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Abstract

A common underlying assumption in current drug discovery strategies is that compounds with 

higher in vitro potency at their target(s) have greater potential to translate into successful, low-dose 

therapeutics. This has led to the development of screening cascades with in vitro potency 

embedded as an early filter. However, this approach is beginning to be questioned, given the bias 

in physicochemical properties that it can introduce early in lead generation and optimization, 

which is due to the often diametrically opposed relationship between physicochemical parameters 

associated with high in vitro potency and those associated with desirable absorption, distribution, 

metabolism, excretion and toxicity (ADMET) characteristics. Here, we describe analyses that 

probe these issues further using the ChEMBL database, which includes more than 500,000 drug 

discovery and marketed oral drug compounds. Key findings include: first, that oral drugs seldom 

possess nanomolar potency (50 nM on average); second, that many oral drugs have considerable 

off-target activity; and third, that in vitro potency does not correlate strongly with the therapeutic 

dose. These findings suggest that the perceived benefit of high in vitro potency may be negated by 

poorer ADMET properties.

The past two decades have seen the evolution of chemical lead discovery strategies in the 

pharmaceutical industry, increasingly focusing on speed and efficiency of chemical synthesis 

and biological screening, in order to satisfy the greater desire for potent, selective small 

molecules for novel drug targets1. The shift from the historical strategy based on low-

throughput in vivo pharmacology to a focus on specific molecular targets selected on the 

basis of disease biology knowledge derived from ‘omics’ approaches — typically explored 

using high-throughput in vitro-dominated screening cascades2 — has not arrested the 

increase in costs or improved the rate of output of marketed new chemical entities. Data 

indicate that, of the compounds that are selected as clinical candidates, only ~10% will make 

it to the market, showing that the overall process is far from optimal3,4.
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The current drug discovery process favours candidate molecules with high in vitro potency 

at a single target and good absorption, distribution, metabolism, excretion and toxicity 

(ADMET) properties. For a molecule to reach the candidate selection stage, it should fit a 

profile that is established towards the beginning of a drug discovery programme; selection 

typically requires appropriate target validation data, a compound with high in vitro potency 

(usually in the nanomolar range) at the target, off-target selectivity, good ADMET 

parameters and no intellectual property issues. One perceived benefit of molecules with 

higher in vitro potency is their assumed greater potential to translate into treatments that 

achieve their therapeutic effects at low (milligram) doses. This could have the advantage of 

reducing the risk of more generic off-target interactions with proteins linked to toxic effects 

(such as the HERG potassium channel and drug-induced QT interval prolongation), as well 

as longer-term toxicity and risks of adverse drug reactions due to reactive metabolites5. 

Another advantage of high potency at the intended target is a potentially reduced risk of 

interactions with related targets.

The pharmaceutical industry has invested considerably in high-throughput screening (HTS) 

technologies to test large numbers of compounds in a range of biochemical and cell-based 

assays. However, as the assays measuring in vitro potencies (XC50 values) often have 

considerably greater throughput and lower costs per compound than assays used to assess 

ADMET characteristics, there is a tendency for the former measurements to have a more 

substantial role in the selection and optimization of a given lead series6. In particular, 

although some simple in vitro ADMET assays have comparable costs and throughput to 

those for measuring compound affinity or potency and can be employed essentially in 

parallel, a more thorough ADMET profile, obtained from more complex and lower-

throughput in vivo assays measuring parameters such as bioavailability and toxicity — 

which are key determinants of the decision to select a particular lead series — often only 

become available at later stages in lead optimization. Overall, as not all compounds 

synthesized during the course of the programme can be tested in each assay owing to 

prohibitive costs, a screening cascade is typically implemented in which an initial filter is in 

vitro target potency2,7.

Given the considerable difficulty of optimizing potency and ADMET properties side by side 

owing to their often diametrically opposed relationship with physicochemical properties, a 

greater emphasis on high in vitro potency may make the search for new drugs more 

challenging. Indeed, several groups of researchers have previously questioned whether 

suboptimal physicochemical properties that arise during lead optimization are at least partly 

responsible for the continuing high candidate attrition rates8–18. For example, it has been 

highlighted that the mean molecular mass of drugs has increased gradually over 

time11,14,19 and, although it seems we can still find drug molecules in less favourable areas 

of chemical property space, the key question is whether the industry as a whole might be 

more productive searching within drug-like space more thoroughly18–21.

In an attempt to understand the underlying basis of these issues further, we have performed a 

range of analyses on the comprehensive ChEMBL database (see Further information), a 

publicly available database of drugs, drug-like small molecules and their targets compiled by 

the European Bioinformatics Institute (EBI) (see Box1 for further information on the full 
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dataset for these analyses), which is part of the European Molecular Biology Laboratory 

(EMBL). The database contains manually extracted and curated data from the primary 

medicinal chemistry and pharmacology literature on >500,000 compounds, with >2.4 

million records of their effects on biological systems. As such, it represents an ideal open-

access database to perform cheminformatics analyses. We have used this data to investigate 

the relationship between: first, ADMET parameters and physicochemical parameters; 

second, in vitro potency and physicochemical parameters; third, selectivity and 

physicochemical parameters; and fourth, therapeutic dose and XC50 values for targets 

implicated in the disease. On the basis of this analysis, we suggest altered guidelines on the 

levels of potency, selectivity and physicochemical properties for potential oral drugs.

Analysis

In this study, we assess the relationship between biological parameters that are frequently 

measured in drug discovery programmes and two fundamental molecular properties: 

molecular mass and lipophilicity (logP). We focus on these two generic molecular properties 

as they have been shown to be universally relevant to potency and ADMET parameters 

measured in the pharmaceutical industry8,22,23, and because there are numerous reports of 

their importance in defining the chemical space of small-molecule therapeutics8–14,16,18–

20,24–29. The analyses have been performed on the ChEMBL database, which contains 

two-dimensional chemical structures, bioactivity data (such as binding constants and 

pharmacology) and calculated molecular properties, with bioactivity data tagged to show 

links between molecular targets and published assays (Box 1).

Relationship between ADMET parameters and physicochemical properties

The seminal paper by Lipinski and colleagues8 published in 1997, which introduced the 

‘rule of five’ (RO5), highlighted the relationship between poor absorption, solubility and 

permeability, and increased values of molecular mass, logP and the number of hydrogen-

bond donors and acceptors for a dataset of compounds in clinical development. Many 

reports9–29 since have also indicated that the physicochemical properties associated with 

desirable ADMET properties correspond to lower molecular mass and logP, more akin to the 

properties that are characteristic of historical oral drugs27. For example, it was recently 

shown using proprietary data from GlaxoSmithKline that a range of 15 ADMET parameters 

that are routinely used in the pharmaceutical industry deteriorate with either increasing 

molecular mass, clogP or both23. It is also possible to demonstrate this effect on data in the 

ChEMBL database (see Supplementary Information S1 (figure)).

Further Information
Cerep Bioprint database: http://www.cerep.fr/Cerep/Users/index.asp
ChEMBL database: https://www.ebi.ac.uk/chembl/
Drugbank: http://www.drugbank.ca
JMP 6.0: www.jmp.com
PipelinePilot 8.0: http://www.accelrys.com
Pubmed: http://www.ncbi.nlm.nih.gov/sites/entrez
RXList: http://www.rxlist.com/script/main/hp.asp
Statistica 7: www.statsoft.com
The Journal of Pharmacology and Experimental Therapeutics: http://jpet.aspetjournals.org/
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Another way of illustrating the link between oral-drug space and these two key 

physicochemical properties is by generating a simple score that is derived from the deviation 

of a compound’s properties from the mean values associated with oral drugs (see equation 

1). The mean and standard deviation of approved oral drugs have a particular relevance as 

these compounds have successfully passed through all of the development hurdles. The 

score for a compound is computed as the modulus (that is, negative numbers arising within 

the modulus symbols are treated as positive) of the mean minus the molecular mass or 

AlogP of the compound in question, divided by the standard deviation. It should be noted 

that only compounds with a molecular mass above the mean are penalized as this property 

does not show a strong parabolic relationship with ADMET parameters, unlike AlogP. The 

use of the mean and standard deviation has particular relevance given that these are 

representative of the boundary of oral drug space with respect to known key properties.

Score =
2.5 − clog P

2.0
+

330 − MWT *

120
* if MWT < 330, MWT = 0 Equation 1

This score helps to highlight the link between ADMET parameters, molecular mass and 

logP, and also the difference in properties between oral drugs and compounds from the 

ChEMBL database (Fig 1a). The compounds from the ChEMBL database can be considered 

broadly representative of medicinal chemistry space that has been under investigation in 

industry, or contained in typical screening collections, as it is compiled from reports of drug 

discovery projects published in the literature (that is, it consists of both active and inactive 

molecules from structure–activity relationship studies across multiple target classes). The 

percentage of compounds with scores <1 for ChEMBL-derived literature compounds is 

almost half that of the oral drugs set19 (31% versus 56%, respectively), as might be 

expected given the markedly higher molecular masses and AlogP values of the former set. 

For a score >2, the difference is almost triple (39% versus 14%, respectively). This clearly 

illustrates the discrepancy in physicochemical properties between the types of compounds 

contained in the ChEMBL database and oral drugs, which also has implications for ADMET 

parameters. It also raises the question of why this discrepancy exists and whether it is due to 

a bias introduced by the focus on in vitro potency in the screening cascade.

The relevance of this simple ADMET score is illustrated in Supplementary information S2 

(figure), in which compounds that deviate furthest from oral drug space have increased 

liabilities on average when assessed against a representative set of ADMET parameters 

(solubility, permeability, bioavailability and cytochrome P450 3A4 inhibition). The 

combination of both molecular mass and logP into a single score may offer a better way of 

prioritizing promising compounds or screening out compounds with poor ADMET 

properties than simple cut-off rules based on each parameter individually. For example, in 

this scheme, a compound that might be excluded using traditional hard cut-offs based on two 

parameters used independently — for example, a compound with a molecular mass of 520 

and an AlogP of 2, which has a score of 1.8 — could be ranked as preferable to a compound 

that might pass traditional hard cut-offs for each individual parameter, but close to their 

extreme limits, making it less likely that the compound has good ADMET properties; for 
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example, a compound with a molecular mass of 499 and an AlogP of 4.9 has a higher 

(worse) score of 2.6.

Relationship between potency and physicochemical properties

In vitro potency is typically the key parameter used to select hits from an HTS campaign in 

lead generation, and it is one of the most important parameters used in lead optimization to 

select candidates for full preclinical evaluation. The link between general molecular 

properties and target affinity (which is typically directly related to potency) has been well 

studied from a functional group30 and property31 perspective, and more recently, the 

concept of ligand efficiency22,26,32 has been proposed.

It is particularly important that the relationship between in vitro potency and 

physicochemical properties is understood so that any focus on in vitro potency early in the 

screening cascade does not adversely affect the ADMET properties of molecules generated 

during lead optimization, given that most ADMET assays cannot be done in parallel with 

potency measurements owing to resource limitations. We therefore analysed the ChEMBL 

dataset of 201,355 unique compounds, with 402,496 activity measurements across multiple 

targets, to assess the link between molecular mass, logP and potency.

The analysis was performed in two ways: by unique compound and by unique measurement 

(that is, the same compounds may be present more than once). However, as both analyses 

show the same trends, we report the results of the unique-measurements analysis of potency 

only (FIG. 2). For this dataset, it is apparent that the mean pXC50 value shows a strong 

dependence on the overall molecular mass and logP. Interestingly, we found that a 100 Da 

increase in molecular mass seems to have a stronger effect on the potency than a 1 log unit 

increase in logP, although this is target-dependent. Furthermore, from FIG. 2c it can be seen 

that the effect of both parameters shows a degree of independence, as for a given AlogP 

value, a concomitant increase in molecular mass increases the mean pXC50 value and vice 

versa. This general effect can also be shown when compounds are divided according to 

individual chemotype; five examples are highlighted in Supplementary information S3 

(figure).

Lead generation and optimization requires a balance of multiple parameters: potency, 

selectivity, ADMET and physicochemical properties, which will allow a molecule to be 

absorbed, transported and interact at the required receptor(s), for a sufficiently long period to 

elicit the required pharmacological response. As noted above, the early focus on in vitro 

target potency in the lead generation step, and its subsequent use as a key driver of 

programme decisions in lead optimization, may make it more difficult to achieve the optimal 

balance in potency and ADMET properties given their often diametrically opposed 

relationship to simple molecular properties12,18. Indeed, an analysis by Wenlock and 

colleagues27 suggested that the balance seems to be suboptimal: clinical candidates in 

earlier development phases displayed considerably higher molecular masses and logP values 

than oral drugs, whereas moving through the phases, the values begin to converge with those 

molecules that made it to market. Furthermore, it has been shown that, although the 

molecular mass of marketed drugs has risen gradually over time, logP has essentially 

remained constant14,18,19,33. In addition, Oprea et al. found that compounds being 
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synthesized in the medicinal chemistry community, exemplified by ~35,000 compounds 

described in the literature as part of structure–activity relationship investigations, tended to 

have less desirable properties than oral drugs, and the most potent compounds were even 

less desirable from a physicochemical perspective29.

We explored the possible implications of drug discovery programmes imposing high in vitro 

potency constraints using a ChEMBL-derived dataset of 201,355 unique compounds with 

402,496 measured activities at more than 2,000 unique targets. Table 1 shows the 

distribution of molecular mass and AlogP for the full ChEMBL dataset, a subset of the 

ChEMBL dataset with nanomolar potency or lower, and oral drugs19. We also include the 

proportion of compounds failing the RO5, which is probably the most frequently used filter 

in the medicinal chemistry community.

Considering a molecular mass cut-off of 400, the majority of oral drugs (79%) have values 

below this cut-off, compared to less than half of the total ChEMBL set (44%), and close to a 

quarter for ChEMBL compounds with nanomolar potency (26%) (Table 1). Considering an 

ALogP cut-off of 4, 77% of oral drugs lie below this value, compared to 58% of the 

ChEMBL set and a comparable value for the nanomolar potency ChEMBL compounds 

(50%). Strikingly, only 8% of oral drugs have both a molecular mass >400 and AlogP >4, 

compared to 30% and 41% of ChEMBL and nanomolar potency ChEMBL compounds, 

representing an approximately threefold and fivefold increase, respectively, over oral drugs. 

In addition, only 12% of oral drugs fail two or more of the four RO5 criteria, compared with 

14% of the ChEMBL set and 21% of the nanomolar potency ChEMBL set.

It should be noted that we have deliberately focused on molecular mass and logP cut-offs of 

4 and 400, respectively, as opposed to the more commonly used values of molecular mass 

<500 and AlogP <5. This is because the commonly used values are a minimum requirement 

and are not necessarily representative of ideal oral-drug space25. Of course, the RO5 and its 

associated molecular mass and logP cut-offs were not intended to define ideal values for oral 

drugs, but rather to act as an initial filter to remove compounds that were unlikely to be 

orally absorbed.

Nonetheless, the pharmaceutical industry is increasingly focusing on new targets, the 

druggability of which is often unknown34, and this fact is commonly used by researchers as 

the principal reason for the exploration of novel areas of physicochemical-property space. 

For example, it has been reported that the molecular mass and AlogP of newer oral drugs 

targeting peptide G protein-coupled receptors (GPCRs) and kinases are considerably higher 

than the mean of oral drugs35, suggesting there are merits in searching outside of typical 

drug-like space. However, although there is a distinct difference in the properties of drugs 

that modulate these different target classes, they are much smaller in magnitude than the 

differences in properties between oral drugs and ChEMBL compounds of nanomolar 

potency reported here.

Selectivity versus promiscuity

In many drug discovery programmes over the past two decades, selective molecules for a 

given target have been sought to reduce the likelihood of unwanted off-target binding and 
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thus undesired side effects. However, it has become apparent that some off-target activity 

might prove beneficial when there is substantial redundancy within a given disease-gene 

network36,37. For example, lapatinib (Tykerb; GlaxoSmithKline), which is used in the 

treatment of breast cancer, inhibits the kinase activity of two receptor tyrosine kinases in the 

epidermal growth factor receptor (EGFR) family: EGFR (also known as ERBB1) and human 

epidermal growth factor receptor 2 (HER2; also known as ERBB2)7.

Efforts to assess the relationship between promiscuity and physicochemical properties have 

yielded variable results, being dependent on the source and size of the dataset studied and 

the method of analysis. The promiscuity of a set of 75,000 Pfizer compounds measured in 

220 in-house assays was found to decrease with increasing molecular mass38. This was 

proposed to be consistent with the ‘reduced complexity’ argument of Hann et al.10, although 

molecular mass is not necessarily a good surrogate for complexity. Similar findings were 

reported based on Organon’s proprietary Scope database39, which consists of a limited 

dataset of preclinical compounds. However, another group found that 3,138 Novartis 

compounds tested in 50–79 in-house assays showed the opposite trend — promiscuity 

increased with increasing molecular mass — with acids being particularly selective40. An 

analysis by Leeson et al. of 200 assays performed on 2,333 compounds from the Cerep 

Bioprint database (see Further information) suggested a similar trend for molecular mass, and 

that increasing lipophilicity and the presence of a basic moiety also lead to increased 

promiscuity18. Subsequent analyses on 213 Roche compounds screened in Cerep found the 

same trends with respect to lipophilicity and basicity as Leeson et al., but none with respect 

to molecular mass41. These variable results clearly indicate that further work is needed to 

better understand the relationship between physicochemical properties and promiscuity.

To try to shed further light on this issue, we extracted all the compounds with at least three 

measured pXC50 values from the ChEMBL database (N = 40,408, number of unique target 

activities = 191,417, >500 unique targets). The advantages of the ChEMBL dataset used 

here is that the analysis is performed on confirmed pXC50 values derived from the medicinal 

chemistry literature, rather than relying on percentage inhibition values at single 

concentrations that have not necessarily been confirmed by more rigorous follow-up 

analyses. However, although the number of compounds used in the analysis is considerable, 

and the use of pXC50 values preferred, a clear limitation of the ChEMBL dataset is the low 

number of measured pXC50 values per compound. Nevertheless, this does not mean that 

meaningful trends cannot be ascertained from an analysis of this dataset.

An assessment of the dependency of promiscuity on molecular mass is shown in Fig 3a. The 

number of unique hits (defined here as a compound with pXC50 ≥6 (≤1 μM potency) for a 

particular target) shows only a weak relationship with molecular mass; however, the total 

number of measurements per molecular mass bin decreases slightly with increasing 

molecular mass, which could mask the true effect of this molecular property. The number of 

hits seems to show a dependence on the number of targets against which molecules in a 

given property bin have been measured; that is, oral drugs (which are expected to have lower 

molecular mass) may have been tested more often, leading to greater apparent promiscuity 

of compounds with low molecular mass. It therefore seems preferable to look at both the 
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number of hits (≤1 μM potency) for a given property bin and the ratio of hits with 

micromolar potency to total measurements per compound.

If we focus on the ratio of hits with micromolar potency to actual measurements, we see that 

as the molecular mass increases, the probability of hitting another target increases18,40. 

When normalized for the total number of measurements, compounds with molecular mass 

<200 have a micromolar activity ~35% of the time on average (Fig 3a). This compares to 

~75% for molecules with molecular mass >500.

The relationship with logP and promiscuity is displayed in Fig 3b. Looking first at the mean 

number of hits with ≤1 μM potency, we see that they also tend to decrease as AlogP 

increases; however, this is again an artefact of the total number of measurements associated 

with each logP bin. If we instead look at the ratio of the hits with micromolar potency to the 

total number of measurements, we see a general trend of increasing promiscuity with AlogP, 

consistent with other reports18,41.

With this dataset, we observe that acidic molecules tend to be less promiscuous than neutral 

or basic molecules (fig 3c) (acids < zwitterions < neutrals = bases). However, it is apparent 

from Fig 3c that there is no statistically significant difference between bases and neutral 

molecules. This is an artefact of the underlying distribution of molecular mass within the 

given ionization state categories. Breaking the data down by molecular mass reveals that 

there is a clear difference between basic and neutral molecules18,41, at least for molecular 

mass <400 (Fig 4). Interestingly, the difference in promiscuity between bases and neutral 

molecules seems to tail off at higher molecular mass.

The use of datasets of different sizes and chemical coverage, different promiscuity cut-offs 

based on percentage activity or pXC50 values, the range and number of targets used, as well 

as presumably different assay technologies (binding, functional, cellular and so on) are all 

factors that will complicate such analyses. Although the ChEMBL database is lacking in 

terms of the biological space covered per compound compared to the more biologically ideal 

Cerep dataset, the trends observed are in good overall agreement with the most recent 

analysis of this data18. It is clear nevertheless that analyses on more comprehensive datasets 

are required to shed further light on this issue

Characteristics of oral drugs

For many indications, the goal for a new drug therapy is administration via the oral route, 

once daily, to improve convenience for patients and consequently adherence. It is also 

preferred that the dose itself is <10 mg per day to reduce cost of goods and to maximize the 

therapeutic window. To investigate how many oral drugs match these criteria and to 

understand the potential value of high in vitro potency in the successful development of oral 

drugs, we first extracted information on the set of 792 oral drugs with dosing information 

from the CHEMBL database for which the dose was administered as a capsule, tablet or 

suspension. Where possible (see below), we also matched the doses and therapeutically 

relevant pXC50 values. We hypothesize that the mean values of these parameters will have 

relevance in defining more suitable benchmark values for drug discovery in general and 
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might help to illuminate the nature of the relationship between in vitro potency and the dose, 

which is possibly a more relevant measure of in vivo efficacy. As the distribution of both the 

therapeutically relevant pXC50 values and oral doses show non-normal distributions, we 

report the median values for all discussion regarding Fig 5.

Analysis of the dataset of 792 oral drugs shows that the median value associated with the 

mean formulated doses is 92 μmol, or 34 mg, with the median of the lowest (minimum) dose 

reported being 55 μmol (20 mg), and the highest 148 μmol (55 mg) (Fig 5a). A more 

detailed analysis of the distribution shows that 62% of the 792 oral drugs have a minimum 

formulated dose >10 mg, and 36% have a value >50 mg.

An analysis of the in vitro potencies of oral drugs is much more challenging because the 

mode of action of many is unknown, or multiple targets are involved, making the assignment 

of individual potency values difficult. To estimate the potency distribution of oral drugs, we 

focused on the 792 oral drugs already extracted, because we were also interested in 

assessing the correlation between dose and potency. For each drug, we searched the 

ChEMBL database for any reported activities at any targets. From this search, we obtained 

activity values for 392 of the oral drugs at many diverse targets; however, not all of these 

target activities were related to the therapeutic targets of the drug in question. We 

subsequently determined the therapeutic target for each oral drug from a search of literature 

sources, which then allowed us to manually identify whether any therapeutically relevant 

activities had been reported for each drug. This resulted in a dataset of 261 drugs in total for 

the analysis. In cases in which more than one target is implicated (~30%), we calculate the 

mean, maximum and minimum pXC50 values. In a small number of cases in which only a 

subset of the relevant activities was present, the compounds were still considered in the 

analysis.

The distribution of the largest therapeutically relevant pXC50 values reported for each 

molecule has a mean value of 7.3 and a median of 7.7 (Fig 5b). The corresponding median 

pXC50 values broken down by target class are: ion channels (6.4, N = 25, mean molecular 

mass = 359 Da), enzymes (7.0, N = 93, mean molecular mass = 371 Da), GPCRs (7.9, N = 

106, mean molecular mass =372 Da) and nuclear receptors (8.1, N = 20, mean molecular 

mass = 347 Da). The lower median potency of drugs that target ion channels could be due in 

part to their lower mean molecular mass, although drugs that target nuclear receptors have a 

similar mean molecular mass but display higher median potencies, suggesting other factors 

such as target type or mode of action may also be involved.

The data obtained on these 261 oral drugs with therapeutically relevant pXC50 values 

suggest that a more realistic pXC50 value to be sought during early research and 

development might be ~7.5. This has important implications, given that a pXC50 of 6 

(corresponding to 1 μM potency) is a common cut-off used to select hits from an HTS 

screen, whereas a pXC50 of 9 (corresponding to 1 nM potency) is the desired output from a 

lead optimization programme. If a benchmark pXC50 of ~7.5, for example, were sought, it 

would be easier to justify selecting hits with low molecular mass and low micromolar 

potency from an HTS campaign, which might have a better chance of being optimized into 

drug candidates that possess both potency and ADMET characteristics required of an orally 
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administered drug molecule. Further analysis shows that ~20% of this dataset do not have 

any therapeutically relevant pXC50 values of ≥6, meaning they would be unlikely to pass 

typical lead-like potency filters42. Additionally, for 34% of oral drugs, the highest 

therapeutically relevant pXC50 value is <7, meaning their selection as candidate molecules 

might be challenging based on current approaches.

The absolute level of activity for a given compound can vary considerably between assays7, 

and so the pXC50 values reported per compound might also be affected by the underlying 

technologies used to generate them (for example, competitive-binding assays, enzyme 

inhibition assays, or cell-based functional assays for GPCRs and nuclear receptors). 

Nevertheless, the median pXC50 value observed here is almost identical to the median value 

of 7.8 reported for a set of oral and non-oral drugs1. However, the value reported here is 

considerably lower than that observed in another study of 60 recent drugs (median pXC50 = 

8.5)33. This might be explained in part by the considerably higher molecular masses of this 

set of drugs (median of 436 Da versus 346 Da for the specific oral drugs set used here). This 

difference over time may have arisen owing to the targeting of different receptor types with 

different ligand requirements43. Alternatively, the difference in potency might be a 

reflection of the increased focus on in vitro potency as a parameter in lead optimization.

Relationship between in vitro potency and therapeutic dose

As highlighted above, the level of in vitro potency of a lead for its intended target(s) is a key 

parameter at the beginning of a drug discovery programme. This idea is extended further in 

lead generation–optimization based on the assumption that the most potent molecules in 

vitro are generally more likely to translate into more effective therapies, possessing a greater 

overall safety profile and requiring lower therapeutic doses. However, with regard to the first 

assumption, from this study and many others in the literature, it seems that the safety profile 

(ADMET and off-target-related effects) is more likely to be inversely correlated with the 

level of target potency given their opposing relationship with regard to key physicochemical 

properties. In an attempt to assess the validity of the second assumption — that high in vitro 

potency favourably affects the therapeutic dose — we have assessed the correlation between 

the two parameters for the set of 261 oral drugs above.

Assessing the relationship between in vitro potency and dosage amount is not trivial. This is 

because a drug molecule may be dosed at a range of possible concentrations and a range of 

time intervals that can depend on the nature of the illness, progression and so on. However, 

most molecules are generally formulated in a dose that directly reflects their efficacy, as 

there is a desire for a once-daily dosing interval. We therefore use the absolute dose size for 

the analysis. As we assessed the relationship between dose and potency on the log scale, 

doubling the dose, for example, will have a minor effect on the overall correlation.

An important limitation here is that we do not consider information regarding the complex 

pharmacokinetic profile for each drug; however, neither do researchers during early lead 

optimization, so it is still of general interest to understand how well both parameters 

correlate. It is also worth noting that the lack of published information (target identification 

and potencies) on oral drugs substantially hampers such analyses. Indeed, this information 

might not be known for drugs identified primarily through screening in animal models of 
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disease, or through serendipity. Nevertheless, while accepting these issues, the analysis of 

this compiled dataset represents an important first step in the assessment of the actual 

strength of the relationship between in vitro potency and therapeutic dose.

The correlation between the therapeutically relevant pXC50 values and the formulated dose 

for 261 oral drugs was assessed using linear regression (Fig 5c). In many cases, more than 

one target activity or more than one formulated dose are available, and so we assessed the 

correlation between the corresponding mean, maximum and minimum values of each for 

completeness. The best correlation was obtained between the mean formulated dose and the 

mean therapeutically relevant pXC50 reported, with a squared correlation coefficient (r2) of 

0.26. The r2 values obtained can be roughly interpreted as meaning that the in vitro pXC50 

data can explain ~30% of the variation in the dosage for the 261 compounds. This 

corresponds to a fivefold prediction error in the dose using the in vitro pXC50 alone.

The correlation between therapeutic dose and pXC50 when broken down by target class is 

variable: ion channels (r2 = 0.31, N = 25), enzymes (r2 = 0.17, N = 93), GPCRs (r2 = 0.24, N 

= 106) and nuclear receptors (r2 = 0.45, N = 20). This might suggest that higher potencies 

may be of more utility in achieving low-dose treatments for ion channels and nuclear 

receptors, although the number of observations are small and the correlation is still below 

50% overall, meaning other important factors are involved.

It is not surprising that the correlation between in vitro potency and dose is relatively weak 

overall given the extensive role of ADME parameters in determining the concentration of 

drug that is available at the site of action to elicit a biological response. Indeed, considerable 

efforts are ongoing to improve our understanding of the link between pharmacokinetics–

pharmacodynamics and receptor occupancy, particularly in the area of the central nervous 

system44–47.

Promiscuity of oral drugs

It is known that many drugs exhibit a therapeutic effect by acting on multiple pathways, 

thereby overcoming redundancy in the disease-gene network36–39,48–51. Indeed, Leeson et 

al.18 reported on the promiscuity of 2,133 drugs and reference compounds from the Cerep 

BioPrint database, noting that drugs in general hit large number of targets at >30% inhibition 

at 10 μM. These results seem to contradict to some extent the most common strategy in drug 

discovery of searching for highly potent, selective molecules for a single target.

We assessed the promiscuity of oral drugs further using our dataset of 392 oral drugs, which 

have 2,864 measured pXC50 values in total. The biological coverage of the dataset is less 

good than that covered by Cerep, as discussed before. However, the use of quantitative 

pXC50 values rather than percentage inhibition values, as well as a focus on oral drugs 

alone, makes the analysis relevant.

Fig 6 shows that 29% of the 392 oral drugs studied did not have any reported hits with 

potency ≤1 μM in the database. This may be because they are either only weakly active 

molecules or their activities have not been reported in the literature. Eighteen percent of the 

oral drugs display only 1 hit at or below the 1-μM threshold, 22% showed between 2–5 hits, 
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14% showed between 5–10 hits, and 16% showed >10 hits. Although we cannot directly 

relate the number of hits to their efficacy, these findings and the reports of others seem to 

suggest that the therapeutic effect of drug molecules is more complex than the popular ‘one 

disease, one target’ paradigm.

It should be noted that this analysis will underestimate the promiscuity of oral drugs, as the 

392 oral drugs have only ~7.3 unique target activity measurements on average. This also 

helps to explain why this set seems less promiscuous than those in the network 

pharmacology studies of others48–51. We would therefore expect that, as additional targets 

are assayed, the probability of additional off-target hits will increase.

Conclusions

The pharmaceutical industry is increasingly focusing on new targets, the druggability of 

which is often unknown34, and this is one of the principal reasons for the exploration of 

novel areas of physicochemical property space. However, it is increasingly clear from many 

publications in the literature that the focus on less well explored chemical space is neither 

likely to increase the probability of bringing new, safe drugs to market, nor reduce overall 

attrition rates. A key question is whether it is possible to combine the characteristics needed 

for oral administration with those needed for a drug to show efficacy at novel targets. In this 

respect, the fragment-based approach52 is an attractive option, provided the leads identified 

are not subsequently incorporated into an optimization cascade that seeks the highest target 

potencies if there are no data to support such a strategy. The quest for high target potency 

should not be pursued blindly without an understanding of its relevance to efficacy. 

Obtaining high potency at a single target when a network of targets are important, or at the 

cost of favourable ADMET and physicochemical properties, is futile.

Although molecules that bind effectively to the target(s) implicated in a particular medical 

condition are required, we need to carefully consider what level of in vitro potency and 

selectivity is needed to achieve efficacy, especially given that the historical oral drugs 

analysed here show median pXC50 values of ~7.7 (~50 nM), and what might be considered a 

less than ‘clean’ selectivity profile, even in this limited dataset. On the basis of this analysis, 

we conclude that the balance of parameters that are being sought in pharmaceutical 

candidate molecules are often suboptimal, and we postulate that this discrepancy is in part 

an artefact of the screening cascade6, which puts great reliance on simplistic in vitro assays 

of drug targets53 early in the selection–optimization process. These assays are certainly not 

infallible given that only ~10% of what are deemed sufficiently potent candidate molecules 

make it to the market as effective drugs3,4, with 30% failing for reasons of efficacy alone54.

In summary, we think a drug discovery process with improved focus on quantifying the 

therapeutic potential of the molecules through a more complete consideration of the 

necessary biological parameters will be more successful. The definition of a more 

sophisticated hypothesis-driven approach at the beginning of a drug discovery programme 

(for example, considering receptor occupancy45–47, receptor off-rates53 and 

pharmacokinetics–pharmacodynamics44), based on a more thorough knowledge of the 
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biology of the disease and the molecular properties required for oral drugs, is crucial to 

minimize compound attrition on the path to the market.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Data and Methods

Literature-derived data

The data used in this analysis were extracted from the publicly accessible ChEMBL 

database (see Further information for a web link and Supplementary information S4 

(table) and Supplementary information S5 (table) for the specific datasets analysed) in 

October 2009. Publicly available databases such as ChEMBL are becoming an 

increasingly important source of information in pharmaceutical research55. The key 

advantage of such data is that analyses can be done in an open manner, and thus can be 

critically assessed by others. This contrasts to many informatics analyses reported on 

proprietary datasets of large pharmaceutical companies. Nevertheless, limitations of 

publicly available datasets have been highlighted recently, with data translation errors 

ranging from 0.1 to 3.4% depending on the database in question56. In addition, such 

errors can complicate the generation of quantitative structure–activity relationship models 

on specific end points57. Even so, valuable lessons can be learned from the analysis of 

such databases8,18, and to mitigate against such errors in this analysis we focus on large 

populations of samples and assess mean differences for rather broad physicochemical 

groups (that is, qualitative structure–activity relationships).

The dataset of 201,355 compounds was extracted from ChEMBL07. In order to simplify 

the analysis, the data were filtered to include only XC50 values from assays in which the 

target was a protein and in which the data were recorded in nM or μM units. XC50 values 

reported as ‘greater than’ or ‘less than’ were also excluded, as were very high (>12) or 

low (<0) values of the negative logarithm of XC50 (pXC50). The XC50 values for 

compounds for which only inhibition constant (Ki) values were reported were obtained 

by conversion assuming competitive inhibition (Ki = IC50/2). In some cases, the target 

information in the original paper did not record the specific isoform of the receptor, and 

so the data are associated with multiple targets and flagged as such. For example, IC50 

values for sildenafil against the targets phosphodiesterase 1 (PDE1)–PDE5 are recorded, 

but the specific PDE isoform (A1, A2 and so on) is not known and so has been recorded 

as against all isoforms58. For our promiscuity analysis, this would suggest the compound 

was non-selective and so data for which the specific isoform is not known were excluded 

from the analysis. Having extracted the data, XC50 values recorded against the same 

target and compound were averaged.

Oral drugs with dose information were identified from the ChEMBL database (N = 792). 

Drugs were extracted only where the dosing vehicle corresponded to a capsule, tablet or 

suspension. All doses were converted to the logarithmic (molar) scale and the mean, 

maximum and minimum values were computed for further analysis. Therapeutic target 

information was extracted for a subset of the 792 oral drugs for which we could find 

target pXC50 values in ChEMBL (N = 392). The target information was then used to 

match the therapeutic doses to relevant therapeutic target pXC50 values. This resulted in a 

dataset of 261 drugs with both dose and therapeutically relevant pXC50 values. Target 

information was taken from: ChEMBL, Drugdex, Martindales, Physicians’ Desk 
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Reference, Index Nominum, Pubmed, RXList, Drugbank and The Journal of 

Pharmacology and Experimental Therapeutics (see Further information for web links). 

For our assessment of the promiscuity of oral drugs, we determined the total number of 

unique target hits ≥1 μM for all 392 oral drugs with reported potency data in ChEMBL.

Statistical analyses

We used the analysis of variance (ANOVA) technique to assess the majority of the 

relationships in the current analysis, owing to their simplicity and ease of interpretation. 

ANOVA is particularly suitable for assessing weak relationships (whereas regression is 

preferable when a relationship is considered moderate to strong). For each analysis, 

molecular mass and logP (the logarithm of the octanol–water partition coefficient) were 

binned into 4–6 separate categories for the analysis, with bins chosen to ensure an even 

distribution so that the mean values could be assessed reliably.

Results obtained from a given analysis have been displayed only if the relationships 

observed are statistically significant above the commonly used 95% confidence level 

based on either regression or Student’s t tests or ANOVA testing. ANOVA (one-way and 

two-way) calculations were performed in Statistica 7 and regression analyses in JMP 6.0 

using the default settings. Molecular mass, AlogP59 and the negative logarithm of the 

acid dissociation constant (pKa) were calculated for each molecule in PipelinePilot 8.0. 

Compounds that reported an error in PipelinePilot 8.0 were excluded from the analysis. 

In most cases, we report the mean values for the distributions. Median values are shown 

for the dose–potency correlations of oral drugs because the distributions are non-

normal18.
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Figure 1. 

Relationship between ADMET parameters and physicochemical properties. (a) Plot of 

molecular mass versus AlogP for 1,791 oral drugs. The data are coloured according to the 

absorption, distribution, metabolism, excretion and toxicity (ADMET) score, which is a 

measure of the deviation from oral drug space as given by molecular mass and AlogP. (b) A 

comparison of the ADMET score distribution of oral drugs (coloured according to the score) 

and 201,355 unique compounds with measured target potency data from the ChEMBL 

database (coloured in black). Approximately 14% of oral drugs have a score >2 compared to 

~39% for drug discovery compounds reported in ChEMBL.
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Figure 2. 

Relationship between in vitro potency and physicochemical properties. The graphs illustrate 

the relationship between the mean reported in vitro potency (shown here as the negative 

logarithm of the XC50 value; pXC50) and molecular mass (a) or AlogP (b) for 201,355 

compounds with reported activity measurements in the ChEMBL database. c | The effect of 

both parameters shows some independence as, for a given AlogP value, a concomitant 

increase in molecular mass increases the mean pXC50 value and vice versa. Only 9 

observations are present in the AlogP 4.0–5.0, molecular mass <200 category, hence the 

large error bars. Plotted values are offset within x-axis bins to aid visualization. Error bars 

denote the 95% confidence interval in the means
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Figure 3. 

Relationship between promiscuity and physicochemical properties.

The graphs illustrate the relationship between the mean promiscuity and molecular mass (a), 

AlogP (b) or ionization state (c) for a diverse set of 40,408 molecules in the ChEMBL 

database. Each compound has ≥3 activity measurements reported in ChEMBL. The total 
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number of observations in each molecular mass bin, in order of increasing mass are: 924, 

5,121, 12,287, 12,514 and 9,562. The corresponding values for AlogP are: 8,741, 6,839, 

9,033, 7,632 and 8,163, respectively. The corresponding values for ionization state are: 

22,060, 10,893, 5,862 and 1,593, respectively.
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Figure 4. 

Relationship between promiscuity and ionization state.

The data shown are for a diverse set of 40,408 molecules and are broken down by molecular 

mass to aid analysis. Error bars denote the 95% confidence interval in the means. Plotted 

values are offset within x-axis categories to aid visualization.
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Figure 5. 

Relationship between in vitro potency and dose for oral drugs.

Distribution of the lowest reported oral dose for 792 oral drugs (a) and the maximum 

reported in vitro pXC50 for a subset of 261 drugs for which the target(s) are known and 

relevant potency data are available. The distribution of the minimum, mean and maximum 

doses per compound have median values corresponding to 63 μmol, 125 μmol and 223 μmol, 

or 24 mg, 47 mg and 83 mg, respectively. The corresponding median values for the 

minimum, mean and maximum therapeutically relevant pXC50 values are 7.0, 7.3 and 7.7, 

respectively. c | Relationship between the reported mean therapeutic dose and the mean 

therapeutically relevant pXC50 for the set of 261 oral drugs. The relationship between 

therapeutic dose and pXC50 is displayed using a regression plot rather than analysis of 

variance (ANOVA), as it is a comparatively strong relationship. The correlation between 

therapeutic dose and molecular mass has a correlation coefficient of r2 = 0.10, whereas the 

corresponding value between molecular mass and pXC50 is r2 = 0.16.
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Figure 6. 

Promiscuity of oral drugs.

The number of hits ≤1 μM reported for a subset of 392 oral drugs extracted from ChEMBL. 

The percentage of compounds with the number of reported hits indicated are shown next to 

each portion of the pie chart. This is likely to underestimate the promiscuity of oral drugs 

given the scarcity of biological data per compound in ChEMBL.
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Table 1

Distribution of physicochemical properties for the ChEMBL dataset and oral drugs ADMET: absorption, 

distribution, metabolism, excretion and toxicity, SD: standard deviation

Property bin Oral drugs (N = 1,791) ChEMBL (all) (N = 201,355) ChEMBL (≤1 nM) (N = 15,934)

Molecular mass >400 and AlogP >4 8% 30% 41%

Molecular mass >500 and AlogP >5 2% 9% 16%

>2 rule of five failures 12% 14% 21%

Molecular mass mean/median (SD) 333/316 (121) 430/418 (131) 490/475 (132)

Molecular mass ≤300 42% 14% 6%

Molecular mass ≤400 79% 44% 26%

Molecular mass ≤500 93% 75% 58%

AlogP mean/median (SD) 2.5/2.6 (2.0) 3.5/3.6 (2.1) 4.0/3.9 (2.0)

AlogP <3 58% 36% 27%

AlogP <4 77% 58% 50%

AlogP <5 91% 77% 73%

ADMET score mean/median (SD) 1.2/0.9 (1.0) 1.9/1.6 (1.4) 2.4/2.1 (1.5)

Nat Rev Drug Discov. Author manuscript; available in PMC 2019 January 03.


	Abstract
	Analysis
	Relationship between ADMET parameters and physicochemical properties
	Relationship between potency and physicochemical properties
	Selectivity versus promiscuity

	Characteristics of oral drugs
	Relationship between in vitro potency and therapeutic dose
	Promiscuity of oral drugs

	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1

