, the
Kepler photometer consisted of 21 CCD modules (Koch et al.,
2010), but one of them (Module 3) broke down less than a year
into the mission, causing gaps in the data for stars on that
module. The Kepler spacecraft sampled the stars at a constant
cadence, delivering data at precise time stamps. The data are
modulated with 1-yr periodicity when transformed to the
barycenter of the Solar System (Murphy, Shibahashi, and
Kurtz, 2013). Given that stellar oscillations are periodic
because they occur at the “eigenfrequencies” of the star,
Fourier analysis offers an optimal frequency extraction
method. It is extensively described in Chap. 5 given by
Aerts, Christensen-Dalsgaard, and Kurtz (2010) in the general
case of nonequidistant gapped time series of ground-based
data. An excellent crash course on the topic was given by
Appourchaux (2014), who tuned it to the modern era of space
asteroseismology,while the effect of interruptions in theKepler
light curves on the frequency analysis for asteroseismology
was thoroughly assessed by García et al. (2014). Basu and
Chaplin (2017) provided even more detailed information and
focused on data analysis in the case of solarlike oscillations.
Here we limit ourselves to the bare minimum and pay specific
attention to the aspects of time-series analysis from the

viewpoint of having two major categories of nonradial oscil-
lation modes: those that are damped and have short lifetimes
and those that are undamped and, to a good approximation,
have infinite lifetimes. These two cases require different data
analysis approaches.
As explained later, the three components of the Lagrangian

displacement vector due to a nonradial oscillation mode in the
absence of rotation contain a common time-dependent factor
expð−iωtÞ, with ω ¼ 2πν the angular frequency of the mode,
ν its cyclic frequency, and P ¼ 2π=ω ¼ 1=ν its period. In
general, ω is an imaginary quantity ω ¼ ωr þ iωi, but for the
study of the periodic behavior of the mode to be derived from
data we consider its real part (for simplicity denoted as ω in
the rest of the review). Imagine that we want to extract the
frequencies present in time-series data representing a con-
tinuous and finite function xðtÞ (the flux variations in the case
of space asteroseismology, indicated with the black dots in
Fig. 3). The Fourier transform of xðtÞ is given by

FðνÞ≡
Z þ∞

−∞

xðtÞ expð2πiνtÞdt: ð1Þ

By performing this transformation, we move from the time
domain (black dots in Fig. 3) to the frequency domain (shown
in red in Fig. 3). In the following case where xðtÞ is a sum of
harmonic functions with frequencies ν1;…; νM and ampli-
tudes A1;…; AM:

xðtÞ ¼
X

M

k¼1

Ak expð2πiνktÞ; ð2Þ

we find that

FðνÞ ¼
X

M

k¼1

Akδðν − νkÞ; ð3Þ

where δ is Dirac’s delta function for which δðν − νkÞ ≠ 0 only
for the frequencies �ν1;…;�νM. No matter how good the
Kepler data are, the time series (1) contains discrete data
points, (2) has finite duration, and (3) has gaps (even if they
are small). This implies that one cannot compute the integral
in Eq. (1). However, we can rely on the so-called window
function defined by the data, measured at time points tj,
j ¼ 1;…; N during the time interval ½0; T�, to obtain

wNðtÞ≡
1

N

X

N

j¼1

δðt − tjÞ: ð4Þ

This allows us to write the discrete Fourier transform (DFT) of
the function xðtÞ as

FNðνÞ ¼ N

Z þ∞

−∞

xðtÞwNðtÞ expð2πiνtÞdt: ð5Þ

The following DFT of the window function is called the
spectral window WNðνÞ:
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WNðνÞ ¼
1

N

X

N

j¼1

expð2πiνtjÞ: ð6Þ

The DFT of the data is hence the convolution of its spectral
window and its Fourier transform

FNðνÞ ¼ NðF �WNÞðνÞ

¼
X

N

j¼1

xðtjÞ expð2πiνtjÞΔtj; ð7Þ

where Δtj ≡ tj − tj−1 (Deeming, 1975). Frequencies are often
searched from the power density (PD) instead of the Fourier
transform. The PD is defined as the power present in the signal
as a function of frequency per unit frequency. Relying on
Eq. (7), we get

PDðνÞ≡ 1

T
jFNðνÞj2: ð8Þ

The PD is hence expressed in ppm2=μHz when the time series
concerns flux measurements expressed in ppm and frequen-
cies are expressed in microhertz.
For equidistant data, tj ¼ jΔt, whereΔtj ¼ Δt is a constant

sampling interval between two consecutive measurements. In
that case, we have

FNðνÞ ¼ Δt
X

N

j¼1

xðjΔtÞ exp½2πiνðjΔtÞ�; ð9Þ

WNðνÞ ¼ exp½πiνΔtðN þ 1Þ� sinðπνNΔtÞ
N sinðπνΔtÞ : ð10Þ

The Nyquist frequency of such data is half of the sampling rate
νNy ¼ 1=2Δt. This frequency is defined as the upper limit of
the frequency range over which the Fourier transform is
unique. In principle this sets an upper limit for the interval of
frequencies to search for. However, a particular frequency
detected below νNy may be an alias of the true frequency that
occurs above νNy. Alias frequencies are frequency values
given by the difference between the actual frequency of the
signal and integer multiples of the sampling rate. Thus,
aliasing allows the detection of true frequencies, even though
they occur above νNy (Murphy, Shibahashi, and Kurtz, 2013).
Equations (9) and (10) reveal thatFNðνÞ reaches maxima for

alias frequencies νj ¼ j=Δt. Ground-based data are not evenly
sampled but they give rise to 1-d and 1-yr alias frequencies
whose values of FNðνjÞ may be similar, preventing from
unraveling the “true” frequency from the one introduced by
the periodic gaps in the data. This has been a major show-
stopper for ground-based asteroseismology, particularly in the
case of stars with “slow” g modes with periods of approx-
imately 1 d as in Fig. 3. While these g modes have amplitudes
that are easily detectable with ground-based instruments, the
1-d aliasing problems are so severe that one can deduce a few
mode frequencies at best, even after yearslong (often multisite)
observations; see Zerbi et al. (1999), De Cat and Aerts (2002),
Mathias et al. (2004), and Cuypers et al. (2009). This is why

Kepler was so groundbreaking in the field of slow multi-
periodic g-mode pulsators. Kepler data also revealed that a
good fraction of dwarf pulsators with a convective core
(indicated as γ Dor, δ Sct, SPB, and βCep stars in Fig. 1)
are actually hybrid pulsators; i.e., they have both short-period
(lasting hours) pmodes and long-period (lasting days) gmodes.
Such pulsators have major potential, as their p and g modes
offer local in situmeasurements in different regions in the star:
p modes probe the envelope, while g modes probe the radiative
near-core regions and allow us to turn the study of deep stellar
interiors into observational astronomy.
In practice, applications of frequency analysis to space

photometric data are always done after preprocessing and
postprocessing of the light curves deduced from the raw data.
Satellite repointings (every three months in the case of Kepler,
so-called quarters) imply jumps in the time series. More-
over, satellite drift has to be corrected for each quarter.
Subsequently, outlier removal and detrending are applied as
standard processing to get interpretable light curves (García
et al., 2011). Such corrections and processing were applied to
get the light curves in the version shown in Fig. 3.

1. Mode damping and mode lifetimes

Thus far we have considered a multiperiodic harmonic
signal. For stars like those in Fig. 3, this is relatively
straightforward because they have modes with extremely long
lifetimes. However, a distinction has to be made between two
cases: damped modes with lifetimes of the order of or shorter
than the duration of the time series T and undamped (or so-
called self-excited) modes that never die out and are always
active with constant phase throughout the data gathering. The
first option occurs for stars such as the Sun with oscillation
modes triggered by turbulent motions in their outer convective
envelopes. Such “solarlike” oscillations are expected to occur
for all stars whose convective envelopes contain sufficient
mass to be highly turbulent. These oscillations are of stochas-
tic nature in the sense that they are regularly but randomly
excited to more or less the same amplitude, but they damp out
relatively quickly, in a time span of the order of days to
months, while continuously being reexcited. At each time
stamp, the phase within the oscillation cycle is perturbed
stochastically relative to the previous measurements.
Stars with radiative envelopes can excite oscillations via a

heat mechanism because some of their partial ionization layers
manage to transform radiative energy, created in their deep
interior by nuclear fusion, into mechanical energy. This can
excite modes that resonate inside a mode cavity. This occurs
because of local opacity peaks in partial ionization layers of
hydrogen, helium, or ironlike species in the outer envelope.
Such mode excitation works along the lines of a valve
mechanism (also known as thermodynamical Carnot cycle)
and may excite radial and nonradial oscillation modes.
Because of the key role played by the opacity in getting
the modes excited, it is usually called the κ mechanism. To a
good approximation such resonating modes do not die out as
long as radiative energy is delivered to the excitation layer.
Hence these modes have “quasi-infinite” lifetimes (i.e., they
are infinite to a good approximation compared to the duration
of the dataset; hence we drop “quasi” in the text). In such a
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case, it is predictable at what phase in its oscillation cycle the
mode will be throughout time.
We return to mode excitation in Sec. III, but in any case we

take a data-driven approach to asteroseismology; i.e., we use
as many independent eigenmode frequencies as possible, as
long as we can extract them from the data, irrespective of how
the star managed to excite these oscillations.

2. Undamped oscillations with quasi-infinite lifetimes

We first treat the case of heat-driven undamped modes. In
this case [see Eq. (3)] we seek to extract the optimal sum of
harmonic functions with frequencies ν1;…; νM and ampli-
tudes A1;…; AM, where the number of modes M is unknown,
keeping in mind the presence of instrumental noise in the data.
Under the optimistic assumption of uncorrelated data with
white Gaussian noise, a convenient approximation of the
Fourier transform is the Lomb-Scargle (LS) periodogram,
defined as

PLSðνÞ ¼
1

2

fPN
i¼1 xðtiÞ cos½2πνðti − τ0Þ�g2
P

N
i¼1 cos

2½2πνðti − τ0Þ�

þ 1

2

f
P

N
i¼1 xðtiÞ sin½2πνðti − τ0Þ�g2
P

N
i¼1 sin

2½2πνðti − τ0Þ�
; ð11Þ

where τ0 is chosen such that PLSðνÞ becomes invariant with
respect to the starting date of the dataset as follows:

tanð4πντ0Þ ¼
P

N
i¼1 sinð4πνtiÞ

P

N
i¼1 cosð4πνtiÞ

ð12Þ

(Scargle, 1982). Along with the DFT, the LS periodogram is
widely used in asteroseismology of stars with heat-driven
modes. Both formalisms are suitable to treat gapped non-
equidistant time-series data while requiring only a short
computation time (Kurtz, 1985). Horne and Baliunas
(1986) provided guidance for estimation of the number of
independent frequencies as well as a method for detecting the
presence of alias frequencies caused by the interaction
between the window function and the observed data values.
In the limit of N → ∞, one has PLSðνkÞ ≈ A2

kN=4 for each
of the modes k ¼ 1;…;M. The LS amplitude spectrum
ALSðνÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4PLSðνÞ=N
p

thus gives the physically relevant
quantities to perform asteroseismology, i.e., the frequencies
and amplitudes of the modes. This is the amplitude spectrum
shown in red for the seven B-type pulsators in Fig. 3.
Scargle (1982) showed the maxima of ALSðνÞ to lead to

amplitudes Ak that are statistically equivalent to those
obtained by performing a least-squares optimization to the
light curve in the time domain in the limit of large N. Even
modern datasets may consist of only a limited number of data
points. One therefore best performs an optimization to
estimate the amplitudes and frequencies once an approximate
value of νk is known from the DFT or LS periodogram, as a
good starting value to perform a least-squares fitting in the
time domain. This gives rise to the method of “prewhitening.”
We now consider the dominant mode with frequency ν1

deduced from the DFTor LS amplitude spectrum. Minimizing
the sum of squares of the residuals

R2ðν1Þ≡
X

N

i¼1

½xðtiÞ − xcðtiÞ�2

¼
X

N

i¼1

[(A1 cos f2π½ν1ðti − τÞ þ ψ1�g þ c)]2 ð13Þ

leads to optimized values for ν1, A1, ψ1, and c and provides
the residual light curve with an average value of zero

xRðtiÞ ¼ xðtiÞ − xcðtiÞ: ð14Þ

A second frequency is then searched for by computing the LS
amplitude spectrum for the residual light curve [ti; xRðtiÞ] and
optimizing its values ν2, A2, ψ2, etc. This procedure is
repeated until the periodogram no longer leads to frequencies
that are significant for a specified criterion, such as the ones
discussed by Horne and Baliunas (1986), Breger et al. (1993),
and Degroote et al. (2009). For a Kepler light curve, this
procedure is tedious and time consuming, as it leads to
hundreds of significant frequencies. To finalize the list of
frequencies due to independent oscillation modes and their
uncertainties, great care must be taken to properly account for
the occurrence of combination frequencies and harmonics
rνi þ sνj, with i, j ∈ N; r, and s ∈ Z due to nonlinearities in
the light curve rather than independent mode frequencies,
keeping in mind the spectral window and the introduction of
spurious frequencies due to limited resolution (Loumos and
Deeming, 1978) during the prewhitening process. This was
thoroughly discussed by Pápics (2012), Balona (2014), Kurtz
et al. (2015), and Bowman (2017). Moreover, one should
correct the error estimation of the frequencies and their
amplitudes for the correlated nature of the data [as outlined
by Degroote et al. (2009) for the highly oversampled CoRoT
data]. Although this correction is often omitted, one should
apply it to the error estimates of the derived amplitudes,
phases, and frequencies. For the case of N data points, one has
[cf. Montgomery and O’Donoghue (1999)]

σν ¼
D

ffiffiffi

6
p

σN

π
ffiffiffiffi

N
p

AT
; σA ¼ D

ffiffiffiffi

2

N

r

σN ; σψ ¼ DσN

π
ffiffiffiffiffiffiffi

2N
p

A
:

ð15Þ

In these three expressions, σN can be approximated by the
standard deviation of the final residual light curve. The
correction factor due to the correlated nature of the data D
depends on the instrument properties and the sampling rate and
can be estimated as the square root of the average number of
consecutive data points of the same sign in the final residual
light curve, as explained by Schwarzenberg-Czerny (1991) and
as applied to ground-based photometry by Schwarzenberg-
Czerny (1998) and to space photometry by Degroote et al.

(2009). Values for D are typically between two and ten for the
Kepler long-cadence and CoRoT asteroseismology datasets.

3. Damped oscillations with short lifetimes

The frequency analysis for stochastically excited damped
solarlike oscillations requires a different approach. Because of
the random excitation and the damping of the modes, the
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functional form of the light curve changes. The simplest case
of one damped oscillation mode with frequency ν1 can be
described as

xðtiÞ ¼ A1 cos ½2πðν1ti þ ψ1Þ� expð−η1tiÞ þ c; ð16Þ

with η1 the damping rate of the mode, which is the inverse of
the mode lifetime. The latter is unknown and hence must be
estimated along with the frequency. In the hypothetical case of
having continuous observations of such a signal over an
infinite amount of time, the power spectrum is given by

PðνÞ ¼ 1

4

A2
1

½4π2ðν − ν1Þ2 þ ðη1Þ2�
: ð17Þ

In such a simplified (actually, unrealistic) case, the power
spectrum thus takes a Lorentzian profile around the frequency
ν1 with the linewidth of the mode given by the full width at
half maximum Γ≡ 2η1=2π. Estimation of Γ can be accom-
panied by major uncertainty, unless long and high-quality
datasets, such as those assembled by Kepler, are available.
Solarlike oscillation frequencies are usually superimposed

onto background power due to low-frequency variability
caused by the convective envelope of the star, such as
granulation and/or magnetic activity leading to rotational
modulation. Stellar granulation occurs in stars with outer
convection zones due to the difference between hotter rising
gas and cooler downward moving gas. Rotational modulation
observed in light or velocity curves is attributed to star spots
on the stellar surface, which can have a different temperature,
pressure, or chemistry than their surroundings. When the spots
have properties that are slowly evolving with time compared
to the rotation period, they give rise to rotational modulation at
the frequency of the surface rotation and its (sub)harmonics.
However, the spots may migrate and/or vary in size over time,
leading to low-frequency power excess in the Fourier
spectrum.
Both granulation and spots may reach amplitudes that are

dominant over those of the oscillations. Any Fourier transform
of a light curve undergoing these various aspects of variability
will be composed of the superposition of all the harmonic and
nonharmonic signals. In such a situation, the method of
prewhitening is not meaningful due to the stochastic nature
of the variability. Rather, one works with the PD and fits this to
extract the oscillation frequencies. In Eq. (17) we have
assumed for simplicity that the mode linewidth is independent
of frequency. However, it may vary with frequency according
to some functional form depending on the mode properties,
as discussed for mixed modes in red giants by Mosser
et al. (2018).
Different models to describe the oscillation modes and

the overall “background” variability were developed and
improved as the Kepler data got extended. Kallinger et al.
(2014) investigated the PD of a large and homogeneous
sample of 1364 stars observed with the Kepler spacecraft,
covering almost all evolutionary stages of stars born with a
mass between approximately 0.7M⊙ and 2.5M⊙. All these
stars are expected to exhibit stochastically excited oscillations
and granulation triggered by their extended convective outer

envelope. Hence, Kallinger et al. (2014) searched for one
global optimal fitting prescription for the background vari-
ability, instead of relying on the background model used for
the Sun and adopted in red-giant studies based on early Kepler
data releases (Mathur et al., 2011). Kallinger et al. (2014)
considered various options for the statistical model formula-
tions of the PD spectra; see their Eq. (2) and Table 1. In line
with the findings given by Karoff et al. (2013) for main-
sequence stars, the optimal fits to the PD spectra of bright red-
giant pulsators require more than one Lorentzian profile to
describe the granulation or activity, in addition to a Gaussian
power excess caused by oscillations. This is illustrated for one
of the red giants in their sample in Fig. 4, where we show the
Kepler light curve in the upper left panel, revealing the
stochasticity of the variability and the PD in the lower
left panel.
Bastien et al. (2013) revealed that the scaling of the

granulation amplitude delivers a proper diagnostic for the
surface gravity g of the star. The scaling was found to be
consistent with that of the pulsation amplitudes. Moreover, the
effective temperature has only a marginal additional effect on
those amplitudes. This brings us to an important quantity in
low-mass star asteroseismology that is further outlined in
Sec. IV: the frequency of maximum power νmax. This quantity

was shown to scale to a good approximation as gT
−1=2
eff by

Brown and Gilliland (1994), Kjeldsen and Bedding (1995),
and Belkacem et al. (2011). It can be deduced from the
Gaussian fit represented by the yellow dotted line in Fig. 4.
Any asteroseismic modeling requires the oscillation

frequencies of the damped modes to be extracted from the
PD. Various methods and implemented pipelines to do so have
been constructed. As said, one does not rely on the method of
prewhitening to achieve this. Instead so-called peak-bagging3

is done,where the part of interest in the PD is fitwithLorentzian
functions for each of the modes as in Eq. (17), either after
subtraction of or along with the fit to the granulation back-
ground. These methods result in the individual mode frequen-
cies and the mode lifetimes from the linewidths in the PD.
Extensive literature covers the methodologies, where the use of
aMarkov ChainMonte Carlo (MCMC) techniquewas adopted
in this context by Handberg and Campante (2011).
Intercomparison of the results obtained by the various methods
is taken into account as part of the uncertainties of the mode
frequencies, amplitudes, and lifetimes; see Hekker et al. (2011,
2012) and Appourchaux et al. (2012a, 2012b). Particular care
of the correlation structure in the frequency analysis of
exoplanet host stars was taken using a Bayesian unsupervised
approach developed by Davies et al. (2016).
The Kepler observations led to numerical refinements and

testing of early analytical expressions for uncertainty esti-
mates of the frequencies of stochastic modes, confirming that
they behave as ∼1=

ffiffiffiffi

T
p

[cf. Eq. (5.57) given by Aerts,
Christensen-Dalsgaard, and Kurtz (2010) instead of ∼1=T

3This term became standard use in helioseismology and aster-
oseismology after “peak bagger” Jesper Schou made the analogy
between the detection of new solar oscillation frequencies in data
obtained from the SoHO satellite and the addition of newly climbed
þ14 000 ft summits to his personal backpack.
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as in Eq. (15)]. To get a factor of 2 better frequency precision
for damped oscillations one must hence observe 4 times as
long, as opposed to only 2 times as long in the case of
undamped modes. For elaborate discussions on how the mode
linewidths of p modes were derived from Kepler light curves
for dwarfs, subgiants, and red giants, see Chaplin et al. (2009),
Appourchaux et al. (2012a), Corsaro, De Ridder, and García
(2015), and Vrard et al. (2018). Values translate into mode
lifetimes from a fraction of a day for dwarfs to several tens of
days for red giants, which is in good agreement with
theoretical predictions made by Belkacem et al. (2012).
Mosser et al. (2018) succeeded in deriving the mode lifetimes
for the challenging case of mixed dipole modes in red giants,
with results up to ∼100 d. Chaplin et al. (2014) and Yu et al.

(2020), respectively, provided summaries of results for about
500 main-sequence stars and 20 000 red giants observed with
the Kepler spacecraft.
To place the stochastic variability of evolving low-mass

stars into a more global context, SLF (Fig. 1) variability was
also found to occur in high-mass stars, but for different
physical reasons. While all stars develop a convective outer
envelope after core-hydrogen burning, young high-mass stars

are born with a radiative envelope on top of a convective core.
Hence, one does not expect granulation to be present in their
envelope. As originally discovered from CoRoT data, young
hot O stars reveal SLF in their PD spectra (Blomme et al.,
2011). This signature is different from the frequency spectrum
for p-mode oscillations in βCep stars (cf. Fig. 1), as found for
the O9V CoRoT target HD 46202 (Briquet et al., 2011) in the
same pointing of the satellite from which the SLF signal was
found, so an instrumental cause was excluded. Tkachenko
et al. (2014) and Aerts and Rogers (2015) interpreted the
signal detected in the space photometry of the close massive
binary V380 Cyg and of the O dwarfs as due to convectively
driven IGWs. These waves are excited stochastically at the
interface between the convective core and the bottom of the
radiative envelope in intermediate- and high-mass stars
(Rogers et al., 2013). The simulations by Edelmann et al.

(2019) and Horst et al. (2020) are representative for young
unevolved stars of high mass and deliver frequency spectra of
IGWs and eigenmodes as observed in dwarfs with CoRoT and
Kepler for stars with masses in the range ½3; 25�M⊙.
Bowman et al. (2019a, 2019b, 2020) performed a systematic

study of OBA-type stars from their CoRoT, K2, and TESS data

FIG. 4. Part of the Kepler light curve (top left panel) and the power density spectrum (bottom left panel, black) of the red-giant star KIC
007949599. Overplotted in the bottom left panel are the model fits from Table 1 given by Kallinger et al. (2014), based on their Eq. (2),
representing two Lorentzian components due to granulation variability at low frequencies (dashed red and dot-dashed purple lines) and a
Gaussian component due to stochastic p-mode oscillations (dotted yellow line). K2 light curve (top right panel) and its power density
spectrum (bottom right panel, black) of the blue supergiant star ρ Leo. Overplotted in the bottom right is a Lorentzian model fit (dashed
red line) using the formalism given by Bowman et al. (2019a) to represent the power excess due to the low-frequency stochastic
variability. In both bottom panels, the blue dashed horizontal lines indicate the photon noise level and the solid green lines represent the
superposition of the individual model components representing the variability. Adapted from Kallinger et al., 2014, Aerts et al., 2018a,
and Bowman et al., 2019b.
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to search for SLF, keeping in mind that such a signal is hard to
find when it occurs beneath the signal of self-excited modes in
the same frequency regime, as for stars in Fig. 3. It was found
that SLF variability is ubiquitous in space photometry of most
of these stars, irrespective of whether they reside in the
Milky Way or in the Large Magellanic Cloud. The K2 light
curve and PD spectrum of one such case is shown in the right
panels of Fig. 4. It concerns the bright blue supergiant ρ Leo
(spectral typeB1Iab) studied byAerts et al. (2018a) and Pope et
al. (2019) at different levels of sophistication. The fit to the PD
spectrum of ρ Leo shown in Fig. 4 reveals a characteristic
frequency νchar ¼ 16.624� 0.007 μHz, corresponding to a
characteristic timescale of 0.7 d. The K2 light curve of ρ

Leo also reveals rotational modulation with a period of 26.8 d
(Aerts et al., 2018a), which corresponds to a frequency of
0.432 μHz. The astrophysical interpretation of SLF in inter-
mediate- and high-mass stars may involve a variety of physical
causes given the wide range of evolutionary stages covered by
the sample.
Armed with the knowledge of how to derive the oscillation

frequencies ωobs
nlm of a pulsating star from high-precision space

photometry, we now move on to their exploitation in terms of
the star’s interior physical properties. This requires that we
dive into the theory of nonradial oscillations predicted from
equilibrium models of stars. In Secs. II and III, we explain
how this can be achieved and under which assumptions.
Subsequently we summarize some of the impressive recent
results of asteroseismic modeling.

II. NONRADIAL OSCILLATIONS OF STARS

The diagnostic power of nonradial oscillations to probe
stellar interiors is immense, particularly when compared to
observations that probe only the stellar atmosphere. For
example, estimates of Teff of slowly rotating single stars
are dependent on atmosphere models and may reach 1%
precision for the best cases. Dynamical masses of binary
components are model-independent observables and may
reach 1% accuracy; see Serenelli et al. (2021) for a summary.
Oscillation frequencies can be measured directly from data,
without any model dependence, at the level of 0.001% for p
modes of low-mass stars and 0.1% for g modes of inter-
mediate-mass stars; see Aerts, Mathis, and Rogers (2019),
Table 1. These precisions of mode frequencies lie at the heart
of the revolution brought by space asteroseismology.
The interpretation of detected oscillation modes requires a

good understanding of the theory of nonradial oscillations and
how the modes depend on the properties of stellar interiors.
This dependence is currently studied from numerical compu-
tations of stellar equilibrium models and their predicted
oscillations, for different sets of input physics and free
parameters. However, various forms of analytical expressions
for the mode properties are highly insightful for the under-
standing of the mode behavior. In fact, asymptotic approx-
imations of the mode frequencies offer an important basis to
interpret the observations, even in current times of large
computational power. This was stressed by Cunha et al.

(2015) and illustrated by Van Reeth, Tkachenko, and Aerts
(2016), Ouazzani et al. (2017), Christophe et al. (2018), and
Cunha, Avelino et al. (2019).

Extensive textbooks on the theory of nonradial oscillations
of stars were produced by Unno et al. (1989) and Smeyers and
Van Hoolst (2010), to which we refer for the historical
developments and for mathematical derivations. Here we limit
ourselves to the bare minimum required to understand appli-
cations of asteroseismology. Aerts, Christensen-Dalsgaard,
and Kurtz (2010) provided detailed descriptions of the general
methodology and applications covering all masses and types of
nonradial oscillations, while Basu and Chaplin (2017) covered
applications based on space photometry but limited to stochas-
tically excited solarlike oscillations. Tong and García (2015)
covered synergies between planetary and stellar seismology.
As outlined in the Introduction, the asteroseismology revolu-
tion of the past decade is so immense that we focus the rest of
this review on applications based on the recent space photom-
etry, even though this does injustice to numerous studies and
efforts prior to 2010.

A. Stars and their hydrodynamics

The equations describing the oscillations of stars are
perturbed versions of the equations of hydrodynamics applied
to a gaseous self-gravitating sphere. We introduce the basics
of stellar hydrodynamics before moving on to stellar oscil-
lations. We omit the derivation of these basic equations here,
as this is the topic of various books on fluid dynamics. A
seminal introduction to hydrodynamics with specific attention
to stellar oscillations was given by Ledoux and Walraven
(1958). Here we limit ourselves to the ingredients needed to
move on to asteroseismic modeling while omitting unneces-
sary details.

1. The stellar structure equations

The equations to be solved to compute stellar models
throughout the evolution of stars are the general equations of
physics, expressing conservation of mass, momentum, and
energy. In stellar interiors, the circumstances are such that
viscosity can be ignored and the conservation laws can be
limited to gaseous objects. The derivation of the equations
expressing the conservation laws for stellar structure and
evolution was covered by Cox and Giuli (1968), Hansen,
Kawaler, and Trimble (2004), Maeder (2009), and
Kippenhahn, Weigert, and Weiss (2012).
Conservation of mass leads to the equation

∂ρ

∂t
þ∇ðρvÞ ¼ 0; ð18Þ

where ρðr; tÞ is the local density at position vector r and vðr; tÞ is
the local velocity vector, both at time t. The equations of motion,
expressing conservation of momentum, can be written as

ρ
∂v

∂t
þ ρv · ∇v ¼ −∇p − ρ∇Φþ ρ f ; ð19Þ

where f is body force per unit mass and Φ is the gravitational
potential satisfying the Poisson equation

∇2Φ ¼ 4πGρ; ð20Þ
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and where it is assumed that internal friction in the gas can be
ignored (i.e., zero viscosity). In general, f stands for the
electromagnetic and possibly external forces such as tidal forces
in multiple systems. The energy equation is derived from the
thermodynamical properties and the energetics of the gas and
can be formulated as

ρT
∂S

∂t
þ ρTv ·∇S ¼ ρε −∇F; ð21Þ

with S the entropy per unit mass, ε the energy generation rate per
unit mass taking into account the energy loss from neutrinos,
and F the energy flux.
Further, an equation for the overall energy transport

throughout the star needs to be added. This is fairly straight-
forward in radiative zones of the star, because the mean free
path of a photon is ultrashort compared to the length scales
over which the stellar structure changes (∼2 cm in the solar
interior, for instance). In such a case the radiative energy
transport is well described by a diffusion approximation. For
stellar interiors, this is given by

F ¼ −
4π

3κρ
∇B ¼ −

4acT3

3κρ
∇T; ð22Þ

where B ¼ ðac=4πÞT4 results from integrating Planck’s
radiation function, κ is the flux-weighted opacity, c is the
speed of light, and a is the radiation density constant.
In convection zones of the stellar interior, the turbulent gas

motions transport the energy in an efficient yet complex
manner. In the absence of a proper theory for the dynamical
effect of convection for stellar interiors, the turbulent pressure
is usually ignored and the treatment of convective energy
transport in stellar evolution codes is time independent. This
approach is a crude approximation: it is based on pragmatism
rather than sophistication. Although various versions exist for
the description of convective instabilities, the most popular
treatment of time-independent convection is the so-called
mixing-length theory (mlt); see Houdek and Dupret (2015) for
a historical overview. It is characterized by the free parameter
αmlt (expressed in units of the local pressure scale height Hp),
which stands for the mean free path over which the convective
eddies travel before dissolving in their environment.
Asteroseismology allows one to infer the extent of convective
regions via estimation of the free parameters of the convection
formulation used for the modeling. This was done for mlt by
Joyce and Chaboyer (2018) and Viani et al. (2018).
Whenever the diffusion of photons is insufficiently efficient

as an energy transport mechanism, convection not only takes
over the energy transport but also changes the temperature
gradient relative to the radiative one in Eq. (22). From a
computational point of view, the calculation of the energy
transport must hence be split up for the radiative and
convective zones inside the stellar model. This is done by
testing whether a zone with temperature gradient

∇≡
d lnT
d lnp

ð23Þ

is stable or unstable against convection. The general condition
to test for convective stability is the so-called Ledoux criterion

∇rad < ∇ad þ
φ

δ
∇μ; ð24Þ

where we have introduced

∇rad ¼
3

16πacG

κp

T4

LðrÞ
mðrÞ ; ∇ad ¼

�

∂ lnT
∂ lnp

�

S

;

∇μ ¼
d ln μ
d lnp

; δ ¼ −

�

∂ ln ρ
∂ lnT

�

p;μ

; φ ¼
�

∂ ln ρ
∂ ln μ

�

p;T

;

with μ the mean molecular weight of the ionized gas. For
zones with a homogeneous chemical composition, the Ledoux
criterion reduces to the Schwarzschild criterion

∇rad < ∇ad: ð25Þ

Stars born with a mass above ∼1.7M⊙ have a receding
convective core as they evolve throughout the core-hydro-
gen-burning phase because the opacity κ decreases as the
hydrogen depletes, reducing ∇rad. The resulting composition
gradient gives rise to ∇μ ≠ 0 and increases stability in that
zone. On the other hand, the change of ∇rad for stars born with
a mass below ∼1.3M⊙ is dominated by the factor LðrÞ=mðrÞ,
which increases faster than κ decreases. The interplay in
importance between κ and LðrÞ=mðrÞ in the expression of
∇rad, and along with it the growth or shrinkage of the
convective core, depends on the physical circumstances for
masses between 1.3M⊙ and 1.7M⊙ (Mombarg et al., 2019).
In a zone that is stable against convection, a fluid element

that gets displaced by moving up will be pulled back down
until it is again situated at its equilibrium position, thanks to
the action of the buoyancy force of Archimedes. This
oscillatory motion of the fluid elements depends on the local
density, pressure, and chemical composition of the gas and
happens with the so-called Brunt-Väisälä frequency, or buoy-
ancy frequency for short, which can be approximated as

N2 ≃
g

Hp

½δð∇ad −∇Þ þ φ∇μ�; ð26Þ

with g the local gravity. The μ gradient affects the local
behavior of NðrÞ in the radiatively stratified layers of the star.
As discussed later, this will affect stellar oscillations, notably
internal gravity waves. In the case of instability, i.e., N2 < 0,
the speed of the fluid element increases exponentially with
time until it breaks up, causing complete and instantaneous
mixing of the chemical species.
Even though Eq. (24) allows us to derive the zones where

convection takes place inside the star, complications occur in
the transition layers between convective and radiative zones,
hereafter termed convective boundary layers. The fluid ele-
ments inside a convection zone experience a turbulent motion
with velocity vconv. When they reach the convective boundary
layer, their inertia will prevent them from stopping abruptly;
i.e., they will “overshoot” from the convection zone into the
radiative layer over an unknown distance, which we denote as
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αov (in analogy to αmlt, it is expressed in the unitHp). The way
in which the fluid elements overshoot the convective boundary
depends on the location of the convection zone inside the star
and the physical circumstances at that position. For extensive
discussions, see Zahn (1991), Viallet et al. (2015), Cristini
et al. (2016), Constantino, Campbell, and Lattanzio (2017),
and Arnett et al. (2019). Three-dimensional simulation studies
have indicated at least three physical processes that may come
into play: penetration by plumes leading to superadiabatic
mixing over a distance dpen (Zahn, 1991), subadiabatic
thermal diffusion over a distance described by means of an
exponentially decaying mixing profile with parameter fov
(Freytag, Ludwig, and Steffen, 1996; Herwig, 2000), or
turbulent entrainment that occurs over a dissipation length
scale expressed as a distance ld (Meakin and Arnett, 2007;
Viallet et al., 2013). These imply a different and uncalibrated
level and functional form of convective boundary mixing
(CBM) and have a different temperature gradient in the
transition layer. We use the notation of the free parameter
αov to express the unknown length scale over which the fluid
elements move from inside a convective region into the
radiative adjacent zone, representing any of dpen, fov, ld, or
other formulations; cf. Augustson and Mathis (2019).
The rate of change of species of type i with relative mass

fraction Xi is caused by various processes, some of which are
diffusive but others that are not. When the rate of change
happens much faster than the nuclear timescale, it is custom-
ary to approach ∂Xi=∂t by a diffusion equation for computa-
tional convenience. In the simplest case of changes due to
convective motions, along with nuclear fusion in a spherically
symmetric star, we can write

∂Xi

∂t
¼ Ri þ

1

ρr2
∂

∂r

�

ðDconv þDovÞρr2
∂Xi

∂r

�

; ð27Þ

where the rate of change of Xi due to nuclear reactions is
denoted symbolically as Ri. The diffusion coefficient asso-
ciated with the convective mixing described by mlt is given by

Dconv ¼ 1
3
αmlt Hp vconv: ð28Þ

The unknown profile of CBM due to the overshooting of the
fluid elements beyond the convective boundary is denoted
here as Dov. Each of the profiles DconvðrÞ and DovðrÞ
(expressed in the physical units cm2 s−1) is in general an
unknown function of r and involves at least one free parameter
(αmlt and/or αov).
For stars with a convective core, the lack of calibration of

the physics in the convective boundary layers implies a serious
limitation. Indeed, the CBM influences the amount of matter
that can be brought into the central regions where nuclear
fusion takes place. The higher the CBM, the more fresh fuel
reaches the nuclear reactor and hence the longer the nuclear
fusion can go on. This has a major impact on the star’s core
mass and its age. For this reason, calibration of the amount of
matter in the convective core of a star Mcc, via an observa-
tional estimation of the profile Dovðr; tÞ and its feedback
throughout the evolution of the star, is a crucial piece of
information to predict a star’s life and age. It was shown that

space asteroseismology has the capacity to deliver such an
estimation across a large mass range by Deheuvels et al.

(2016) and Pedersen et al. (2018), including assessment of
the temperature gradient in the near-core boundary layer
(Michielsen et al., 2019). This potential had already been
pointed out by Dziembowski and Pamyatnykh (1991) but
remained without practical application until recently. Concrete
applications to deriveDovðrÞ based on space asteroseismology
are discussed in Sec. IV.

2. Simplification to 1D stellar models

Because of the immense range in timescales and spatial
scales occurring in the interiors of stars, stellar models must
necessarily remain a simplified version of reality. Indeed, the
computation of 3D models across stellar evolution is not yet
feasible. One thus needs to adopt simplifications in the
computation of stellar structure models. With asteroseismic
applications in mind, we make two important approximations:
we assume that any equilibrium model, which will be
perturbed to compute a star’s oscillations, is spherically
symmetric and does not have a dynamical atmosphere. The
first simplification implies that we can rely on 1D models in
hydrostatic equilibrium computed for stars that do not rotate
close to their so-called critical rotation rate. The second
simplification allows us to use a static atmosphere model
to connect to the stellar interior as outer boundary at each time
step in a star’s evolution.
In practice, stellar evolution codes rely on mass-loss or

accretion rates described by parametrized laws, such that an
amount _MΔt is peeled off or added to the stellar model after a
duration Δt of stellar life has passed. For each particular
instance in time, the stellar model is considered to have a static
atmosphere on top of its interior structure. In this way, the
models are built while taking mass loss or accreted mass into
account and ignoring the dynamical properties due to a stellar
wind or an accretion disk. This simplifies the boundary
conditions adopted to close the set of equations to be solved.
This basic assumption is justified for the majority of appli-
cations in asteroseismology, because nonradial oscillations are
usually undetectable for stars that have a strong dynamical
wind or high levels of accretion.
Ignoring fast rotation needs more justification than neglect-

ing the dynamics of the wind, because rotation is common in
stars throughout their lives. Rotation acts upon stellar structure
in at least three ways: it deforms the star from spherical
symmetry, it leads to higher polar than equatorial flux due to
gravity darkening, and it induces various instabilities and
mixing in the stellar interior. The level of confidence in how to
treat these effects is different for the three aspects. Gravity
darkening was first discussed by von Zeipel (1924). It stands
for a reduction in the flux and hence in the effective temper-
ature of the star resulting from the reduced gravity in the
equatorial regions relative to the polar ones. The von Zeipel
effect is expressed as

Teff ¼ Teff;p

�

geff
geff;p

�

β

; ð29Þ
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where Teff;p and geff;p are the effective temperature and
effective gravity at the pole of the star. For a radiative
envelope as considered by von Zeipel, β ≃ 0.25. In the
presence of a convective envelope, β is usually assumed to
be β < 0.1. This limited knowledge of the exponent β, and
along with it a nonsymmetrical stellar wind, implies a non-
trivial treatment in stellar evolution computations in the
presence of rotation.
By definition, the critical (or breakup) velocity is reached

when the outwardly directed centrifugal acceleration is equal
to the inward effective gravitational acceleration at any one
point of the stellar surface. Here we work with the critical
rotation frequency since we are making a comparison to the
frequencies of oscillations. Usually the Roche approximation
is adopted, which assumes that the mass concentration inside
the star is not distorted by the rotation. In this case, the polar
(Rp) and equatorial (Re) radii of the star differ by less than a
factor of 3=2, where Re;crit=Rp;crit ¼ 3=2. This leads to the

critical rotation frequency given by Ωcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GM⋆=R
3
e;crit

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8GM⋆=27R
3
p;crit

q

, with M⋆ the mass of the star and

Re;crit; Rp;crit its critical equatorial and polar radii. This is
the solution for the critical rotation frequency when the
Eddington parameter Γ ¼ κL=4πcGM⋆ < 0.639 (Maeder,
1999). The other solution is not considered here, as almost
all applications in asteroseismology thus far occur for stars
without a strong radiation-driven wind.
The prediction Re;crit=Rp;crit < 3=2, along with von Zeipel’s

formula (29), can be evaluated directly from interferometric
measurements of stellar surfaces. Such observations indeed
show that fast rotators are oblate (Domiciano de Souza et al.,
2018) and that their surface properties and winds are not
spherically symmetric, as revealed by Kervella and
Domiciano de Souza (2006) and Domiciano de Souza et

al. (2014). However, fast rotating stars do not necessarily
comply with the Roche approximation. Interferometry of the
Be star Archernar (Domiciano de Souza et al., 2003) led to
Re=Rp ≃ 1.56. Moreover, von Zeipel’s law is not adhered to
by the stars having gravity darkening measurements from
interferometry (Domiciano de Souza et al., 2018). This led
Gagnier et al. (2019) to perform a new evaluation of the
critical rotation of a star from 2D static models, with the
conclusion that β decreases from 0.25 to 0.13 for rotation rates
evolving from slow to critical.
In conclusion, the computation of 2D equilibrium models in

the presence of rotation comes with major uncertainty, even in
its simplest aspects of the local surface and its flux. For this
reason, computations of stellar oscillations from 2D equilib-
rium models are often restricted to static polytropic models
(Lignières, Rieutord, and Reese, 2006; Reese, Lignières, and
Rieutord, 2006). Although progress is steadily achieved
(Ouazzani, Dupret, and Reese, 2012; Reese et al., 2013),
fitting of measured frequencies to perform 2D asteroseismic
modeling is not within reach yet. We thus do not treat 2D
equilibrium models as input for oscillation-mode computa-
tions. Rather, we focus in this review on tuning the stellar
interior quantitatively by taking into account the Coriolis
acceleration at the level of the mode computations while
relying on 1D equilibrium models. Lignières, Rieutord, and

Reese (2006), Ballot et al. (2010), and Ouazzani et al. (2017)
provided comparisons between oscillation frequency predic-
tions of rapid rotators from 1D versus 2D equilibrium models
using higher-order perturbative expressions for the effect of
rotation. These studies revealed that a 1D treatment for p
modes leads to appropriate oscillation predictions for stars
rotating up to ∼15% of the critical rotation frequency. For
high-order g modes, the 1D treatment is justified up to ∼70%

of the critical rotation frequency (Henneco et al., 2021).
Within these regimes, it is justified to work with 1D
equilibrium models as input for the computation of oscillation
modes, where no rotation or only the spherically symmetric
component of the centrifugal force is included in Eq. (19). In
the latter case, the simplified equation of hydrostatic equilib-
rium reads

∂p

∂r
¼ −

Gmρ

r2
þ 2

3
ρrΩ2: ð30Þ

3. Standard 1D stellar models in hydrostatic equilibrium

Thus far we have focused on the internal structure of the
star, but we have hardly considered its chemical evolution.
The chemical composition inside the star at time t is described
by relative mass fractions of species i, Xi ¼ Xiðr; tÞ, where
r ∈ ½0; R⋆ðtÞ�, with R⋆ðtÞ the radius of the spherically sym-
metric star at time t in its evolution. These profiles are an
important aspect of stellar models, because they determine the
opacity, thermodynamical characteristics, and energy produc-
tion ε due to nuclear reactions as in Eq. (21). These reactions,
in turn, change the chemical composition and rule the life of
the star.
To solve the stellar structure equations (18)–(21) along with

the energy transport equation(s) and the changes in the
chemical profiles Xi ¼ Xiðr; tÞ, the microscopic properties
of the stellar matter need to be known as a function of pðr; tÞ,
Tðr; tÞ, etc. This requires adopting an equation of state,
various thermodynamical properties, opacity tables to com-
pute the Rosseland mean opacity, a network of nuclear
reaction rates, etc. This is jointly referred to as “input physics”
when one computes stellar models. Further, proper boundary
conditions at the center and surface of the star and initial
conditions characterizing the star’s properties at birth (τ≡ 0)
when it has arrived at the so-called zero-age main sequence
(ZAMS) have to be chosen [this is not discussed here; see
Kippenhahn, Weigert, and Weiss (2012)]. The solution of the
equations for chosen boundary conditions delivers what is
called a stellar equilibrium model at age τ described by
mðr; τÞ; pðr; τÞ; Lðr; τÞ; Tðr; τÞ; Xiðr; τÞ, and by all other rel-
evant functions that can be derived from these solutions, with
mðr; τÞ the mass enclosed by the shell positioned at r ∈

½0; R⋆ðτÞ� inside the star.
The ZAMS τ≡ 0 is defined as the point in time when

hydrogen fusion occurs in full equilibrium in the center of the
star. At the ZAMS, the star has a specific yet unknown
chemical mixture of species Xi in its interior. This mixture is
the result from the initial chemistry it received from its birth
cloud when it started as a fully convective protostar on the so-
called Hayashi track [see Kippenhahn, Weigert, and Weiss
(2012) for a definition], and from changes in this mixture due
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to nuclear reactions and due to mixing taking place during the
contraction phase from the Hayashi track toward the ZAMS.
Often, the computation of stellar models for low-mass stars
adopts the solar mixture using the Sun’s current or initial
surface abundances (Asplund et al., 2009). On the other hand,
the surface abundances of B-type stars in the solar neighbor-
hood (Przybilla et al., 2013) constitute a logical choice for the
initial chemical mixture when computing high-mass stellar
models. With a specified chemical mixture, the initial com-
position is an input for the 1D evolutionary computations. We
denote this initial composition as Xini, Y ini, Zini, which stand
for the initial hydrogen, helium, and metal mass fractions,
complying with Xini þ Y ini þ Zini ¼ 1. For most of the phases
of stellar evolution, the stars do not change on a dynamical
timescale, as it is much shorter than the contraction timescale
and the nuclear timescale. Whenever this is the case, the left-
hand side of Eq. (19) is zero and the resulting stellar model is
in hydrostatic equilibrium.
In the simplest case of a nonrotating nonmagnetic single

star without a stellar wind, there is no additional body force f
in Eq. (19) such that the pressure and gravity forces are the
actors that compensate for each other. Such simplifications
lead to equilibrium models that resemble reality well for many
of the stars and during large fractions of their life. Stellar
models computed with those simplifications for the interior
and with a static atmosphere as outer boundary are called
standard stellar models. Evolutionary tracks representing such
standard models are included as full lines in Fig. 1. Extensive
comparisons of stellar evolution models computed with
independently developed codes have been done for low-mass
stars in the context of CoRoT (Monteiro, 2009) and show
impressive agreement when the same input physics is con-
sidered. This is in sharp contrast to the major differences
occurring for stellar evolution computations based on similar
input physics for high-mass stars, even for nonrotating models
(Martins and Palacios, 2013).

4. Nonstandard 1D models with microscopic atomic diffusion

Composition changes do not occur only in regions where
nuclear reactions take place. In addition to full and instanta-
neous mixing in convective regions and full or partial mixing
in convective boundary layers, the chemical profiles in
radiative regions may also change due to microscopic and
macroscopic transport processes (Pinsonneault, 1997; Salaris
and Cassisi, 2017). Which of those is dominant depends on
the timescales upon which they act. Macroscopic mixing may
be induced by turbulence, magnetic fields, waves, rotation,
etc. In this section, we focus on the microscopic scale and
consider element transport caused by microscopic atomic
diffusion. The accompanying local chemical composition
changes induced by it are caused by gradients operating in
the radiative layers of the star. These gradients may introduce
lower or higher concentrations of particular chemical
species, in particular, layers of the radiative envelope.
Section II.A.5treats macroscopic element transport.
A key aspect of assessing the importance of microscopic

diffusion is that the timescales upon which it acts are
significantly different for the atmosphere than for the interior
of the star (Michaud, Alecian, and Richer, 2015). Diffusion

timescales are typically less than a century for the stellar
atmosphere, while they are millions to billions of years for the
interior regions. Given that we focus on asteroseismic appli-
cations and on the tuning of stellar interiors, we do not
consider modeling surface abundances affected by atomic
diffusion as observed in some intermediate-mass stars (so-
called Ap and Bp stars). Rather, we limit ourselves to those
aspects of atomic diffusion that act on long timescales in
radiative parts of the stellar interior, keeping in mind the
importance of atomic diffusion for the solar case, as demon-
strated from helioseismology by Christensen-Dalsgaard,
Proffitt, and Thompson (1993).
Following numerous studies (Thoul, Bahcall, and Loeb,

1994; Chayer, Fontaine, and Wesemael, 1995; Richer,
Michaud, and Turcotte, 2000; Richard, Michaud, and
Richer, 2002; Richard et al., 2002; VandenBerg et al.,
2002; Michaud et al., 2004; Hu et al., 2011; Théado et al.,
2012; Deal, Richard, and Vauclair, 2016), four different
aspects of microscopic atomic diffusion are considered in
stellar models. These occur due to pressure, temperature, and
concentration gradients, on the one hand, and radiative forces,
on the other hand. While pressure and temperature gradients
augment the concentration of more massive species toward the
center of the star, concentration gradients have the opposite
effect. On the other hand, radiative forces levitate species with
an efficiency that depends on the details of the atomic
structure of the involved isotopes. The calculation of the
appropriate radiative accelerations is therefore challenging in
terms of computation times. The accelerations can be com-
puted from atomic data by treating the appropriate multi-
component gas (Burgers, 1969). This requires evaluations of
the frequency-dependent absorption coefficients derived from
a screened Coulomb potential (Paquette et al., 1986), taking
into account partial ionization, and this for all the layers inside
the star; cf. Thoul, Bahcall, and Loeb (1994). Once the overall
local velocities wi for each of the species i involved in the
atomic diffusion are computed, they can be inserted into the
following equation governing the time evolution of the mass
fraction Xi:

∂Xi

∂t
¼ Ri −

1

ρr2
∂

∂r
ðρr2XiwiÞ

þ 1

ρr2
∂

∂r

�

ðDconv þDovÞρr2
∂Xi

∂r

�

; ð31Þ

where the second term on the right-hand side is the result of
the microscopic atomic diffusion acting upon species Xi and
the third term is the result of macroscopic transport of the
chemical species due to convection and overshooting.
If atomic diffusion can be treated without the radiative

effects, which is a good approximation for cool stars with
extended convective envelopes such as the Sun, its impact on
the computation time required for evolutionary model calcu-
lations is modest. As a consequence, the use of such simplified
microscopic diffusion computations without levitation in
evolutionary models is widespread (Chaboyer, Demarque,
and Pinsonneault, 1995; Pinsonneault, 1997). With levitation
included, the computation of wi and the solution of the set of
equations (31) at each step of the evolution is a major
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challenge. Nevertheless, such computations have been done
with the specific aim of asteroseismic applications, adopting
various levels of complexity. Studies of stellar interiors of A-
and F-type stars were given by Turcotte, Richer, and Michaud
(1998), Deal et al. (2018), and Verma and Silva Aguirre
(2019), subdwarf B stars were studied by Hu et al. (2011) and
Bloemen et al. (2014), and white dwarfs were studied by
Romero et al. (2017) and De Gerónimo et al. (2019), where
the last two papers did not include radiative levitation.
Figure 5 shows the influence of atomic diffusion on g-mode
frequencies of intermediate-mass stars whose rotation period
is about 10 times longer than its dipole-mode periods. The
frequency shifts induced by atomic diffusion are much larger
than the measurement uncertainties, highlighting the fact that
asteroseismology has the capacity to evaluate the need (or not)
of radiative levitation in models of such stars, as illustrated by
Mombarg et al. (2020).
It is instructive, particularly for the later nuclear burning

stages, to compare the asteroseismic results based on evolu-
tionarymodelswith those obtained from static structuremodels
that are more sophisticated in some aspects of the structure yet
less prone to unknown aspects of the physics in the models that
accumulate throughout the evolution. This approach was
followed by Charpinet et al. (2011) and Van Grootel et al.
(2013), as well as by Giammichele et al. (2018) and Charpinet
et al. (2019) for subdwarfs and white dwarfs, respectively.
Differences in the stellar structure profiles from such static
models [mðrÞ, pðrÞ, TðrÞ, LðrÞ, and XiðrÞ] compared to those
obtained from evolutionarymodels can then be used to improve
the input physics adopted for full evolutionary computations
via an iterative loop between asteroseismology and the equi-
librium models, as given by Timmes et al. (2018) and De
Gerónimo et al. (2019).
Atomic diffusion impacts the concentration of the species in

the stellar interior on timescales that are relevant for stellar
evolution. Its effect is hard to unravel from a star’s luminosity
and effective temperature, which are the two quantities that

define the evolutionary tracks in a HRD. Models with and
without atomic diffusion (either with or without levitation)
usually differ far less than typical observational errors of L or
log g plotted versus Teff , as shown by Dotter et al. (2017) and
Deal et al. (2018). As a confrontation between data and theory
in the HRD is commonly the only assessment to evaluate
stellar evolutionary theory, and given the computational
requirements, microscopic atomic diffusion is often ignored
in stellar and galactic astrophysics. Its inclusion is, however,
critical when evaluating surface abundances for archaelogical
chemical tagging (Dotter et al., 2017) and to interpret
asteroseismic data, as was done by Verma et al. (2017),
Deal et al. (2018, 2020), and Mombarg et al. (2020).

5. Nonstandard 1D models with rotation and waves

Rotation has a major effect on stellar evolution (Maeder,
2009). Yet in this era of space asteroseismology, it has become
clear that its treatment in stellar interiors is up for improve-
ment. Computations based on local conservation of angular
momentum and rotational mixing, both of which have been
used extensively in stellar evolution models the past few
decades, lead to predictions that are incompatible with
asteroseismology, as discussed later. Even 1D models of
slowly rotating stars face challenges. Improving them is a
major aim of asteroseismology, and of stellar astrophysics in
general. We have now reached the stage where asteroseismic
inferences based on high-quality space photometry can be
used to deriveΩðrÞ for stars and to provide a calibration of the
poorly known physical ingredients of rotating stellar models,
which is in line with Gough’s quote in the Introduction: that is,
asteroseismology in action.
To compute equilibrium models including rotation, we need

to know ΩðrÞ and how it changes throughout stellar evolution.
Asteroseismology is a major and thus far unique game changer
on this front. While we discuss methods to deduce ΩðrÞ in
Sec. IV.D, we provide the current status of the rotation
frequencies in the region just outside the convective core

FIG. 5. Shifts in the periods of dipole (l ¼ 1) triplet g modes of two equilibrium models [blue (orange), without (with) atomic
diffusion, including radiative levitation] with the same input physics for parameters M ¼ 1.7M⊙, Xini ¼ 0.7154, Zini ¼ 0.022, and at
two different evolutionary stages expressed in terms of the central hydrogen fraction Xc. The g modes were computed assuming rigid
rotation with a period of 14.4 d. The radial orders n are labeled. The vertical line indicated on the left side in the upper panel denotes the
measurement uncertainty for such mode periods from a 4-yr nominal Kepler light curve. Adapted from Mombarg et al., 2020.
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(denoted as Ωcore throughout the review) in Fig. 6. We also
highlight the envelope (Ωenv) or surface (Ωsurf) rotation
frequency for the stars with this information. Figure 6 updates
the work of Aerts, Mathis, and Rogers (2019), who presented
these asteroseismic measurements for low- and intermediate-
mass stars distributed across all evolutionary stages from
Kepler photometry. We discuss these results extensively in
Sec. IV, but we point out here that almost all single stars in the
covered mass range of ½0.8; 3.3�M⊙ were found to rotate nearly
uniformly during the core-hydrogen-burning and core-helium-
burning phases and that the angular momentum of the helium-
burning core of these stars is in agreement with the angular
momentum of white dwarfs. Figure 6 implies a strong decrease
of core angular momentum in the stars when stars have a
convective core. Current stellar evolution theory of rotating
stars cannot explain these asteroseismic results. This calls for a
reevaluation of 1D models with rotation.
Stellar models with rotation often adopt the approximation

of shellular rotation, following Zahn (1992). In this approxi-
mation, one assumes that the chemical composition and the
angular velocity remain constant on isobars. As such, the ratio
of the rotation frequency of the star ΩðrÞ with respect to Ωcrit
[or the accompanying vðrÞ=vcrit] is used as input for the
numerical computations of the stellar models. Given the
limited knowledge on angular momentum evolution during
the contraction phase, the input ratio ΩðR⋆Þ=Ωcrit is usually
taken at the ZAMS, assuming a rigid rotation profile to start
the evolutionary computations.
From a theoretical perspective, rotation is expected to

induce a myriad of processes and instabilities in the stellar
interior, leading to transport of angular momentum and of
chemical species. This was extensively discussed by Maeder
(2009). As recently reviewed in the modern context of
asteroseismology, these macroscopic processes can be

classified into four main categories (Aerts, Mathis, and
Rogers, 2019, Sec. 3): meridional circulation, hydrodynam-
ical instabilities, magnetorotational instabilities, and IGWs.
However, the concept of “rotational mixing” in stellar evo-
lution computations and in the literature often stands for the
macroscopic element transport due to the action of circulation
and all instabilities together. Further, in analogy to rotational
mixing, we will use the term “pulsational mixing” for element
transport caused by waves. Because rotational or pulsational
mixing is expected to homogenize the chemical mixture in the
layers where they are active on short timescales, models
including these ingredients often ignore the microscopic
atomic diffusion effects leading to concentrations of species.
However, there is no justified physical reason for this
“computationally convenient” simplification when the time-
scales of these processes are similar; see Deal et al. (2020).
The transport equation controlling the evolution of the

angular momentum r2ΩðrÞ reads

∂

∂t
ðr2ΩÞ ¼ 1

5ρr2
∂

∂r
½ρr4ΩUðrÞ�

þ 1

ρr2
∂

∂r

�

ρr4Dshear
∂Ω

∂r

�

: ð32Þ

Here UðrÞ is the radial component of the velocity due to
meridional circulation and the diffusion coefficient Dshear
represents a variety of vertical shear instabilities occuring
between layers subject to different velocities (Maeder, 2009).
In addition to these instabilities, IGWs also occur in the
radiative zones of stellar interiors. Given that the dominant
restoring force for an IGW is the buoyancy force of
Archimedes, the frequencies of IGWs are below NðrÞ.
These IGWs propagate in the radiative zones of the star,

FIG. 6. Left panel: core (near-core) rotation rates derived from mixed (gravity) modes for stars in core-hydrogen burning (purple and
gray), hydrogen-shell burning (pink and red), and core-helium burning (after the helium flash in orange and avoiding the helium flash in
cyan). The circles indicate stars with asteroseismic estimates ofΩcore and log g taken from Aerts, Mathis, and Rogers (2019); their errors
are smaller than the symbol size. The squares are additional stars with asteroseismic determinations forΩcore but with less reliable values
for log g from spectroscopy and/or stellar models from Li et al. (2020) (622 γ Dor stars, indicated in gray) and from Tayar et al. (2019)
(72 core-helium-burning red giants in blue). Their uncertainties for log g range from 0.2 (blue squares) to 0.5 dex (gray squares) and are
omitted for clarity. Right panel: all stars with an additional measurement of the envelope (from p modes) or surface (from rotational
modulation) rotation frequency. Adapted from Aerts, Mathis, and Rogers, 2019.
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where they dissipate, depositing angular momentum effi-
ciently in the layers where they break. A pioneering study
of the excitation and propagation of IGWs in Sun-like stars
was presented by Charbonnel and Talon (2005). It demon-
strated the capacity of IGWs to transport angular momentum
in an efficient way, explaining the flat rotation profile of the
Sun derived from helioseismology.
As for the transport of the chemical species due to rotation,

Chaboyer and Zahn (1992) showed that it can be approxi-
mated as a diffusive process in the presence of strong horizontal
turbulence due to shear instabilities. For this reason, the
diffusive part in the chemical composition equations in
Eq. (27) gets extra terms due to various effects of rotation,
each with its own diffusion coefficient (Maeder, 2009). Aside
from rotation, additional causes of element mixing are also
considered, particularly in transition layers that are stable
against the Schwarzschild criterion, but unstable against the
Ledoux criterion, for the cases of both ∇μ > 0 (called semi-
convective mixing) and ∇μ < 0 (called thermohaline mixing).
Magnetism and IGWs may also affect the mixing. Overall, this
brings a multitude of extra diffusion coefficients that affect the
chemical composition profiles of the star, aside from DconvðrÞ
and DovðrÞ included in Eq. (27). For rotation, these have been
grouped as DshearðrÞ and DeffðrÞ adopting the notation by
Maeder (2009), where the latter is due tomeridional circulation
in the approximation of strong horizontal turbulence and the
former stands for the joint effect of vertical shear due to all sorts
of rotational (and possibly magnetic) instabilities. Pulsational

mixing profiles due to IGWs, adopting a diffusion approxi-
mation, were derived from hydrodynamical simulations for a
3M⊙ ZAMS star byRogers andMcElwaine (2017), resulting in
a diffusion coefficient depending on the density as DIGWðrÞ ∼
DIGWρ

−γðrÞ with γ ∈ ½0.5; 1�.
Figure 7 offers a schematic representation of mixing

profiles adopted in stellar evolution computations, where
the envelope mixing profiles were stitched to the CBM at
an arbitrary level. The two rightmost panels show profiles for
a 5M⊙ ZAMS model rotating at 50% of the critical rate taken
from Georgy et al. (2013); the particular shape of the third
panels from the left in Fig. 7 is due to the drop in UðrÞ ≃ 0 in
the envelope layers near m=M⋆ ≃ 0.5; cf. Maeder (2003).
Similar sharp-peaked mixing profiles based on independently
developed stellar evolution codes were found by Heger,
Langer, and Woosley (2000), Chieffi and Limongi (2013),
and Paxton et al. (2013), among others. The profile labeled
“Internal gravity waves” is from a 3M⊙ nonrotating model
computed by Rogers and McElwaine (2017). In general, the
mixing profiles indicated in Fig. 7 vary strongly during the
evolution of the star, but it is poorly understood how. In this
sense, none of these profiles are calibrated. Asteroseismology
offers a major tool to infer the overall mixing profiles
throughout stars, denoted as of now as Dmixðr; tÞ.
Inferences of the internal mixing in stars received less

attention than the probing of Ωðr; tÞ thus far. The reason is
simple: estimation ofDmixðr; tÞ is much harder than ofΩðr; tÞ.
The latter can be achieved in a quasi-model-independent way

FIG. 7. Schematic representation of mixing profiles due to various transport processes in stars with a convective core (indicated in
gray) and a radiative envelope for exponentially decaying diffusive core overshooting (upper panels) and convective penetration (lower
panels) as CBM (purple). Four types of envelope mixing based on different theoretical frameworks are considered (pink), as labeled.
Based on envelope mixing profiles for 5M⊙ and 3M⊙ ZAMS models computed by Georgy et al. (2013) and Rogers and McElwaine
(2017), respectively. Adapted from Pedersen et al., 2021.
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and almost directly from the Fourier transform of the data, as
explained in Sec. II.B. Given that the levels of Dmixðr; tÞ as
displayed in Fig. 7 differ by orders of magnitude in the
literature, it is highly beneficial to infer asteroseismic levels
of mixing (and the accompanying convective core mass) to
bring the models into agreement with measurements of non-
radial oscillations of intermediate- and high-mass stars.
Asteroseismology of γ Dor, SPB, and βCep stars has the
potential to provide the answer if proper ensembles of such
pulsators are subjected to asteroseismic inference.We return to
this potential and its first applications in Sec. IV.

6. One-dimensional equilibrium models as input for

asteroseismology

For stars with detected nonradial oscillations, space aster-
oseismology brings an entirely new way to assess the rotation
frequency Ωðr; tÞ and the overall chemical mixing Dmixðr; tÞ
in the radiative zones of stars. Indeed, mode frequencies
provide high-precision observational constraints coming
directly from the deep stellar interior. Assembling asteroseis-
mic data for stars in various evolutionary stages allows one, in
principle, to assess the change of ΩðrÞ and DmixðrÞ as a
function of stellar age. Yet asteroseismic probing capacities
for Ωðr; tÞ and Dmixðr; tÞ are different for low-mass stars with
a radiative core and a convective envelope than for high-mass
stars with a convective core and a radiative envelope. They
also differ for young stars burning hydrogen in their core and
for old stars close to their final fate as stellar remnant. To
understand why, it is necessary to dive into the nature of
nonradial oscillations based on 1D equilibrium models.
As discussed earlier, the simplest versions of 1D stellar

equilibrium models are nonrotating nonmagnetic models
having only six free parameters for fixed choices of the input
physics: the stellar birth mass M⋆, the initial chemical
composition guided by a galactic enrichment law [such as
the one given by Verma et al. (2019)] and expressed as relative
mass fractions (Xini, Y ini) (or equivalently Xini, Zini), the
mixing-length value αmlt that gives rise to the mixing profile
DconvðrÞ, the convective overshoot length scale αov that leads
to the CBM profile DovðrÞ, and the age τ. Asteroseismic
modeling will then consist of determining the maximum
likelihood estimators (MLEs) of these six free parameters
from measured oscillation mode frequencies (often accom-
panied by other observables). For a rotating star, at least one
additional parameter has to be added (Ω for the simplest case
of rigid rotation). Once the most likely 6D or 7D parameter
vector θ≡ ðM⋆; Xini; Y ini; αmlt; αov; τÞ has been found, the
exercise can be repeated for other choices of the input physics
to come to an overall selection of the best stellar models for an
ensemble of stars. Any residual values between the measured
and theoretically predicted oscillation frequencies of unam-
biguously identified modes can then be exploited to assess
shortcomings in Ωðr; τÞ and Dmixðr; τÞ for the fixed chosen
input physics. Once a sufficiently large and unbiased (in terms
of rotation, initial chemical composition, etc.) sample of
nonradial pulsators with suitable modes is available from
observations, we can investigate whether they adhere to the
same theory of stellar structure and evolution or instead need
different internal mixing profiles as in Fig. 7. We return to this

procedure of “ensemble asteroseismology” and discuss sim-
plifications and applications of it for various types of stars in
Sec. IV. An overall scheme representing this approach is
graphically visualized in Fig. 16 and is discussed in Sec. III.

B. Linear nonradial oscillation modes

We now consider small perturbations to 1D spherically
symmetric stellar models in hydrostatic equilibrium, whose
quantities we assume to have been derived from solving the
stellar structure equations. We denote the equilibrium solu-
tions at age τ as m0ðrÞ; p0ðrÞ; L0ðrÞ; T0ðrÞ; Xi;0ðrÞ. We
assume that the oscillations cause 3D periodic deviations
from equilibrium with amplitudes that justify a linear
approach in the derivation of the pulsation equations. In
practice this implies that we perturb Eqs. (18), (19), and (21)
while retaining only the linear terms in the perturbations. For
example, a fluid element at position vector r0 in the equilib-
rium model of the star is displaced due to the 3D stellar
oscillations to the vector r0 þ δr, where δr is the Lagrangian
perturbation of the position vector. The Lagrangian perturba-
tion to the pressure then becomes

δpðrÞ ¼ pðr0 þ δrÞ − p0ðr0Þ ¼ pðr0Þ þ δr ·∇p0 − p0ðr0Þ:
ð33Þ

All perturbed quantities that occur in Eqs. (18), (19), and (21)
can be deduced in a similar way. The linearized versions of the
perturbed equations are obtained by inserting expressions like
Eq. (33) into the full equations, subtracting the version of
those equations for the static equilibrium solutions, and
neglecting all terms of order higher than 1 in the perturbed
quantities. Aerts, Christensen-Dalsgaard, and Kurtz (2010)
gave full derivations in Chap. 3; we adopt the notations from
that book. Additional extensive discussions on the theory of
nonradial oscillations were given by Cox (1980), Unno et al.

(1989), and Smeyers and Van Hoolst (2010), where the last
work includes a particularly extensive historical perspective of
the topic.
We argued in Sec. II.A that it is meaningful to ignore the

nonradial components of the centrifugal force for stars that
rotate up to ∼70% of their critical rotation frequency and to
treat the Coriolis and Lorentz forces only at the level of the 3D
perturbations to computed nonradial g modes, but not for the
equilibrium models. For p modes, this validity already breaks
down above ∼15%. In the following sections, we gradually
build up the complexity of the treatment of the oscillations. An
obvious simplification occurs when we consider the adiabatic
approximation for the computation of the modes. This means
that we can ignore the perturbations of the entropy S in
Eq. (21). We do so in the rest of this section. Working in the
adiabatic approximation is good and fully justified as long as
we consider modes that are mostly sensitive to the physics in
the deep stellar interior where adiabaticity is well met. This
restriction is a point of attention when dealing with modes that
have their dominant energy in the envelope of the star, close to
the stellar surface; cf. p modes in low-mass stars as in Fig. 9,
which is discussed later.
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1. Pressure and gravity modes

We simplify the perturbed stellar structure equations
maximally by ignoring the Lorentz and Coriolis forces. In
that case, the only forces at play are the pressure force and
gravity. These simplifications offer maximal separability in
terms of spherical polar coordinates ðr; θ;ϕÞ and time t, where
r is the distance to the center of the star, θ is the angle from the
polar axis, which is taken to coincide with the rotation axis of
the star, and ϕ is the longitude. The displacement δr can then
be separated into radial and horizontal components as

δr ¼ ξrar þ ξh; ð34Þ

where ar is a unit vector directed radially outward. The
solutions to the resulting perturbed versions of the equations,
along with proper boundary conditions for the center and for
the surface of the star [not discussed here; see Unno et al.

(1989)], lead to nontrivial solutions only for the nonzero
eigenfrequencies ω of the stellar equilibrium model. Each of
these eigenfrequencies corresponds to a so-called time-de-
pendent spheroidal mode of oscillation. Because the equations
are homogeneous, the eigensolutions are determined only up
to a constant factor.
Each of the nonradial eigenmodes of the equilibrium model

corresponds to a displacement vector ξ whose components are
written in terms of amode degree l, azimuthal orderm, and radial
order n as ξðr; θ;ϕ; tÞ ¼ ½ðξr;nlar þ ξh;nl∇hÞYm

l ðθ;ϕÞ�×
expð−iωnlmtÞ. Modes with m ¼ 0 are called axisymmetric (or
zonal) modes; these reveal l latitudinal surface nodal lines. For
jmj ¼ l, all surface nodal lines are lines of longitude. These
modes are called sectoral modes. Modes with 0 ≠ jmj < l are
called tesseral modes and have jmj longitudinal and l − jmj
latitudinal nodal lines. As a special case, radial oscillations have
l ¼ 0 ; i.e., they do not reveal any nodal lines on the stellar
surface. The angular dependence of the radial eigenvector
component (ξr) of some nonradial modes was graphically
illustrated in Fig. 2. Space photometry has predominantly given
rise to the detection of low-degree modes, typically with l < 4.
Asdiscussed inFig. 2, the higher the degreeof themode, themore
the detection is prone to partial cancellation due to the integration
of the mode’s overall perturbation over the visible stellar surface
in the line of sight. The cancellation gets more pronounced as l
increases, because more and smaller patches with opposite sign
occur in the spherical harmonicYm

l that represents ξr. The level of
cancellation also depends on the angle between the rotation axis
and the line of sight (chosen as 60° in Fig. 2). The radial order of
the mode n represents the number of nodes of ξr in the stellar
interior,where thesenodes are countedpositively for pmodes and
negatively for g modes. For unevolved stars, the assignment of n
is straightforward in that modes with n ¼ 0 have no nodes aside
from the stellar center. These modes are called fundamental
modes, abbreviated as “f modes.” For mixed modes in evolved
stars, however, one could obtain n ¼ 0 from the occurrence of
pairs of nodes for ξr in the p- and g-mode cavities. Since the
assignment of the radial order n is used to classify modes, such a
classification may be subject to complex issues, as explained in
Sec. 3.5.2 given by Aerts, Christensen-Dalsgaard, and Kurtz
(2010), towhichwe refer for additional details. Further, we adopt
the convention that the sign ofm distinguishes prograde (m > 0)

from retrograde modes (m < 0), where the former represent
motions along the rotation of the star and the latter represent
motions against it.
The general system of differential equations that lies at the

basis of the eigenvalue problem describing nonradial oscil-
lation modes is of fourth order in the unknown perturbed
quantities, which are ξr and the perturbations to the pressure
δp, gravitational potential δΦ, and the derivative of δΦ. These
equations have Ym

l ðθ;ϕÞ expð−iωnlmtÞ as a common factor.
Hence this factor can be divided out. The resulting ordinary
differential equations to solve for the radial component of the
unknown eigenfunctions do not depend on the azimuthal order
m due to the assumption of having a spherically symmetric
equilibrium model. This fourth-order system of equations
needs four boundary conditions to be solved. However, it is
often appropriate to ignore the perturbation to the gravitational
potential because this perturbation is sufficiently small relative
to the perturbation to the density. This is known as the
Cowling approximation (Cowling, 1941). It renders the
system of equations to second order and thus requires only
two boundary conditions to get physically meaningful sol-
utions. These are ξr ≃ lξh ∼ rl−1 for r → 0 and δp ¼ 0 for
r → R⋆ (Unno et al., 1989). This also allows for the derivation
of an analytical expression for the ratio of the horizontal to the
radial displacement at the stellar surface, which depends only
on the frequency of the mode

ξhðR⋆Þ
ξrðR⋆Þ

≃
GM⋆

ω2
nl0R

3
⋆

: ð35Þ

This ratio is called the “K value” by observers. Typical values
for this ratio are below 0.001 for high-order p modes as in the
Sun and 10–1000 for high-order g modes of core-hydrogen-
burning stars. Mathematically, the Cowling approximation is
valid only for modes of high radial order n and of “high”
degree l. One should therefore not expect this to be an optimal
approximation for low-order low-degree modes, and, in
particular, not for l ¼ 1, n ¼ 0 f modes; see Sec. 3.4.1 given
by Aerts, Christensen-Dalsgaard, and Kurtz (2010). Hence,
observed stars may reveal frequency values for their f modes
that do not coincide with those computed in the Cowling
approximation.
The two pulsation equations resulting from adoption of the

Cowling approximation can be combined into a single
approximative second-order differential equation for ξr as
follows:

d2ξr
dr2

≃
ω2

c2s

�

1 −
N2

ω2

��

S2l
ω2

− 1

�

ξr; ð36Þ

with NðrÞ as given in Eq. (26) and where we have introduced
the following local characteristic acoustic frequency (also
called the Lamb frequency) for the mode with degree l:

S2l ðrÞ≡
lðlþ 1Þc2s

r2
; ð37Þ

with cs the sound speed in the stellar interior. While Eq. (36) is
the simplest form in which nonradial oscillations can be
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described, it still leads to a good approximation for the mode
frequencies, and more importantly to insightful interpretations
and an elegant way to introduce the so-called mode cavities.
These are illustrative when plotted in propagation diagrams.
Solutions for ξr from solving Eq. (36) are oscillatory as a
function of r when (a) jωj > jNj and jωj > Sl or when
(b) jωj < jNj and jωj < Sl. The positions inside the star
where these conditions are met correspond with the zones in
the stellar interior where the modes resonate inside a cavity. In
this sense, the modes correspond to standing waves in their
mode cavity and are said to be trapped there. The modes that
meet conditions (a) are dominantly restored by the pressure
force and are therefore called pressure modes, usually labeled
as p modes. Within their mode cavity, these modes are
resonating sound waves (also called acoustic waves). By
convention, we denote the number of nodes in the stellar
interior as n > 0. Buoyancy is the dominant restoring force
when conditions (b) are met, and these modes are therefore
called gravity modes, labeled as g modes. Their radial order is
denoted by n < 0, which means that they have −n > 0 nodes
in the interior of the star. Within their mode cavity, they

behave like low-frequency (i.e., slow) internal gravity waves
with a dominant horizontal displacement in a gas that is
radially stratified due to gravity. Finally, solutions for ξr when
solving Eq. (36) have an exponential behavior when jNj <
jωj < Sl or Sl < jωj < jNj. The zones in which the modes
behave exponentially are called evanescent regions, and the
eigensolutions decrease or increase exponentially the farther
away they are from the mode cavities.
Figure 8 shows propagation diagrams for four stellar models

that represent stars about halfway through their core-hydrogen-
burning stage, with birth masses of 1M⊙, 1.7M⊙, 5M⊙, and
15M⊙ and with solar chemical composition and mixture. The
oscillation modes were computed with the open source
pulsation code GYRE (Townsend and Teitler, 2013;
Townsend, Goldstein, and Zweibel, 2018), coupled to equi-
librium models computed with the open source code Modules
for Experiments in Stellar Astrophysics (MESA) (Paxton et al.,
2011, 2013, 2015, 2018, 2019). The results in Fig. 8 were
obtained not by relying on the Cowling approximation but
rather by solving the fourth-order set of equations, as inmodern
applications of asteroseismology. The mode cavities for

FIG. 8. Propagation diagrams showing the mode cavities of axisymmetric p and g modes in four stellar models halfway through
the core-hydrogen-burning stage of evolution. The models have masses of 1M⊙, 1.7M⊙, 5M⊙, and 15M⊙ from top left to bottom right.
The thick solid black line indicates NðrÞ, while the dotted black and gray lines represent S1ðrÞ and S2ðrÞ, respectively. The values of the
dipole (quadrupole) mode frequencies are indicated as black (gray) horizontal lines. The position of the nodes of ξr are indicated as thick
black and gray dots for l ¼ 1 and 2, respectively. The red region is the g-mode cavity for dipole modes; it is extended by the orange part
for quadrupole modes. The dark blue region is the mode cavity of quadrupole (l ¼ 2) p modes. It is extended by the light blue region for
dipole (l ¼ 1) p modes. The modes correspond to evanescent waves in the white regions in the stellar envelope. The g modes cannot
propagate in the convective core of the three most massive stellar models, nor in the outer ∼26% of the convective envelope of the 1M⊙

model, where N2ðrÞ < 0. Partially based on models from Mombarg et al. (2019).
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axisymmetric dipole (l ¼ 1) and quadrupole modes (l ¼ 2) are
indicated, as are the mode’s eigenvalues (horizontal lines) and
positions of the radial nodes (dots). The importance of the
receding convective core and the accompanying shape ofNðrÞ
for the g-mode oscillations in intermediate- and high-mass
models is visible in the lower panels of Fig. 8.
Eigenfunctions for eight modes are shown in the left and

middle panels of Fig. 9 for the stellar model whose mode
cavities are displayed in the upper right panel of Fig. 8. In the
absence of predictive power for the mode amplitudes, we
normalize the modes such that ξrðR⋆Þ ¼ 1 in Fig. 9. It can be
seen by comparing the left and middle panels that high-order g
modes have dominant horizontal displacements, while it is the
opposite for p modes. This is in line with the predictions based
on the Cowling approximation. It is a general property of p
and g modes. Moreover, Fig. 9 shows that p modes have
higher amplitudes in the outer stellar envelope than in the
inner regions, while g modes have their highest amplitude in
the regions near the convective core.
The mode cavities change as a star evolves, reflecting the

increased density contrast in the stellar interior. This drasti-
cally changes the profile of the sound speed csðrÞ, and hence
the profile of SlðrÞ as well. As a result, the p-mode cavities
decrease in frequency and the evanescent zones become
narrower. Their exponential decay may hence be limited,
allowing them to reach the g-mode cavity and couple to the
eigenfrequencies of the g modes. Such is the case for dipole
modes in red-giant stars. These modes are therefore called
mixed modes: they have a p-mode character in the outer
envelope and a g-mode character in the inner regions of the
star. We refer to Figs. 2–4 in the Supplemental Material given
by Aerts, Mathis, and Rogers (2019) for propagation diagrams
of mixed modes in red-giant stars and refrain from repeating
such diagrams here for brevity. This mixed character of these
dipole modes was predicted theoretically by Dziembowski

(1971) and Shibahashi (1979). Dupret et al. (2009) pointed
out their probing power for the center of evolved stars
following the discovery of nonradial oscillations in red giants
from CoRoT (De Ridder et al., 2009) prior to their actual
detection in Kepler data. We return to this capacity in Sec. IV.

2. Asymptotic representations of high-order modes

As discussed in Sec. III, mode identification is a critical step
to be taken before any asteroseismic inference can be made.
Indeed, a comparison between the detected and theoretically
computed oscillation mode frequencies ωnlm can be made
only after the mode labels ðn; l; mÞ have been derived. Given
that we cannot resolve the surfaces of pulsating stars in
sufficient detail (except for the Sun), we cannot identify the
spherical wave numbers ðl; mÞ of the nonradial modes from
maps of the eigenfunctions, as in the graphical representation
in Fig. 2. We somehow have to derive the mode identification
from the observables. To this end, asymptotic representations
of high-order modes help a great deal, although other, more
empirical methods for mode identification of modes exist as
well; see Chap. 6 given by Aerts, Christensen-Dalsgaard, and
Kurtz (2010). Here we limit the discussion to mode identi-
fication based on patterns deduced among the detected
oscillation mode frequencies or mode periods.
The asymptotic theory of nonradial oscillations is based on

second-order differential equations describing the modes,
which illustrates again why the Cowling approximation is
so useful for asteroseismology. The convenience of asymp-
totic representations of high-order modes was initially con-
sidered for the case of linear radial modes by Ledoux (1962)
(in French). He recognized that the radial-mode properties can
be derived from a second-order differential equation, which
constitutes a Sturm-Liouville eigenvalue problem with sin-
gular end points at r ¼ 0 and r ¼ R⋆. The asymptotic

FIG. 9. Radial (left panels) and horizontal components (middle panels) of the Lagrangian displacement of four indicated axisymmetric
(m ¼ 0) p and g modes for l ¼ 1 (top panels) and l ¼ 2 (bottom panels) of a stellar model withM⋆ ¼ 1.7M⊙ halfway through its core-
hydrogen-burning stage of evolution. The right panels show the rotation kernel defined by Eq. (45), which represents the probing power
of an oscillation mode. Partially based on pulsation computations from Mombarg et al. (2020).
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properties of nonradial oscillation modes have been studied
more generally ever since and are well covered in the
literature, at various levels of mathematical detail. See the
extensive papers by Tassoul (1980, 1990), and see Sec. III.4
and Appendix E given by Aerts, Christensen-Dalsgaard, and
Kurtz (2010) for a general background and results. Smeyers
and Van Hoolst (2010) provided in their Chaps. 14–18
thorough mathematical details and comparisons for the differ-
ent regimes of validity while considering different types of
modes and various types of equilibrium models.
High-order p modes.—We first consider the case of

low-degree high-order axisymmetric p modes. To leading
order in the asymptotics, the frequencies of such modes
comply with

νnl ≡
ωnl

2π
≃

�

nþ l

2
þ 1

4
þ α

�

Δν; ð38Þ

where we have dropped the m ¼ 0 wave number in the
notation and where we use the cyclic frequencies of the
oscillation modes. In Eq. (38)

Δν ¼
�

2

Z

R

0

dr
cs

�

−1

ð39Þ

is called the large frequency separation. It is the inverse of
twice the sound travel time between the center and the surface
of the star. On the basis of this theoretical prediction, one
expects the frequencies of the p modes with sufficiently high n
to be equally spaced and modes with the same value of
nþ l=2 to have almost the same frequency values, since
νnl ≃ νn−1lþ2. Such frequency patterns have indeed been
observed for the solar low-degree p modes and these obser-
vational findings have given rise to the research field of
helioseismology; see Christensen-Dalsgaard (2002) for an
extensive review, including historical aspects of the develop-
ment of asteroseismology of “our own” star.
Given that the excitation and damping of the solar oscil-

lations is due to the turbulent convection in its outer envelope,
we expect similar asymptotic behavior for the high-order p
modes of all stars with a convective envelope. This was
confirmed almost two decades ago from ground-based veloc-
ity data for β Hydri (Bedding et al., 2001) and α Cen A
(Bouchy and Carrier, 2001), and prior to space photometry for
several tens of stars (Aerts, Christensen-Dalsgaard, and Kurtz,
2010). Space photometry confirms that stars with a convective
envelope comply with asymptotic theory, from dwarfs to the
bottom of the asymptotic giant branch. One of the best
datasets of solarlike oscillations in a star other than the Sun
was assembled for 16 Cyg A; its PD spectrum in Fig. 10
illustrates the validity of the asymptotic theory.
Equation (38) is based on the dominant term in the

asymptotic representation of low-order p modes. The sec-
ond-dominant term in the expansion leads to the so-called
small frequency separation, given by

δνnl ≡ νnl − νn−1lþ2 ≃ −ð4lþ 6Þ Δν

4π2νnl

Z

R

0

dcs
dr

dr
r
; ð40Þ

where csðR⋆Þ ≃ 0was assumed to arrive at this approximation.
From this expression, it is clear that δνnl probes the sound-
speed gradient in the deep stellar interior. For stars in the core-
hydrogen-burning stage, dcs=dr is highly sensitive to the
hydrogen and helium composition profiles, which are directly
impacted by the nuclear fusion. It is then readily understood
that δνnl is of major diagnostic value to estimate the age of the
exoplanet host star by comparing its observed values with
predictions of this quantity based on equilibrium models. In
the case of 16 Cyg A, as can be seen in Fig. 10, δνnl can be
measured with high precision from the radial and quadrupole
modes. This, and more sophisticated diagnostics for additional
modes, was used by Bellinger et al. (2017) to find an
asteroseismic estimate of τ ¼ 6.9� 0.4 Gyr. This is in excel-
lent agreement with other methods for this well-characterized
bright exoplanet host binary (Maia et al., 2019).
The similarity of the nonradial oscillations of 16 Cyg A to

those of the Sun as illustrated in Fig. 10 is representative of
low-mass dwarfs with convective envelopes. This observa-
tional finding is of key diagnostic importance to estimate
stellar masses, radii, and ages of such stars, as we discuss
further in Sec. IV.
High-order g modes.—For high-order low-degree axisym-

metric g modes, ω ≪ N over most of the mode cavity;
cf. Fig. 8. We denote with r1 and r2 the inner and outer
positions of the g-mode cavity. In this case, the asymptotic
analysis based on the Cowling approximation by Tassoul
(1980) led to

Pnl ¼
Π0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p ðjnj þ αl;gÞ; ð41Þ

where

Π0 ≡ 2π2
�
Z

r2

r1

N
dr
r

�

−1

: ð42Þ

The quantity Π0 stands for the buoyancy travel time and
represents a characteristic period for the g modes of the star

FIG. 10. Enlargement (red) of the observed envelope of oscil-
lation signal revealed by the power density spectrum (black) of
the solar analog 16 Cyg A as deduced from data assembled with
the Kepler satellite. The p modes are labeled by their degree l.
The large frequency separation based on the detected radial mode
frequencies is indicated. Adapted from Chaplin andMiglio, 2013.

C. Aerts: Probing the interior physics of stars …

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015001-26



(as inverse of a frequency, it is expressed in the unit of
time). In this case, the mode periods are asymptotically
equally spaced in the order of the mode and the period-
spacing value decreases with increasing l. The phase term
αl;g depends on whether the star has a radiative or a
convective core.
Long before space asteroseismology, g-mode period-spac-

ing patterns have been extensively exploited for pulsating
white dwarfs, based on photometric data assembled from the
Whole Earth Telescope (Winget et al., 1991, 1994). The short
periods of their g modes (a few to tens of minutes) imply
beating patterns in the light curves of only a few days, while
the modes may have high amplitudes of percentage level. This
led to the detection of tens of dipole and quadrupole modes
that are subject to strong mode trapping in the outer thin H and
He layers of these objects, where NðrÞ experiences spikes due
to strong changes in μ. In the context of white dwarfs,
polytropes can be taken as equilibrium models, leading to
analytical expressions for αl;g that allow detailed interpretation
of the mode trapping in terms of the chemical composition and
mass of the outer layers of such pulsators; see Brassard et al.

(1992) for a seminal paper. Ground-based asteroseismology
was therefore already highly successful for white dwarfs in the
early 1990s.
For applications to SPB stars and γ Dor stars, which are both

core-hydrogen-burning g-mode pulsators with a convective
core (cf. Figs. 1 and 8), αl;g ¼ αg turns out to be independent of
the mode degree l and one gets ΔP≡ Pnl − Pn−1l ¼
Π0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p

. Smeyers and Moya (2007) provided more
sophisticated asymptotic analyses based on the full fourth-
order theory of nonradial oscillations; i.e., they omitted the
Cowling approximation. They developed the asymptotic
approximations for both the cases of a radiative (SPB stars)
and a convective (γ Dor stars) envelope. Although they derived
more complicated expressions, the patterns to be expected from
observations are well captured by Eq. (41). However, the
number of nodes may differ by 1 compared with the simpler
treatment from Tassoul (1980) based on the Cowling approxi-
mation. This implies that one should consider an uncertainty in
the assignment of the radial order n of at least 1 in any practical
asteroseismic modeling based on observed g-mode period
spacings. In general, modern pulsation codes usually adopt
the Takata (2012) classification scheme to assign the radial
order n to modes.
The period-spacing pattern of high-order g modes offers a

direct probe of the physical conditions in the region near the
convective core of main-sequence stars. This offers interesting
applications to assess the mixing at the bottom of the radiative
envelope of core-hydrogen-burning stars, which is one of the
major uncertainties in the theory of stellar evolution, as
discussed in Sec. II.A. A seminal paper on this probing
capacity was written by Miglio et al. (2008). In retrospect, this
paper offered a preview of the major insights to come from g-
mode space asteroseismology when turned into practice.
Aside from the somewhat controversial detection and inter-
pretation of g modes in the Sun (García et al., 2007), the first
g-mode period-spacing pattern detection for an intermediate-
mass dwarf came from CoRoT data of the ∼7M⊙ B3V star
HD 50230. Eight axisymmetric g modes with consecutive

radial order could be deduced from a 137-d-long light curve
by Degroote et al. (2010a). This star revealed periodic
deviations from a uniform spacing, which is in line with
the theoretical predictions by Miglio et al. (2008). This
detection allowed researchers to assess the level of Dov and
to derive an upper limit for DmixðrÞ in the radiative envelope.
These results were confirmed by independent asteroseismic
modeling by Wu and Li (2019).
Given the immense asteroseismic potential of g-mode

period-spacing patterns, the CoRoT discovery opened the
floodgates in the hunt for such patterns in SPB and γ Dor
stars, once the 4-yr light curves of the Kepler spacecraft
became available. Meanwhile Π0 has been measured for
hundreds of stars, one of which is shown in Fig. 11. It can be
seen that a clear pattern emerges from the data but that ΔP is
not constant as predicted by Eq. (41). Rather, it decreases for
increasing mode period and reveals substructures. Such
“tilted” ΔP patterns turn out to be common in Kepler data
of SPB stars, as found by Pápics et al. (2015, 2017) and
Szewczuk and Daszyńska-Daszkiewicz (2018) and of γ Dor
stars as revealed by Bedding et al. (2015), Keen et al. (2015),
Van Reeth et al. (2015), Ouazzani et al. (2017), Li, Bedding
et al. (2019), Li, Van Reeth et al. (2019), and Li et al. (2020).
The slope in these observed g-mode ΔP patterns is caused by
the rotation frequency of the star as deduced by Van Reeth,
Tkachenko, and Aerts (2016), Ouazzani et al. (2017),
Christophe et al. (2018), and Li et al. (2020). This rotation
frequency turns out to be of a similar order as the g-mode
frequencies and puts these modes into the gravitoinertial
regime (Aerts, Van Reeth, and Tkachenko, 2017). This
implies the need to include the Coriolis force into the theory
at the level of the pulsation equations for a proper astero-
seismic interpretation. We do so in Secs. II.B.3 and II.B.4,
following the recent review on angular momentum transport
by Aerts, Mathis, and Rogers (2019), which includes more
details and illustrations.

FIG. 11. Top panel: observed amplitude spectrum (black) in
terms of the period for the γ Dor star KIC 11721304 from its light
curve observed with the Kepler satellite. The mode periods with
dominant amplitude are indicated with red dashed vertical lines as
a guide for the eye. Bottom panel: the period-spacing pattern
deduced from the dipole sectoral prograde modes of consecutive
radial order n indicated in the top panel. Adapted from Van Reeth
et al., 2015.

C. Aerts: Probing the interior physics of stars …

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015001-27



3. Rotational splitting in a perturbative approach

Thus far we have simplified the equations to compute the
stellar oscillations by ignoring the stellar rotation. Rotation
affects the observed oscillation frequencies in several ways.
We choose a reference frame with the polar axis along the
rotation axis of the star and corotating with the star under the
assumption of a constant rotation frequency Ω. This leads to a
purely geometric shift of

ωnlm ¼ ωnl þmΩ ð43Þ

for a mode with frequency ωnl in the nonrotating case. Further,
both the Coriolis and centrifugal forces come into play in the
stellar structure equations; see Eq. (30). The Coriolis force
lifts the degeneracy of the modes in the star with respect to the
azimuthal order m. Each mode frequency ωnl of the eigen-
vector ξnl ¼ ðξr;nl; ξh;nlÞ for the nonrotating case gets split into
2lþ 1 frequency multiplet components due to the influence of
the Coriolis force. Hence, each mode degree l can occur with
2lþ 1 different values for m, namely, −l;−lþ 1;…;−1; 0;
1;…; l − 1; l. Moreover, each of these multiplet components
gets shifted over mΩ as in Eq. (43) in the inertial coordinate
system of the observer.
We now consider the case where the so-called spin

parameter s ¼ 2Ω=ω ≪ 1 for all involved mode frequencies,
with ω an abbreviated global notation for the oscillation
frequencies in the corotating frame. This allows us to treat the
Coriolis force as a small perturbation in the pulsation
equations. This condition is usually met for p modes in
low-mass stars with convective envelopes, for p and mixed
modes in red giants, and for g modes in subdwarfs and white
dwarfs, all of which are slow rotators. This simplification is
not justified for the g modes observed in the majority of
intermediate- and high-mass dwarfs, as these modes occur in
the gravitoinertial regime and require the Coriolis force to be
treated nonperturbatively (Aerts, Van Reeth, and Tkachenko,
2017). We return to the case of gravitoinertial modes later but
first treat the easier case of a perturbative treatment of the
Coriolis force.
Following the same arguments as for the shellular rotation,

we simplify the problem to be solved by assuming that the
rotation profile depends only on the radial coordinate ΩðrÞ. In
this case, multiplet components in the inertial coordinate
system are, up to first order in ΩðrÞ, given by [see Unno et al.
(1989), Chap. 6 and Sec. 3.8, and Aerts, Christensen-
Dalsgaard, and Kurtz (2010) for the derivations]

ωnlm ¼ ωnl þmð1 − CnlÞ
Z

R

0

KnlðrÞΩðrÞdr; ð44Þ

where

KnlðrÞ ¼
fξr2 þ ½lðlþ 1Þ�ξ2h − 2ξrξh − ξ2hgr2ρ

R

R
0
fξr2 þ ½lðlþ 1Þ�ξ2h − 2ξrξh − ξ2hgr2ρdr

ð45Þ

is the rotational kernel and

Cnl ¼
R

R
0
ð2ξrξh þ ξ2hÞr2ρdr

R

R
0
fξr2 þ ½lðlþ 1Þ�ξ2hgr2ρdr

ð46Þ

is the Ledoux constant (Ledoux, 1951). Rotational kernels for
dipole and quadrupole modes of four radial orders are plotted
in the right panels of Fig. 9 for a 1.7M⊙ star halfway through
its core-hydrogen-burning stage. It can be seen that the high-
order g modes have far better probing potential for the core
regions of the star than the low-order modes. It is then
understood from the profile shape of KnlðrÞ, which acts as
a weighting function to the rotation profile, why it is far easier
to estimate the near-core values of ΩðrÞ than the envelope
values for g modes in stars with a convective core and a
radiative envelope once rotational splitting has been detected
from data. Finally, we see from Eqs. (45) and (46) that they
depend on the equilibrium model via its density profile ρðrÞ
and its influence on the eigenfunctions.
In the limit of high-order or high-degree p modes, one can

show that Cnl ≃ 0 and ξr > ξh; see Aerts, Christensen-
Dalsgaard, and Kurtz (2010), Sec. 3.8. On the other hand,
for high-order high-degree gmodes, one has ξr < ξh as shown
in Fig. 9 and one may neglect the terms with ξr in Eqs. (45)
and (46). In this way, the simplification

Cnl ≃
1

lðlþ 1Þ ð47Þ

emerges. For uniform rotation, this implies that the measured
rotational splitting provides a good measure of the average of
ΩðrÞ, weighted with the squared eigenfunction. A further
simplification is useful, as Van Reeth et al. (2018) showed that
intermediate-mass stars with a convective core are quasiuni-
form rotators. In the case of constant Ω one has

ωnlm ¼ ωnl þmð1 − CnlÞΩ; ð48Þ

and Cnl fully determines the shifts of the frequencies due to
the Coriolis force; i.e., those shifts do not depend on the
rotational kernels. This means that the adjacent frequencies in
a high-order p-mode multiplet belonging to m ¼ −l;…;þl
give a direct measure of the average rotation frequency in the
stellar envelope without depending on the equilibrium model
(because Cnl ≃ 0). In the case of high-order dipole g modes, Ω
is found to be twice the splitting value in a triplet
since Cnl ≃ 1=2.
More complicated perturbative approaches treating the

Coriolis force up to second and third order at the level of
the pulsation computations, while still relying on 1D equilib-
rium models, have been developed. We refrain from including
the results here for conciseness and refer the interested reader to
Saio (1981), Dziembowski and Goode (1992), Lee and Baraffe
(1995), Soufi, Goupil, and Dziembowski (1998), Daszyńska-
Daszkiewicz et al. (2002), and Suárez, Goupil, and Morel
(2006), and Suárez et al. (2010). Few of those theories have
been applied to modern space photometric data because the
stars for which they are most appropriate are rapidly rotating
p-mode pulsators, such as δ Sct stars and βCep stars; cf. Fig. 1.
In the case of the δ Sct stars, lack of mode identification
prevents applications, although Bedding et al. (2020) managed
to overcome this hurdle for a limited sample of such stars. The
few observed βCep stars with precise space photometry either
lack mode identification (Burssens et al., 2019) or rotate slow
enough to stick to the first-order perturbative approach. Suárez
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et al. (2010) made a careful analysis of second-order effects in
Ω for stochastic p modes and found those to become important
for equatorial rotation velocities above some 15 km s−1. This is
also the limiting value for the treatment of g modes in
intermediate-mass stars derived by Schmid and Aerts
(2016). For rotation speeds above this value, a perturbative
analysis should be abandoned as illustrated from their astero-
seismic modeling of the high-order g modes in the two F-type
p- and g-mode hybrid pulsators in the eccentric binary KIC
10080943. For faster rotation, the g modes enter into the
gravitoinertial regime, where one can no longer treat the
Coriolis force perturbatively (s > 1). As outlined by Aerts,
Van Reeth, and Tkachenko (2017) and shown in Fig. 6, this is
the case for the observed g modes in almost all intermediate-
and high-mass stars. We thus conclude that the treatment of g
modes in stars with a convective core requires a nonperturba-
tive treatment of the Coriolis force.

4. Gravitoinertial modes in the traditional approximation

A major achievement resulting from the 4-yr light curves
assembled with the Kepler satellite is the discovery of gmodes
with period-spacing patterns such as the one illustrated in
Fig. 11 in hundreds of stars covering spectral types early-F to
early-B along the main sequence; cf. Fig. 1. Except for the few
(less than 10%) stars for which a surface magnetic field was
detected in this range of spectral type (Wade et al., 2016), such
stars are in general moderate to fast rotators. They are indeed
not subject to braking due to the lack of a magnetic field, which
does occur in low-mass stars with an appreciable convective
envelope. The high-order gmodes in these stars of intermediate
mass have periods similar to their rotation period so the
oscillations are gravitoinertial modes; cf. Fig. 5 given by
Aerts, Mathis, and Rogers (2019). Van Reeth, Tkachenko,
and Aerts (2016) and Aerts, Van Reeth, and Tkachenko (2017)
computed the spin parameters for more than 1650 g modes in
37 γDor stars and found themajority to have subinertial values,
defined as the regime for which s > 1. In practice, the spin
parameter covered values s ¼ 2Ω=ωco

nlm ∈ ½1; 15�, where ωco
nlm

is the mode frequency in the corotating frame.
Taking full account of the Coriolis force in the equation of

momentum conservation, even in the adiabatic and Cowling
approximations while ignoring the centrifugal force, does not
lead to separability of the pulsation equations in terms of the
coordinates ðr; θ;ϕÞ. This is why Lee and Saio (1987a, 1987b,
1989) considered the so-called traditional approximation of
rotation (TAR) in their theoretical studies of low-frequency g
modes. In the TAR, one ignores the horizontal component of
the rotation vector such that the equations can be separated in
each of the coordinates. This approximation leads us to the
Laplace tidal equations (Laplace, 1799), which are commonly
used in geophysics (Eckart, 1960). The TAR is a particularly
good approximation for the g modes in intermediate- and
high-mass main-sequence stars [as well as in neutron stars;
cf. Bildsten, Ushomirsky, and Cutler (1996)], given that their
Lagrangian displacement vector is dominantly horizontal;
cf. Fig. 9. For derivations of the pulsation equations in the
TAR and their asymptotic analysis in a modern numerical
context, see Lee and Saio (1997), Townsend (2003a, 2003b),
and Mathis (2013). Here we provide the outcome in concise

notation that allows for easy comparison with Eq. (41). For
uniform rotation, the TAR leads to the following g-mode
period-spacing pattern in the corotating frame of reference:

ΔPco
l;m;s ¼

Π0
ffiffiffiffiffiffiffiffi

λlms

p ; ð49Þ

with λlms the eigenvalue of the Laplace tidal equation for the g
mode with quantum numbers ðl; mÞ in a star with spin
parameter s. In the limit of s → 0, λ → lðlþ 1Þ is recovered.
Numerical computation of the eigenvalues λlms for a chosen 1D
equilibrium model of the star then allows for the identification
of ðl; mÞ, as well as estimation of the spin parameter along with
Ω from an observed period-spacing pattern as in Fig. 11. This
opportunity was developed theoretically by Bouabid et al.

(2013) and was put into practice for the past five years after
careful frequency analysis based on the 4-yr light curves
assembled with the Kepler spacecraft. We highlight some of
the recent achievements on asteroseismic derivations of ΩðrÞ
along with opportunities to estimate DmixðrÞ from the period-
spacing diagnostics in Sec. IV.
Mathis (2009) generalized the TAR to take into account

differential rotation with a profile Ωðr; θÞ, while Mathis and
Prat (2019) included the centrifugal force for slightly
deformed stars in the case of close-to-uniform rotation,
deriving an analytical expression for the period-spacing
patterns in the Cowling and other justified approximations.
In addition, Prat et al. (2017) derived an asymptotic period
spacing for axisymmetric gravitoinertial waves taking into
account all the components of the rotation vector; i.e., they
went beyond the treatment of the TAR. This work was further
generalized by Prat et al. (2018) into an asymptotic theory for
gravitoinertial waves for a differential rotation profile Ωðr; θÞ.
Finally, Prat et al. (2019) derived a period-spacing expression
in the presence of uniform rotation on top of an axisymmetric
fossil magnetic field with poloidal and toroidal components.
None of these recent new theoretical developments have yet
been applied to measured g-mode frequencies. This obviously
constitutes several future paths for improved asteroseismic
modeling compared to the current state of the art. The Kepler
data of gravitoinertial pulsators are currently under study with
this purpose.
As a noteworthy side step, we point out that only one

intermediate-mass g-mode pulsator with a detected surface
magnetic field has been the subject of magnetogravito
asteroseismology thus far (Buysschaert et al., 2018). This
led to the conclusion that the frequency shifts for g modes due
to the Lorentz force are far smaller than those due to the
Coriolis force for meaningful values of the interior magnetic
field strength (Prat et al., 2019). This is quite different from
the case of high-frequency magnetoacoustic modes, which
occur on the other side of the frequency spectrum in terms of
the validity (or lack thereof) of a perturbative approach to treat
the Coriolis and Lorentz forces; cf. Fig. 5 given by Aerts,
Mathis, and Rogers (2019). Inspired by the solar oscillations,
Gough and Thompson (1990) derived expressions for the
pertubation to the eigenfunctions caused by rotation and a
magnetic field in the stellar interior. Their asymptotic analysis
and numerical results for high-order solar acoustic modes for
various magnetic field configurations, including a localized
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magnetic field at the base of the convection zone, provide
estimates for the frequency splitting when the magnetic field
and rotation vary smoothly. This work is a convenient guide to
compare with observations.
Aside from Sun-like stars, the best known magnetic pulsa-

tors are the roAp stars, whichwere discovered in 1978 byKurtz
[seeKurtz (1990) for his review on these stars] and later studied
in great detail; see Saio (2014) for a more recent review. These
core-hydrogen-burning stars oscillate in high-n low-l p modes
according to an axis thatmay bemisalignedwith respect to both
the magnetic and rotation axes, although it is usually close to
themagnetic axis. Their magnetic field strengths are up to a few
thousand gauss, while they are slow rotators and this implies
that the Lorentz force is more important than the Coriolis force.
This is thus a case where the symmetry axis for the oscillations
is inclined with respect to the rotation axis. Although their
magnetoacoustic modes have sufficiently high amplitudes and
periods of only a few minutes, making them easily accessible
from ground-based asteroseismology, their recent studies have
benefited greatly from modern space photometry. The oblique
pulsator model of roAp stars has constantly been in need of
improvement as more data become available, as shown by
Shibahashi and Takata (1993) and Bigot and Dziembowski
(2002). This model was again challenged and refined thanks to
the high-frequency precision obtained from space asteroseis-
mology, which revealed that some roAp stars seem to have
multiple pulsation axes (Kurtz et al., 2011) and others oscillate
in distorted pulsation modes (Holdsworth et al., 2016). Recent
TESS data have been used to find the shortest period roAp star,
with a pulsation period of only 4.7 min (Cunha et al., 2019). A
growing number of roAp stars have been found to pulsate above
their acoustic cutoff frequency, which presents another chal-
lenge to current pulsation theory.

5. Rossby modes

We now return to the maximally simplified version of the
stellar pulsation equations deduced from perturbing Eq. (19) in
the absence of rotation and magnetism. This approach allowed
us to introduce the time-dependent spheroidal modes of oscil-
lation known as p and gmodes. However, if we keep the Coriolis
force in Eq. (19) and perturb that version of the equation, then
two families of eigenvalue problems actually result, each with
nonzero eigenvalues. The first family is the one we have been
discussing, leading to spheroidal normalmodes of a star.Wenow
pick up the second family of eigensolutions, termed toroidal
normalmodes. In particular,we consider theRossbymodes, also
termed and abbreviated as “r modes” by Papaloizou and Pringle
(1978). This is a family of toroidal normal modes that become
time dependent (and hence nonzero) only in a rotating star. The
dominant restoring force of these modes is the Coriolis force.
This is why they cannot be deduced from Eq. (19) unless a
nonzero rotation vector is considered.
Toroidal modes comply with divξ ¼ 0 and ξr ¼ 0.

Therefore, just as with the gravitoinertial modes discussed
in Sec. II.B.4, the eigenvalues of Rossby modes can be
deduced with excellent precision by adopting the TAR and
solving the Laplace tidal equations. For the eigenfrequencies
of the spheroidal g modes we had the limiting case of λ →
lðlþ 1Þ as s → 0. For the Rossby modes, one obtains λ → 0

as s → ½lðlþ 1Þ�=m (Papaloizou and Pringle, 1978). For this
reason, Lee and Saio (1997) adopted an ordering of the
eigenvalues by introducing a labeling scheme that allows one
to treat the cases of gravitoinertial g modes and pure inertial
modes with one set of indices ðk;mÞ, with k ¼ l − jmj ≥ 0 for
gravitoinertial modes and k < 0 for purely inertial modes; see
Townsend (2003b) for the various types of low-frequency
modes in rotating pulsators. Rossby modes have frequencies
below the rotation frequency in the corotating frame and are
therefore always retrograde modes in the inertial frame of the
observer (Saio, 1982). The occurrence of the temperature
variations at the stellar surface due to Rossby modes and for
various values of the spin parameter is shown in Fig. 2
given by Saio, Kurtz et al. (2018) and omitted here for
conciseness.
With the labeling scheme introduced by Lee and Saio

(1997), the period-spacing pattern of Rossby modes becomes

ΔPco
kms ¼

Π0
ffiffiffiffiffiffiffiffiffi

λkms

p ; ð50Þ

with λkms again the eigenvalues of the Laplace tidal equation. It
was shown by Townsend (2003a) that the eigenvalues for
Rossby modes comply with λkms ≈m2ð2jkj − 1Þ−2 for s ≫ 1

and k ≤ −2. From this, it is found that the period-spacing value
of Rossby modes of consecutive radial order as seen by an
observer increases with increasing mode period. This is
illustrated for the γ Dor star KIC 12066947 observed by the
Kepler spacecraft in Fig. 12. This star has both prograde
gravitoinertial dipole modes with k ¼ 0 and retrograde Rossby
modes with k ¼ −2. For its sectoral gravitoinertial g modes,
just as for the ones observed for KIC 11721304 shown in
Fig. 11, the label is k ¼ 0 and we recover the treatment of the
period-spacing pattern represented by Eq. (49).
Van Reeth, Tkachenko, and Aerts (2016) made the first

discovery of Rossby modes in Kepler data. This was achieved
for ten γ Dor stars, all of which were found to have spin
parameters s ∈ ½14; 30� (Aerts, Van Reeth, and Tkachenko,
2017). Meanwhile, Rossby modes were found to be common
in F-, B-, Be-, and A-type stars, as well as in eccentric
binaries, all of which were observed using the Kepler space-
craft and studied by Saio, Kurtz et al. (2018) and Li, Van
Reeth et al. (2019). These discoveries offer the opportunity to
assess whether the interior rotation is constant or differential
from combined g- and r-mode asteroseismology. We also note
in passing that retrograde Yanai modes have been discovered
in Kepler data of seven γ Dor stars thus far by Van Reeth et al.
(2018) and Li, Van Reeth et al. (2019). As explained by
Townsend (2003a), this family of modes behaves like
gravitoinertial modes when they are prograde, while the
retrograde Yanai modes behave as Rossby modes but have
k ¼ −1. We show the results for KIC 6425437, which is one
such star revealing a period-spacing pattern of Yanai modes, in
Fig. 13 (Van Reeth et al., 2018). Just as with the Rossby
modes, the full potential of Yanai-mode frequencies in terms
of asteroseismic probing of the properties of the interior
physics has yet to be investigated and exploited, given their
recent discoveries.
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III. PRINCIPLES OF ASTEROSEISMIC MODELING

The theory of nonradial oscillations outlined in Sec. II
rests on the assumption of linearity. Although the amplitudes
of stochastically excited modes of the Sun can now be
predicted from the damping rate and the stochastic energy
from 3D convection simulations (Zhou, Asplund, and Collet,
2019), this is not the case for the amplitudes of the modes
excited by other mechanisms. Thus, most interpretations in
asteroseismology rely on the properties of the detected mode
frequencies and not on their amplitudes. Asteroseismic
modeling is therefore usually done in a linear adiabatic
framework. After having derived the frequencies of the
modes ω and their uncertainties σω from the data, the
interpretations in terms of the theory of nonradial oscillations
computed from perturbing stellar equilibrium models
(cf. Sec. II) can be done only if the modes’ identifications
have been achieved. This means that we must be able to label
the radial order, the degree, and the azimuthal order (n, l, m)
for each of the modes corresponding to the measured
oscillation frequencies ωobs

nlm.

Mode identification is usually based on patterns recognized
from the list of adiabatic frequencies ωtheo

nlm , predicted from the
perturbation of 1D equilibrium models as outlined in Sec. II.
Easily interpretable patterns concern those due to rotational
splitting or corresponding to the predictions from the asymptotic
theory, as outlined in Sec. II. Comparison between predicted and
detected patterns such as those shown in Figs. 10–12 can then be
fed with the “wisdom” of the applicant to identify (n, l,m). This
wording already indicates why asteroseismologists tend to be
“Bayesian minded” when identifying modes and performing
asteroseismic modeling; see Bazot, Bourguignon, and
Christensen-Dalsgaard (2012), Gruberbauer, Guenther, and
Kallinger (2012), Appourchaux (2014), and Aerts et al.

(2018b) for thorough discussions. Nevertheless, MLE and
model selection with so-called noninformative (flat) priors is
often enlightening and sometimes necessary to avoid too much
prejudice in the prior, particularly on the appropriateness of the
equilibrium models used to compute the mode predictions.
Despite our inability to predict reliably which of the

eigenmodes should get excited to observable amplitudes,
the mode excitation mechanisms are understood in general
terms for the classes in Fig. 1. Therefore, even though the
nonadiabatic treatment of the oscillations is not sufficiently
established to derive perfect mode excitation and amplitude
predictions, it is still instructive to consider the regimes of
mode excitation before tackling the task of mode identifica-
tion and asteroseismic modeling.

A. Excitation mechanisms

1. Heat mechanisms and stochastic driving

Thus far we have ignored the perturbation of the entropy in
Eq. (21), which greatly simplifies the theory of nonradial
oscillations. However, to get an understanding of mode exci-
tation, nonadiabatic theory needs to be considered. This is
extensively discussed in Chaps. IVand V given by Unno et al.
(1989) and also in Aerts, Christensen-Dalsgaard, and Kurtz
(2010), Sec. 3.7, which addressed the general problem and the
development of the so-called quasiadiabatic approximation.
The prediction for a mode to get excited relies on the
computation of its growth rate. This quantity is positive for

FIG. 12. Same as Fig. 11, but for the γ Dor star KIC 12066947 exhibiting both prograde dipole gravitoinertial modes with ðk;mÞ ¼
ð0;þ1Þ and retrograde Rossby modes with ðk;mÞ ¼ ð−2;−1Þ. In contrast to the case of KIC 11721304 shown in Fig. 11, the errors in
the period-spacing pattern are smaller than the symbol size. Adapted from Van Reeth et al., 2015.

FIG. 13. Same as Fig. 11, but for the γ Dor star KIC 6425437
exhibiting retrograde Yanai modes with ðk;mÞ ¼ ð−1;−1Þ. In
contrast to the case of KIC 11721304 shown in Fig. 11, the errors
in the period-spacing pattern are smaller than the symbol size.
Adapted from Van Reeth et al., 2015.
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modes that get excited (or modes that are unstable, as is often
used as terminology), while it is negative for modes that are
overdamped. Derivation of the growth rate of a mode requires
the computation of the imaginary part of its eigenfrequency; see
Eq. (3.282) given by Aerts, Christensen-Dalsgaard, and Kurtz
(2010). When considering the theoretical expression, one finds
that excitation occurs whenever the compression of the gas and
its heating happen in phase with each other. This is completely
in line with the operation of a thermodynamical heat engine.
The perturbations to both the flux (radiativeþ convective,

F ¼ Frad þ Fconv) and the energy generation stemming from
Eq. (21) go into the overall expression for the heat. For each of
these three contributions, one adopts a specific terminology.
When the perturbation of the energy generation is dominant in
the heat term that sets the imaginary part of themode frequency
[cf. Eq. (21)] the εmechanismmay operate. This can obviously
happen only in the deep stellar interior. In the case in which the
radiative flux delivers most of the heat, it is often due to the
increased opacity that acts as the heat engine in the thin partial
ionization layers in the envelope of the star. This driving of
oscillations is therefore often called the κ mechanism, giving
rise to self-excited modes with infinite lifetimes. Theoretical
predictions of nonradial mode excitation via the κ mechanism
in intermediate-mass stars along the main sequence are gen-
erally good. Pamyatnykh (1999), Bouabid et al. (2013), and
Szewczuk and Daszyńska-Daszkiewicz (2017) conducted
extensive studies. Yet they are not perfect: we observe more
modes than predicted for OB-type pulsators, particularly in the
g-mode regime. Bringing theory and observations into agree-
ment requires either higher-than-standard opacities in the
partial ionization zones of ironlike species situated in the
layers with temperatures ∼2 × 105 K, as shown by Moravveji
(2016) and Daszyńska-Daszkiewicz et al. (2017), or higher
metal abundances in the local region of the excitation (for
instance, as a consequence of atomic diffusion). Similarly, iron
and nickel opacity enhancements are needed to explain the g
modes observed in cool pulsating subdwarf B stars, as
emphasized by Fontaine et al. (2003), Jeffery and Saio
(2006), and Bloemen et al. (2014). Their hotter counterparts
were predicted theoretically by Charpinet et al. (1997) in terms
of p modes excited by the κ mechanism at about the same time
as, but independently of, their observational discovery by
Kilkenny et al. (1997). Opacity bumps due to carbon and
oxygen in layers of ∼106 K result in heat-driven mode
excitation of helium-rich subdwarfs (Saio and Jeffery, 2019)
and GW Vir variables (also known as DO white dwarfs).
Córsico et al. (2019) provided a recent summary of pulsating
white dwarfs, and Montgomery et al. (2020) inferred nonstatic
convection zones in white dwarfs from observational limits on
their mode coherence.
The perturbation to the convective flux and its contribution

to the heat presents a much larger challenge than the case of
radiative flux, because it is coupled to the properties of the
turbulent pressure. For the deep stellar interior, one may
assume that this is time independent and well described by
mlt. However, for convective outer envelopes, the perturba-
tions to the convective flux and the turbulent pressure render
the modes stable such that the heat-engine mechanism does
not drive oscillations. Instead, excitation occurs through
stochastic forcing, where the energy in the acoustic noise

in the outer convection zone triggers some of the global
eigenmodes. This stochastic forcing happens in stars with an
outer convective envelope, leading to the excitation of damped
and continuously reexcited oscillation modes. In this case,
predictions of the excitation and properties of the modes are
challenging due to the limited knowledge of the time-
dependent properties of Fconv in the equilibrium models.
This propogates into theoretical uncertainty for the perturbation
of the time-variable convective envelope of a pulsating star.
In the limit of extremely long convective timescales relative

to the periods of the oscillations, the convective flux does not
react to the pulsations and convective flux blocking becomes an
efficient excitation mechanism. This excites g modes in the thin
convective envelopes of the γDor stars, as shownbyGuzik et al.
(2000) and further elaborated upon by Dupret et al. (2005).
Gravitoinertial modes in the radiative envelope of such stars
may couple resonantly to inertial modes in the convective core
of rapid rotators (Ouazzani et al., 2020). On the other hand, Lee
andSaio (2020) foundmode excitation due to resonant coupling
between convective g− modes active in the core of rapidly
rotating 2M⊙ stellar models and g modes in the radiative
envelope, for frequencies jmjΩcore. For the intermediate-mass δ
Sct and γ Dor stars, the time dependence in the pulsation-
convection interaction is known as the problem of the red edge
of the instability strip; cf. Fig. 1. The convective timescales in
the thin outer convection zones of DA and DBwhite dwarfs are
much shorter than those of their g-mode pulsation periods,
leading to mode excitation (Goldreich and Wu, 1999).
The general case where the convective and mode timescales

are similar is much more challenging to treat in terms of
stochastic mode excitation by the turbulent pressure pertur-
bation. This was developed by Houdek et al. (1999) and
Dziembowski et al. (2001). Major improvements in excitation
theory were achieved for low-mass stars across stellar evo-
lution by Belkacem et al. (2008, 2011, 2012), Dupret et al.
(2009), and Grosjean et al. (2014); Houdek and Dupret (2015)
provided a good summary. Despite this progress, considerable
uncertainty in the predictions for mode excitation and damp-
ing properties, as well as for the amplitudes, remain due to
uncertainties in the equilibrium structure of the superadiabatic
outer envelope and its coupling to the atmosphere. Convection
and nonadiabaticity also affect the oscillation frequencies, and
despite major efforts and progress on this front for the Sun
(Houdek et al., 2017), current theoretically predicted fre-
quency values are not yet at a level such that they can be fitted
to the observed frequencies. This is known as the problem of
the “surface effects” in asteroseismology of stars with solar-
like oscillations.
A rough global summary of the observed mode periods and

amplitudes in pulsators excited by heat mechanisms and
stochastic driving for the classes indicated in Fig. 1 is provided
in Table A.1 given by Aerts, Christensen-Dalsgaard, and Kurtz
(2010). The periods range from minutes to months. While this
is already a broad range, at least three more additional cases of
mode excitation are in order.

2. Nonlinear resonant mode excitation

Many of the CoRoT and Kepler light curves reveal non-
linear effects. Combination frequencies are omnipresent in the
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oscillation spectra of κ-driven pulsators along the main
sequence, as discussed by Degroote et al. (2009), Pápics
(2012), Kurtz et al. (2015), and Bowman et al. (2016).
Combination frequencies got lost in ground-based data, as
they often have amplitudes below ppt. They may be due to
nonlinearities in the light curves due to deviations from
sinusoidal variations because the modes have amplitudes
beyond the linear regime. However, given the density of g-
mode eigenfrequency spectra, combination frequencies may
also occur at actual eigenmode frequencies of the star that get
excited by nonlinear resonant mode coupling. A distinction
between these two cases is not evident when dealing with
hundreds of frequencies deduced from a long-duration
light curve.
Excitation of nonradial “daughter” modes via nonlinear

“parent” mode coupling is expected for particular low-order
combination frequencies from theoretical considerations
based on the method of amplitude equations, as developed
by Buchler and Goupil (1984), Goupil and Buchler (1994),
Van Hoolst (1994), and Buchler, Goupil, and Hansen (1997).
This mode excitation may give rise to time-variable mode
amplitudes, as commonly observed in space photometry of the
higher-amplitude nonradial pulsators. Mainly due to a lack of
proper data, theoretical predictions on nonlinear mode exci-
tation remained largely unexploited prior to space asteroseis-
mology, with the notable exception of g modes in white
dwarfs. For those, the phenomenon of nonlinear mode
coupling was already accessible from ground-based data,
thanks to their short pulsation periods. This allowed one to
assess the depth of the outer convection zones following Wu
(2001) and Montgomery (2005). Meanwhile, nonlinear mode
interactions were detected in the short-cadence Kepler data in
the cool pulsating DAwhite dwarfs KIC 4552982 (Bell et al.,
2015) and PA 1149þ 057 (Hermes et al., 2015). Both of
these DA pulsators revealed large-amplitude regular outbursts
with timescales of days, which is much longer than the
individual pulsation-mode periods. This nonlinear behavior
in pulsating white dwarfs remained unknown prior to space
asteroseismology, even though large flux variations up to
∼20% recur. Nonlinear asteroseismology was also performed
for the DB white-dwarf star KIC 8626021 (Zong, Charpinet,
and Vauclair, 2016) and for the pulsating subdwarf B star KIC
10139564 (Zong et al., 2016), where rotation was found to be
a key actor in the detected resonances of the latter.
Nonlinear mode coupling behaves in diverse ways, as

predicted by theory, and it is a phenomenon occurring across
the entire HRD. Weinberg and Arras (2019) invoked cascades
of daughter modes resulting from nonlinear mixed-mode
parents as an explanation for the suppression of mixed-mode
amplitudes observed in about a quarter of the pulsating red
giants. This study was triggered by the suggestion made by
Mosser, Belkacem et al. (2017) that not all suppressed dipole
modes found in red-giant pulsators with this phenomenon can
be explained by the magnetic greenhouse effect origi-
nally proposed by Stello et al. (2016). Indeed, some of the
stochastic dipole modes with depressed amplitudes are mixed
modes with a g-mode character in the stellar interior rather
than p modes, as assumed in theoretical developments by
Fuller et al. (2015) and Cantiello, Fuller, and Bildsten (2016).
Although progress in interpretations based on a strong internal

magnetic field was achieved by Loi (2020), Loi and
Papaloizou (2020), and Bugnet et al. (2021), the interpretation
by Weinberg and Arras (2019) does not require core magnet-
ism. This nonlinear theory is an alternative and complemen-
tary explanation, which is in line with Kepler data of
intermediate-mass dwarfs revealing g modes (SPB and γ

Dor stars in Fig. 1). Their period-spacing patterns would be
affected by a strong magnetic field, following the theory by
Prat et al. (2019, 2020) and accompanying predictions by Van
Beeck et al. (2020). To date there has been no observational
evidence of internal magnetic fields from observed g-mode
period spacings of intermediate-mass stars revealed by Van
Reeth et al. (2015), Pápics et al. (2017), Li, Bedding et al.

(2019), Li, Van Reeth et al. (2019), and Li et al. (2020).
This brings us to nonlinear nonradial asteroseismology for

κ-driven main-sequence stars from Kepler data. This under-
developed research field within asteroseismology holds great
potential, but the theory is still to be refined up to the level of
the Kepler data. Unraveling nonlinear effects in the light
curves from nonlinear mode coupling via resonant excitation
is possible in principle for modes with an infinite lifetime, as
the two lead to distinguishable properties. A distinction
between the two cases can be made via the phase behavior
of the combination frequencies of parent and daughter modes.
One expects phase locking to take place whenever low-order
combination frequencies occur exactly at another eigenfre-
quency of the star, such that the latter gets excited by energy
exchange between the two or more parent and daughter modes
involved in the resonance. Such phase locking was observed
in the CoRoT data of the large-amplitude βCep star HD
180642 (Degroote et al., 2009). Energy exchange due to
resonantly coupled nonradial g modes was invoked as the
cause of outbursts in pulsating Be stars, a phenomenon first
observed in a Be star by the CoRoT satellite (Huat et al.,
2009), and later for several Be pulsators with the BRITE
constellation (Baade et al., 2018). Detailed mode coupling
studies are currently being undertaken from Kepler long-
cadence data of p- and g-mode pulsators along the main
sequence; see Saio, Bedding et al. (2018) for a γ Dor pulsator.
Given the observed amplitude and frequency modulations in
numerous δ Sct and γ Dor stars (Bowman, 2017), the
prospects for data-driven nonlinear asteroseismology to be
put into practice are excellent. Even if mode excitation by
nonlinear resonances is not completely understood, one can
take the pragmatic approach of exploiting the detected
combination frequencies involved in resonance locking and,
once identified, test to see whether adding them to the list of
identified pulsation modes used for asteroseismic inferences
improves in terms of precision the inferred internal physics. A
good target to test this is the Kepler eclipsing binary KIC
3230227 (Guo, 2020).

3. Convectively driven internal gravity waves

Traveling damped IGWs can be generated at the interfaces
between convective and radiative zones by turbulent con-
vective flux forcing, as studied for the Sun by Rogers and
Glatzmaier (2005) and for solar-type stars by Dintrans et al.
(2005). The pioneering study by Charbonnel and Talon (2005)
showed that inward traveling IGWs in low-mass stars result in
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retrograde waves with the capacity to impose near-rigid
rotation on timescales much shorter than the evolutionary
timescale. For intermediate- and high-mass stars, IGWs travel
outward from the convective core with a similar capacity
(Rogers et al., 2013), which explains observed asteroseismic
rotation properties (Rogers, 2015).
Although the 3D simulations of solarlike stars by Alvan,

Brun, and Mathis (2014) and Alvan et al. (2015) and of
intermediate-mass stars by Edelmann et al. (2019) and Horst
et al. (2020) showed clear modal structure of internal g modes,
it remains unclear if and which of the internal waves become
resonant modes. This depends on the profile of the wave’s
eigenfunction, on its propagation and dissipation properties,
on the efficiency of the radiative damping, and on the onset of
nonlinearity (Ratnasingam, Edelmann, and Rogers, 2019). A
snapshot of the temperature variations accompanying the
driving of IGWs and their propagation from the 3D hydro-
dynamical simulations by Edelmann et al. (2019) is shown in
Fig. 14. This gives the reader a grasp of the large-scale
fluctuations induced in the stellar interior. The theoretical
predictions coupled to the setup of the 3D hydrodynamical
simulations is subject of intense debate among various
research teams, because it is hard to drive IGWs from
convective flows by heating. For this reason, most numerical
simulations adopt artificial luminosity boosting in the con-
vective region to get the flows going into the radiative region
at velocities compliant with mlt. The dependence of IGW
behavior on the level of boosting remains to be studied in
detail. The fully compressible 2D simulations by Horst et al.
(2020) have lower numerical viscosity and a factor of 1000
lower luminosity boosting than the 3D simulations by
Edelmann et al. (2019), yet lead to similar results in terms
of IGW properties. Moreover, these simulations lead to

appropriate predictions for p modes and for SLF variability
in agreement with space observations of high-mass stars
(Bowman et al., 2019a, 2019b, 2020).
The overall spectra of IGWs can be triggered by convective

cores, convective envelopes, or thin convection zones due to
shell burning or opacity bumps in radiative envelopes. These
various cases of IGW generation were extensively discussed
by Talon and Charbonnel (2008), Cantiello et al. (2009),
Rogers et al. (2013), and Fuller et al. (2014), respectively.
Because of an inability to predict which of the waves within
the entire generated spectrum of IGWs could get excited as
resonant g modes with observable amplitude, we are still far
from pinpointing their λlms values from SLF detected in space
photometry, as shown in the right panels of Fig. 4. Just as with
the observed g modes, convectively triggered waves will occur
mostly in the gravitoinertial regime for the majority of main-
sequence intermediate- and high-mass stars, because these
waves have spin parameters s > 1 for the measured rotation
rates of such stars. In view of this, theoretical and numerical
studies should consider the driving, propagation, and dis-
sipation of stochastic gravitoinertial waves (GIWs) in rotating
stars (Augustson, Mathis, and Astoul, 2020), rather than
IGWs in nonrotating stars. Synergies between GIWs predicted
from 3D simulations and nonradial nonadiabatic oscillation
modes computed in the TAR from 1D stellar equilibrium
models are yet to be explored, starting with the observational
constraints on the detected frequency regimes, in the spirit of
Fig. 1 given by Aerts, Mathis, and Rogers (2019). In that way,
one may develop asteroseismology based on the observed
spectra of the GIWs. Neiner et al. (2020) offer a step in this
direction with their application of GIW asteroseismology to
the rapidly rotating pulsating Be star HD 49330 observed
by CoRoT.

4. Tidal excitation of nonradial modes

The tidal action of a companion in a close binary is yet
another way to excite nonradial oscillation modes. This was
realized by Cowling (1941) when he introduced “his”
Cowling approximation. Tidally excited nonradial oscillations
and their effect on stellar evolution have been studied
extensively in the literature from a theoretical viewpoint for
various types of close binaries; see Zahn (1975), Papaloizou
and Savonije (1997), Savonije and Papaloizou (1997),
Terquem et al. (1998), Witte and Savonije (1999), Willems
(2003), and Fuller and Lai (2011) for studies across the stellar
mass range prior to the Kepler mission. Fuller (2017) covered
the case of eccentric binaries discovered from space photom-
etry. For this excitation mechanism to work, the properties of
the nonradial eigenmodes must be “suitable” compared to the
period and the eccentricity of the binary orbit. The component
masses and radii must also be in the proper regime to trigger
nonradial modes by the tidal forces. The tide-generating
potential within an eccentric binary is related to an infinite
number of partial dynamic tides with forcing frequencies and
it is dominated by spherical harmonics of degree l ¼ 2.
Whenever one of those forcing frequencies gets into reso-
nance with an eigenfrequency of a free oscillation mode of one
of the components, the tidal action exerted by the companion
may excite this mode.

FIG. 14. Snapshot of 3D hydrodynamical simulations repre-
senting the temperature fluctuations induced by IGWs excited by
stochastic forcing at the transition layer between the convective
core and the bottom of the radiative envelope of a 3M⊙ ZAMS
star. The color coding represents fluctuations up to 105 K with
respect to an equilibrium model. Adapted from Edelmann et al.,
2019.
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Tidally excited oscillations are expected to occur at exact
multiples of the orbital frequency. This makes them easy to
spot in the Fourier transforms of the light curves, particularly
when they occur in eclipsing binaries for which the orbital
period is directly accessible from the space photometry. The
occurrence of resonances between partial dynamic tides and
free oscillation modes is particularly relevant for the excitation
of g modes, because of their similarity in period compared to
orbital periods of close binaries. Just as for the g modes in
single stars, CoRoT already allowed us to discover tidally
excited modes in binaries, but the 4-yr-long time base of the
Kepler mission implied the true beginnings of tidal aster-
oseismology. Numerous cases have meanwhile been discov-
ered and analyzed, the most spectacular one shown in Fig. 15
(another one is discussed in Sec. IV.F and is shown in Fig. 19).
The stunning light curve of KIC 8112039, also known as
Kepler object of interest number 54 (KOI-54) (Welsh et al.,
2011), shown in Fig. 15 was the first object of a new class of
high-eccentricity pulsating binaries whose Kepler light curve
resembles the signal of a human heartbeat measured in a
cardiogram, hence this class was named “heartbeat stars” by
Thompson et al. (2012). However, we prefer a naming based
on the physical properties, and hence refer to the class as high-
eccentric binaries. KOI-54 has more than 100 tidally excited g
modes, indicated by the red vertical lines in Fig. 15. Those
with dominant amplitude occur at 90 and 91 times the orbital
frequency and are interpreted in terms of prograde sectoral
quadrupole modes excited by dynamical tides in a system
where the rotation axis of the primary star is almost aligned
with the orbital axis. These two dominant modes are locked in
resonance with the orbit. Such an interpretation leads to the
other g modes being near-resonant quadrupole zonal modes,

while the two modes whose frequency is not a multiple of the
orbital frequency are due to three-mode nonlinear mode
coupling (Fuller and Lai, 2012). With the discovery of
numerous close binaries revealing multiple oscillation modes,
tides are an important excitation mechanism for nonradial
modes in binaries, while they also affect free oscillation modes
that would occur if the star were single (Guo et al., 2020). The
interpretation of tidally excited or tidally affected nonradial
modes is a tedious job, because the tidal forces imply
deformations of the mode cavities relative to the cavities
for single stars; cf. Fig. 8. This bare fact has yet to be exploited
in detail.
The opposite situation of having fewer modes than expected

also occurs and may be connected to binarity. Evidence for
suppression or even absence of solarlike oscillations in low-
mass stars with convective envelopes by stellar companions
was found (Derekas et al., 2011; Gaulme et al., 2016;
Schonhut-Stasik et al., 2020). Systematic large-scale obser-
vational studies with spectroscopy, interferometry, or adaptive
optics are required to deduce the cause(s) of the absence of
expected oscillations in unknown spectroscopic binaries, e.g.,
to discriminate between tidal changes of the mode cavities
versus dilution of oscillation amplitudes due to contaminating
flux from visual companions. Evidence for damping of
solarlike oscillations or amplitude suppression due to mag-
netic activity has also piled up for both single and binary low-
mass stars (Mathur et al., 2019).
As a general conclusion, one cannot rely on current theory to

deliver a complete list of unstable mode frequenciesωtheo
nlm to be

compared with the observed ones to identify the mode wave
numbers belonging to each detected frequency. We observe
more eigenmodes than predicted by the current nonadiabatic

FIG. 15. Excerpt of the Kepler light curve (top panel), phase folded according to the orbital frequency (middle panel), and LS
amplitude spectrum (bottom panel) of the eccentric eclipsing binary KIC 8112039. All but two frequencies (not indicated by a thin red
vertical line) in the bottom panel are caused by tidal excitation. Adapted from Welsh et al., 2011.
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nonradial oscillation theory, particularly in the g-mode regime.
This observational fact points to current limitations in non-
adiabatic mode excitation and damping computations, due to
missing opacity, to overinterpretation of radiative damping, or
to yet other unknown physical phenomena in the outer
envelopes of stars. It is therefore premature to rely on non-
adiabatic predictions of mode excitation when performing
asteroseismic modeling. Instead, the mode excitation predic-
tions should be used as a good but not perfect guideline of the
modes to be expected from the current knowledge of input
physics in equilibrium models while being aware that modes
predicted not to be excited do occur in real stars, and the other
way around. Once the best stellar model has been found from
adiabatic asteroseismic modeling, one can check its non-
adiabatic mode excitation and damping predictions and use
those modes that are predicted to be stable yet observed as an
excellent guide to improve the input physics of the models and
the excitation theory.

B. Mode identification

Inferences on stellar interiors from asteroseismology pro-
vide tighter constraints the more oscillation modes are
involved in the modeling. For this reason, asteroseismic
modeling takes a pragmatic data-driven approach: we thank-
fully use all detected frequencies offered by the stars to work
with as long as we can label their wave numbers ðl; m; nÞ or
ðk;m; nÞ from adiabatic eigenfrequency predictions. When
uncertainty in the labeling occurs, the frequency can still be
used but the best equilibrium model selection should be
done in a Bayesian way, encapsulating the uncertain mode
identification in the prior(s). Thanks to space photometry,
identification of ðl; mÞ can often be achieved from pattern
recognition, notably when rotational multiplets as in Eq. (44)
are detected. We now highlight a few of the current methods to
deduce the mode identification. These depend on the kind of
pulsator and type of mode(s).
It is noteworthy that asteroseismic modeling to estimate

stellar properties other than rotation is usually done from
axisymmetric (m ¼ 0) modes. These tend to be available in
low-mass stars with stochastically excited modes. Such modes
are often not detected in the case for p, g, or r modes in heat-
driven pulsators. Moderate to fast rotators tend to reveal
mostly prograde or retrograde modes with m ≠ 0 in the data.
For such cases, identification of m is also needed, aside from
labeling n and l (or k in the case of Rossby modes).

1. Mode identification from échelle diagrams

For low-mass stars with stochastically-excited modes, as
those shown in Fig. 10, one uses so-called échelle diagrams to
identify the l and n values of the modes. An échelle diagram is
a plot of the detected mode frequencies as a function of the
frequencies modulo the large frequency separation as given in
Eqs. (38) and (39) and readily accessible from the PD, as
illustrated in Fig. 10. In practice, an observed PD spectrum is
cut into segments of length Δν, and these segments are
subsequently stacked on top of each other to make a 2D
map of ν vs νmodðΔνÞ. When doing that, modes of the same
degree l “line up” along quasivertical ridges. This was found

to be a convenient way to represent and identify the solar
oscillation frequencies by Grec, Fossat, and Pomerantz
(1980), who introduced the terminology of échelle (French
for “ladder”) diagram. Échelle diagrams are commonly used
ever since to identify l and n in low-mass pulsators with
stochastically excited modes [see Fig. 2 given by Chaplin and
Miglio (2013), for examples from Kepler data], and recently
also for p modes of young δ Sct stars (Bedding et al., 2020).
A computationally convenient way to identify modes after

derivation of the large and small frequency separation in the
case of noisy data was developed by Roxburgh and Vorontsov
(2006). This method relies on the autocorrelation function
(ACF) and allows one to deduce the diagnostics Δν and δν

without being capable to derive the individual mode frequen-
cies. The ACF is defined as the Fourier spectrum of a filtered
Fourier transform of the time series, where the choice of the
filter function can be optimized according to the envelope of
the observed signal in the PD spectrum, as shown in Fig. 10.
Mosser and Appourchaux (2009) provided a formal definition
of the ACF and additional details. The ACF method to derive
the large and small frequency separations as a way to achieve
the mode identification is efficient, relies on the physical
properties of the wave behavior in the mode cavities, and
allows one to suppress disturbing effects of the noise in the PD
spectrum. This is why the ACF is currently being used in
frequency analysis pipelines, although échelle diagrams
remain visually attractive and insightful.
Any departure from the asymptotic relation given by

Eq. (38), such as considering the lowest frequency regime
of p modes, will introduce curvature in the echelle diagrams.
This curvature is also found as the star evolves and mixed
modes occur, creating “bumps” in the échelle diagram. These
phenomena are effectively illustrated in Fig. 13 given by
García and Ballot (2019). For a discussion of a doubtful
identification for the CoRoT F-type pulsator HD 49333 due to
mode bumping, and how to treat this “doubt” in the context of
a Bayesian prior, see Appourchaux (2014).

2. Mode identification from rotationally split multiplets

Rotational splitting following Eq. (44) gives rise to multi-
plet structures in the data: l ¼ 1 triplets, l ¼ 2 quintuplets, etc.
This has long been known from ground-based data of self-
excited modes and is also observed from space photometry
(Kurtz et al., 2014; Pápics et al., 2014; Reed et al., 2014). The
detection of complete multiplets with an odd (2lþ 1) number
of components as in these examples immediately reveals the l
and m values of the modes from the Fourier transform of the
data. Rotational splitting also gives information on ΩðrÞ, as
discussed by Aerts, Mathis, and Rogers (2019), which
includes illustrations based on Kepler data.

3. Mode identification from period-spacing patterns

Period spacings ΔP for low-degree zonal gravitoinertial
modes of main-sequence F-type stars typically range from
2000 to 4000 s for dipole modes and from 1000 to 2500 s for
quadrupole modes. These ranges are obtained when varying
the mass (from 1.3M⊙ to 2.0M⊙), age, metallicity, and mixing
properties of models in appropriate regimes according to the
observed mode frequencies (Van Reeth, Tkachenko, and
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Aerts, 2016). Main-sequence B-type g-mode pulsators, on the
other hand, reveal a much broader range covering roughly
ΔP ∈ ½1000; 15 000� s (Pápics et al., 2017; Szewczuk and
Daszyńska-Daszkiewicz, 2017). These stars have masses
between 3M⊙ and 10M⊙.
Gravity-mode period-spacing patterns such as those shown

in Figs. 11–13 immediately reveal the sign of m. Indeed,
prograde modes have a ðP;ΔPÞ pattern with a downward
trend (Fig. 11), while the pattern of retrograde modes reveal an
upward trend (Figs. 12 and 13). The slope of these patterns
allows estimation of the rotation frequency in the region where
the g-mode kernels KnlðrÞ are dominant. As shown in Fig. 9,
the kernels of high-order g modes are sharply peaked near the
convective core. Hence, observed gravitoinertial g modes,
Rossby modes, and Yanai modes allow Ωcore to be assessed
from the slope of the period-spacing patterns by exploiting the
relationship between the observed series of λlms andΠ0, l (or k
for Rossby or Yanai modes), and m. Indeed, λlms depends on
the spin parameter and the value of the asymptotic period
spacing, as revealed by Eq. (49). Slightly different methods to
identify the mode numbers l (or k) and m, along with an
estimation of Ωcore, were developed by Van Reeth,
Tkachenko, and Aerts (2016) based on model grids with
varyingM, Z, Xini, andDov, and by Ouazzani et al. (2017) and
Christophe et al. (2018) based on stretching theΔP patterns to
obtain Π0. This stretching is done by searching the value of λ
such that

ffiffiffi

λ
p

Pco
lms are equally spaced byΠ0. Both methods give

excellent agreement on the estimation of Ωcore; see Ouazzani
et al. (2019), Fig. 5. Takata et al. (2020) came up with yet
another tool for mode identification. It is based on a diagram
in which the frequency is plotted against the square root of the
frequency. This allows one to identify prograde sectoral
modes and deduce at once the average rotation rate and
Π0, which is in line with the numerical method used by Van
Reeth, Tkachenko, and Aerts (2016) that delivers mode
identification along with estimation of Ωcore and Π0.
As discussed earlier, Rossby modes are always retrograde

in the inertial reference frame of an observer. These modes
occur at similar radial order (n typically between −10 and
−80) (Li et al., 2020) but have higher spins (Aerts, Van Reeth,
and Tkachenko, 2017) (values between 15 and 30) than
gravitoinertial g modes (n roughly between −10 and −100

and spins between 1 and 15). Saio, Kurtz et al. (2018) studied
the observational appearances of even and odd Rossby modes
by computing their visibilities. It was found that the amplitude
distributions of odd (k ¼ −1) modes are located at lower
frequencies than those of even (k ¼ −2) modes for any given
m and that the amplitudes decrease strongly as m increases;
see their Fig. 4. These theoretical predictions offer a good way
to identify the wave numbers ðk;mÞ for these modes.

C. Asteroseismic modeling using mode frequencies

1. Some modeling preliminaries

Seeking agreement between the detected identified oscil-
lation mode frequencies ωobs;i

nlm � σωobs;i
nlm

and those predicted by

equilibrium models ωtheo;i
nlm for i ¼ 1;…; Nω, with Nω the

number of detected identified oscillation frequencies, con-
stitutes a multivariate (nonlinear) regression problem. Fitting

these identified frequencies can generally be done with or
without the addition of other seismic diagnostics (such asmean
frequency separations, frequency ratios, or other combinations
for particular modes) or by adding other observables into the
fitting process [Teff , log g, logðL=L⊙Þ, an interferometrically
deduced R⋆, a dynamical binary component massM⋆, etc.]. In
general, we consider an observed vector Yobs consisting of i ¼
1;…; Nω þM componentsYobs

i derived fromNω observed and
identified oscillation frequencies and M ≥ 0 additional obser-
vational constraints. Comparison of Yobs with the correspond-
ing Y theo predicted by model computations is an extremely
powerfulmethod to determine the interior and global properties
of stars, including their rotation, mixing, and composition
profiles as well as their mass, radius, bulk metallicity, and age.
Nonradial oscillations occur in different types of stars in almost
all phases of stellar evolution; cf. Fig. 1. This, along with the
availability of long-duration high-precision space photometry,
has turned the potential of an asteroseismic calibration of the
theory of stellar structure and evolution into a reality. The level
of sophistication adopted for asteroseismic modeling is highly
variable. Here we summarize methodology that can handle the
challenging case of pulsating stars having a convective core and
rotating up to considerable fraction of their critical rate.
In our description of asteroseismic modeling via regression,

we follow the notations and concepts given by Aerts et al.

(2018b); i.e., we denote equilibrium models generically as
Mðθ;ψÞ, where θ stands for the vector containing the free
parameters to be estimated for the fixed choices of the input
physics ψ (i.e., frozen microscopic and macroscopic input
physics). The goal is to fit as closely as possible the observed
and identified oscillation frequencies and other observables by
theoretical values derived from the 3D perturbation of
Mðθ;ψÞ. We keep in mind the following important aspects:

(1) Theoretically predicted oscillation mode frequencies
have uncertainties ∼0.001 d−1 (∼0.01 μHz) due to
limitations in our knowledge of physics and due to
numerical implementations. The observed oscillation
frequencies from space asteroseismology are typically
one to several orders of magnitude more precise than
the theoretical predictions; cf. Table 1 given by Aerts,
Mathis, and Rogers (2019).

(2) The components of Y theo are strongly correlated.
(3) The components of Y theo and Yobs may have signifi-

cantly different variances, i.e., heteroscedasticity has
to be included in the formalism.

(4) The components of θ may also be strongly correlated.
These four properties result in a challenging modeling
problem. Indeed, the theoretical uncertainties stemming from
limitations in ψ and from numerical implementation to
compute the equilibrium models dominate over the measure-
ment uncertainties. This fact is often ignored in the modeling
procedure. Moreover, the correlated nature of the fitting
problem implies that the uncertainty regions for the param-
eters in θ tend to be of multidimensional elongated shape, and
therefore hard to interpret. We provide a mathematical scheme
that takes into account these challenges.
The limitations of the equilibrium models are due to

restrictions to nonrotating 1D models, missing atomic physics,
poor opacities, imperfect numerical schemes to solve the
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differential equations, etc. Some of the distributions of
systematic uncertainties in the theoretical predictions of
oscillation frequencies are shown in Figs. 2–10 given by
Aerts et al. (2018b) for the case of g modes in stars with a
convective core. An assessment of some of the systematic
biases in the case of solarlike oscillations was provided by
Gruberbauer et al. (2013). From the viewpoint of improving
stellar structure and evolution theory, the aim is to select the
most likely physical modelMðθ;ψÞ from an unbiased sample
of stars without introducing a priori bias by restricting too
narrowly the choice of the input physics ψ.
The general procedure of asteroseismic modeling of an

ensemble of stars is graphically depicted in the flowchart in

Fig. 16. We discuss this framework in the rest of this section,
but it is not necessary to digest the details of this flowchart to
understand the applications treated in Sec. IV.

2. Setup of the modeling approach

In the stellar modeling problem at hand, the choices of θ
and ψ are different for stars with a radiative versus a
convective core. Moreover, the probing power of p and g
modes is different; cf. Fig. 9. Hence the choice of the
parameters in the vector θ to be estimated and the level of
redundancy in the observables to be used also differ; see
Angelou et al. (2017) for a discussion on this topic. While the

FIG. 16. Schematic representation of the procedure of asteroseismic modeling for an ensemble of stars that summarizes the steps
discussed in Sec. III.C. See the text for the meaning of the notation. The green boxes involve statistical methods in the topics of
maximum likelihood estimation, pattern recognition, and model selection.
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observed mode frequencies in slowly rotating stars can be
condensed into a few “observables” derived from asymptotic
approximations as in Eq. (38) or (41), this is not the case for
moderate to fast rotators because their patterns depend on the
interior rotation and are different for different l and m, as
revealed by Eq. (49). Even though a stretching method has
been devised to transform the observed period-spacing pat-
terns due to g modes into one observable (Christophe et al.,
2018), its value depends strongly on Dov and Z (Mombarg
et al., 2019). One can therefore not assume that the frequen-
cies of g modes can be transformed into simple “summary”
diagnostics as in the case of solarlike oscillations in slow
rotators (where Δν and νmax play that role). To treat astero-
seismic modeling in general terms, including applications to
hybrid pulsators with both p and g modes, we consider a
formulation for the matching of individual mode properties.
We denote it here for the frequencies, but it can be done for
any observable (e.g., period spacings).
Asteroseismic modeling of an individual star is done from

an observed vector Yobs, which includes a set of Nω observ-
ables based on the observed frequencies ωobs;i

nlm , where each
mode has its own mode cavity, lifetime, and probing power for
the interior physics; see Fig. 9. Moreover, one often chooses to
addM nonseismic observables to the modeling, depending on
their capacity to assess the models and their correlation with
respect to other components already chosen for Yobs. In setting
up the problem to solve, keep in mind that several observables
may be measured independently from each other and occur
without covariance, while they do not provide extra informa-
tion about the star. Singular value decomposition (SVD)
methods, among them principal component analysis (PCA),
are therefore useful techniques to reduce the dimensionality or
to plan (or not plan) follow-up data once asteroseismic
information has been deduced. A SVD approach was intro-
duced for helioseismic inversions by Christensen-Dalsgaard
and Thompson (1993), while PCA applications for solarlike
and g-mode oscillations were done by Angelou et al. (2017)
and Mombarg et al. (2019), respectively.
The length of the vector Yobs is in general star specific and

each of its components is accompanied by its own error
measurement ϵobsi , for which we assume normality, i.e.,
ϵobsi ∼N ð0; σ2i Þ, as justified by Gruberbauer et al. (2013),
Appourchaux (2014), and Aerts et al. (2018b). For each
pulsator in an ensemble of stars, the aim is to find the value for
θ that best predicts the observables Yobs, with corresponding
value Y0 ≡ Y0ðθ0;ψÞ. We need to select θ0 such that the
distance between Yobs and Y theo is minimal for θ ¼ θ0,
keeping in mind the correlated nature of the parameters
and the observables, as well as any systematic uncertainties
in the theoretical predictions. In such a case, a natural merit
function to minimize for the estimation of θ is the
Mahalanobis distance (Johnson and Wichern, 2007). This
merit function represents a generalized distance. It has been
introduced in stellar variability classification studies for
CoRoT data (Debosscher et al., 2007). In the current context
of asteroseismic modeling, it takes the form

θ0 ¼ argmin
θ
f½YðθÞ − Yobs�⊤ðV þ ΣÞ−1½YðθÞ − Yobs�g; ð51Þ

where V ¼ varðYÞ is the variance-covariance matrix of the
vector Yðθ;ψÞ and Σ is the matrix with diagonal elements σ2i
for i ¼ 1;…; Nω þM. The notation X⊤ stands for the
transpose of X. The matrix V can be estimated so as to
capture the variance for each of the components of the
theoretically predicted vector Y theo, keeping in mind that the
uncertainties due to the limitations of the input physics ψ are
much larger than the measurement errors, and that correla-
tions among the vector components occur. The components
of Y theo must cover an appropriate range due to the free
parameter ranges of θ. For these reasons, the matrix V can be
assessed from grids of models Mðθ;ψÞ covering a broad
range of θ for various ψ, as illustrated by Aerts et al. (2018a)
for the case of g modes. The Mahalanobis distance defined
by Eq. (51) provides a more sophisticated merit function than
the often used χ2 based on an Euclidian distance, because it
takes into account the variance-covariance structure con-
nected with Y theo and uncertainties stemming from the
limitations of ψ. It also considers the overall correlated
nature of θ, Y theo, and their interconnection.
Asteroseismic modeling has thus far mostly been done from

minimizing a χ2 merit function relying only on the measure-
ment uncertainties ϵobsi . This was improved upon by
Gruberbauer, Guenther, and Kallinger (2012) by taking into
account unknown systematic uncertainties of Y theo in a
Bayesian framework, using a χ2 formulation. The advantage
of minimization as in Eq. (51) is that it allows for hetero-
scedasticity in and correlation structures among the compo-
nents of Y theo. Minimizations by Eq. (51) and χ2 were
compared by Aerts et al. (2018b), Table 3 and Fig. 12, for
a case of g-mode asteroseismology of a SPB star, leading to a
somewhat different best solution for θ. Care must be taken
when estimating θ0 due to the correlated nature of Y theo and θ,
keeping in mind systematic biases in the theory of stellar
interiors and ensuring that V is of proper rank.
Estimation of the uncertainty regions for the components of

θ0 is hard to achieve if only one star is modeled, even if many
identified frequencies and high-precision classical observables
are jointly included in Yobs. This is due to θ being of high
dimension and containing correlated vector components, as
stressed by Angelou et al. (2017) and Aerts et al. (2018b). The
multi-D error regions are usually elongated. In such a case,
inference on the errors of θ0 is conveniently achieved from a
MCMC approach; see Foreman-Mackey et al. (2013) for a
popular tool used in astronomy. For such applications, clever
ways to sample are in order to avoid getting stuck in too few
local minima in the case of strong covariances (Handberg and
Campante, 2011). For this reason, nested sampling in a
Bayesian setting is often considered (Corsaro and De
Ridder, 2014). A practical MCMC application to asteroseis-
mology of α Cen A was made by Bazot, Bourguignon, and
Christensen-Dalsgaard (2012).

3. Considering individual stars and ensembles

A major challenge for low-mass stars with a convective
outer envelope is to deal with the 1D treatment of this
envelope in the equilibrium models. The outer boundary
condition adopted to compute the equilibrium model should
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come from a proper 3D and time-dependent treatment of
convection, while it is usually simplified with a time-
independent mlt and a 1D atmosphere model. This aspect
of asteroseismic modeling for stars with damped modes
excited by turbulent convection is known as the problem of
the “unknown surface effects.” Clever ways to deal with this,
with the attitude of getting rid of the problem, have been
developed by using specific combinations of mode frequen-
cies, such as ratios of frequency separations (Roxburgh and
Vorontsov, 2003). These ratios were shown to have probing
power for the deeper layers of the star while being less
sensitive to the physics in the outer layers. In the case of a star
with a radiative envelope, the challenge for the modeling is not
so much the outer boundary, for which the simple approxi-
mation of an Eddington gray atmosphere is fine, but rather
how to deal with the near-core boundary mixing and for the
high-mass stars also with mass loss due to a radiatively driven
and possibly dynamical wind (for M > 15M⊙).
In the case of solarlike oscillations in low-mass stars, the

input physics ψ of the models Mðθ;ψÞ is often taken to be
similar to that of solar models calibrated from helioseismol-
ogy. This is fine because one can rely on the reasonable
assumption that such stars adhere to similar physics as the
Sun, given that they are slow rotators with an extended
convective outer envelope. In that case, one can limit the
estimation to the minimal set of free parameters to compute
the equilibrium models θ ¼ ðM⋆; Xini; Y ini; τÞ. More sophis-
ticated applications based on machine-learning techniques
treating higher dimensions, e.g., by including αmlt and Dmix,
are done as well (Bellinger et al., 2016).
For intermediate- and high-mass stars, θ is always more

than four dimensional due to non-negligible interior rotation,
core overshooting, and envelope mixing. Even when
one can ignore rotation in the computation of the oscillation
modes, one deals with a higher-dimensional problem
than with low-mass stars. For pulsators with a convec-
tive core, the MLE has to be done minimally with
θ ¼ ðM⋆; Xini; Zini; Dov; Dmix; τÞ in the case where rotation
can be ignored ( Moravveji et al., 2015). When dealing with
gravitoinertial or Rossby modes, i.e., beyond the perturbative
treatment of rotation, an estimation of ΩðrÞ has to be included
in θ, increasing dimensionality even further; see Moravveji
et al. (2016) and Van Reeth, Tkachenko, and Aerts (2016) for
examples.
The multidimensional uncertainty regions of θ0 are hard to

determine for such a complex modeling problem; see
Johnston, Tkachenko et al. (2019) for a detailed discussion.
It is also challenging to discriminate among candidate theories
ψ from the modeling of only one or a few stars. This is why
applications optimally consider ensembles of stars. In that
case, one has the opportunity to derive the error regions for the
individual members or to consider one global average error
estimate for each of the components of θ for the entire
population. This approach was applied by Silva Aguirre
et al. (2017) and Mombarg et al. (2019) to solarlike and γ

Dor pulsators, respectively.
As graphically shown in Fig. 16, an important aspect of the

ensemble modeling is to assess the quality of a collection of
candidate theories, i.e., to consider the following:

• observables Yobs
ðtÞ for t ¼ 1;…;Q members of a repre-

sentative sample of pulsators, and
• theories MðθðrÞ;ψðrÞÞ, r ¼ 1;…;P, each of which
delivering predicted values Y theo

ðrÞ .

In such a setting, the goal is to select the most appropriate
theory among the P candidate theories after applying Eq. (51)
or a simplified version of it (e.g., χ2) to every star t. This can
be done using a grid-based approach where extensive grids of
modelsMðθðrÞ;ψðrÞÞ are computed (Pedersen et al., 2021), or
from optimizations “on the fly” via a genetic algorithm
approach (Metcalfe et al., 2014), or via Bayesian methods
coupled to MCMC (Bazot, Bourguignon, and Christensen-
Dalsgaard, 2012). Akaike or Bayesian information criteria are
proper statistical tools to select the best physical model ψ
(Claeskens and Hjort, 2008). Care should always be taken to
penalize for higher degrees of freedom when doing the model
selection, keeping in mind the dimension of θ.
The ultimate goal of ensemble asteroseismology is to have a

pathway to improve the input physics of the theoretical models
(indicated as the second goal in Fig. 16).Hence, once the best of
the currently available model sets ψ is chosen according to the
first goal in the scheme in Fig. 16, one should evaluate how
good or bad it represents the data in the details of each of the
individual stars in the sample and for the sample as a whole.
Stellar models can subsequently be improved from inversion
methods originally developed in the framework of helioseis-
mology (Gough, 1985a). Suchmethods are usually applied on a
star-by-star basis once the best 1Dmodel for the appropriate θ0
has been found; seeBasu andChaplin (2017) for a discussion of
the methodology. Initial applications of this technique have led
to the interior rotation profiles of six subgiants and young red
giants (Deheuvels et al., 2014) and in core-helium-burning red
giants (Deheuvels et al., 2015). Detailed analyses resulting in
profiles ΩðrÞ were obtained for the SPB star KIC 10526294
from g-mode triplets (Triana et al., 2015), the red-giant star
KIC 4448777 from dipole mixed modes (Di Mauro et al.,
2016), and the differential envelope rotation of 16 CygA and B
by Bazot et al. (2019). Inversion methods have led to an
evaluation of the interior structure for 16 Cyg A and B,
revealing discrepancies between the sound speed in the cores
of these two stars with respect to those in the 1D models
at the level of ∼5% (Bellinger et al., 2017), although this
binary-exoplanet system is the best calibrated solar ana-
log (Davies et al., 2015). Inversions applied to the exo-
planet host star Kepler-444 (also known as KOI-3158)
resulted in high-precision mass and radius estimates of
M⋆ ¼ ð0.75� 0.03ÞM⊙, R⋆ ¼ ð0.75� 0.01ÞR⊙ and revealed
that this star must have had a convective core during the first
8 Gyr of its 11-Gyr lifetime (Buldgen et al., 2019).

IV. APPLICATIONS OF ASTEROSEISMIC MODELING

At least four reviews and a book have recently been
published on the topic of asteroseismic applications based
on Kepler or K2 data. Low- or intermediate-mass stars with an
outer convective envelope reveal p modes or mixed modes.
The solarlike oscillations of these stars were reviewed by
Chaplin and Miglio (2013), Hekker and Christensen-
Dalsgaard (2017), and García and Ballot (2019), and a book
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on the data analysis methodology was written by Basu and
Chaplin (2017). We revisit some general results based on
solarlike oscillations, focusing on what asteroseismology of
such stars can deliver to other fields in astrophysics and on
opportunities to improve the theory of stellar interiors. The
evolution and g modes of white dwarfs were recently reviewed
by Córsico et al. (2019), to which we refer for asteroseismic
modeling applications to the stellar remnants of low- and
intermediate-mass stars. All of these reviews focused on “fast”
modes, i.e., high-frequency modes in the sense that their
periods are much shorter than the rotation period of the star. In
such a case, the Coriolis force can be ignored or treated using a
perturbative approach. For this reason, such applications are
relatively easy compared to cases where the rotation and
oscillation-mode periods are comparable, demanding a non-
perturbative treatment.
We start this section with the simplest applications of

asteroseismology and gradually increase the level of
complexity, putting more emphasis on applications that
have been less summarized in reviews thus far. We focus
here on “convenience of use” for the nonexpert while
highlighting selected striking results and opportunities to
improve stellar physics. The topics of Secs. IV.A–IV.F
were chosen without any attempt to be exhaustive for
logistical reasons.

A. Sizing, weighing, and aging stars with convective envelopes

The rotation of stars with M ≲ 1.3M⊙ slows down
efficiently, as first reported by Skumanich (1972) and
studied from space photometry (Meibom et al., 2015).
Although the details of their rotational evolution are not
yet fully understood (Van Saders et al., 2016), this efficient
slowdown is interpreted in terms of magnetic braking
induced by the dynamo created in their convective envelope
and angular momentum loss via a thin stellar wind. These
stars, as well as all evolved stars, have extended convective
envelopes that are the seeds of stochastic driving of modes
by turbulent convection. Chaplin et al. (2014) provided a
summary of the asteroseismic properties of the ensemble of
dwarfs and subgiants observed with the Kepler spacecraft
and found the modes occurring near the frequency of
maximum power in the PD spectra to have radial orders
ranging from n ¼ 17 to 19 for dwarfs and from n ¼ 15 to
19 for subgiants. For stars born with a radiative core
(M ≲ 1.1M⊙) and similar metallicity as the Sun, the
transition from hydrogen-core to hydrogen-shell burning
occurs near νmax ≃ 2000 μHz. This transition gradually
shifts to lower frequencies for larger and more massive
stars. The transition from core to shell burning occurs at
νmax ≃ 800 μHz for stars near the upper mass for which
solarlike oscillations still occur (M ≃ 1.5M⊙).
Basic key ingredients of asteroseismic applications based

on solarlike oscillations are the global seismic scaling rela-
tions relying on solar values. These were derived prior to
space asteroseismology by Kjeldsen and Bedding (1995).
These scaling relations are based on the large frequency
separation defined in Eq. (39) and the frequency of maximum
power νmax discussed in Sec. I:
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In Eqs. (52), the solar reference values have to be computed
using the same methodology as for the star(s) under study to
achieve meaningful and consistent results. In their Table 1,
Pinsonneault et al. (2018) listed solar reference values for
various asteroseismic pipelines in use today. It is seen in
Eqs. (52) that the large frequency separation scales with the
square root of the mean density of the star. Because one relies
on the mass, radius, and oscillations of the Sun for a particular
choice of input physics ψSun, one has a quick and easy way to
deduce the mass and radius of the star under study. This type
of stellar weighing and sizing implies a major simplification:
none of the steps in the procedure shown in Fig. 16 have to be
taken, because one assumes that the input physics to model the
Sun ψSun is also valid for the star(s) under study and one does
not test any models with other choices for the input physics ψ.
This does not allow one to perform model selection among
candidate theories ψ, as one freezes the latter to the solar one
calibrated from helioseismology. Moreover, by relying on the
solar values Δν⊙ and νmax;⊙ one implicitly assumes that the
star under study has the same metallicity and chemical mixture
as the Sun. By using the scaling relations in this way, there is
no such thing as asteroseismic modeling in the sense
of Fig. 16.
For frozen ψSun, it follows from the scaling relations in

Eq. (52) that a measurement of Teff , Δν, and νmax suffices to
deduce the mass and radius of a star. For such an application, it
is not even necessary to know the identification of the
individual p modes, as long as one can estimate Δν and
νmax from the PD spectrum, with or without the help from an
ACF. This has major applications, as asteroseismicM⋆ and R⋆

values can be computed easily for use in various fields of
astrophysics, even from short and/or gapped time series. For
this reason, substantial effort has been put into testing the
scaling relations from independent methods, notably from an
interferometric radius, as done by Huber et al. (2012) and
White et al. (2013), or from an astrometric radius, as treated
by Silva Aguirre et al. (2012), Huber et al. (2017), and Zinn
et al. (2019). Overall agreements are excellent for stars with a
fairly large range in radii, from about 0.8R⊙ to above 10R⊙:
this is a tribute to the trio of asteroseismology, astrometry, and
interferometry.
Thanks to their simplicity, the scaling relations in Eq. (52)

have been used extensively to deduce the masses and radii of
stars with solarlike oscillations observed with space photom-
etry. Aside from the recent Kepler catalog papers on dwarfs
and subgiants (Chaplin et al., 2014) and red giants (Yu et al.,
2018), we refer the interested reader to earlier CoRoT catalogs
for red giants by Kallinger et al. (2010) and Mosser et al.
(2010, 2012), as well as to the K2 catalog by Stello et al.

(2017). The scaling relations were even expanded to the
extremely low frequencies of solarlike oscillations in M giants
belonging to the class of semiregular variables; cf. Fig. 1. This
allowed researchers to assess and interpret the period-lumi-
nosity relations derived from ground-based microlensing
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surveys in terms of the interior structure of such highly
evolved stars (Mosser et al., 2013). Analyses of M giants
observed with Kepler led to the discovery of nonradial
oscillations of low inertia in such stars, interpreted as f modes
by Stello et al. (2014). This discovery holds major potential
and has yet to be explored further. In particular, it paves the
way to perform extragalactic asteroseismology from obser-
vations of M giants in the Magellanic Clouds.
As another key application, masses and radii for exoplanet

hosts based on the scaling relations have been published in a
number of studies, among them Huber et al. (2013), Van
Eylen et al. (2014, 2018), Silva Aguirre et al. (2015),
Campante et al. (2016a), and Lundkvist et al. (2016).
A radius estimate of an exoplanet host star from the scaling
relations propagates directly into a radius estimate of its
exoplanets for which a transit has been measured.
Asteroseismic sizing from scaling relations is therefore
particularly convenient for exoplanet studies. Once an exo-
planet has been detected in space photometry, the latter can be
revisited in an attempt to measure its host star’s values of Δν
and νmax (Chontos et al., 2019). Figure 17 shows the planet
radii versus orbital periods for an assembly of Kepler, K2, and
TESS exoplanets, comparing those with and without aster-
oseismology of the host star. As highlighted in the figure,
more measurements of Δν and νmax from the PD spectra are
achieved as detection methods are refined and spectroscopy
(to estimate Teff) are assembled. The gain in precision of the
exoplanetary radius is typically a factor of ∼2 when astero-
seismic sizing of the host star from scaling relations can be
done relative to the case where no oscillations are detected.
Once the mass and radius of a star have been estimated from

the scaling relations, its age and hence its evolutionary stage
can be assessed. This requires evolutionary models and was

originally done for the Sun. Christensen-Dalsgaard (1988)
introduced the so-called CD diagram to estimate the age of
solar-type stars from their large and small frequency separa-
tions. Chaplin et al. (2014) made a thorough analysis to
estimate the ages of the more than 500 dwarfs and subgiants
observed with Kepler. This ensemble analysis was based on
six different data analysis pipelines and 11 stellar model grids
in order to assess the combined effect of observational and
model uncertainties by taking into account V þ Σ, as dis-
cussed after Eq. (51). This is an application of Fig. 16 where
one does not use the individual frequencies ωobs;i

nlm � σωobs;i
nlm

as

input, but rather Yobs ¼ ðνmax;Δν; δν; Teff ; ½Fe=H�Þ to esti-
mate the parameters θ ¼ ðM;R; τÞ and quantities that can be
derived from these three (such as the mean density and
gravity). For this application, Chaplin et al. assumed that
the components of Y theo are not subject to uncertainties and are
not correlated with each other, such that χ2 can be used as a
merit function. Under these assumptions, this ensemble
modeling led to average relative precisions of approximately
5.4% in mass, 2.2% in radius, and ∼10% − 20% in age. Such
relative precisions are within reach when spectroscopic
estimates of Teff and ½Fe=H� are available. If only νmax and
Δν are available, the relative precisions are downgraded by
about a factor of 2, which is still excellent and often the only
way to get an age estimate of isolated stars in the Milky Way.
Bellinger (2019, 2020) derived scaling relations for the ages

of dwarfs, subgiants, and red giants from Yobs ¼ ðνmax;

Δν; δν; Teff ; ½Fe=H�Þ. For the dwarfs, the relations were
deduced from fits to these quantities for 80 stars whose
measurement uncertainties for δν and νmax are better than 10%
and 5%, respectively. This leads to age precision estimates of
about 10% for dwarfs. These formulas are easy to use (e.g., for
exoplanet host aging), but users have to keep in mind that the
relations explicitly rely on the solar input physics via
homology relations. Thus, the fact that the interior rotation,
mixing, and magnetism of the stars might be different than
those of the Sun is ignored.
A major breakthrough in asteroseismology was achieved

upon the detection of mixed dipole modes in Kepler data of
evolved low-mass stars (Beck et al., 2011; Bedding et al.,
2011) after they had been theoretically predicted in the context
of CoRoT by Dupret et al. (2009). The mixed modes can have
a gravity-dominated or a pressure-dominated character,
depending on the extent and shape of their propagation cavity.
Such dipole mixed modes in evolved stars occur together with
radial and quadrupole p modes, which obey the asymptotic
relation in Eq. (39) and probe the convective envelope of the
star. Measurement of Δνnl and ΔPnl thus allows one to derive
the mass and radius of the star from scaling relations, as well
as its evolutionary stage (Bedding et al., 2011). Indeed, the
gravity-dominated mixed modes probe the deep stellar interior
and have different values for hydrogen-shell-burning red
giants than for core-helium-burning red giants. This allows
one to deduce the nuclear burning stage of these two types of
red giants, while their surface properties are the same. Period
spacings of dipole mixed modes lead to higher-precision age
estimates than the large frequency separation from p modes.
Moreover, the period spacings are a sensitive probe for
internal mixing in intermediate-mass dwarfs and allow one

FIG. 17. Planetary radii as a function of orbital period, where
the properties of exoplanet host stars with and without astero-
seismic estimation are compared. Asteroseismology of the host
star not only provides the age of the exoplanetary system but also
improves the planetary radii by a factor of ∼2 compared to the
case where such data are not available. Adapted from Chontos
et al., 2019.
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to calibrate the core overshooting efficiency using low-
luminosity red-giant stars (Hjørringgaard et al., 2017). We
return to this capacity for g modes in Sec. IV.E.
Estimation of R⋆ from asteroseismology combined with a

spectroscopic measurement of Teff allows one to deduce the
luminosity of the star and hence derive an asteroseismic
parallax (Silva Aguirre et al., 2012). Comparisons between
such asteroseismic parallax with the one from Gaia astrometry
reveals excellent agreement for dwarfs (De Ridder et al.,
2016) and red giants (Huber et al., 2017). This allows one to
probe the deep end of the Milky Way with luminous pulsating
stars (Mathur et al., 2016). The capacity of joint asteroseismic
aging, sizing, and distance estimation opened up the field of
galactic archaeology, which had already been jump-started
prior to the Gaia era by Miglio et al. (2009). Their study of
various populations of core-helium-burning red giants in the
galactic disk observed with CoRoT opened a new field of
mapping and dating stellar populations from red-giant aster-
oseismology (Miglio et al., 2013). Meanwhile, extensive
progress has been made in archaeological studies for the
pointing directions in the Milky Way covered by CoRoT,
Kepler, and K2 coupled with large spectroscopic surveys and/
or Gaia data; see Stello et al. (2015), Anders et al. (2017a,
2017b), Serenelli et al. (2017), Stello et al. (2017),
Pinsonneault et al. (2018), Sahlholdt and Silva Aguirre
(2018), Silva Aguirre et al. (2018), Rendle et al. (2019),
Sharma et al. (2019), and Zinn et al. (2019). Major potential
for extending this topic toward all-sky coverage is being
offered by the ongoing TESS mission (Ricker et al., 2016) and
the future PLATO mission (Rauer et al., 2014). These surveys
should optimally be coupled with spectroscopic surveys with
multiobject spectrographs to target hundreds of thousands of
asteroseismically aged and sized red giants. The beginnings of
such large-scale asteroseismic archaeology have already
revealed abundances and distances that allowed one to separate
high- and low-½α=Fe� populations in the Milky Way disk
(Chiappini et al., 2015). In this way, asteroseismology has
become a key ingredient in the study of the multiple popula-
tions and of the chemical evolution of our Milky Way.
To circumvent computationally intensive age derivation

from evolutionary models, age scaling relations were derived
by Bellinger (2020). These rely on the asteroseismic proper-
ties of ∼1000 red giants and are convenient for galactic
archaeologists. These age relations assume that stars adhere to
ψSun. Their quoted precision of ∼15% does not take into
account systematic uncertainty due to the unknown evolu-
tionary properties on the main sequence. As highlighted by
Fig. 7, uncalibrated descriptions of internal mixing in dwarfs
with a convective core are used in the models. Moreover,
asteroseismology revealed the theory of angular momentum
transport to be limited (Aerts, Mathis, and Rogers, 2019); see
also Fig. 6. As long as users of “recipe-type” aging recognize
this major culprit stemming from fixing the input physics, the
scaling relations are a convenient tool for initial asteroseismic
and comparative stellar aging of populations, preventing us
from having to go through à la carte modeling, a term
introduced by Lebreton and Goupil (2014) and Lebreton,
Goupil, and Montalbán (2014) that is represented in Fig. 16.
To get the maximum precision out of the data of a particular
star, including aging to better than 10%, detailed modeling

according to Fig. 16 is in order. Treating populations of N
stars in this way is much more cumbersome than applying age
scaling relations, but it is the only way to properly take into
account the fact that the internal mixing of stars can be diverse
(cf. Fig. 7), even for a population of stars born with the same
metallicity and similar rotation; discussed in Sec. IV.E.

B. Assessing sharp features in stellar structure

Fitting the frequencies or periods of oscillations for
individual stars and particularly for an ensemble of stars
allows one to learn more about the quality of the input physics
ψ of stellar models following Fig. 16. This can be done from
fitting some of the individual detected and identified oscil-
lation frequencies and periods, rather than simply using the
measured averages of global patterns based on the asymptotic
theory as in Eqs. (38) and (39) or Eqs. (41) and (42). An
intermediate step between the exploitation of only the average
value of the frequency or period spacing and the full-blown
fitting of all measured individual oscillation modes is offered
by modeling deviations from the expected constant spacings
due to so-called structural glitches. Sharp features in the sound
speed are called acoustic glitches, while those in the Brunt-
Väisälä frequency are termed buoyancy glitches. These
glitches may lead to oscillatory deviations in the patterns
of p-mode frequencies or g-mode periods. Interpretation of
such measured deviations goes beyond the simple use of
scaling relations and provides a good opportunity to derive
detailed properties of stellar structure.
Studies of acoustic glitches in the Sun from helioseismology

led to the overshoot properties at the base of the solar
convective envelope (Monteiro, Christensen-Dalsgaard, and
Thompson, 1994) and to the capacity to position the second
ionization zone of helium (Monteiro and Thompson, 2005).
Following those solar studies, the potential of exploiting
measured oscillatory deviations due to acoustic glitches was
investigated further by Monteiro, Christensen-Dalsgaard, and
Thompson (2000), Basu et al. (2004), and Houdek and Gough
(2007) for Sun-like stars covering a mass range of
M⋆ ∈ ½0.85; 1.2�M⊙. This led to methods to infer the size of
the convective envelope and to derive properties of the over-
shoot transition layer at the bottom of the convective envelope;
see Hekker and Christensen-Dalsgaard (2017) for an extensive
discussion. This methodology was put into practice for Kepler
data of Sun-like stars by Mazumdar et al. (2014). Figure 18
illustrates the measured oscillatory frequency deviations due to
acoustic glitches in the structure of 16 Cyg A, following its
PD in Fig. 10. In a series of papers exploiting the measured
periodic deviations from constant spacings, Verma et al. (2014,
2017)measured the locations of the base of the convection zone
and of the helium ionization zones for Sun-like stars observed
by Kepler, as well as their helium abundance (Verma et al.,
2019) and the level of helium settling due to atomic diffusion
(Verma and Silva Aguirre, 2019). In these studies, analytical
modeling was compared to numerical asteroseismic model-
ing following the scheme in Fig. 16 by estimating θ ¼
ðM⋆; Y ini; ½Fe=H�; αmlt; αovÞ for equilibrium models with and
without helium settling (i.e., for two different ψ’s in Fig. 16).
The results of such numericalmodeling for 16CygAare shown
as a solid line in Fig. 18. This led to Y ini ∈ ½0.231; 0.251�, while
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a similar application to 16 Cyg B revealed Y ini ∈ ½0.218;
0.266�. The differences in helium mass fraction ΔY derived
frommodels with and without helium settling were found to be
ΔY ∼ 0.038 for both stars. This result is representative for an
additional ∼30 Sun-like stars analyzed in the same way. As
such, frequency deviations due to acoustic glitches offer a
uniqueway to derive the helium composition of stars too cool to
reveal helium spectral lines.
For the solar analogs 16 Cyg A and B, even more details on

the physics of the envelope could be derived, notably
latitudinal differential rotation due to a dynamo effect. In
an updated study based on the same light curve as the one used
by Davies et al. (2015), the measured rotational splitting of 16
Cyg A and B led to envelope rotation rates that are higher at
the equator than at the pole. Bazot et al. (2019) found the
differences of the rotation frequencies between the equator
and the pole to be 320� 269 and 440� 370 nHz for 16 Cyg
A and B, respectively, while the equatorial rotation frequen-
cies were 535� 75 and 565� 140 nHz. This envelope
rotation behavior of both binary components is similar to
that of the Sun. The results on turbulence and rotation of this
solar-analog binary and exoplanet system illustrate how
modeling of individual frequencies provides an opportunity
to improve the treatment of envelope convection in cool stars.
Mode trapping due to transition zones with compositional

changes is omnipresent in stars at evolved stages. This
phenomenon has already been detected from ground-based
white-dwarf asteroseismology (Winget et al., 1991, 1994). It
was found in large ensembles of Kepler γ Dor and SPB stars
analyzed by Pápics et al. (2017) and Li et al. (2020), of red
giants by Mosser et al. (2015), and of subdwarf B pulsators by
Reed et al. (2011), Østensen et al. (2014), Uzundag et al.

(2017), and Kern et al. (2018), while it was also confirmed in
white dwarfs from K2 photometry (Hermes et al., 2017a). The
trapping of g modes or mixed modes was theoretically

investigated for red giants by Cunha et al. (2015), for
subdwarfs by Charpinet et al. (2000), and much earlier for
white dwarfs in the seminal paper by Brassard et al. (1992).
Hence, modeling of mode trapping due to structural glitches
can now be done across the entire HRD (Cunha, Avelino
et al., 2019).
During the main-sequence phase, buoyancy glitches occur

due to the shrinking convective core of intermediate- and high-
mass dwarfs. These glitches lead to deviations from the
constant period spacing of high-order g modes for stars with
limited chemical mixing in their radiative envelopes. Such
periodic deviations were first observed in a SPB observed with
CoRoT (Degroote et al., 2010a). The signature of buoyancy
glitches was also found in the period-spacing patterns of γ Dor
stars (Van Reeth et al., 2015), as illustrated in Fig. 11 for one
of them (KIC 11721304). A sharp deviation from a period-
spacing pattern can also occur when a pure inertial mode in the
convective core of a rapid rotator couples resonantly to a heat-
driven gravitoinertial mode in the radiative zone (Ouazzani
et al., 2020). Such resonances appear at specific mode
frequencies. For evolved dwarfs with a shrinking convective
core, the signal due to sharp features in the structure of the
equilibrium model or due to resonances with inertial modes
may be intertwined with mode bumping or avoided crossings;
see Smeyers and Van Hoolst (2010) for a mathematical
description of these phenomena. A single resonance between
a gravitoinertial mode in the envelope and a pure inertial mode
in the core, or a single avoided crossing, leads to just one dip
in the period-spacing pattern, as observed in Fig. 12. A μ-
gradient zone in the near-core region instead gives rise to
recurring quasiperiodic deviations. Modeling of such regular
deviations provides an excellent opportunity to derive proper-
ties of DmixðrÞ in the deep stellar interior. Analytical pre-
dictions for the oscillatory deviations due to a receding
convective core were derived for high-order g modes of
nonrotating γ Dor and SPB stars by Miglio et al. (2008).
Bouabid et al. (2013) generalized this to a numerical frame-
work for rapidly rotating γ Dor stars. These theoretical studies
have been put into practice for dwarfs to estimate their levels
of chemical mixing from asteroseismic modeling following
Fig. 16, with adopted DmixðrÞ profiles as in Fig. 7. We discuss
such recent applications in Sec. IV.E.
Moving beyond the main sequence, periodic components in

the oscillation frequencies due to sharp features in the
convective envelope of the red giant HR 7349 were found
in its CoRoT data. The signal is due to a local depression of
the sound speed in the second ionization zone of helium
(Miglio et al., 2010). Similar studies from Kepler observations
of red giants were summarized by Hekker and Christensen-
Dalsgaard (2017). A powerful analysis to derive the helium
abundance for red giants was presented by McKeever, Basu,
and Corsaro (2019) for an ensemble of 27 pulsating red-giant
branch (RGB) stars in the metal-rich open cluster NGC 6791
observed by Kepler. The helium abundances and ages for each
individual cluster RGB star were combined to create a
distribution for the cluster’s age and helium abundance,
resulting in Y ini ¼ 0.297� 0.003 and τ ¼ 8.2� 0.3 Gyr.
Such precision for aging and helium abundance determination
is beyond the reach of classical cluster studies involving

FIG. 18. Frequency deviations with respect to a fourth-order
polynomial fit to the measured frequencies for the modes of
degree l ¼ 0 (blue triangles), l ¼ 1 (gray squares), l ¼ 2 (red
circles), and l ¼ 3 (orange diamonds) of 16 Cyg A, based on the
PD shown in Fig. 10. The full line represents a fit to the
oscillatory signal caused by sharp features in the star’s sound
speed in the second ionization zone of helium. Adapted from
Verma et al., 2014.
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isochrone fitting (An et al., 2007), even in the Gaia era
(Bossini et al., 2019).
Dipole mixed modes in red giants offer additional oppor-

tunities. Structural glitches and mode trapping result in
deviations from the asymptotic relations of period spacings
of g modes as in Eq. (41), or of gravitoinertial modes as in
Eq. (49). Mixed modes comply with a more complex
asymptotic spacing pattern due to their mixed g- and p-mode
nature. Red giants are slow enough rotators to ignore the
Coriolis force for the derivation of their period-spacing
expression, of which Eqs. (38) and (41) are the limiting cases
for pure pressure and pure gravity modes, respectively. The
asymptotic expression for dipole mixed modes depends on the
evanescent zone between the g-mode cavity determined by
buoyancy as the dominant restoring force and the p-mode
cavity where the pressure force is the dominant restoring
force. The location, shape, and width of this evanescent zone
all play a role in the coupling between these two cavities. The
coupling factor q reaches extreme values of zero for no
coupling and 1 for full coupling. The asymptotic expression
for mixed dipole modes was discussed by Unno et al. (1989).
Generalized versions and their use in space asteroseismology
were given by Mosser et al. (2014), Takata (2016a, 2016b),
and Pinçon, Goupil, and Belkacem (2019). Observational
estimations of q from Kepler data were made by Buysschaert
et al. (2016), Mosser, Pinçon et al. (2017), Hekker, Elsworth,
and Angelou (2018), Jiang, Christensen-Dalsgaard, and
Cunha (2018), and Mosser et al. (2018). Hekker, Elsworth,
and Angelou (2018) used a description that explicitly relies on
the radial order of the modes and allows one to constrain the p-
mode and g-mode frequency or period offsets observationally.
This work revealed the g-mode period offsets to correlate with
the core boundary for RGB stars, while the p-mode offsets for
core-helium-burning stars require additional mixing that is in
line with the suggestions by Constantino et al. (2015) and
Bossini et al. (2017). Hekker, Elsworth, and Angelou (2018)
also found that ln q relates linearly to the width of the
evanescent zone normalized by its position. These findings
provide observational guidance to tweak NðrÞ and deduce the
core mass of red giants in various evolutionary stages. Pinçon,
Goupil, and Belkacem (2019) demonstated that q is tightly
connected with the width of the evanescent zone and showed
how this zone changes when stars evolve from the subgiant to
the RGB and further toward the red clump. This study
highlighted the capacity of q to probe the dynamics of the
zone between the hydrogen-burning shell and the bottom of
the convective envelope. To date this analytical work has
focused on stars with masses below 1.2M⊙. It needs to be
extended to stars born with a well-developed convective core
for one to understand the full structural and evolutionary
properties of the evanescent zone for such stars, including
those with M⋆ ≳ 2M⊙, which will end up in the secondary
clump.

C. Improving the physics of cool-star surface convection

In the case of low-mass stars, one can go beyond the
analytical modeling of acoustic glitches, which is in itself an
improvement over the use of scaling relations. A major aim of
asteroseismology is to let go of the assumption that low-mass

stars adhere to ψSun. This can be done by comparing the
choice of the solar input physics with any other choice of ψ
from evaluations between predicted and measured values of
the individual oscillation frequencies. Modeling according to
Fig. 16 then requires one to “overcome” the surface effects in
the case of cool stars with a convective envelope. Indeed, for
those stars, the adiabatic approximation of the oscillation
frequencies and the use of simplified boundary conditions
based on 1D atmosphere models are not good enough relative
to reality, as such approaches lead to inappropriate frequency
predictions ωtheo;i

nlm . Relying on equilibrium models with model
atmospheres based on mlt to describe the envelope convection
rather than taking full account of the turbulent pressure in the
superadiabatic near-surface regions leads to p-mode frequen-
cies that are too high (Christensen-Dalsgaard, 2002). The
offset is larger for higher radial orders, i.e., for higher mode
frequencies. For the solar oscillations, this leads to offsets for
Δν⊙ of the order of 10 μHz. Similar offsets are expected to
occur for the oscillations of all Sun-like stars with solarlike
oscillations. The values of the offsets are much larger than
typical uncertainties of the measured oscillation frequencies.
The surface effects must hence be assessed to prevent errors in
the estimation of θ, even for fixed ψSun, when going
through Fig. 16.
Methods have been devised to “correct for” or “minimize”

the unknown surface effects, guided by their properties
regarding the Sun. One way to deal with the surface effects
was originally proposed by Roxburgh and Vorontsov (2003),
who came up with combinations of p-mode frequencies (the
so-called r02 and r01 indices) that suppress the sensitivity to
the outermost layers, decreasing in this way the influence of
the limitations of the 1D models in the asteroseismic model-
ing. More complex indices were subsequently defined with
the same aim (Roxburgh, 2005). Several other methods to fit
the surface effects with a statistical model, with the aim of
“getting rid” of the differences between the measured and
model frequencies, were developed. These adopted various
levels of sophistication in the fitting following the pioneering
paper by Kjeldsen, Bedding, and Christensen-Dalsgaard
(2008). Ball and Gizon (2014, (2017), Basu and Kinnane
(2018), Compton et al. (2018), and Jørgensen and Weiss
(2019) offered ways to treat the surface effects.
Even with the simple pragmatic approach taken by

Kjeldsen, Bedding, and Christensen-Dalsgaard (2008), the
gain between modeling based on the scaling relations versus
fitting the actual frequencies is roughly a factor of 2 in the
precision of the mass, radius, and age. Such asteroseismic
modeling was done for the CoRoT exoplanet host HD 52265
by Lebreton and Goupil (2014), showcasing how aging (and
weighing and sizing) of the host star by individual oscillation
frequency fitting can be done at the level of 10%. While this
study was applied to an individual CoRoT target star accord-
ing to the principles of Fig. 16, Lund et al. (2017) and Silva
Aguirre et al. (2017) applied this full scheme to an ensemble
of 66 stars observed in 1-min cadence Kepler photometry with
a time base of up to 4 yr in the so-called legacy sample of the
mission. This study covered the following values for θ : stellar
masses between 0.8M⊙ and 1.6M⊙, Y ini ∈ ½0.2; 0.4�,
Zini ∈ ½0.0025; 0.05�, αconv=α⊙ ∈ ½0.5; 1.3�, and ages between
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1 and 12 Gyr. Silva Aguirre et al. (2017) considered seven
different choices for the input physics ψ , all of which are
nonrotating, nonmagnetic 1D models that ignore radiative
levitation in the treatment of the microscopic atomic diffusion;
see their Table 1. All pulsation computations were done in the
adiabatic approximation and ignored the Coriolis and Lorentz
forces. The asteroseismic modeling led to average relative
uncertainties of 2% in radius, 4% in mass, and 10% in age and
revealed degeneracies between the stellar mass M⋆ and initial
helium abundance Y ini. All seven adopted ψ led to comparable
fit quality when considering calibrations from the Sun,
angular diameter measurements, Gaia parallaxes, and binarity.
An initiative to assess the differences in stellar models
computed with various evolution codes by adopting the same
input physics with the aim of evaluating the level of numerical
uncertainties and comparing them to asteroseismic uncertain-
ties was provided by Christensen-Dalsgaard et al. (2020) and
Silva Aguirre et al. (2020), where the results may be found.
Such activities are an important aspect of the model uncer-
tainties at play when one performs modeling via Fig. 16.
Currently the focus in asteroseismology of low-mass stars

adopts a true asteroseismic spirit: rather than shifting the
measured frequencies to remove the surface effects, the latter
are considered an “observational gift” to improve the weak-
nesses in the physics of 1D models. This shift in spirit of the
asteroseismologists rather than in the measured oscillation
frequencies offers great potential. Indeed, the asteroseismic
modeling of stars with an outer convective envelope can be
further improved by using the measured surface effect as an
opportunity rather than a nuisance. A common procedure
adopted in 1D models of low-mass stars is to calibrate an
interior model and an atmosphere model so as to be consistent
with the Sun for a single value of αmlt and do the stitching of
the two deep enough in the adiabatic part of the atmosphere.
However, this procedure has limitations for evolved stars
(Choi et al., 2018). Asteroseismology of a variety of stars
permits one to do better. Indeed, the shift between the
measured oscillation frequencies and those predicted by 3D
hydrodynamical simulations of convection relevant for the
outer envelopes of low-mass stars is informative when
evaluating such simulations (Zhou, Asplund, and Collet,
2019), assessing nonadiabatic stability analyses (Houdek
et al., 2019), and finding out how to “patch” 3D atmosphere
models to 1D models of stellar interiors.
Following the initial achievement to match a 3D atmos-

phere model to a 1D solar interior model by Rosenthal et al.
(1999), detailed studies were conducted to achieve optimal
patching. The measured surface terms from helioseismology
by Magic and Weiss (2016) and from asteroseismology by
Sonoi et al. (2015), Ball et al. (2016), and Trampedach et al.

(2017) were exploited from the patching of 3D atmosphere
models to 1D interior models. This led to improved boundary
conditions based on 3D convection simulations. Guidance
from measured surface effects and adiabatic predictions of
solarlike oscillation frequencies was used to derive the optimal
connection depth in the atmosphere. Although this approach
does not yet take into account nonadiabatic effects, it offers
good potential to come to a better treatment of the 3D
simulations of envelope convection and their use for stellar
evolution computations. Jørgensen et al. (2018, 2019),

Jørgensen and Weiss (2019), and Mosumgaard et al.

(2020) presented detailed procedures to include the mean
structure of 3D hydrodynamical simulations as the boundary
condition of 1D models to improve their outer stratification. In
these studies of patched models, an appropriately calibrated
solar model with a structure similar to the underlying 3D
simulations is achieved from helioseismology. Houdek et al.

(2017) included a full treatment of the interaction between
convection and the oscillations.
The measured oscillation frequencies of Kepler targets

across stellar evolution are now being used to investigate
how the convection-oscillation interaction and the transition
between envelope and interior can be achieved from 3D
convection simulations for stellar evolution models. Such
improvements to stellar structure models partly eliminate the
structural contribution to the surface effect, with discrepancies
having decreased from about 10 to some 2 μHz. Hence the
patched models do not yet perform to the level of precision of
the asteroseismic data. Moreover, the patching procedures do
not deliver reliable post-main-sequence evolution models
when performed near the bottom of the convective envelope
in currently available 3D simulations. More refined 3D
simulations for deeper convective envelopes are needed to
improve stellar evolution theory of evolved low-mass stars
even further, keeping in mind numerical restrictions; cf. Silva
Aguirre et al. (2020).
In addition to global frequency shifts due to surface effects,

the p-mode frequencies also undergo time-dependent vari-
ability connected with magnetic activity. For the Sun this
effect was summarized by Christensen-Dalsgaard (2002).
Magnetic effects were found for the solarlike p modes
detected in CoRoT data of the F5V star HD 49933 (García
et al., 2010). The Kepler data allowed researchers to study
connections between activity and pulsations in samples of F-
type stars (Mathur et al., 2014) and in the legacy sample
(Santos et al., 2019), revealing that the p-mode frequency
shifts increase with increasing chromospheric activity,
increasing metallicity and increasing effective temperature.
Young rapid rotators reveal larger frequency shifts than old
stars. Moreover, the nonspherical nature of the magnetic
activity in the stellar convective envelope changes the
frequencies of gravitoacoustic modes (Pérez Hernández
et al., 2019). While asteroseismic assessments of the physics
of stellar activity in terms of its effect on pulsation-mode
behavior has progressed significantly, the improved knowl-
edge is not at a level at which it can be used to encode
temporal magnetic activity in the theory of stellar evolution. In
this sense, the inclusion of the physics of surface convection
via patching of time-averaged 3D stellar atmosphere models
to 1D stellar interiors across the evolution of low-mass stars,
via calibrations of solarlike oscillations based on space
asteroseismology, advances more steadily and more targeted
than the inclusion of magnetic activity.

D. Improving the theory of angular momentum transport

A major asset of mixed and g modes is their probing power
of the deep stellar interior. While this opportunity does not
occur for the Sun and Sun-like dwarfs, we now have
thousands of stars with the appropriate g modes delivering
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their interior rotation rates from measured rotational frequency
shifts. Such measurements give quasidirect information about
Ωcore without having to go through Fig. 16. In that sense, the
internal rotation of stars has become observational astronomy.
Once the Kepler data reached a duration of 2 yr, prominent
detections of rotational splitting for dipole mixed modes were
found in subgiants by Deheuvels et al. (2012, 2014, 2020),
and in red giants by Beck et al. (2012), Mosser et al. (2012),
and Deheuvels et al. (2015). For intermediate-mass dwarfs,
both dipole and quadrupole modes with rotationally split
multiplets were detected soon after the nominal 4-yr Kepler
light curves became available, with initial exploitations by
Kurtz et al. (2014), Pápics et al. (2014, 2015), Saio et al.

(2015), and Van Reeth et al. (2015). These studies of internal
rotation immediately made it clear that the theory of angular
momentum transport as we knew it prior to Kepler failed to
explain the asteroseismic data, with discrepancies of up to 2
orders of magnitude in the measured Ωcore.
Many observational derivations of Ωcore have been done in

recent years, confirming the early findings. For red giants
these were summarized by Mosser et al. (2014) and Gehan
et al. (2018). The discrepancy between theory and observa-
tions turned out to be independent of the measured rotation
rate during the core-hydrogen burning, i.e., the problem
regarding slower than expected near-core rotation is derived
for both the perturbative and TAR regimes of rotation. A
summary of the asteroseismic results from mixed and g
modes, as well as ways to improve the theory, was offered
by Aerts, Mathis, and Rogers (2019) and is not repeated
here. One major conclusion of that paper, which summarized
data covering all stages of stellar evolution, is that low-
and intermediate-mass stars are to a good approximation
quasirigid rotators during their core-hydrogen-burning phase,
while Ωcore and Ωenv values differ by less than a factor of 10
during the RGB phase. The theory of local conservation of
angular momentum transport does not explain this. The
asteroseismic rotation estimates for 1210 stars across stellar
evolution assembled by Aerts, Mathis, and Rogers (2019)
reveal that the CO cores built up inside red giants and
subdwarfs by the end of their core-helium-burning phase have
the same angular momentum as their white-dwarf successors.
Major updates since the summary by Aerts, Mathis, and

Rogers (2019) have become available and are shown in Fig. 6.
A large increase in the sample of dwarfs was achieved by Li,
Bedding et al. (2019), Li, Van Reeth et al. (2019), and Li et al.
(2020), who derived the near-core rotation frequencies for
more than 600 F-type g-mode pulsators. These are shown in
gray in Fig. 6. Almost all of the newly included F-type dwarfs
reveal dipole (l ¼ 1) prograde modes, while about 30% show
quadrupole (l ¼ 2) modes, and 16% of them show retrograde
Rossby modes. Core rotation rates of 72 core-helium-burning
stars have been derived from their dipole mixed modes (Tayar
et al., 2019), indicated in blue in Fig. 6. For both of the new
samples, there is no asteroseismic estimate of log g, as is the
case for all 1210 stars in Fig. 4 given by Aerts, Mathis, and
Rogers (2019); hence Fig. 6 was constructed differently. For
the red giants addressed by Tayar et al. (2019), log g was
derived from near-IR APOGEE spectroscopy, while Li et al.
(2020) relied on Teff values from Mathur et al. (2017),
luminosity estimates from Gaia astrometry computed by

Murphy et al. (2019), and a grid of stellar models to derive
the gravity. Although this leads to much larger and more
systematic uncertainties for log g than for the asteroseismic
log g values used by Aerts, Mathis, and Rogers (2019), with
uncertainties between 0.2 and 0.5 dex for the stars in Fig. 6
(omitted for clarity), the conclusions by Aerts, Mathis, and
Rogers (2019) are fully confirmed by these additional recent
studies, representing a tenfold increase in the number of
dwarfs with Ωcore.
Following Aerts, Mathis, and Rogers (2019), two major

paths have been followed thus far to try to fix the theory of
stellar rotation, given the prominent results from asteroseis-
mology. On the one hand, angular momentum transport by
IGWs as proposed by Kumar and Quataert (1997) and Rogers
et al. (2013, 2015), by mixed modes as studied by Belkacem,
Marques, Goupil, Mosser et al. (2015) and Belkacem,
Marques, Goupil, Sonoi et al. (2015), and by g modes as
in Townsend, Goldstein, and Zweibel (2018) was considered.
On the other hand, instabilities due to magnetic fields, termed
the magnetic Tayler instability, were considered an explan-
ation by Eggenberger et al. (2019), Fuller, Piro, and Jermyn
(2019), and Goldstein, Townsend, and Zweibel (2019). Both
physical processes lead to a more efficient evacuation of
angular momentum from the core to the envelope of the star
than any of the processes that were considered in stellar
evolution computations prior to space asteroseismology.
While these new theoretical ingredients improve the discrep-
ancies between the asteroseismic measurements of Ωcore and
stellar evolution theory, they still require one to tweak the
amount of angular momentum transported from the core to the
surface with a free parameter in order to achieve compliance
with the measured core rotation rates. In this sense, none of the
stellar evolution theories are able to explain the quasirigid
rotation measured for stars with ratios of Ω=Ωcrit ∈ ½0; 75%�
during the core-hydrogen-burning phase, as displayed in the
right panel of Fig. 6.
Van Reeth, Tkachenko, and Aerts (2016), Ouazzani et al.

(2017), Christophe et al. (2018), Van Reeth et al. (2018), and
Li et al. (2020) measured Ωcore for a sample of ∼650 γ Dor
stars. A dedicated study by Van Reeth et al. (2018) on 37 of
those pulsators with high-precision spectroscopy allowed
them to assess whether the stars have differential envelope
rotation while relying on the theoretical formalism derived by
Mathis (2009) as a generalization of the TAR. Van Reeth et al.
combined g-mode estimation of Ωcore with either a p-mode
estimation of Ωenv or a derivation of Ωsurf from rotational
modulation. Li et al. (2020) added 58 more stars to conclude
that the rotation is almost rigid to within 5% for all 95 single
F-type dwarfs.
Ongoing modeling work considers two more improvements

in addition to the TAR with differential rotation. One
generalization takes into account the occurrence of an axi-
symmetric magnetic field with poloidal and toroidal compo-
nents following the perturbative approach for the magnetism
and was elaborated upon by Prat et al. (2019). The new
dispersion relation derived by Prat et al. allows one to assess
how such a field affects the g-mode period-spacing pattern. It
was found that an interior magnetic field with strength above
105 G leads to pertinent spiky deviations from the tilted
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period-spacing patterns (Van Beeck et al., 2020) that are in
principle detectable. These deviating signals have not yet been
identified in Kepler data on g-mode pulsators such as those
shown in Figs. 11 and 12. Another generalization of the TAR
was derived by Mathis and Prat (2019), who computed a new
dispersion relation for slightly deformed stars including the
centrifugal acceleration. The impact of this inclusion is limited
relative to the magnetic effects for rotation rates up to
∼70%Ωcrit (Henneco et al., 2021).

E. Inference of internal mixing from g modes

In this section we concentrate on stars of intermediate mass
with a radiative envelope. Such stars are much more rapid
rotators than low-mass stars with a convective envelope
because they do not experience magnetic braking. Models
of intermediate-mass stars computed by relying on the
Schwarschild or Ledoux criteria of convection, without extra
mixing in the near-core region, have convective core masses
that are too low. This is deduced from comparing high-
accuracy model-independent dynamical masses of double-
lined eclipsing binaries to those of stellar evolution models
across a wide mass range of M⋆ ∈ ½1.2; 17�M⊙ covered by
Torres, Andersen, and Giménez (2010), Claret and Torres
(2019), and Tkachenko et al. (2020). The need for higher
convective core masses for eclipsing binaries stands, irre-
spective of how DovðrÞ is treated in the isochrone fitting
(cf. Fig. 7), as discussed by Constantino and Baraffe (2018),
Costa et al. (2019), and Johnston, Tkachenko et al. (2019).
Masses of fully mixed convective cores may also be derived
from a model-dependent isochrone fitting of the observed
extended main-sequence turn-offs (eMSTOs). This was done
for numerous young open clusters observed by the Hubble and
Gaia space telescopes (Goudfrooij et al., 2018; Li, Sun et al.,
2019). Interpretation of the shape and diversity of observed
eMSTOs was done mainly by including rotational mixing
(Bastian et al., 2018; Gossage et al., 2018) or magnetism
(Georgy et al., 2019) in the stellar evolution models. Other
causes of mixing, such as the pulsational or tidal wave mixing
discussed in Sec. II.A, are usually ignored. Inclusion of
DovðrÞ and DmixðrÞ profiles calibrated by asteroseismology
of single field stars can explain some of the eMSTO properties
of young open clusters, thereby impacting their aging.
Imposing the asteroseismic results on cluster isochrone fitting
allows for higher convective core masses for all stars with
M⋆ ≥ 1.2M⊙ (Johnston, Aerts et al., 2019). Cluster aging is a
typical area where asteroseismology can be of interest to other
fields in astrophysics.
Asteroseismology has provided evidence for the need of

higher-than-standard masses of convective cores, in all evolu-
tionary stages and for a large range of stellar masses covering
M⋆ ∈ ½1.1; 25�M⊙. Backtracking the asteroseismic masses of
white dwarfs to earlier evolutionary phases requires more
massive helium cores, as discussed by Hermes et al. (2014,
2017a, 2017b). The detailed derivation of the larger-than-
expected inferred CO core mass of Mcc ¼ 0.45M⊙ of the
pulsating white dwarf KIC 08626021 (Giammichele et al.,
2018) is exemplary of the details that can be derived on the
chemical stratification (in this case of oxygen, carbon, and
helium) from the exploitation of g modes. The core mass of

this white dwarf is about 40% higher than expected from
standard evolution models and points to the need for more
CBM at earlier phases of stellar evolution. The immediate
progenitors of the white dwarfs, i.e., the red-giant and
subdwarf stars, also reveal the need for CBM and higher
core masses than those predicted in stellar evolution theory.
This was quantified for three subdwarf B pulsators by Van
Grootel et al. (2010), Van Grootel, Charpinet et al. (2010), and
Charpinet et al. (2011). These case studies resulted in
constraints on the inner He=C=O core from their g modes.
Thus, stars not only transport more angular momentum when
they have a convective core, they also have CBM resulting in
more massive mixed cores than anticipated. This need is most
outspoken during the core-hydrogen-burning phase of stellar
evolution, so we focus on dwarfs in the rest of this section.
Prior to space asteroseismology, estimation ofDovðrÞ assum-

ing convective penetration in Zahn’s prescription (Zahn, 1991)
led to a wide range of values covering dpen ∈ ½0.1; 0.5�Hp for
βCep pulsators (Aerts, 2015), but uncertainties from ground-
based asteroseismology remained large (≳0.1). At the low-mass
end, an extreme case requiring a large overshoot is the F5-type
M⋆ ≃ 1.5M⊙ solarlike p-mode pulsator Procyon. Guenther,
Demarque, and Gruberbauer (2014) modeled its p modes from
equilibrium models with various prescriptions for DovðrÞ, as of
the ZAMS, considering a radiative or adiabatic temperature
gradient and penetration as well as diffusive overshoot. This led
to a fully mixed convective core mass of Mcc=M⋆ ¼ 12.4%.
Space asteroseismology delivered a better estimation of DovðrÞ
andDenvðrÞ from an application of the method in Fig. 16. Most
studies had not yet been able to deduce the functional formof the
profiles forDovðrÞ andDmixðrÞ but had assessed the global level
of internal mixing using a forward method, adopting para-
metrized profiles such as those shown in Fig. 7. The CBM levels
and Mcc estimates from Kepler g-mode asteroseismology of a
sample of 37 γ Dor stars for which high-resolution spectroscopy
is available revealed equally well explained internal mixing by
convective penetration as by diffusive overshooting when using
the observational trio Yobs ¼ ðΠ0; logTeff ; log gÞ in the model-
ing via Fig. 16, after estimation ofΩcore, as shown in Fig. 6 (gray
circles). The results for the asteroseismic estimation of the stellar
parameters θ ¼ ðM⋆;Ωcore; Dov; τ; ZiniÞ revealed Mcc=M⋆ ∈

½8; 12�% for the sample, which covers the mass range
M⋆ ∈ ½1.3; 1.9�M⊙, rotation rates Ωcore ∈ ½0; 25� μHz (i.e.,
Ωcore=Ωcrit ∈ ½0; 70�%), and the entire core-hydrogen-burning
phase; see Fig. 7 given by Mombarg et al. (2019). On the other
hand, asteroseismology based on solarlike p modes of nine stars
analyzed by Deheuvels et al. (2016) and Hjørringgaard et al.

(2017) covering M⋆ ∈ ½1.12; 1.58�M⊙ resulted in Mcc=M⋆ ∈

½3; 18�%, again with equally good results for convective pen-
etration and exponential diffusive overshooting and for models
without and with atomic diffusion (the latter without radiative
levitation). Angelou et al. (2020) revisited aspects of the
methodology to derived Mcc and applied it to 13 stars with
solarlike oscillations to arrive at Mcc=M⋆ ≤ 14%, covering the
mass range M⋆ ∈ ½0.75; 1.45�M⊙.
Pedersen et al. (2021) fitted measured dipole g-mode period

spacings for a sample of 26 Kepler SPB pulsators, using eight
grids of stellar models with different CBM and envelope
mixing profiles (shown in Fig. 7). This homogeneous
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asteroseismic study, via application of themethod in Fig. 16 for
P ¼ 8 andN ¼ 26, is the first of its kind for this mass regime,
covering stars with a convective core and radiative envelope. It
covers the entire main-sequence phase and allowed Pedersen et
al. to infer the overall mixing levels calibrated by the detected
dipole g modes for each of the stars and for each of the eight
model grids, limiting the solutions for each star to its measured
spectroscopic and astrometric values of Teff , log g, and
logðL=L⊙Þ. Pedersen et al. (2021) found that 17 of the 26
stars were best modeled via convective penetration and 7 out of
26 were best modeled with exponential diffusive overshooting;
see Fig. 7. Moreover, stellar models with a stratified envelope
mixing profile (due to vertical shear or IGWs, as graphically
depicted in Fig. 7) deliver better asteroseismic fits to the data
than unstratified mixing profiles. This study revealed astero-
seismic estimates Mcc=M⋆ ∈ ½6; 29�% for the mass range
M⋆ ∈ ½3.3; 8.9�M⊙ and rotation rates covering Ωcore ∈

½0.35; 21.8� μHz corresponding to Ωcore=Ωcrit ∈ ½3; 96�%.
The level of envelope mixing at the bottom of the radiative
envelopewhere the outer boundary of theDovðrÞ profile occurs
(i.e., at the interface of the purple and pink profiles in Fig. 7)
reveals a large range for this sample of 26 stars, with values
between 12 and 8.7 × 105 cm2 s−1. In contrast to the results for
F-type g-mode pulsators, this highlights the need for consid-
erable envelope mixing in several of these B-type stars. It is
found that the level of mixing at the bottom of the envelope is
mildly correlated (correlation coefficient of 0.61) with the
rotation frequency in that region. A summary of the astero-
seismic inferences ofMcc=M⋆, via an estimation ofDovðrÞ and
DenvðrÞ from imposed profiles as in Fig. 7, is provided in
Table I.
Further improvements in asteroseismic modeling can come

from the inclusion of microscopic atomic diffusion in the
equilibrium models. Deal et al. (2017, 2018, 2020) assessed
the impact of adding radiative accelerations to model p-mode
pulsators with a convective envelope. They compared fre-
quency predictions from 1D models based on atomic diffusion
to those from 1D models without diffusion or where it is
treated in a simplified way such as by restricting to gravita-
tional settling (of helium or heavier elements). Their studies
are based on 1D equilibrium models computed with the
CESTAM code (Marques et al., 2013), including an advective
and diffusive treatment of rotation. Deal et al. (2020) found
that the inclusion of radiative levitation is necessary to achieve
reliable values for the p modes of the F-type stars in the Kepler
legacy sample with M⋆ > 1.45M⊙, even in the presence of
macroscopic rotational mixing. The latter was found to be the
dominant element transport process in stars withM < 1.3M⊙,
while microscopic and macroscopic mixing are of equal
importance for the mass range 1.3M⊙ < M < 1.45M⊙.
The importance of radiative levitation for g-mode

asteroseismology has been assessed only for two slowly
pulsating γ Dor stars thus far. This also points to the need
to include this process (Mombarg et al., 2020); see also Fig. 5.
The capacity to infer internal mixing profiles, as well as the

thermal structure in the CBM region of stars with a convective
core, was assessed for dwarfs by Pedersen et al. (2018) and
Michielsen et al. (2019) and for core-helium-burning stars by
Constantino, Campbell, and Lattanzio (2017). These studies
have yet to be put into practice. The full potential of the Kepler
data on this front remains underexploited, given that g-mode
asteroseismology of dwarfs has become possible only in the
past five years, and that such modeling for ensembles of stars
is a tedious and time-consuming task following the scheme in
Fig. 16. Nevertheless, Table I reveals a large range of envelope
mixing in stars of similar mass, metallicity, and evolutionary
stage during the main sequence, reflecting the fact that
nonlinear interactions between rotation, waves, microscopic
atomic diffusion, and magnetism may be at work. Refined
calibrations of the mixing due to this multitude of phenomena
requires ensemble modeling of g-mode pulsators for hundreds
of stars treated in a homogeneous way, instead of the few tens
addressed thus far.

F. The beginnings of tidal asteroseismology

In all of the previous cases, we considered oscillations
based upon 1D equilibrium models computed under the
assumption of a single star. However, a large fraction of stars
occur in binaries, where tidal forces and tidal interactions
come into play. The binary fraction among stars increases as
the stellar birth mass increases. On average, half of the stars
occur in binaries but the occurrence rate for high-mass stars is
much higher than for low-mass stars, as high as ∼80% for
O-type stars. Their evolution is dominated by binary inter-
actions (Sana et al., 2012).
As long as the orbital separation of the two components or

the mass ratio is such that tides can be ignored, the astero-
seismic modeling can be done as with single pulsators. The
orbital motion may offer stringent and model-independent
dynamical masses, particularly for detached double-lined
spectroscopic eclipsing binaries. Some wide binaries reveal
two pulsating components in the Fourier transform (FT) such
that isochrone fitting offers extra constraints compared to the
case of a single pulsator. The α Cen system is a prototypical
example of this (Miglio and Montalbán, 2005). Other binaries
with space photometry covering a variety of pulsating
components treated as if concerning a single star were
analyzed by Telting et al. (2012), Frandsen et al. (2013),
Maxted et al. (2013), Beck et al. (2014), Appourchaux et al.

(2015), Baran et al. (2016), Gaulme et al. (2016), Brogaard
et al. (2018), Kern et al. (2018), and Themeßl et al. (2018).

TABLE I. Inferred convective core masses from estimation ofDovðrÞ andDmixðrÞ via Fig. 16 for three samples of dwarf pulsators discussed in
the text. The level of mixing at the bottom of the envelope, Denv, covers a wide range for B stars.

Sample Spectral type Mass range Mcc=M⋆ range Ω=Ωcrit range Denv range

∼20 solarlike pulsators Later than F2 ½1.1; 1.6�M⊙ ½3; 18�% < 10% ?
∼40 g-mode pulsators F0—F2 ½1.3; 1.9�M⊙ ½7; 12�% ½0; 70�% < 10 cm2 s−1

∼30 g-mode pulsators B3—B9 ½3.3; 8.9�M⊙ ½6; 29�% ½3; 96�% ½12; 8.7 × 105� cm2 s−1
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These studies led to stringent constraints on the global stellar
parameters thanks to the binarity.
Tidal asteroseismology treats the case of binaries for which

the tide-generating potential cannot be ignored in the force
balance. For a close binary in which the tidal forces occur in
the term f in Eq. (19), the tides come into play at the level of
the equilibrium models and for the computation of the
oscillations. In such a case, the binarity of a pulsating
component implies a complication for an asteroseismic
analysis. At the same time, it may offer unique opportunities
to test the effects of tidal forces on stellar structure and
evolution from tidally excited or tidally affected oscillations.
The properties of such oscillations differ from those of self-
excited or stochastically excited oscillations in that they are
connected with the orbital frequency, and they therefore offer
additional opportunities to probe stellar interiors than modes in
single stars. Moreover, tidally excited oscillations may get
locked into resonance with the orbit and have a major effect on
the evacuation of orbital energy, efficiently changing the binary
evolution (Papaloizou and Savonije, 1997; Savonije and
Papaloizou, 1997; Witte and Savonije, 1999). Given that the
tides come into play and that orbital periods are of the order of
days, tidally excited oscillations usually are gmodes. However,
tidally affected oscillations may also occur among p modes, as
found in the close binaries U Gru (Bowman, Johnston et al.,
2019) and V453 Cyg (Southworth et al., 2020).
Currently, asteroseismic probing to improve the internal

structure from tidal oscillations remains limited. This is not
due to a lack of candidate pulsators, as systematic searches for
oscillations in eclipsing binaries with CoRoT and Kepler

revealed hundreds of cases (Gaulme and Guzik, 2019). Rather,

the data analysis to deduce the oscillatory properties is
extremely challenging. Iterative schemes have to be devised
to unravel the frequencies due to the orbital motion, synchro-
nous, subsynchronous, or supersynchronous rotation, and
pulsations. Once again, CoRoT paved the way to the first
proper monitoring and iterative orbital and pulsational light-
curve modeling of close binaries with g modes (Maceroni
et al., 2009, 2013) and with p modes (da Silva et al., 2014).
The real breakthrough in the discovery and analysis of tidal

oscillations in numerous close binaries came for the 4-yr
nominal Kepler light curves. We already showed and dis-
cussed the light curve and Fourier transform of the prototype
of high-eccentric binaries with tidally excited modes found by
Welsh et al. (2011) in Sec. III.A (Fig. 15). That was a case
where almost all detected frequencies are exact multiples of
the orbital frequency, as expected for dynamical tides.
Another situation occurs for the binary KIC 4142768 whose
light curve is illustrated in Fig. 19 and discussed by Guo et al.
(2019). This is an eclipsing binary with two evolved A-type
stars in an eccentric orbit with a period of 14 d. This pulsating
binary reveals low-frequency g modes, some but not all of
which occur at exact multiples of the orbital frequency
(indicated with the red vertical lines in Fig. 19). The binary
also undergoes κ-driven δ Sct-type p modes in the frequency
range 170 − 220 μHz. Spectroscopic follow-up with the
HIRES spectrograph at Keck revealed a surface rotation rate
only one-fifth that of the pseudosynchronous rate at perias-
tron. The tidally excited modes were identified as quadrupole
prograde sectoral modes, as anticipated from the theory of
dynamical tides; see Fuller (2017) for a paper on tidally
excited oscillations. The frequency range of the detected

FIG. 19. Excerpt of the Kepler light curve (top panel), phase folded according to an orbital period of 14 d (middle panel), and the
corresponding LS amplitude spectrum (bottom panel) of KIC 4142768. This eclipsing binary reveals self-excited κ-driven p modes and
tidally excited g modes occurring at exact multiples of the orbital frequency (indicated in red). Adapted from Guo et al., 2019.
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self-excitedmodes is compliant with theoretical predictions for
the fundamental parameters of the primary, which is a fairly
evolved star close to the terminal-agemain sequence. The near-
core rotation rate derived from the fitting of the data to Eq. (49)
corresponds to Ωcore ¼ 0.07� 0.03 μHz and points to an
extremely slow rotator, which is in agreement with the
spectroscopic surface velocity projected on the line of sight.
Various binaries discovered from Kepler photometry have

revealed an oscillation signal at the equilibrium tide, in
addition to g modes triggered by dynamical tides [e.g.,
KIC 8719324, which was addressed by Thompson et al.

(2012)]. Detailed observational analyses were made for
several systems similar to KIC 4142768, which is shown in
Fig. 19. Examples were given by Debosscher et al. (2013),
Hambleton et al. (2013, 2016, 2018), Murphy et al. (2013),
Pápics et al. (2013), Borkovits et al. (2014), Fuller et al.

(2017), Guo, Gies, and Fuller (2017), Guo, Gies, and Matson
(2017), Bowman, Johnston et al. (2019), Guo and Li (2019),
Handler et al. (2020), Southworth et al. (2020), and Kurtz et
al. (2020), where Handler et al. (2020) and Kurtz et al. (2020)
reported the first cases of tip-tilted oblique binary pulsators.
Hardly any of these binary systems have yet been modeled
asteroseismically, according to Fig. 16, with the exception of
the double hybrid p- and g-mode F-type pulsators KIC
10080943A and KIC 10080943B. Asteroseismic isochrone
modeling of the two components revealed the need for extra
CBM and higher convective core masses than in standard
evolution models for both components, which is in line with
Table I (Schmid and Aerts, 2016).
Space photometry continues to deliver a plethora of close

binary pulsators, with new discoveries by the day. A large
diversity of orbital periods, eccentricities, synchronicities, and
oscillation properties have already been found. The extensive
paper by Fuller (2017) revisited theories of tidal excitation of
nonradial oscillations and provided predictions for flux
variations, mode amplitudes, frequencies, phases, and spin-
orbit misalignment based on a nonadiabatic treatment of the
equations, including the Coriolis force. Yet we are only at the
beginnings of tidal asteroseismology, because so few systems
have been modeled via the scheme in Fig. 16 and we do not
yet know how common resonance locking is, nor how
important it is in practice for binary evolution and for angular
momentum loss. Future modeling work to understand tidal
wave transport phenomena in close binaries is in order.
Searches for oscillation modes in numerous eclipsing binaries
in the TESS data are ongoing. These will undoubtedly
uncover objects suitable for better understanding the evolution
of massive binaries, including progenitors of future gravita-
tional wave emitters. The TESS sample of high-mass stars
observed in its two CVZs holds great potential in this respect.

V. ROAD MAP FOR THE FUTURE

The past decade has sparked immense interest in astero-
seismology. Following the detection of nonradial oscillation
modes in ground-based radial-velocity and/or light curves of a
few tens of stars, we have moved on to asteroseismology of
tens of thousands of stars covering all evolutionary phases.
This success results from uninterrupted long-duration space
photometric light curves having ppm-level precision.

Asteroseismology is delivering an observational calibration
of internal rotation and mixing across stellar evolution, as a
guide for improving the theory of angular momentum and
element transport inside stars. The stellar evolution commu-
nity is currently digesting this flood of asteroseismic infor-
mation, given the surprises and challenges that it brought. This
will eventually lead to better stellar evolution models, as
important input for studies of exoplanetary systems and for the
chemical evolution of galaxies.
Much more is to come. While past space missions focused

on low- and intermediate-mass stars, the current all-sky TESS
mission already delivered data for high-mass stars in the
Milky Way and LMC during its first two years of operation,
covering masses up to ∼50M⊙. Prospects are excellent that we
may embark upon asteroseismology of high-mass binaries on
their way to becoming gravitational wave sources, and of blue
supergiants nearing their supernova explosion. The method-
ology in Fig. 16 is in place, but applications should be
generalized to a nonadiabatic framework for the oscillations.
Moreover, dissection of the maximum amount of information
present in the Fourier transforms of the TESS light curves is in
order. Asteroseismology based on stochastically excited GIWs
looks appealing now that TESS is delivering proper data to
guide such a development for high-mass stars. The art will be to
distinguish the signatures of coherent gravitoinertialmodes and
of stochastic GIWs as input for modeling of the stellar interior.
Similarly, asteroseismology of pre-main-sequence stars has yet
to be put into practice for representative ensembles. Initial
studies were based on just a few short light curves (Zwintz et
al., 2014), but improvements in the physics of accretion,
rotational spin-up, magnetic activity during contraction, and
internal mixing of elements as protostars approach their birth
are now within reach for asteroseismic scrutiny.
The ongoing NASA TESS and future ESA PLATO mis-

sions lift the probing of stellar interiors to all masses and
evolutionary stages. With that glorious prospect, asteroseis-
mology is entering the big data era. Machine-learning meth-
ods are advantageous for interpreting the massive flux of data
but must be applied with proper mathematical modeling,
including parameter degeneracies and correlated diagnostics,
so as to ascertain appropriate precision estimation of the stellar
parameters, among them stellar ages. Ensemble asteroseis-
mology will become ever more powerful when combined with
independent and homogeneous nonasteroseismic information
coming from all-sky spectroscopic surveys with multiobject
spectrographs such as SDSS-V (all-sky, near-IR, time frame
2020–2024) (Kollmeier et al., 2017), WEAVE (Northern
Hemisphere, optical, time frame 2020+) (Dalton et al.,
2018), and 4MOST (Southern Hemisphere, optical, time
frame 2022–2026) (de Jong et al., 2019), along with the
final Gaia all-sky space astrometry.
On the theory front, nonlinear asteroseismology has to be

redeveloped in this space era. This has major potential given
that a high percentage of pulsators reveal departures from
linearity and evidence for nonlinear resonant mode coupling.
Such coupling occurs in oscillation spectra across all masses
and evolutionary stages. Having been found in CoRoT data of
B and Be stars by Degroote et al. (2009) and Huat et al.
(2009), it has also been detected in BRITE data of Be stars
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(Baade et al., 2018) and in Kepler photometry of young
intermediate-mass stars (Bowman et al., 2016), of subdwarf
pulsators (Baran et al., 2012), and in various white dwarfs
(Hermes et al., 2015). This observational gold mine is
awaiting exploitation in terms of the nonlinear probing of
stellar interiors once a modern theoretical framework gets
developed, as in Zong, Charpinet, and Vauclair (2016).
Similarly, magnetoasteroseismology is still in its infancy.
Mode predictions for stellar models with strongly magnetic
cores have been triggered to explain mode suppression in red
giants by Loi (2020) and Bugnet et al. (2021). Backtracking
the results for red giants, their intermediate-mass main-
sequence progenitors should also have strong internal mag-
netic fields. Such fields have a non-negligible effect on g
modes, as shown by the theoretical developments discussed
by Prat et al. (2020) and their magnetic signatures predicted
by Van Beeck et al. (2020). While these have not yet been
found in g-mode period-spacing patterns of Kepler dwarfs,
this might be because they have not been looked for with
dedicated eyes or with machine-learning artillery.
Finally, we come back to the use of 1D equilibrium models.

Several of the stars in Fig. 6 rotate faster than 70% of their
critical rotation frequency. Their asteroseismic modeling will
benefit from a 2D treatment. The code ROTORC by Deupree
(2001) delivers 2D equilibrium models and was used to make
pulsation predictions for p modes of βCep pulsators
(cf. Fig. 1) by Lovekin and Deupree (2008) and Lovekin,
Deupree, and Clement (2009). These predictions have not
been used in asteroseismic modeling thus far. The public code
ESTER (Évolution Stellaire en Rotation) (Rieutord, Espinosa
Lara, and Putigny, 2016) is under active development and is
advanced in terms of the treatment of transport processes. This
code has great potential given the need for improvements in
models of the fastest rotating intermediate- and high-mass
dwarfs. ESTER delivers 2D axisymmetric static structure
models but does not yet treat the chemical evolution of the
star, nor 2D mass loss or envelope convection. Proper
boundary conditions, including a dynamical wind via 2D
nonlocal thermodynamic equilibrium atmosphere models
(Petrenz and Puls, 2000), are necessary to improve pulsation
predictions for fast rotators. While the current limitations of
ESTER can be partially circumvented by fixing the hydrogen
mass fraction in the convective core to a seismic estimate of
Xc, as in a recent application to the δ Sct star Altair (rotating at
∼74% of its critical velocity) (Bouchaud et al., 2020), future
developments to turn the code into a full-blown 2D stellar
evolution tool would be highly beneficial. This would allow
researchers to perform 2D asteroseismic modeling of the most
rapid rotators in Fig. 6, and of the high-mass pulsators
discovered by Pedersen et al. (2019), Bowman et al.

(2020), Burssens et al. (2020), and Dorn-Wallenstein et al.

(2020), in addition to new ones yet to be discovered.
Tremendous progress in our understanding of stellar inte-

riors has been achieved, thanks to nonradial oscillation theory
coupled with space photometry of ppm-level precision for
thousands of stars. Asteroseismology turned the study of
stellar interiors into an observational science. Its future is
extremely bright in all aspects of this research field, from
instrumentation and ongoing or planned surveys all the way
up to fundamental theory. Major improvements for stellar

evolution theory based on asteroseismology are under way for
single stars, binaries, and star clusters. We thus end with an
invitation to those readers whose curiosity might be triggered
but who have not yet been active in this field: it is never too
late to become an asteroseismologist.
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