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We examine the mechanical properties of graphene samples of thicknesses ranging from 1 to 17
atomic layers, placed on a microscale-corrugated elastic substrate. Using atomic force microscopy,
we show that the graphene adheres to the substrate surface and can substantially deform the
substrate, with larger graphene thicknesses creating greater deformations. We use linear elasticity
theory to model the deformations of the composite graphene-substrate system. We compare
experiment and theory, and thereby extract information about graphene’s bending rigidity, adhesion,
critical stress for interlayer sliding, and sample-dependent tension. © 2011 American Institute of
Physics. �doi:10.1063/1.3553228�

The exceptional mechanical properties of graphene
have made it attractive for nanomechanical devices and
functional composite materials.1 Elastic properties have been
measured using nanoindentation2 and pressurization3 tech-
niques, and Young’s modulus E was found to be exception-
ally high, �1 TPa. Graphene’s van der Waals adhesion to
surfaces has been examined theoretically,4 as has adhesion to
nanoparticles.5 However, it is typically difficult to extract
experimental parameters for adhesion, despite the fact that
these properties can strongly influence its electronic6 and
mechanical7,8 behavior. In addition, the mechanical interplay
between graphene and other materials has not been well
studied, although it is crucial to the use of graphene in
composite,1 flexible, or strain-engineered9 materials.

In this letter, we explore both elasticity and adhesion, as
evident in the interaction between microscale-corrugated
elastic substrates and few layer graphene �FLG�. By using an
atomic force microscope �AFM� to determine surface adhe-
sion and deformations, we find that FLG can fully adhere to
the corrugated substrate, and that thicker samples flatten the
corrugated substrate more than thinner samples do. By de-
veloping a linear elasticity theory to model the flattening and
adhesion as functions of layer thickness, we are able to ex-
tract information about graphene’s bending rigidity, adhe-
sion, critical stress for interlayer sliding, and sample-
dependent tension.

Sample substrates were prepared by casting a 3 mm
thick layer of polydimethylsiloxane �PDMS�—which cures
into a flexible rubbery material—onto the exposed corru-
gated surface of a writable compact disk. This resulted in
approximately sinusoidal corrugations on the PDMS, having
a wavelength of 1.5 �m and a depth of 200 nm �see Fig.
1�a��. Graphene was then deposited onto the PDMS via me-
chanical exfoliation.10 Samples were imaged on an Asylum
Research MFP-3D AFM. Figure 1�a� shows a topographic
image of FLG on the PDMS; it is evident from the image
that the graphene conforms to the corrugations �Fig. 1�b��.

In order to fit the experimental data to a theoretical
model, it was necessary to determine �1� the thickness of the
FLG, �2� the conformation between the FLG and the PDMS,
and �3� the height profiles. The soft substrate created diffi-
culty in measuring FLG thickness via established AFM and
Raman techniques. Thus, the thickness was determined by
using the AFM �in contact mode� to fold the flake onto itself
�once all other measurements were completed�, and then us-
ing the AFM again to measure the resultant FLG-FLG step
height. An example of AFM-folded FLG is shown in Fig.
2�a�.

The areas of the graphene that adhered to the PDMS
were identified by measuring the phase of the oscillation of
the AFM cantilever. This phase is determined by the electro-
static properties of the surface; sections having the same ad-
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FIG. 1. �Color online� �a� AFM topographic image of FLG on corrugated
PDMS �AFM height and phase data superimposed�. �b� Illustration of FLG-
PDMS interaction, showing how FLG adheres to and flattens the PDMS
corrugations.

APPLIED PHYSICS LETTERS 98, 091908 �2011�

0003-6951/2011/98�9�/091908/3/$30.00 © 2011 American Institute of Physics98, 091908-1

Downloaded 06 Apr 2011 to 130.126.103.96. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3553228
http://dx.doi.org/10.1063/1.3553228
http://dx.doi.org/10.1063/1.3553228


hesion have common electrostatic properties and thus a com-
mon phase. The main image of Fig. 2�b� shows a two-
dimensional phase map for two-layer FLG, in which the
phase is uniform across the sample �except where adhesion is
lost at the steepest slopes of the corrugation�. These data
demonstrate the near-conformal adhesion between the FLG
and the PDMS and are consistent with previous work on
graphene placed over more shallow depressions.8 The AFM
height data similarly indicate that the FLG adheres to the
corrugations of the PDMS �e.g., see Fig. 3�. In contrast, the
inset to Fig. 2�b� shows the phase data for 13-layer FLG,
where a bubblelike structure appears across the sample,
showing that the phase is not uniform and, hence, that the
FLG does not adhere well to the PDMS. In general, we
found that samples having more than �11 layers did not
fully adhere; this is consistent with the predicted “snap-
through” instability in graphene on a corrugated substrate.11

The adhesive properties did not seem to depend on the size
or aspect ratio of the graphene samples, only on their thick-
ness.

Remarkably, interplay between the rigidity of the
graphene and the shear modulus of the PDMS causes the
FLG to become corrugated and the PDMS to be flattened.
Figures 3�a� and 3�b� show image and height measurements
for 8- and 13-layer cases, respectively. In Fig. 3�a� it is clear
that the FLG maintains the basic shape of the PDMS corru-

gations, but pulls the corrugations up in the valleys and
pushes them down on the plateaus. In contrast, Fig. 3�b�
shows that the 13-layer FLG sits on top of the PDMS. Figure
4 shows the fractional height difference between the FLG-
PDMS composite and the bare PDMS �the “flattening fac-
tor”�, plotted against graphene thickness, for 18 samples
�measured on nine different PDMS substrates�. The amount
of flattening increases with layer number.

We now develop a linear elasticity theory, related to that
of Yu and Suo,12 in which we determine the surface stress
required on both the initially flat �ignoring the nanometer-
scale intrinsic ripples� FLG and the initially corrugated
PDMS, such that they each deform to accommodate the
other. Continuum models have been applied previously to
characterize the bending rigidity of few-layer graphene.14

We consider an undeformed PDMS substrate having a
corrugated surface: h�x�=H coskx �see Fig. 1�b��. Graphene
adheres to and flattens this surface, reducing the corrugation
amplitude. The normal stress S coskx required to deform the
graphene in this way then follows from thin plate theory.13

An equal and opposite stress acts on the PDMS substrate,
which we treat as semi-infinite, isotropic and incompressible.
The shared profile of the distorted graphene and PDMS is
determined by linear elastic theory, resulting in a fractional
decrease in the amplitude of the PDMS corrugations, the
flattening factor,

F �
�H

H
=

�Mk3/2��
1 + �Mk3/2��

, �1�

where �H is the change in the height of the corrugations
resulting from application of the FLG, M is the flexural, or
bending, rigidity and � the PDMS shear modulus.

We now compare the model to the data to elucidate
FLG’s mechanical behavior. Figure 4 shows measured values
of F versus n, along with a least-squares fit to Eq. �1� �upper
curve�, in which we assume M to be proportional to the cube
of the number of layers, consistent with a continuum model
for thick grapheme.14 From the fit we extract a dimensionless
graphene rigidity parameter G�Mk3 /2�n3=0.000 91.

FIG. 3. �Color online� Image �top� and height measurements �bottom� for
�a� eight-layer and �b� 13-layer graphene. Lines show trajectories of scans
over FLG and PDMS. The 13-layer FLG is likely wavy due to slight side-
wall adhesion.

FIG. 2. �Color online� �a� Micrograph of FLG folded by an AFM tip, used
for FLG thickness measurements. Dashed arrow shows direction AFM tip
was dragged. �b� AFM phase images of FLG on PDMS. Main figure: flake
of FLG, where the lower-left section is two-layer �upper right is much
thicker, �100 layers�. The two-layer region shows uniform adhesion over
plateaus and valleys, indicated by homogeneous contrast over them. Inset:
13-layer graphene; bubblelike lighter patches �see dashed arrows� indicate
inhomogeneous phase and adhesion.

FIG. 4. �Color online� Data and fits for flattening factor vs number of layers.
Symbols show measured flattenings. Samples with thicknesses �11 layers
are shown with open triangles, as AFM height measurements are likely
modified by the lack of adhesion to the substrate. Error bars are related to
uncertainty in number of layers and spatial nonuniformity of flattening. Up-
per curve is least-squares fit to model, assuming zero tension in samples.
Lower curve is predicted flattening for samples having zero tension �see
text�.
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The shear modulus � of PDMS was measured by
nanoindentation to be �=0.4 MPa. Using k=4.2 �m−1, the
bending rigidity of n-layer FLG is then obtained as M =9.8
�10−18n3 N m. This value is higher than that predicted us-
ing Kirchhoff plate theory, from which M =E�nt�3 /12�1
−�2�=2.9�10−18n3 N m, using the graphene Young’s
modulus E�900 GPa,15 Poisson ratio ��0, and per-layer
thickness t=0.335 nm.15 The predicted values for F are plot-
ted as the lower curve in Fig. 3.

The spread in the data is greater than can be accounted
for by measurement uncertainty. This leads us to hypothesize
that the discrepancy between extracted and predicted values
of F �or M� is caused by tension in the graphene. Because of
its high stiffness against stretching we believe that as the
FLG is applied to the substrate it slips until sample-
dependent friction halts the process, leaving some tension in
the FLG �see dots in Fig. 1�b��. A tension T could modify the
flattening factor in Eq. �1�, giving

F �
�H

H0
=

�Mk3/2�� + �Tk/2��
1 + �Mk3/2�� + �Tk/2��

. �2�

If we assume that the difference between the predicted
values of F �lower curve� and the data in Fig. 4 is due to
tension, we can use Eq. �2� to extract a value of tension for
each sample. This yields tension values between 0 and
0.20 N m−1, with no discernible trend with thickness. The
maximum tension corresponds to a maximum axial strain of
T /ntE=7.8�10−5. We can also use the tension to estimate
the magnitude of the stress due friction: Assuming that the
friction acts over a distance d�10 �m, we find
a stress T /d of less than 2�104 Pa. The condition that ten-
sion is positive, taken together with our data, implies that
FLG’s bending rigidity is not greater than �1.6�0.8�n3

�10−18 N m, similar to predicted values. If, as seems rea-
sonable, the tension is negligibly small for at least one
sample, then this bound would become an estimate of the
graphene rigidity.

The data shown in Fig. 4 can also be used to estimate the
normal interface stress S=2�kFH, which ranges from 1.1
�105 to 3.0�105 Pa. The data also show that no samples
which adhere to the surface have F�0.6, implying that the
adhesive strength between the graphene and the PDMS is
	3.0�105 Pa. This inference is model-independent.

We can extract bounds on the graphene-PDMS adhesion
energy by considering that the energy of the adhesion must
be at least as large as the spatially averaged elastic deforma-
tion energy, E. E can be regarded as a sum of the elastic
deformation of the substrate, the FLG deformation under ten-
sion, and the FLG bending. Ignoring the negligible tension
contribution, the spatial average of these sums to �kFH2 /2.
The maximum elastic energy �which is also the lower bound
of the adhesive energy� in our samples is thus
0.044 eV /nm2. This is consistent with the theoretical predic-
tion of 0.04 eV /nm2 for the van der Waals adhesive energy
between graphene and a SiO2 substrate.4 Absent other sig-
nificant contributions to the energy budget �such as work
done against friction�, the adhesion energy must equal the
elastic energy and 0.044 eV /nm2 becomes an estimate of the
adhesive energy.

Even though thin plates have bending rigidity deter-
mined entirely by Young’s modulus and thickness, there are
nevertheless �small� shear strains developed interior to the

plate �negligible in estimating bending rigidity�. There are in
consequence shear stresses developed within the graphene
slab that are opposed by interlayer shear strength. These
stresses could cause the graphene layers to slide relative to
one another. In this case, the impact on the flattening factor is
to modify the dependence of the bending rigidity on the
number of layers from n3 for a cohesive sample to 	ana

3,
where na is the number of layers in the ath slab. We find that
such a model does not improve the fits to the data, and thus
find no evidence that the graphene layers slide. The physical
effect of sliding would be to decrease the flattening factor,
and thus sliding cannot explain the discrepancy between the
theoretical values and data of Fig. 4. We hypothesize that
there does, however, exist some critical shear stress beyond
which layers slide relative to one another. Considering the
finite thickness of the FLG, Mindlin plate theory16 shows
that the boundary stress needed to deform the FLG generates
a central shear strain 
 of


 = n2t2k3�H − �H�/4. �3�

The absence of evidence for sliding in samples of �11
layers thus suggests a lower bound on the critical shear strain

crit of �1.2�10−5. Multiplying by the graphene shear
modulus, which we take to be half its Young’s modulus, this
implies an interlayer shear strength �5.6 MPa.

To conclude, we have developed a method of measuring
the mechanical properties of graphene using deformable mi-
crocorrugated substrates. We are able to put bounds on—or
extract estimates for—fundamental properties such as
graphene’s bending rigidity, critical shear stress, and the
FLG-PDMS adhesive strength and energy. We also extracted
sample-dependent properties such as the tension and tangen-
tial interface stress. The experimental and theoretical tech-
niques developed in this letter may be readily extended to
various substrates having a range of surface geometries.
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