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Abstract

Matter at very high densities and low temperatures is predicted to be in a “color su-
perconducting” phase. At high enough densities, quark matter is in the Color-Flavor-
Locked (CFL) phase, but the possible phases of matter at intermediate densities are
unknown. Since the density at the core of a neutron star can be as high as a few
times the nuclear saturation density, it is the most likely place to find these exotic
forms of matter in the real world. The main goal of this thesis is to probe the phases
of cold dense matter using neutron star physics.

Studying the transport properties of different phases of dense matter that may
occur in a compact star is particularly important because transport properties such
as viscosity, in addition to depending on the equation of state of matter, also depend
on the low-energy degrees of freedom and therefore can discriminate between different
phases of dense matter more efficiently.

In the first part of this thesis we calculate the mean free path and kaonic contri-
bution to the shear viscosity of kaon-condensed color-flavor-locked (CFL-K0) phase
of quark matter. In the second part we calculate the large-amplitude enhancement
of the bulk viscosity of dense matter. We obtain general analytic solutions as well as
numerical solutions for the amplitude-dependent bulk viscosity of dense matter which
are valid for any equations of state where equilibration occurs via fermions. In the
third and fourth parts, we use our general results for the bulk viscosity to calculate the
damping timescales of r-mode oscillations of neutron stars due to small-amplitude and
large-amplitude bulk viscosity, the instability window of the r-modes and the satura-
tion amplitude due to “supra-thermal” enhancement of the bulk viscosity for different
cases of strange quark stars, hadronic stars and hybrid stars.
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Chapter 1

Introduction

Matter at very high densities and low temperatures is predicted to be in a “color

superconducting” phase [16, 17, 18], in which quarks near the Fermi surface pair and

form a Bose-Einstein condensate. At high enough densities, quark matter is in the

Color-Flavor-Locked (CFL) phase [19, 20], but the possible phases of matter at in-

termediate densities are not known. Compact stars are the only known objects that

contain equilibrated matter that is compressed beyond nuclear saturation density,

making them a valuable laboratory for the study of the structure of matter under

extreme conditions. In addition to hadronic matter they may also contain exotic

forms of matter that involve deconfined quarks [21, 22, 23, 2]. To probe the phases

of cold ultra-dense matter we can compute transport and thermodynamic properties

of different phases, and predict the behavior of a star that is made of matter in a

given phase. Then by comparing our predictions with actual astrophysical observa-

tions we might confirm or rule out the existence of a particular phase in neutron

stars. Studying the transport properties is particularly important because transport

properties such as viscosity, in addition to depending on the equation of state of mat-

ter, also depend on the low-energy degrees of freedom and therefore can discriminate

between different phases of dense matter more efficiently. One of these astrophysical
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observables is the rotation frequency of the pulsars. After a supernova explosion a

newborn neutron star has only a tiny fraction of its parent’s radius and is formed

with a very high rotation speed. Therefore we expect to observe fast rotating young

neutron stars, but as can be seen in Fig. 1.1, no young, fast rotating neutron stars are

observed (see the upper left hand side of the diagram)1. One possible explanation for

this phenomenon is the existence of r-modes in neutron stars. R-modes are large scale

currents in a rotating neutron star that couple to gravitational radiation and radiate

away energy and angular momentum of the star in the form of gravitational waves.

R-modes grow unstable by the back-reaction of the gravitational radiation [24] and

if their growth is not stopped, they can spin the star down to very low frequencies

very fast. However older fast rotating stars are still observed, so there must be some

damping mechanisms that prevent the r-modes in older stars from growing to very

large amplitudes. Bulk and shear viscosities are two of these damping mechanisms.

In the following sections of this chapter we first give an introduction to the phases

of matter at high densities and low temperatures, we then discuss the internal struc-

ture and properties of neutron stars and at the end we explain the r-mode oscillations

of neutron stars.

In the second chapter of this thesis, we calculate the mean free path and kaonic

contribution to the shear viscosity of the kaon-condensed color-flavor-locked (CFL-

K0) phase of quark matter [25] using the kinetic theory and an effective Lagrangian

for the CFL-K0 phase. This contribution comes from a light Pseudo-Goldstone bo-

son which arises from the spontaneous breaking of the flavor symmetry by the kaon

1The spin-down age in Fig. 1.1 is determined by the assumption that magnetic dipole breaking,
which features a qualitatively similar behavior as gravitational wave emission, dominates the spin-
down. It can thereby only give a rough order of magnitude estimate for the age. Age estimates
are, in particular, not available for stars that currently spin up and which are correspondingly not
included in the plot. However, for the youngest stars there are independent age determinations
from the observation of the corresponding supernova remnant that qualitatively agree with these
estimates.
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Figure 1.1: Rotation frequencies of observed pulsars versus their approximate spin-
down age from the ATNF pulsar catalogue [1]. Binary pulsars are indicated in blue,
AXP/SGRs are green, high energy pulsars are purple and the remainder in red.

ν [Hz]

age [yr]

condensate. We show that since the mean free path of kaons in the range of tem-

peratures relevant to neutron stars is much shorter than that of superfluid phonons,

they could easily provide the dominant contribution to the shear viscosity of CFL-K0

quark matter in the temperature range of 108 to 1010 K.

In the third chapter we calculate the large-amplitude enhancement of the bulk

viscosity of dense matter. We obtain general analytic solutions as well as numerical

solutions for the amplitude-dependent bulk viscosity of dense matter which are valid

for any equations of state where equilibration occurs via fermions (e.g. color super-

conducting quarks). We find that there is a huge enhancement of the bulk viscosity

in this large amplitude “supra-thermal” regime, where the deviation of the chemical
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1.1 Phases of dense matter

potential µ∆ from chemical equilibrium becomes larger than the temperature. The

most obvious application of this work is in the analysis of the damping of the r-mode

oscillations of neutron stars.

In the fourth and fifth chapters, we use our general results for the bulk viscosity

from chapter 3 to calculate the damping timescales of the r-mode oscillations due

to sub-thermal and supra-thermal bulk viscosity, the instability window of the r-

modes and the saturation amplitude due to supra-thermal enhancement of the bulk

viscosity for different cases of strange quark stars, hadronic stars and hybrid stars.

We show that the boundary of the instability region and in particular its minimum,

which determines the lowest frequency to which r-modes could spindown the star,

is very insensitive to the microscopic details of the interactions that give rise to the

viscosities, but is very different for a quark star (or a hybrid star with a large quark

matter core) compared to a hadronic star (or a hybrid star with a small quark matter

core).

1.1 Phases of dense matter

Quarks are the fundamental constituents of matter. The Standard Model of particle

physics contains six types (flavors) of quarks: up, down, strange, charm, bottom,

and top. Quarks also carry color charge which can be red, green or blue, and the

strong interaction between them is described by the theory of quantum chromody-

namics (QCD). The strong interaction between quarks is mediated by gluons. Two

main properties of QCD are confinement and asymptotic freedom. Confinement states

that color charged particles can not be isolated and quarks are confined inside baryons

and mesons at physical densities. Asymptotic freedom [26, 27] states that the strong

interaction becomes weak at small distances (large energy scales), which means that
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1.1 Phases of dense matter

the coupling constant of the strong interaction decreases with increasing the momen-

tum (αs ≪ 1 at very high densities). This allows weak-coupling calculations for QCD

at ultra-high densities.

Fig. 1.2 shows the conjectured QCD phase diagram, where different phases of

quark matter are shown at different temperatures T, and quark chemical potentials

µ. Since baryon number density n increases monotonically by increasing the chemical

potential, n ∼ µ3, we sometimes use the terms “density” and “chemical potential”

interchangeably. At low temperatures and low densities, quarks are confined inside

the mesons and baryons described by nuclear matter. Increasing the temperature

to very high values (T ≫ µ) we approach the quark-gluon plasma (QGP) phase,

which is a soup of deconfined quarks and gluons. Heavy ion colliders at CERN and

Brookhaven are probing the high temperature region of the QCD phase diagram by

colliding heavy nuclei at ultra-relativistic energies. In these experiments one expect

to create a quark-gluon plasma at least for a short period of time.

In certain regions of the QCD phase diagram, when thermodynamics is dom-

inated by short-distance QCD dynamics, i.e. at very high densities or very high

temperatures, asymptotic freedom of the QCD makes it possible to study the theory

analytically. At zero chemical potential and non-zero temperatures Lattice gauge

theory is a powerful tool for studying the QCD, but the so-called sign problem makes

it very difficult to do lattice calculations at non-zero chemical potentials. Although

in recent years there has been some progress in performing lattice computations at

not too high chemical potentials µ < T , but still the very high density region of the

phase diagram µ ≫ T can not be probed by Lattice QCD. The focus of this thesis

is on this region of the QCD phase diagram which is also the relevant phase for the

neutron stars. Quark matter at very high densities and low temperatures is believed

to be in the color superconducting phase which will be explained in the following.
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Figure 1.2: Schematic QCD phase diagram shows different phases of dense matter as
a function of temperature and chemical potential [2].

Stellar compact objects are the only place in nature that this phase of quark matter

may exist.

An ordinary superconductor (in QED) consists of a sea of electrons and a lattice of

ions and can be described theoretically by Bardeen-Cooper-Schrieffer (BCS) theory of

superconductivity. Electrons in an ordinary superconductor are fermions and obey the

Pauli exclusion principle and therefore at zero temperature all of their quantum states

are filled up to the Fermi energy EF = µ where µ is the electron chemical potential,

and all the states above EF are empty. The grand thermodynamic potential (Landau

free energy) at zero temperature for this system is given by Ω = E − µN where E is

the total energy of the system and N is the number of electrons. When there are no

interactions, adding or subtracting a particle (or hole) near the Fermi surface would

cost zero free energy. According to the BCS theory if there is an arbitrarily weak
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1.1 Phases of dense matter

attractive force between the fermions, a new ground state will be formed, in which

electrons in the vicinity of the Fermi surface form pairs (Cooper pairs) and the total

energy of the system is reduced by the sum of the binding energies of the electron

pairs. These pairs are bosons, and will condense and form a Bose-Einstein condensate

near the Fermi surface. The single-particle excitation energies will be also modified

and will acquire a gap.

As we mentioned earlier one of the features of QCD is asymptotic freedom which

says the force between quarks goes to zero at asymptotically short distances (very

large energy scales). Therefore at very large densities and low temperatures (similar

to the condition in the interior of neutron stars) quarks act similar to the electrons

in a metal. In QCD there is an attractive interaction between quarks whose color

wave function is antisymmetric. Therefore at sufficiently high densities and low tem-

peratures quarks will form Cooper pairs and we will have the same mechanism as

electron superconductivity for quarks. This is called “color superconductivity” be-

cause quark-pairs can not be color-singlet and therefore the condensate breaks the

local SU(3) color symmetry. In the unpaired phase of quark matter the splitting

between the Fermi momenta of different quark species is given by M2
s

4µ
. At very high

densities, µ ≫ Ms, one can neglect the mass of the strange quark and treat all the

quarks equally. At asymptotically large densities and low temperatures, QCD with 3

quark flavors (u, d and s quarks) is in color-flavor locked (CFL) state [19, 20], where

all quarks with all colors and flavors have the same Fermi momentum and they all

take part in the Cooper pairing (see Fig. 1.3). This is only possible when the energy

that is released by the formation of Cooper pairs, which is µ2∆2
CFL, is larger than

the energy cost for making all quarks to have the same Fermi momentum, which is

given by µ2δp2F ∼M4
s . Here µ is the quark chemical potential, ∆CFL is the CFL gap

parameter, δpF ≃ M2
s

4µ
is the splitting between the Fermi momentum of the different
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Figure 1.3: Fermi momenta of various colors and flavors of quarks in the unpaired,
2SC and CFL phases are shown. The splitting of the Fermi momenta increases with
decreasing density, as µ decreases and as Ms(µ) increases [2].

quark species, and Ms is the constituent strange quark mass. In the CFL phase, the

symmetry SU(3)color × SU(3)L × SU(3)R × U(1)B of QCD is broken down to the

global diagonal SU(3)color+L+R symmetry due to the Cooper pairing between quarks

near the Fermi surface. The low energy excitations about the SU(3) symmetric CFL

ground state consist of a nonet of massless Goldstone bosons transforming under the

unbroken SU(3) as an octet plus a singlet. A tenth pseudo-Goldstone boson is also

expected arising from spontaneously broken approximate axial U(1)A symmetry.

When we go to lower densities, non-zero strange quark mass along with charge

neutrality and beta equilibrium will put stress on the Cooper pairing by shifting the

Fermi momenta of quarks, and the CFL phase will not be favored anymore and there

must be a phase transition in quark matter. If the stress is small enough, there will be

no effect. If it is larger than a certain threshold there will be K0 condensation. Since

K0 mesons carry negative strangeness, this condensation will reduce the stress on the

CFL phase by reducing its strangeness content. This is called the kaon-condensed

color-flavor locked (CFL-K0) phase [28, 25] which will be explained in more detail in

chapter 2. But if the stress is too large the CFL pairing will go away.

Going to lower densities where the separation of Fermi momenta are large enough
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1.2 Physics of neutron stars

that the strange quarks can not take part in the Cooper pairing with light quarks,

quark matter may be in the 2SC phase where only up and down quarks with only two

colors (say, red and green) pair. The color gauge group is broken down to SU(2), so

five of the gluons will become massive and only three gluons that are associated to

the unbroken SU(2) red-green gauge symmetry remain massless. In the 2SC phase

no global symmetries are broken, so there are no light scalars and therefore the 2SC

phase is not a superfluid. There are other possible phases for color superconducting

quark matter at intermediate densities, such as Crystalline (FFLO or LOFF) phase

[29], where quarks with different Fermi momenta form pairs with a net momentum

(this is beyond BCS pairing pattern in which only quarks with momenta that add

to zero pair). This may be favorable because it gives rise to a region of phase space

where both of the quarks in a pair are close to their respective Fermi surface, and

such pairs can be created at low cost in Fermi energy. Other possible phases are

gapless isotropic phases (g-2SC, g-CFL, etc) [30], spin-1 color superconducting phase

[31, 32], p-wave kaon condensate [33], etc (for a review on color superconductivity see

Ref. [2]).

1.2 Physics of neutron stars

Neutron stars are one of the densest objects in the universe which are born in the

gravitational collapse of the core of a massive star (M > 8M⊙) at the end of its life,

which triggers a type II supernovae explosion. The mass of a neutron star M is about

1.5M⊙, its radius R is about 10 km, its initial temperature is about 1011 K and its

central density can be as high as 5 to 10 times the nuclear saturation density ρ0 ≃ 0.16

fm−3. The core of a neutron star consists mainly of neutrons with some protons and

enough electrons and muons for charge neutrality. At very high densities in the core of
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1.2 Physics of neutron stars

neutron stars exotic forms of matter such as hyperons [34], condensed mesons (pion or

kaon) [35], or even deconfined quarks [36] may appear. Neutron stars are composed of

five major regions [37]. The outermost region is the atmosphere, then the outer crust

(or the envelope), the inner crust, the outer core and the inner core. The atmosphere

is a thin plasma layer, where the spectrum of thermal electromagnetic neutron star

radiation is formed. The depth of the atmosphere varies from tens of centimeters in

a hot neutron star to millimeters in a cold one. The outer crust (outer envelope)

extends from the atmosphere bottom to a layer of density about the neutron drip

density ρd ≈ 4.3 × 1011 gcm−3 ≈ 1.5 × 10−3ρ0, and has a depth of some hundred

meters. The outer crust consists of ions and electrons. At the boundary of outer

crust and inner crust neutrons start to drip out of nuclei and form a free neutron gas.

the next layer is the inner crust which extends from ρd to densities about 0.5ρ0. The

inner crust consists of free neutrons, electrons and neutron-rich atomic nuclei. For

temperatures less than ∼ 0.1 MeV, the neutron fluid in the crust probably forms a

1S0 superfluid. The next region is the outer core which extends to densities about 2ρ0

and can be several kilometers in depth. It consists of neutrons with some admixture

of protons, electrons and muons. The neutrons could form a 3P2 superfluid and the

protons a 1S0 superconductor within the outer core. More massive neutron stars

also have an inner core where the central density can get as high as 10ρ0 and exotic

particles such as hyperons and/or Bose condensates (pions and kaons) may become

abundant, also it is possible to have an inner core of deconfined quark matter or

color-superconducting quarks.

The global structure of neutron stars, such as the mass-radius (M-R) relation is

described by Tolman-Oppenheimer-Volkoff (TOV) equations [38, 39], which are a set

of ordinary differential equations that determine the structure of general relativistic

static perfect fluid spheres:
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1.2 Physics of neutron stars

Figure 1.4: Internal structure of a neutron star [3].
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1.2 Physics of neutron stars

dP (r)

dr
= −G(M(r) + 4πr3P (r)

c2
)(ρ(r) + P (r)

c2
)

r(r − 2GM(r)
c2

)

dM(r)

dr
= 4πρ(r)r2

(1.1)

where P and ρ are the pressure and energy density at the radius r, and M(r) is the

gravitational mass enclosed in a sphere of radius r. For a given equation of state

(i.e. P − ρ relation), the TOV equations can easily be integrated from the origin

with the initial conditions M(0) = 0 and an arbitrary value for the central density

ρc = ρ(0), until the pressure P (r) vanishes at some radius R. For each possible

equation of state(EOS), there is a unique family of stars parametrized by the central

density, M = M(ρc). Mass-radius (M-R) curves of neutron stars can be used to

constrain the EOS of dense matter in two ways. One way is to generate the physically

reasonable M-R curves and the EOS that they satisfy, and the other way is to generate

arbitrary EOS and compute M-R curves from them, then select those curves that

pass within the error box of the astrophysical observations. For example existence of

massive neutron stars (M > 1.7M⊙) constraints the EOS of exotic matter, because the

appearance of new degrees of freedom at and above the nuclear saturation density,

such as quarks, hyperons, or bosons, softens the equation of state and lowers the

maximum mass of the star. The highest neutron star mass by far is 1.97 ± 0.04M⊙

which has been measured with a high precision by Demorest et. al [4], using the

Shapiro delay (an increase in light travel time through the curved space-time near a

massive body). Fig. 1.5, which is the mass-radius (M-R) diagram of neutron stars,

shows how this precise mass measurement can constrain the EOS of neutron star

matter. In that diagram the M-R curves for typical neutron star matter equations

of state have been shown. Any EOS curve that doesn’t intersect with the ∼ 2M⊙

band is ruled out by this measurement. Most EOS curves involving exotic matter

tend to predict maximum masses well below 2M⊙, and therefore are ruled out. The
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1.2 Physics of neutron stars

Figure 1.5: Neutron star mass-radius diagram for several typical neutron star equa-
tions of state [4]. The horizontal bands show the observational constraint from J1614-
2230 mass measurement of 1.97±0.04M⊙, similar measurements for two other millsec-
ond pulsars [5], and the range of observed masses for double NS binaries [6].

region in Fig. 1.5 bounded by the Schwarzschild condition R ≤ 2GM
c2

is excluded by

general relativity, and that bounded by R . 3GM
c2

is excluded by causality (cs < c).

An accurate, simultaneous mass and radius measurement from even one neutron star

would provide a significant constraint.

In contrast to the static properties of compact stars which only depend on the

equation of state of matter [40], dynamic properties also depend on the low energy

degrees of freedom and thereby might be able to discriminate more efficiently between

different forms of strongly interacting matter. One of the dynamic properties of dense

matter is viscosity, which determines the damping of mechanical perturbations, and a

particularly important application is to the damping of r-mode oscillations of compact
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1.3 R-modes of Neutron Stars

stars [41, 24, 42, 43, 44], which will be explained in the next section.

1.3 R-modes of Neutron Stars

R-modes are non-radial pulsations of neutron stars that couple to gravitational ra-

diation. They are primarily surface currents driven by Coriolis forces. R-modes are

generally defined to be solutions of the perturbed fluid equations having (Eulerian)

velocity perturbations of the form [45]

~δv =
1

√

l(l + 1)
αRΩ(

r

R
)l~r × ~∇Ylmeiωt +O(Ω3) (1.2)

where α is a dimensionless amplitude, R and Ω are the radius and angular velocity

of the unperturbed star, Ylm are the spherical harmonics and ω is the frequency of

the mode. R-modes exist if and only if m = l [46]. The fluid motion has no radial

component, and is the same inside the star as the outside although smaller. For

example in the case of l = m = 2 it is smaller by a factor of the square of the distance

from the center. The density perturbations associated with these modes vanish at

lowest order in the angular velocity:

δρ = O(Ω2) (1.3)

The frequency of these modes in the inertial frame is given by [47]

ω = −(m− 1)(m+ 2)

m+ 1
Ω +O(Ω3) (1.4)

From eq. (1.2) we have δv ∝ exp(im(φ − (m−1)(m+2)
m(m+1)

Ωt)), where φ is the az-

imuthal angle. So the “flow pattern” of the r-modes moves with an angular speed

(m−1)(m+2)
m(m+1)

Ω > 0 in the inertial frame and therefore all the modes are prograde in
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1.3 R-modes of Neutron Stars

this frame, i.e. they move in the same direction as the star’s rotation as seen by an

observer at infinity. However in the frame that co-rotates with the star, φ̄ = φ− Ωt,

δv ∝ exp(im(φ̄ − ( (m−1)(m+2)
m(m+1)

− 1)Ωt)) and therefore the modes are retrograde in

the co-rotating frame, which means they move in the opposite direction as the star’s

rotation as seen by an observer at rest on the star.

R-modes couple to gravitational radiation, and the back reaction to the emission of

gravitational radiation drives an instability in the r-modes of rotating neutron stars.

Any mode that is retrograde in the co-rotating frame and pro-grade in the inertial

frame grows as a result of its emitting gravitational waves. This is the Chandrasekhar-

Friedman-Schutz (CFS) mechanism [48, 49]. The CFS instability can be understood

in the following way: Modes that are retrograde in the co-rotating frame have negative

angular momentum and modes that are prograde in the inertial frame have positive

angular momentum. Gravitational radiation lives in the inertial frame and always

removes positive angular momentum. So since the fluid (co-rotating frame) sees the

mode as having negative angular momentum, radiation drives the mode rather than

damps it.

The r-modes evolve with time dependence of e(iωt−
t
τ
), where the imaginary part of

the frequency 1
τ

is determined by the effect of gravitational radiation, viscosity, etc.

τ can be evaluated by computing the time derivative of the energy of the mode E (as

measured in the co-rotating frame).

dE

dt
= −2E

τ
(1.5)

Gravitational radiation drives the r-mode, and bulk and shear viscosities damp it,

so 1
τ

can be decomposed as
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1.3 R-modes of Neutron Stars

1

τ(Ω)
=

−1

|τGR(Ω)|
+

1

|τB(Ω)|
+

1

|τS(Ω)|
(1.6)

where τGR, τB and τS are gravitational radiation, bulk viscosity and shear viscosity

timescales, respectively. R-modes are unstable when τ < 0.

The rotation frequency of the star can change over time both by accretion of

matter that transfers angular momentum from a companion star and by the emission

of gravitational radiation. In the absence of viscous damping r-modes are unstable

at all rotation frequencies [24]. Because of this instability, the rotational energy

of the star will be transformed into gravitational wave energy and this leads to an

exponential rise of the r-mode amplitude. When viscous damping is taken into account

the star is stable at low frequencies but there remains an instability region at high

frequencies [45, 9]. If this instability is stopped at a large amplitude, r-modes are

a strong and continuous source of gravitational waves and could provide an efficient

mechanism for the spin-down of a young compact star [50, 51]. Observational data

for spin frequencies of pulsars, that spin down and allow the determination of an

approximate age associated to their spin-down rate is shown in Fig. 1.1. Whereas

observed old pulsars in binary systems can spin nearly as fast as the maximum Kepler

frequency, above which the binding force cannot counteract the centrifugal pseudo-

force anymore, and can feature rotation periods in the milli-second range, younger

stars spin much more slowly. This is surprising since in their creation during a

supernova a significant fraction of the angular momentum of the initial star should

be taken over by the much smaller compact core which therefore should dramatically

spin up. This naive assumption is backed up by explicit analyses where millisecond

rotation frequencies at birth are indeed possible [52].

R-modes are also relevant for the case of older stars in binaries that are spun up by

accretion since they generally limit the maximum possible rotation frequency of a star
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1.3 R-modes of Neutron Stars

to values substantially below the Kepler frequency. A challenging finding is that, in

contrast to purely hadronic stars, more exotic possibilities like selfbound strange stars

[44], hybrid stars [9] or stars where hyperons are present in the core [53] can feature

so-called “stability windows” where over a range of intermediate temperatures the

r-mode instability is absent up to rather high frequencies. The observation of stars

rotating at such frequencies could therefore provide evidence for exotic phases in

their interior. In this context the masses and radii of stars provide further important

information. The recent precise measurement of a heavy compact star withM ≈ 2M⊙

[4, 54] puts constraints on the presence of exotic phases since such phases lead to a

softening of the equation of state which in general leads to a smaller maximum mass

that is achievable for such an equation of state. In combination with pulsar data this

should lead to more restrictive bounds on the possible presence of certain forms of

matter in compact stars.

A major problem for the extraction of information on the composition of compact

stars from observational data is the huge theoretical uncertainty in the equation of

state of dense matter and its transport properties. This holds both for the hadronic

side, where nuclear data is only available at low densities and large proton fractions,

and also for hypothetical phases of quark matter, since QCD as the fundamental

theory of strong interactions cannot be solved so far in this non-perturbative regime.

Unfortunately due to all this, even if two phases feature significant qualitative dif-

ferences these are often overshadowed by the huge quantitative uncertainties in the

detailed microscopic properties of either of them. However, it will be shown in chap-

ter 4 that certain features, like the important case of the minimum of the instability

region can be surprisingly insensitive to quantitative details of the considered models

[45]. If such statements can be substantiated this could allow us to devise robust sig-

natures of the qualitative features that can be tested with present and forthcoming
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1.3 R-modes of Neutron Stars

astrophysical data.

As we mentioned earlier r-modes can be a strong and continuous source of gravi-

tational waves. They are an interesting possibility for gravitational wave emission in

both newborn neutron stars and accreting neutron stars in low mass X-ray binaries.

In the case of r-modes the gravitational radiation is dominated by the mass current

quadrupole instead of the usual mass quadrupole. If the saturation amplitude of the

r-modes gets to high values O(1) there will be more gravitational radiation because

of the larger oscillations. However r-modes with a low saturation amplitude can be

also a good source for the gravitational wave emission, since in this case r-modes

will be active in neutron stars for a much longer time and therefore they can be

a source for continuous gravitational wave emission. An estimated or upper-limit

gravitational wave amplitude h0 can be converted to an r-mode amplitude α by the

following equation [55]

h0 =

√

8π

5
r−1ω3αMR3J̃ (1.7)

where r is the distance between the GW detector and the neutron star, ω is the grav-

itational wave frequency which is identical to the mode frequency, given by eq. (1.4),

M and R are mass and radius of the star and J̃ is a dimensionless constant defined

by J̃ = 1
MR4

∫ R

0
ρr6dr where ρ is the mass density. Using the numerical values for a

typical 1.4M⊙ neutron star with n = 1 polytropic equation of state that has a radius

of 11.7 km and J̃ ≃ 0.0164 the amplitude of the r-mode can be written in terms of

the gravitational wave amplitude in the following form [55]

α = 0.028(
h0

10−24
)(

r

1kpc
)(
1Hz

f
) (1.8)

where f = ω
2π

.

Using data from the Laser Interferometer Gravitational-Wave Observatory, the
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1.3 R-modes of Neutron Stars

LIGO and Virgo Collaborations have published searches for periodic gravitational

waves from rapidly rotating neutron stars [56, 57, 58, 59] and have given upper limits

for the intrinsic gravitational-wave strain h0 which can be used for getting an upper

limit on the r-mode amplitude α using the above equations [59, 55]. We will explain

more about the r-mode oscillations of neutron stars in chapters 4 and 5.

20



Chapter 2

Shear viscosity due to kaon

condensation in color-flavor locked

quark matter

In the previous chapter we gave an introduction to the physics of the color supercon-

ductivity and introduced the kaon-condensed color-flavor-locked phase (CFL-K0) as

one of the possible phases of quark matter at high densities and low temperatures.

In this chapter which is based on Ref. [60] we study the kaonic contribution to the

shear viscosity of quark matter in the CFL-K0 phase. As we discussed in the pre-

vious chapter transport properties of quark matter, such as the shear viscosity, are

of interest because they are the basis for signatures by which we could infer or rule

out the presence of exotic phases in the core of neutron stars. The shear viscosity is

phenomenologically relevant in the damping of physically important excitation modes

of the star, in particular the r-mode oscillations.

In the first section we explain the physics of the CFL-K0 phase in more details.

In the second section, Sec. 2.2, we discuss the low-energy effective theory of the CFL-

K0 phase and the interactions among the lowest-energy excitations of the theory.
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2.1 CFL-K0 phase of quark matter

In Sec. 2.3, we calculate the mean free path of the Goldstone kaons, because the

concept of shear viscosity will only be applicable to the matter in the neutron star

if there is local equilibration on distance scales much smaller than the size of the

star. In Sec. 2.4, we discuss the derivation of the shear viscosity using the viscous

hydrodynamic equations and solving the Boltzmann equation. In Sec. 2.5 we give the

analytic and numerical results for the shear viscosity. Section 2.6 will present some

conclusions and discuss future directions of this work. In appendix A we calculate

the scattering mean free path of the kaons and in the appendices B and C we cover

technical details of the treatment of the co-linear regime of the collision integral, and

the approximate evaluation of the collision integral.

2.1 CFL-K0 phase of quark matter

As we discussed earlier in Sec. 1.1, in the color-flavor locked phase of quark matter

all the quarks with different colors and flavors have the same Fermi momentum and

all of them will take part in the formation of Cooper pairs. When we go to lower

densities where the mass of the strange quark can not be ignored anymore, a splitting

between the Fermi momentum of strange quark and the light quarks will happen and

the BCS pairing will be suppressed [2]. When the shift between the Fermi momenta

is larger than the gap, ∆PF > ∆, pairing between s and u, d quarks is not possible

anymore. But when the stress is not too large the CFL pairing pattern can be

modified by forming a condensate of K0 mesons. Since K0 mesons carry negative

strangeness the stress on the CFL phase will be relieved by forming a K0 condensate.

Bedaque and Schafer have explained the effect of kaon condensation in two different

ways, [28, 25]. The first one is a chiral rotation of the CFL order parameter. The

order parameter of a two-flavor superfluid quark matter is given by < ǫabcuaCγ5d
c >
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2.1 CFL-K0 phase of quark matter

which is a flavor singlet [18, 19, 20]. The superfluidity has to be destroyed in order

to create a macroscopic occupation number of charged excitations. But the order

parameter of CFL matter is a matrix in color and flavor space: < qaL,iCq
b
L,j >= − <

qaR,iCq
b
R,j >= φ(δai δ

b
j − δbi δ

a
j ), where i, j label flavor and a, b label color indices. One

can introduce a chiral field Σ that characterizes the relative flavor orientation of the

left- and right-handed condensates [61]. In the vacuum Σ = 1, but under the influence

of a perturbation Σ may rotate. Because Σ has the quantum numbers of pseudoscalar

Goldstone bosons, such a rotation corresponds to a macroscopic occupation number

of Goldstone bosons. The second approach in explaining the kaon condensation in

the CFL-K0 phase which is simpler than the first one is as following: In normal quark

matter a non-zero strange quark mass, which causes a splitting of the order of M2
s

2PF

between the Fermi surfaces of strange quarks and light quarks, leads to the decay

s→ u+e−+ ν̄e or s→ u+d+ ū. In superfluid quark matter the system can also gain

energy M2
s

2PF
by introducing an extra up quark and a strange hole. But since all up

quarks are gapped this process requires the breaking of a pair and therefore involves

an energy cost of the order of the gap ∆. But this is not correct because an up-,

down-particle/strange-hole pair has the quantum numbers of a kaon. This means

that the energy cost is not ∆ but mK ≪ ∆. The CFL vacuum can decay into K+ or

K0 collective modes via processes like 0 → (ds)(du) + e− + ν̄e or 0 → (us)(du).

The kaon condensate spontaneously breaks the flavor symmetry, producing a Gold-

stone boson[25, 62]. Since the flavor symmetry is also explicitly broken by the weak

interaction, this Goldstone kaon acquires a small mass in the keV range [63]. Our

analysis is relevant to temperatures above this value, where one can ignore this small

mass. We use the effective theory of the Goldstone kaon, which was worked out in

Ref. [64]. The full interaction lagrangian has three independent coupling constants,

but we will specialize to a specific ratio of their values, which makes our results depen-

23



2.2 Low-Energy Effective Theory

dent on one overall kaon interaction coupling. This enables us to make an estimate

of the expected scale of the shear viscosity in this phase.

2.2 Low-Energy Effective Theory

2.2.1 Lowest-order lagrangian

The low-energy degrees of freedom in color-flavor-locked phases of quark matter are

the massless superfluid Goldstone mode, arising from the spontaneous breaking of

baryon number, and the light pseudo-Goldstone meson octet, arising from the spon-

taneous breaking of three-flavor chiral symmetry. The contribution of the superfluid

mode to transport properties has been studied previously [65, 66]. We focus on the

contribution from the meson octet, described by a meson field Σ whose effective

lagrangian up to second order is [25, 62]

L =
f 2
π

4
Tr[D0ΣD0Σ

† − v2∇Σ∇Σ†] + a
f 2
π

2
detM Tr[M−1(Σ + Σ†)] (2.1)

where D0Σ = ∂0Σ − i[A,Σ]. The Bedaque-Shäfer effective chemical potential [25] is

A = −M.M
2µq

, µq is the quark chemical potential, and M = diag(mu,md,ms) is the

quark mass matrix. At asymptotically high density the constants fπ, v, and a can be

determined by matching the effective theory to perturbative QCD, [67, 68]

f 2
π =

21− 8 ln 2

18

µ2
q

2π2
≈ (0.21µq)

2 v ≡ vH =
1√
3

a =
3∆2

π2f 2
π

, (2.2)

where ∆ is the fermionic energy gap at zero temperature. This dependence of a on

∆ is also seen in NJL models [69], so from now on we will work in terms of fπ and

∆, assuming that a is given by eq. (2.2). The meson field Σ can be parameterized in
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2.2 Low-Energy Effective Theory

terms of fields θa,

Σ = exp(iθ/fπ) , (2.3)

where θ = θaTa, and Ta are the Gell-Mann matrices of SU(3) with normalization

tr(TaTb) = 2δab. The K0 and K+ are the lightest mesonic degrees of freedom [67, 68],

and electric neutrality disfavors the presence of charged kaons (since they must be

balanced by electrons), so we focus on the neutral kaons, K0 and K̄0, corresponding

to θ6 and θ7. The zero-temperature neutral kaon mass and chemical potential can be

deduced from the Lagrangian

m2
K = amu(md +ms) ,

µK =
m2

s −m2
d

2µq

.
(2.4)

We will assume that µK > mK , so there is kaon condensation. We will also assume,

following Ref. [64], that the condensate is small, so µK is only a little larger than mK .

It is then convenient to define, following Ref. [64], an energy gap

δm ≡ mK − µK ,
|δm|
mK

≪ 1 . (2.5)

Note that δm is negative in the CFL-K0 phase. Because |δm| ≪ 1 we can usually

treat µK and mK as being identical to leading order in δm (an exception is discussed

in Sec. 2.5).

A self-consistent calculation [64] (see also Ref. [70]) then yields the excitation

energies in the neutral kaon sector,

E2
± = E2

p + µ2
K ∓

√

4µ2
KE

2
p + δM4 , (2.6)
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where

E2
p = v2p2 + M̄2 . (2.7)

In that self-consistent calculation, M̄ and δM were thermal masses that depended

on temperature and the underlying mass and chemical potential (see Eq. (81) in

Ref. [64]). Here we are interested in the low-temperature range applicable for compact

stars. In this case, the thermal masses become independent of temperature and are

given by

M̄2 = 2µ2
K −m2

K ≈ m2
K ,

δM2 = µ2
K −m2

K ≈ 2mK |δm| . (2.8)

The mode with energy E+ is massless: this is the Goldstone kaon. We can define a

corresponding field ψ using the parameterization

θ6(x) =
(

φ+ ρ(x)
)

cosϑ(x) ,

θ7(x) =
(

φ+ ρ(x)
)

sinϑ(x) ,

ψ(x) = fπ sin(φ/fπ)ϑ(x) ,

(2.9)

so φ is the kaon condensate, ρ is the massive radial mode, and ϑ is the angular Gold-

stone mode which we have then rescaled to make a scalar field ψ with a canonically

normalized quadratic derivative term and the conventional energy dimension of 1. The

mass of the radial modes is given by the value of E−(p = 0) =
√

6µ2
K − 2m2

K ≈ 2mK ,

which is typically on the order of a few MeV, so at the 10 to 100 keV energy scale,

which is relevant to neutron stars, it is heavily suppressed and can be ignored. The

magnitude of the kaon condensate is [64]

φ2 = 2f 2
π

(

1− m2
K

µ2
K

)

≈ 4f 2
π

|δm|
mK

(2.10)
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We can then linearize eq. (2.6) to obtain a linear dispersion relation for the Gold-

stone kaon,

E(p) = νp

ν ≡ v

√

M̄2 − µ2
K

M̄2 + µ2
K

≈ v

√

|δm|
mK

.

(2.11)

The error involved in approximating eq. (2.6) by eq. (2.11) is less than 5% for

p < 0.6
√

mK |δm|/v.

We will obtain the contribution to the shear viscosity from the Goldstone kaon.

For this we need its interaction lagrangian, but it is easy to see that eq. (2.1) does

not contain any interaction terms for the field ψ. This follows from the fact that ψ,

as a Goldstone boson, must couple via derivatives, and eq. (2.1) only goes to second

order in derivatives. We therefore need to write down higher order derivative terms

in the effective theory to obtain interactions among the Goldstone modes.

2.2.2 Interaction lagrangian for the Goldstone kaons

We obtain higher derivative terms in ψ by writing down the leading higher derivative

terms in the lagrangian for Σ, and using eq. (2.9). We keep only terms with the

symmetries of the system, namely rotational symmetry, parity, time-reversal, and

the SU(3)L ⊗ SU(3)R chiral flavor symmetry. We also discard terms that, when we

substitute eq. (2.9), will produce interactions that all involve the ρ field; an example

is three-derivative terms where Σ enters four times. The allowed terms with no more

than four derivatives of Σ are shown in Table 2.1 (left column). Since the effective

theory breaks down at momenta of order ∆ (for example, scattering of Goldstone

bosons at that momentum will produce quasiquarks, which are not included in the

effective theory) we expect that the momentum expansion will be in powers of (1/∆)~∇

[25]. We therefore expect the interactions in the left column of Table 2.1 to occur
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1a.
(

Tr[D0ΣD0Σ
†]
)2 4

f 4
π

(∂0ψ)
4 +

16µK sinϕ

f 3
π

(∂0ψ)
3

1b. 2Tr[(D0ΣD0Σ
†)2]

2a.
(

Tr[∇Σ∇Σ†]
)2 4

f 4
π

(∇ψ)4
2b. 2Tr[(∇Σ∇Σ†)2]

3a. Tr[D0ΣD0Σ
†]Tr[∇Σ∇Σ†] 4

f 4
π

(∂0ψ)
2(∇ψ)2 + 8µK sinϕ

f 3
π

(∂0ψ)(∇ψ)2
3b. 2Tr[D0ΣD0Σ

†∇Σ∇Σ†]

Table 2.1: The six interaction terms at fourth order in derivatives for the effective
theory (first column), and the interaction terms for ψ that they transform to using
eq. (2.9), when terms involving ρ are dropped. In the effective lagrangian they have
coefficients of order f 2

π/∆
2.

in the lagrangian with coefficients Cif
2
π/∆

2, where the Ci are dimensionless coupling

constants.

Using eq. (2.9) and dropping terms that involve the heavy field ρ, these six terms

reduce to the three corresponding interaction terms for ψ shown in the right column.

In each case, we find two different interaction terms for Σ reduce to the same inter-

action term for ψ. This means that the interaction lagrangian for ψ only depends

on three linear combinations of couplings. Note that in Table 2.1 we have defined a

scaled version of the kaon condensate expectation value eq. (2.9),

ϕ ≡ φ/fπ ≈ 2

√

|δm|
mK

(2.12)

The interaction Lagrangian for ψ can then be written out as

L = C1
2

f 2
π∆

2
(∂0ψ)

4 + C3
2

f 2
π∆

2
(∂0ψ)

2(∇ψ)2 + C2
2

f 2
π∆

2
(∇ψ)4

+C1
8µK sinϕ

fπ∆2
(∂0ψ)

3 + C3
4µK sinϕ

fπ∆2
(∂0ψ)(∇ψ)2.

(2.13)

At this point we specialize to a particular form of the interaction lagrangian, with
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the following relationship among the three coupling constants.

C ≡ C1 = C2 = −1
2
C3. (2.14)

This reduces the number of coupling constants from three to one. The remainder

of our calculation is for this special case, adopted because it leads to a particularly

simple interaction lagrangian which is similar to that written down for the superfluid

phonon in Refs. [66, 71],

Lint =
λ

4f 4
π

(∂µψ∂
µψ)2 +

g

2f 2
π

(∂0ψ)(∂µψ∂
µψ) (2.15)

where

λ = 8C
f 2
π

∆2
and g = 16 sin(ϕ)C

µKfπ
∆2

(2.16)

2.3 Mean Free Path

In this section we discuss the mean free path of the Goldstone kaons in the CFL-K0

phase. We expect that hydrodynamics will be applicable to neutron star oscillations

when the mean free path is well below the kilometer scale, since neutron star radii

are about 10 km.

We study two definitions of the mean free path, which we call the “shear mean

free path” lshear and the “scattering mean free path” lscat. The shear mean free path is

based on the value of the shear viscosity itself, and is probably the physically relevant

quantity for deciding when hydrodynamic calculations of shear viscosity are valid.

The scattering mean free path which is given in appendix A is the average distance

between collisions of the Goldstone kaons, including co-linear scattering events. Since

co-linear scatterings do not contribute to the shear viscosity itself, it seems likely that

29



2.3 Mean Free Path

this quantity is not the relevant one for finding the limits of validity of shear viscosity

calculations.

Shear mean free path

We take our definition of the shear mean free path from Ref. [71], where it is referred

to as λB,

lshear =
η

n 〈p〉 (2.17)

here η is the shear viscosity, 〈p〉 is the thermal average momentum, and n is the boson

density,

〈p〉 = 2.7T/ν , (2.18)

n =

∫

d3p

(2π)3
fp = ζ(3)

T 3

π2ν3
. (2.19)

where ν is the speed of the Goldstone bosons (given for kaons by eq. (2.11)).

This already allows us to make an estimate of the maximum shear viscosity that

Goldstone kaons can provide, since it follows that η ≈ 0.3ν−4T 4lshear, so the maximum

shear viscosity that could possibly occur in a neutron star at temperature T is when

lshear ≈ 1 km, i.e.

ηmax ≈
T 3

ν4
T

7× 10−16 MeV
. (2.20)

For Goldstone kaons it is quite possible to get ν ≈ 0.1 by using small values of

δm. Using this value we find the following upper limits: at T = 0.01 MeV, ηmax ∼

1011 MeV3; at T = 0.1 MeV, ηmax ∼ 1015 MeV3; at T = 1 MeV, ηmax ∼ 1019 MeV3.

For superfluid phonons [66] we can make more definite statements because there

is less uncertainty about the parameters appearing in these expressions. The shear

viscosity is η = 1.3 × 10−4µ8
q/T

5 and the speed ν is generally assumed to take its
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2.4 Shear Viscosity

perturbative value 1/
√
3 [66], in which case we immediately find that

lshearH ≈ 4× 10−5
µ8
q

T 9
(2.21)

So phonon hydrodynamics becomes invalid in neutron stars when lshearH & 1 km, i.e.

for µ ≈ 500 MeV we require T & 1 MeV (1010 K), and at a temperature of 1 MeV

the phonon shear viscosity is 5× 1017 MeV3. The calculation of the scattering mean

free path which is determined by the two-body interaction cross section is given in

appendix A.

2.4 Shear Viscosity

The shear viscosity η is the coefficient of the traceless part of the viscous stress tensor

δTij, which is a small deviation from equilibrium of the spatial components of the

energy momentum tensor Tij for a fluid with pressure P and energy density ǫ,

Tij = T
(eq)
ij + δTij

T
(eq)
ij = (P + ǫ)Vi Vj − Pδij

δTij = −ηVij + · · · (2.22)

where Vij is given by

Vij = ∂i Vj + ∂j Vi −
2

3
δij∇ ·V (2.23)

and the ellipsis in the equation for δTij stands for other dissipative terms arising

from phenomena such as bulk viscosity and thermal conductivity. V(x, t) is the fluid

velocity at a given position and time. The stress-energy tensor and the viscosity can
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2.4 Shear Viscosity

be calculated using kinetic theory [72]. For a system of identical bosonic particles

with dispersion relation Ep,

Tij(x, t) = ν2
∫

d3p

(2π)3
pi pj
Ep

fp(x, t) . (2.24)

where ν is the velocity of the Goldstone kaon (see eq. (2.11)). The full distribution

function is given by

fp(x, t) =
1

epµuµ(x,t)/T − 1
= f 0

p + δfp(x, t) (2.25)

where uµ(x, t) is the 4-velocity of the fluid, and δfp is a small departure from the

equilibrium Bose-Einstein distribution

f 0
p =

1

eEp/T − 1
. (2.26)

For shear viscosity we are interested in deviations from equilibrium arising from a

shear flow, so we write the deviation from equilibrium as

δfp(x, t) = −χ(p,x, t)
T

f 0
p (1 + f 0

p )

χ(p,x, t) = g(p) pkl Vkl(x, t), (2.27)

where

pkl = pk pl −
1

3
δklp

2. (2.28)

Substituting eq. (2.27) into eq. (2.24) and eq. (2.22) we find

δTij(x, t) = −ν2
∫

d3p

(2π)3
pi pj
Ep

g(p) pkl
T

f 0
p (1 + f 0

p )Vkl(x, t). (2.29)
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Using the definition of Vij (Eq. 2.23) one can write δTij (Eq. 2.22) in the following

form

δTij = −η
2
[δikδjl + δilδjk −

2

3
δijδkl]Vkl, (2.30)

Comparing this to eq. (2.29) gives

η

2
[δikδjl + δilδjk −

2

3
δijδkl] = ν2

∫

d3p

(2π)3
pi pj
Ep

g(p) pkl
T

f 0
p (1 + f 0

p ). (2.31)

Then, by contracting the tensor on the left hand side with respect to the pairs of

indices i, k and j, l we can determine the shear viscosity in terms of the function g(p),

η =
4 ν2

15T

∫

p

p4 f 0
p (1 + f 0

p ) g(p), (2.32)

where we have adopted the notation

∫

p

=

∫

d3p

2Ep (2 π)3
. (2.33)

Using the fact that p4 = 3
2
pij pij (see Eq. 2.28) one can write an alternate form of the

shear viscosity which will be used later,

η =
2 ν2

5T

∫

p

f 0
p (1 + f 0

p ) g(p)pijpij. (2.34)

To solve for the viscosity, we need to find a form for g(p). To do so, we can use

the Boltzmann equation given in the absence of external forces by

dfp
dt

=
∂fp
∂t

+V · ∇fp = C[fp] . (2.35)

where C[fp] is the collision operator. The left-hand side of the equation above can be

33



2.4 Shear Viscosity

written as [72]

dfp
dt

= ν
f 0
p

2 p T
(1 + f 0

p ) pij Vij . (2.36)

Again, this specific form assumes that we are only interested in shear flows. Ther-

mal gradients and bulk flows would give additional terms on the right hand side of

eq. (2.36). It is this form that also helped motivate the structure of the ansatz in

eq. (2.27).

The collision operator C[fp] should contain any possible collision terms for the

kaons. We will restrict ourselves to the terms lowest order in the coupling constants

as more vertices are suppressed because each vertex brings in more powers of 1/fπ or

1/∆ (see eq. (2.15) and eq. (2.16)). Also, we will ignore the 1 ↔ 2 processes because

for a particle with a linear dispersion relation such processes must be co-linear, so

they do not involve momentum transfer that would contribute to the shear viscosity.

Finally we are left with the collision operator for 2-body scattering given by [71]

C2↔2 =
1

2Ep

∫

k,k′,p′
(2π)4δ4(P +K − P ′ −K ′)|M|2D2↔2 (2.37)

Where P = (Ep,p) = (p0,p) and K are the four momenta of the two incoming

particles and P ′, K ′ are the four-momenta of the two outgoing particles in the 2 ↔ 2

scattering process. M is the 2 ↔ 2 scattering amplitude and D2↔2 contains the

distribution functions and is given by

D2↔2 = fp′ fk′(1 + fp)(1 + fk)− fp fk(1 + fp′)(1 + fk′). (2.38)

We can also linearize the distributions as D ≈ D0 + δD using our definition of δfp in

eq. (2.27). D0 would make the collision integral vanish by detailed balance. One can
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then write

δD2↔2 =
1

T
f 0
p f

0
k (1 + f 0

p′)(1 + f 0
k′) (χ(p) + χ(k)− χ(p′)− χ(k′)) (2.39)

and the collision integral as

C2↔2 ≈
f 0
p

2EpT

∫

k,p′,k′
(2π)4δ4(P +K − P ′ −K ′)|M|2f 0

k (1 + f 0
p′)(1 + f 0

k′)

[

g(p)pij + g(k)kij − g(k′)k′ij − g(p′)p′ij
]

Vij

≡ 1

2EpT
Fij[g(p)]Vij (2.40)

Using eq. (2.36) and the Boltzmann equation, we can conclude that

ν2f 0
p (1 + f 0

p ) pij = Fij[g(p)] (2.41)

One can then use this equation and eq. (2.34) to get another expression for the shear

viscosity in terms of collision term

η =
2

5T

∫

p

g(p)pijFij[g(p)] (2.42)

The process now is to evaluate η from eq. (2.32) and eq. (2.42), and ensure that they

give the same answer. Formally, this is equivalent to solving the Boltzmann equation

directly. Ensuring that the two forms are equal is quite non-trivial and is typically

done by expanding g(p) using an orthogonal set of functions, [73, 74]

g(p) = pn
N
∑

s=0

bsBs(p) . (2.43)

This expansion introduces two new parameters: N , the order of the polynomial ap-

proximation; and n, which we call the minimum-exponent parameter, because the
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lowest power of p that occurs in the polynomial expansion is pn. The correct result

is obtained in the limit N → ∞ for any value of n. However, as we will see, the rate

of convergence with increasing N is strongly dependent on the minimum-exponent

parameter n.

The polynomials Bs(p) are defined such that the coefficient of the highest power

ps is 1 and they obey the orthogonality condition [71]

∫

p

f 0
p (1 + f 0

p ) pij pijp
nBr(p)Bs(p) = A(n)

r δrs . (2.44)

These conditions uniquely specify the Bs(p) for all s, starting with B0(p) = 1. From

the orthogonality condition we find

A
(n)
0 =

2

3

∫

p

f 0
p (1 + f 0

p )p
4+n =

T 6+n

6π2ν7+n
Γ(6 + n)ζ(5 + n) . (2.45)

Using g(p) from eq. (2.43) in eq. (2.32), and using the definition of A
(n)
r from eq. (2.44),

we get

η =
2 ν2

5T
b0A

(n)
0 . (2.46)

An alternative expression for η follows from substituting g(p) from eq. g-pnml into

eq. (2.42),

η =
N=∞
∑

s,t=0

bsbtMst , (2.47)

where

Mst =
2

5T

∫

p,k,k′,p′
(2π)4δ4(P +K − P ′ −K ′)|M|2f 0

p f
0
k (1 + f 0

k′)(1 + f 0
p′) p

nBs(p)pij∆
t
ij ,

=
1

10T

∫

p,k,k′,p′
(2π)4δ4(P +K − P ′ −K ′)|M|2f 0

p f
0
k (1 + f 0

k′)(1 + f 0
p′) ∆

s
ij∆

t
ij

(2.48)
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and

∆t
ij = Bt(p)p

npij +Bt(k)k
nkij − Bt(k

′)k′nk′ij − Bt(p
′)p′np′ij . (2.49)

The second line of eq. (2.48) uses the symmetry under relabeling the momenta of the

legs in the scattering diagrams (P → K, etc.), and can be used to demonstrate that

the diagonal elements of Mst are positive definite. As we will see below, this ensures

that the shear viscosity is also positive.

Requiring the two forms of η to be equal leads to a matrix equation for all the

bi’s. From that we extract b0,

b0 =
2 ν2

5T
A

(n)
0 (M−1)00 (2.50)

where (M−1)00 means the first entry in the matrix inverse of Mst. Using this in

eq. (2.46), we find

η =
4 ν4

25T 2
(A

(n)
0 )2(M−1)00 . (2.51)

As noted above, this expression becomes accurate in the limit N → ∞, where the

matrix M is of infinite size. It is known [66, 71] that the result for finite N rises with

N , so for a matrix MN , with finite dimension N , that obeys eq. (2.48),

η ≥ 4 ν4

25T 2
(A

(n)
0 )2(M−1

N )00 (2.52)

We will see below that this expression converges rapidly with N for the optimal choice

of the minimum-exponent parameter n.

The remaining task is to evaluate the integral in eq. (2.48). This requires the

matrix elements for the 2 ↔ 2 scattering process, iM = iMc + iMs + iMt + iMu,
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Figure 2.1: Feynman diagrams for the 2-body scattering amplitude. The black square
is the 4-point contact interaction, the black circles are the 3-point vertices.

see Fig. 2.1, with the individual channels being given by

iMc =
λ

f 4
π

[(P ·K)(P ′ ·K) + (P ·K ′)(P ′ ·K) + (P · P ′)(K ·K ′)]

iMs =
g2

f 4
π

[

2(p0 + k0)P ·K + p0K
2 + k0P

2
] [

2(p′0 + k′0)P
′ ·K ′ + p′0K

′2 + k′0P
′2
]

G(P +K)

iMt = iMs(P ↔ K ′)

iMu = iMt(P ↔ K), (2.53)

where the last two lines in eq. (2.53) come from crossing symmetries and

G(Q) =
1

(q20 − ν2q2) + i ImΠ(q0, q)
(2.54)

is the Goldstone kaon propagator. Note that to avoid the collinear singularities in

our calculations we resum the kaon propagator including the one loop thermal damp-

ing. The imaginary part of the self energy, ImΠ(q0, q), is extracted after a one-loop

computation (for more details see appendix A) [75, 66].

The 12-dimensional integral in eq. (2.48) can be simplified by eliminating the p′

integral using the momentum-conserving delta-function. Then one can use the energy-

conserving delta-function to eliminate the integral over the magnitude of k′. Three

of the remaining 8 integrals can be eliminated by selecting the z-axis to lie along

the vector p, and noting that only the difference in the two remaining azimuthal
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n N = 0 N = 1 N = 2
-3 0.059 0.861 2.22
-2 1.59× 105 2.01× 105 2.02× 105

-1 2.04× 105 2.04× 105 2.04× 105

0 0.610 4.70 19.4

Table 2.2: Values of shear viscosity as a function of the order N of the polynomial
approximation to g(p), for different choices of the minimum-exponent parameter n.
The calculated value rises towards the physical result as N → ∞, and in this limit
should be independent of n. We see that for n = −1 the result converges very rapidly
as N rises, but for other values of n the convergence is slower.

angles matters. This leaves a 5-dimensional integral over the magnitudes of p and

k, two polar angles corresponding to k and k′ and one azimuthal angle. This can be

evaluated numerically (see appendix C) using the Vegas Monte Carlo algorithm [?].

The results that we present below are obtained by setting the minimum-exponent

parameter n to −1. This value is expected to give optimal convergence of the cal-

culated shear viscosity to its physical value as a function of N because, as shown in

appendix B, this term most strongly suppresses the co-linear scattering and therefore

give the smallest collision term. The shear viscosity is inversely proportional to the

collision term and since we have a variational procedure that says the answer we get

is a lower bound, we are only interested in the largest value of the shear viscosity that

we can calculate.

To check this reasoning we show in Table 2.2 results of calculations of the shear

viscosity for different values of n and N . We see that for n = −1 the value of η at low

N is already close to the maximum (asymptotic) value at N = ∞. For n = −2 the

convergence is almost as good, achieving ∼ 1% accuracy at N = 2. For other values of

n the convergence is dramatically poorer. This behavior was also seen in Refs. [66, 71].

We conclude that we can achieve accuracy of better than 1% by choosing n = −1,

and only keeping the first polynomial (N = 0), i.e. we set g(p) = 1/p.
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2.5 Results

2.5.1 Analytic results

We now describe how the shear viscosity depends on the temperature and on the

parameters of the effective lagrangian for the Goldstone kaon. The relevant param-

eters are the speed ν eq. (2.11) of the kaon and its interaction couplings λ and g

eq. (2.15), which in turn depend on more basic parameters C, fπ, ∆, mK eq. (2.16).

Recall that we have assumed |δm| ≪ 1, so in the expressions below, µK and mK are

usually interchangeable. One exception is the phonon speed ν, which occurs in the

shear viscosity raised to the 11th power (see discussion after eq. (2.59)) so we use the

full expression (the identity in eq. (2.11)) for it.

Before performing any numerical calculations, we can extract the temperature

dependence of the shear viscosity. Because the co-linear scattering will not contribute

to the answer, the propagator does not need to be regulated by the self-energy. Since

the temperature only appears in the distribution functions and the self-energy, we

can now factorize out the temperature dependence by rescaling all the momenta by

the temperature. Doing so we find

Mst ∼ T 15+2n+s+t . (2.55)

where s and t are the indices of the matrix indicating how many terms we are keeping

in our expansion for g(p) and n is the minimum-exponent parameter (see eq. (2.43)).

We also recall the temperature dependence of A
(n)
r from eq. (2.44),

A
(n)
0 ∼ T n+6 . (2.56)

Therefore, from eq. (2.51), we obtain the temperature dependence of the shear vis-
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cosity

η ∝ T−5 , (2.57)

in agreement with previous results [66, 71]. The constant of proportionality in

eq. (2.57) has mass dimension 8. In the case of the shear viscosity due to phonons

there was only one possible scale, the quark chemical potential µq, so ηH ∝ µ8
q/T

5.

However, we have several scales (fπ, ∆, mK) manifesting themselves in two coupling

constants λ and g eq. (2.16). Which of these is most important depends on whether

the scattering is dominated by the contact term or by the exchange of a virtual

particle. The dimensionless parameter u that determines which scattering process

dominates is

u =
3g2

λ
= 96C sin2(ϕ)

(µK

∆

)2

, (2.58)

where ϕ = 2
√

|δm|/mK eq. (2.12) and the 3 represents the 3 channels for virtual

particle exchange. For typical values of δm, mK , and ∆, this ratio can be bigger or

smaller than 1. When u ≪ 1, the contact term dominates, so the scattering ampli-

tude is proportional to λ. When u ≫ 1, the particle-exchange process dominates,

so the scattering amplitude is proportional to g2. The shear viscosity is inversely

proportional to the scattering cross-section, so

u≪ 1 : η = h1(ν)
1

C2

f 4
π∆

4

T 5
,

u≫ 1 : η = h2(ν)
1

C4

f 4
π∆

8

sin4(ϕ)µ4
KT

5
,

(2.59)

where h1 and h2 are dimensionless functions that depend only on the Goldstone kaon

speed ν, which depends on δm and mK . We can obtain their analytic form when

ν ≪ 1. In that case, the leading-order behavior in both regimes is a ν11 power law

(see appendix C). In general they must be calculated numerically, and the result
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(with the ν11 power law scaled out) is shown in Fig. 2.4.

Finally, we note that the shear viscosity due to Goldstone kaons will be smaller

than that due to the superfluid phonons, since fπ, ∆, and mK are much less than µq.

2.5.2 Numerical results

To begin, we will confirm the temperature dependence predicted in the previous

section. To do so, we will fix the mass of the kaon, mK = 4 MeV, fπ = 100 MeV,

∆ = 100 MeV and C = 1. In Fig. 2.2, we show the viscosity as a function of

temperature for a few values of δm. The data points are obtained by numerical

evaluation of the 5-dimensional integral, whereas the lines show the fit to a T−5 power

law eq. ((2.57)), which is independent of the regime of coupling constants’ values.

On the same plot, we show the contribution from the phonons [66]. As expected,

the phonon shear viscosity is much larger. Most of the difference comes from the

difference in magnitude of the coupling constants (the kaons coupling constant is

larger) and the rest comes from a difference in the speed of the kaon and the phonon

(the kaon’s is smaller), which enters the expression for shear viscosity raised to a

high power. Using the shear mean free path criterion lshear < 1 km (Sec. 2.3) for

the validity of hydrodynamics for neutron star oscillations, we expect the phonons

to be non-hydrodynamic at T . 1 MeV; with the parameter values given above, the

Goldstone kaons become non-hydrodynamic at T . 0.03 MeV.

In Fig. 2.3 we show the shear viscosity as a function of the gap ∆, with δm =

−0.5 MeV and T = 1 MeV. The other parameters have the same values as in

Fig. 2.2. This illustrates the transition between the two regimes given in eq. (2.59).

The crossover occurs at u = 1 which corresponds to ∆ = 30 MeV, which is indicated

on the graph. As expected, we see that for large ∆ (u ≪ 1), η ∝ ∆4; for small ∆

(u≫ 1), η ∝ ∆8.
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Figure 2.2: The shear viscosity as a function of temperature for kaons and phonons.
For parameter values, see text. In the lower part of the graph, the points are nu-
merical calculations and the straight lines are fits to the power law form given in
eq. ((2.57)). The phonons’ calculated shear viscosity is many orders of magnitude
larger, although using the shear mean free path criterion (Sec. 2.3), we expect them
to be non-hydrodynamic in neutron stars at T . 1 MeV.

In Fig. 2.4 we present the results of numerical calculation of h1,2(ν) eq. (2.59).

We have divided out the dominant behavior ν11 power law behavior (for details see

appendix C). We see that the remaining ν dependence is very mild, so to a good

approximation the shear viscosity is given by eq. (2.59) with

h1(ν) ≈ 3.44× 10−4ν11 ,

h2(ν) ≈ 1.70× 10−8ν11 .
(2.60)

To show how large the shear viscosity of CFL-K0 quark matter could be, we look

at a case where the values of the parameters are pushed in the direction that yields

a large value of η. We take fπ,∆ ≈ 150 MeV, mK ≈ 4 MeV, δm ∼ −1.0 MeV, and

C ≈ 0.2. With these values we find that at T = 0.1 MeV (109 K) the shear mean free
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Figure 2.3: The shear viscosity as a function of ∆. (See text for parameter values.)
The points are calculated numerically. The straight lines are fits to the power law
behaviors of eq. (2.59).

path eq. (2.17) is 0.26 km, and η = 1.7×1013 MeV3 = 2.3×1018 erg cm−1s−1. At this

temperature the phonon’s shear mean free path (see Sec. 2.3) is larger than the star,

so the kaons provide the dominant contribution to the shear viscosity.
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Figure 2.4: The functions h1(ν) and h2(ν) eq. (2.59). We scale out the ν11 power law
behavior (see appendix C). On the x-axis we show ν in units of the kaon velocity
v ≈

√

|δm|/mK in the non-kaon-condensed phase.
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Finally, we check whether the regime of linear hydrodynamics is valid by eval-

uating the size of the corrections to the equilibrium stress-energy tensor. Linear

hydrodynamics is appropriate if δTij ≪ Tij eq. (2.22). (Note that this is different

from the criterion of validity for hydrodynamics in general, discussed in appendix A.)

This inequality becomes

η ≪ V ℓ(P + ǫ) (2.61)

where ℓ represents the length scale of the velocity gradients, and V is the typical fluid

velocity which we assume is of order 1. If we use the energy density of free quark

matter ǫ ≈ 9µ4
q/(4π

2) which is of order 1010 MeV4 at µq ≈ 500 MeV, (and P . ǫ,

which is typically the case), and use the length scale ℓ ∼ 1 km which is appropriate

for oscillations of neutron stars, we find that linear hydrodynamics is valid as long as

η ≪ 1025 MeV3 (2.62)

which is easily obeyed by the values of the shear viscosity that we have calculated for

the CFL-K0 phase.

2.6 Conclusions

In this chapter, we have calculated the shear viscosity arising from self-interaction of

the Goldstone kaon mode in the CFL-K0 phase of quark matter. The shear viscosity

from the other Goldstone mode, the superfluid phonon, has already been explored

in Ref. [66]. We find the same T−5 temperature dependence that was found for the

phonons in the CFL phase and for superfluid modes in a unitary Fermi gas [71]. Our

final results are the approximate analytic expressions eq. (2.59), eq. (2.60) for the

shear viscosity due to Goldstone kaons, and expressions eq. (2.17) and eq. (A.16) for
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the “shear mean free path” and “scattering mean free path” of the Goldstone kaons.

Neutron star oscillations have a length scale in the kilometer range, so the phonon

and Goldstone kaon fluids in a neutron star can only be described by hydrodynamics

when their mean free paths are smaller than this. We argue that the shear mean free

path is the appropriate quantity to use for this purpose (see Sec. 2.3).

Because the coupling constants for the Goldstone kaons are roughly an order of

magnitude larger than those for the superfluid phonon, the shear viscosity and mean

free path of the Goldstone kaon are both several orders of magnitude smaller than for

the superfluid phonon (see Fig. 2.2). Using the shear mean free path (see Sec. 2.3), we

find that the superfluid phonons in a neutron star are described by hydrodynamics at

temperatures above about 1 MeV (1010 K). The Goldstone kaons are hydrodynamic

down to lower temperatures: the exact threshold depends sensitively on the value

of the constants in the effective action, but could easily be lower than the 0.01 to

0.05 MeV range at which our treatment becomes invalid because the weak-interaction

mass of the Goldstone kaon [63] must then be taken in to account.

We conclude that, in the temperature range 0.01 MeV to 1 MeV, depending on

the values of the coupling constants in their effective theory, Goldstone kaons may

very well provide the dominant contribution to the shear viscosity in CFL-K0 quark

matter.

There are several ways in which this work can be developed further. Firstly, we

chose a specific form of the interaction lagrangian eq. (2.15) which has one coupling

constant, rather than the most general form eq. (2.13) which has three; our calculation

should be extended to the most general lagrangian. Secondly, it would be useful

to extend our calculation to lower temperatures where, as noted above, one can

no longer neglect the effects of weak interactions on the dispersion relation of the

Goldstone kaon. It would also be interesting to study shear viscosity from light kaons
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in the non-kaon-condensed CFL phase. These particles were found to give a large

contribution to the bulk viscosity even at temperatures as low as a tenth of their

energy gap [76, 77]. Thirdly, we neglected scattering between the Goldstone kaons

and the superfluid phonons. It would be interesting to see if these processes shorten

the phonon mean free path and make a significant contribution to the shear viscosity.

Fourthly, even though our calculation is open to extension and improvement in the

ways just described, it would be interesting to perform an analysis along the lines of

Ref. [9] to see whether the shear viscosity of the Goldstone kaons can have a significant

effect on the development of r-modes in a quark star or hybrid neutron star. Fifthly,

as discussed in appendix A, we did not consider how the interactions themselves would

alter the dispersion relation. This could affect the calculation of the mean free path at

leading order in the induced non-linearity, but would provide a subleading correction

to the shear viscosity. Finally, even when the superfluid phonons or Goldstone kaons

are not in the hydrodynamic regime, they can still transfer momentum over long

distances, and it is important to investigate how they could provide ballistic-regime

damping (as opposed to hydrodynamic viscous damping) of neutron star oscillations.
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Chapter 3

Large amplitude behavior of the bulk

viscosity of dense matter

3.1 Introduction

The bulk viscosity of a given form of matter is a measure of the energy dissipated when

it is subject to an oscillating cycle of compression and rarefaction. As we mentioned

earlier in Sec. 1.3, a particularly important application of the bulk viscosity is in the

damping of the r-mode oscillations of compact stars [41, 24, 42, 43, 44], which, at

sufficiently low viscosity and high rotation rate, are unstable and can cause rapid

spin-down of the star [50] via gravitational radiation. Bulk viscosity is known to

be the dominant source for the damping of r-mode oscillations at high temperatures

and low amplitudes. At low amplitudes the bulk viscosity is amplitude-independent,

but since the r-mode is unstable its amplitude grows, and unless stopped by other

mechanisms will quickly enter the “supra-thermal” regime where the bulk viscosity

grows with amplitude [78, 79, 80], and may become large enough to stop the growth

of the mode. The supra-thermal regime is characterized by µ∆ & T , where T is the

temperature and µ∆ is the amplitude of the oscillations in the chemical potential of
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the quantity whose re-equilibration causes the viscous damping.

In this chapter which is based on Refs. [81, 82], we study the bulk viscosity of

dense matter, taking into account non-linear effects that arise in the large amplitude

“supra-thermal” region.

In section 3.2 we study the microscopic part of the problem via a comprehensive

analysis of the bulk viscosity of dense matter. Since the precise phase structure

and the equation of state of matter at high density is still unknown, we keep the

dependence on those parameters as explicit as possible, and as well as numeric results

we provide analytic approximations which prove to be surprisingly accurate. This

allows us to obtain general results for the bulk viscosity valid for many different

phases of matter, and enables us to estimate the involved uncertainties. In sections

3.3 and 3.4 we study in detail the cases of strange quark matter and equilibrated

npe-matter, respectively, considering both modified and direct Urca processes in the

hadronic case and we apply the results that we obtained in Sec. 3.2 to these cases.

Yet, our general expressions can be applied to other equations of state and entirely

different forms of strongly interacting matter. Finally in section 3.5 we give the

conclusion and the outlook.

3.2 Bulk viscosity of dense matter

In this section we will derive the non-linear equations that determine the bulk viscosity

due to weak interactions that interconvert the fermionic species that are present1. We

will then solve it for arbitrary amplitudes. We focus on weak interactions because

their equilibration rate is comparable to typical compact star oscillation frequencies:

strong interactions make a negligible contribution at these frequencies because their

1We do not study bulk viscosity arising from the interconversion of bosons, such as the light
mesons that occur in color-flavor-locked phases.
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3.2 Bulk viscosity of dense matter

equilibration rate is much too fast.

The bulk viscosity of a given form of matter is defined by the response of the system

to an oscillating compression and rarefaction. This corresponds to an oscillation in

the densities of all exactly conserved quantities. We will assume that there is at least

one such quantity whose density we call n∗. In compact stars it is typically the baryon

number density. We will study the energy dissipated as a result of a small harmonic

oscillation δn∗ around its equilibrium value n̄∗

n∗(~r, t) = n̄∗(~r) + δn∗(~r, t) = n̄∗(~r) + ∆n∗(~r) sin

(

2πt

τ

)

, (3.1)

where the amplitude of the oscillation is ∆n∗, and we assume ∆n∗ ≪ n̄∗. The energy

dissipation rate per volume in the fluid due to the oscillation is given by

(

dǫ

dt

)

diss

= ζ
(

~∇ · ~v
)2

(3.2)

where ~v is the local velocity of the fluid of the conserved quantity and the continuity

equation for its particle number n∗ reads

∂n∗
∂t

+ ~∇ · (n∗~v) = 0 . (3.3)

In the hydrodynamic limit, density varies slowly enough so that density gradients can

be neglected, and ∆n∗/n̄∗ ≪ 1, so averaging over a whole oscillation period τ = 2π/ω

gives the bulk viscosity as

ζ ≈ 2

ω2

〈

dǫ

dt

〉

diss

n̄2
∗

(∆n∗)
2 . (3.4)

We will treat eq. (3.2) as our considered approximation for the bulk viscosity, so

we calculate dǫ/dt and use eq. (3.4) to obtain ζ in the hydrodynamic limit. At very
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low (“subthermal”) amplitudes, ζ is a constant, but in the “suprathermal” amplitude

range, ζ becomes a function of the density fluctuation amplitude ∆n∗/n̄∗, or equiva-

lently (via (3.3)) of ~∇·~v/ω. This might be viewed as a breakdown in hydrodynamics,

which is an expansion in powers of ~∇·~v, since one could view the density-dependence

of ζ in the suprathermal regime as corresponding to the occurrence in (3.2) of terms

that are higher order. However, the calculation remains under control: the suprather-

mal terms are calculable, and arise from deviations from local chemical equilibrium,

so they are parametrically different from terms that arise from a failure to achieve

local thermal equilibrium. Firstly, deviations from local thermal equilibrium induce

corrections in powers of ~∇ · ~v/Λ, where Λ is a scale related to the the inverse relax-

ation time (cf. e.g. [83]), so, because ω ≪ Λ, such terms are intrinsically smaller

than the suprathermal terms. Secondly, the coefficients of the suprathermal terms

are enhanced by powers of C/T , where C is a susceptibility characterizing the partic-

ular form of strongly interacting matter, see eq. (3.15), which becomes large at low

temperatures. Moreover, because we calculate dǫ/dt to all orders in C/T , our compu-

tation captures all terms that arise from slow chemical equilibration of the conserved

quantity that we study. In fact we obtain the full non-analytic density dependence

of ζ, beyond the radius of convergence of an expansion in powers of ~∇ · ~v/ω. The

remaining higher-order terms in the expansion, which arise from corrections to the

hydrodynamic assumption of local thermal equilibrium, have no special enhancement

by factors of Λ/ω or C/T , and can be always neglected relative to the terms that we

keep.

Using the relationship between fluctuations in volume and fluctuations of a con-

served quantity,

dn∗
n∗

= −dV
V

(3.5)
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and the mechanical work done by a volume change

dǫ = − p

V
dV (3.6)

we can express the energy dissipation rate per volume averaged over one time period

in terms of the induced pressure oscillation

〈

dǫ

dt

〉

diss

=
1

τ

∫ τ

0

p

n∗

dn∗
dt

dt . (3.7)

To calculate the bulk viscosity we must calculate p(t). We will assume that the

bulk viscosity arises from beta-equilibration of fermionic species. We further assume

that, in the absence of weak interactions, there would be s conserved species, and

that there is a single channel of weak interactions that can perform interconversion

of species, leaving s− 1 exactly conserved fermion-number charges2. Subtracting the

chemical potentials of the final state particles in the relevant weak channel from those

of the initial state particles, we obtain the difference

µ∆ ≡
∑

i

µi −
∑

f

µf . (3.8)

which is the quantity that is driven out of equilibrium by the driving density fluctu-

ation, and whose re-equilibration leads to bulk viscosity. The quasi-equilibrium state

can generally be described in terms of the driving density n∗ and the ratio x ≡ n1/n∗

where n1 is the density of one of the particle species whose number is changed by the

equilibration process. For small oscillation amplitudes ∆n∗/n̄∗ ≪ 1 the pressure can

2In this counting we exclude fermions like neutrinos, which escape from compact stars and so are
effectively not conserved.

53



3.2 Bulk viscosity of dense matter

then be expanded around its equilibrium value p̄ = p (n̄∗)

p = p̄+
∂p

∂n∗

∣

∣

∣

∣

x

δn∗ +
∂p

∂x

∣

∣

∣

∣

n∗

δx , (3.9)

where δx is the deviation of x from its beta-equilibrium value. The t-independent

part p̄ as well as the term proportional to the driving density fluctuation δn∗ do not

contribute to the viscosity integral. The remaining susceptibility can be rewritten

∂p

∂x

∣

∣

∣

∣

n∗

= n̄2
∗

∂µ∆

∂n∗

∣

∣

∣

∣

x

. (3.10)

Because of weak interactions, x depends on time,

δx(t) =

∫ t

0

dx

dt′
dt′ . (3.11)

From Eqs. (3.4),(3.7),(3.9),(3.10),(3.11),

ζ =
1

π

n̄3
∗

∆n∗

∫ τ

0

∂µ∆

∂n∗

∫ t

0

dx

dt′
dt′ cos (ωt) dt . (3.12)

We want to point out already at this point that, in contrast to the harmonic driving

density oscillation δn∗ with amplitude ∆n∗, the induced chemical potential fluctuation

δµ∆ around the vanishing equilibrium value can have a more complicated anharmonic

form.

The fluctuations of the density ratio can be obtained from an analogous expansion of

the chemical potential fluctuation

δµ∆ =
∂µ∆

∂n∗

∣

∣

∣

∣

x

δn∗ +
∂µ∆

∂x

∣

∣

∣

∣

n∗

δx (3.13)
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which yields a linear equation relating µ∆ and δx

dµ∆

dt
= Cω

∆n∗
n̄∗

cos (ωt) + Bn̄∗
dx

dt
, (3.14)

with the susceptibilities

C ≡ n̄∗
∂µ∆

∂n∗

∣

∣

∣

∣

x

, B ≡ 1

n̄∗

∂µ∆

∂x

∣

∣

∣

∣

n∗

(3.15)

To obtain the temperature and amplitude dependence of the bulk viscosity, we now

discuss the general form of the beta equilibration rate. We define the net equilibration

rate

Γ(↔) ≡ Γ(→) − Γ(←) = n̄∗
∂x

∂t
, (3.16)

where we use the convention that Γ(→) is the rate for the process where n1 is decreased,

and Γ(←) is the rate for the inverse process. We study equilibration processes where

the net rate takes the general form

Γ(↔) = −Γ̃T κµ∆

(

1 +
N
∑

j=1

χj

(

µ2
∆

T 2

)j
)

. (3.17)

where N is the highest power of µ∆ arising in the rate. In terms of dimensionless

variables

ϕ ≡ ωt , A (ϕ) ≡ µ∆ (t)

T
(3.18)

the differential equation for the chemical fluctuation eq. (3.14) can be written as

dA
dϕ

= d cos (ϕ)− fA
(

1 +
N
∑

j=1

χjA2j

)

, (3.19)
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with the prefactors of the driving and feedback term given by

d ≡ C

T

∆n∗
n̄∗

, f ≡ BΓ̃T κ

ω
. (3.20)

Note that the feedback term involves both linear and non-linear parts which are

controlled by a single parameter f and that its particular form is determined by the

constants χj which parametrize the particular weak rate. The viscosity is then finally

given by

ζ =− Γ̃CT κ+1

πω2

n̄∗
∆n∗

(3.21)

·
∫ 2π

0

∫ ϕ

0

A(ϕ′)

(

1 +
N
∑

j=1

χj (A(ϕ′))
j

)

dϕ′ cos (ϕ) dϕ .

where A (ϕ; d, f) is the periodic solution to eq. (3.19). Alternatively, using eq. (3.14),

eq. (3.12) can also be written in an alternative form that involves only a single integral

ζ =
TC

πωB

n̄∗
∆n∗

∫ 2π

0

A (ϕ) cos (ϕ) dϕ , (3.22)

In terms of a Fourier expansion of the periodic scaled chemical potential fluctuation

A(ϕ) =
∞
∑

n=1

(an sin (nϕ) + bn cos(nϕ)) (3.23)

we see that the only components of A(ϕ) that contribute to the viscosity are the

fundamental Fourier modes. Interestingly, whereas in eq. (3.21) it is the component

in phase with the driving density oscillation, in eq. (3.22) it is the component that

lags behind by a phase of π/2. This suggests that a truncated Fourier ansatz may

provide a reliable approximation for the viscosity: we will explore this idea in Sec. 3.3.

Before we discuss the general solution of these equations in detail, let us consider its
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3.2 Bulk viscosity of dense matter

asymptotic limits.

Sub-thermal limit

In the limit µ∆ ≪ T corresponding to A ≪ 1 the non-linear terms can be neglected

(

d

dϕ
+ f

)

A = d cos (ϕ) . (3.24)

Since this equation is linear, the fluctuation A must be harmonic and only the n = 1

terms in the Fourier ansatz eq. (3.23) are present. Inserting this ansatz yields the

solution for the required Fourier coefficients

a1 =
d

1 + f 2
, b1 =

fd

1 + f 2
. (3.25)

Inserted in eqs. (3.21) and (3.22) this yields the general sub-thermal result, denoted

by a superscript <, for the bulk viscosity of an arbitrary form of matter which shows

the characteristic resonant form

ζ< =
C2Γ̃T κ

ω2 + (BΓ̃T κ)2
= ζ<max

2ωBΓ̃T κ

ω2 + (BΓ̃T κ)2
. (3.26)

As long as the combination of susceptibilities C2/B does not vary too quickly with

temperature, the sub-thermal viscosity has a maximum

ζ<max =
C2

2ωB
at Tmax =

(

ω

Γ̃B

) 1
κ

. (3.27)

Intermediate regime

According to eq. (3.20) at sufficiently low temperature and high frequency one has

f ≪ d and there can be an intermediate regime where over a range of amplitudes
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3.2 Bulk viscosity of dense matter

A ≪ (d/f)1/(2N+1) the feedback terms are negligible [78], and eq. (3.19) reduces to

dA
dϕ

≈ d cos (ϕ) ⇒ A = d sin (ϕ) (3.28)

Correspondingly the regime of the parameter d, where this approximation is valid

and thereby the result for the viscosity is independent of the parameter f , is given by

f ≪ d≪ f−
1

2N (3.29)

so that such an intermediated regime is only realized for f ≪ 1.

The simple result for A allows a straightforward evalution of the integral in

eq. (3.21) and yields in this intermediate regime where the amplitude is directly pro-

portional to the density fluctuation, denoted by the superscript ∼, a general analytic

result for the viscosity3

ζ∼ =
C2Γ̃T κ

ω2

(

1 +
N
∑

j=1

(2j + 1)!!χj

2j (j + 1)!

(

C

T

∆n

n̄

)2j
)

(3.30)

At small density amplitudes the first term in the parentheses dominates which cor-

responds to a low temperature approximation of the subthermal result eq. (3.26).

At large amplitudes the highest term in the sum dominates, resulting in a density

dependence ∼ (∆n/n̄)2N whereas the temperature dependence precisely cancels.

Finally, taking into account that on one hand the non-linear terms in eq. (3.30)

are negligible in the subthermal regime and on the other hand in the regime f > 1,

i.e. T > Tmax, where the resonant denominator eq. (3.25) in the subthermal result

becomes relevant, the condition eq. (3.29) is not fulfilled anyhow, the two results can

3Note that this result cannot be obtained using eq. (3.22) since the derivation of the latter
equation depends on the assumption that the feedback terms are non-vanishing.
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be combined to an expression that is valid in both regimes

ζ. = ζ< + θ(Tmax−T )
C2Γ̃T κ

ω2

N
∑

j=1

(2j + 1)!!χj

2j (j + 1)!

(

C

T

∆n

n̄

)2j

(3.31)

Supra-Thermal limit

The suprathermal limit, µ∆ ≫ T , corresponds to A ≫ 1. Since the feedback term in

the differential equation is restraining, this limit can only be reached in the limit of

large driving terms d ≫ 1. In this case only the largest power of A is relevant and

eq. (3.19) reduces to

0 = d cos (ϕ)− χNfA2N+1 ⇒ A ∼
(

∆n∗
n̄∗

) 1
2N+1

. (3.32)

The viscosity scales correspondingly in this limit as

ζ ∼
(

∆n∗
n̄∗

)− 2N
2N+1

(3.33)

and decreases at very large amplitudes.

General solution

After these limiting cases we will discuss the qualitative aspects of the general solution

eq. (3.22). Due to the non-linearity of the differential equation (3.19) this requires

a numeric solution. Yet, for each weak channel, characterized by the constants χj,

such a solution as a function of the two independent variables d and f has to be

performed only once and is then valid for any equation of state and includes the

complete dependence on the underlying parameters in eq. (3.20). The qualitative

behavior of the solution as a function of the two independent parameters d and f is

shown for hadronic matter with modified Urca process in fig. 3.1. Turning up the

feedback term at fixed driving term increases the phase shift of the waveform from 0 to
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Figure 3.1: Waveform A (φ) = µ∆ (ωt) /T for different values of the two independent
parameters. We show only the positive half-wave, on a logarithmic scale. Left panel:
Fixed driving term d = 1, with varying feedback term f = 0.001, 0.01, · · · , 1000. At
small values of f the chemical potential fluctuation is basically in phase corresponding
to the approximation eq. (3.28). As f rises, the phase lag increases from zero towards
π/2, but at the same time the amplitude decreases as 1/f . Right panel: Fixed
feedback term f = 1, with varying driving term d = 0.001, 0.01, · · · , 1000. As d
rises, the phase lag rises from π/4 to π/2 and the waveform becomes increasingly
anharmonic, approaching a square wave in the limit.

π/2 and at the same time decreases the amplitude, but the waveform stays harmonic.

In contrast, turning up the driving term at fixed feedback increases the amplitude

towards the supra-thermal regime A > 1 and the waveform becomes increasingly

anharmonic. Recall, however, that only the phase shifted harmonic component in the

Fourier expansion contributes to the viscosity eq. (3.22).

Motivated by the above expression eq. (3.27) for the maximum in the sub-thermal

regime the general result can be written in the form

ζ = ζ<max I (d, f) =
C2

2ωB
I (d, f) (3.34)

where the dimensionless function I that includes the non-trivial parameter depen-
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dence is given by

I(d, f) ≡ 2

πd

∫ 2π

0

A(ϕ; d, f) cos(ϕ)dϕ , (3.35)

or the analogous expression using eq. (3.21), where depending on the parameters either

of the two forms can be more suitable for a numerical evaluation. The expression I can

then be tabulated as a function of the independent parameters d and f . We believe

that presenting our results in this form will make them easier to apply to calculations

of r-mode damping, where the complete parameter dependence is required. The

computation of the damping time of the mode involves an integral over the star of an

expression that involves the bulk viscosity which varies throughout the star because

of its dependence on the amplitude of the mode and the susceptibilities, both of which

are position-dependent. The function I(d, f) encapsulates the dependence of the bulk

viscosity on the position-dependent parameters, allowing straightforward evaluation

of the damping time integral.

The function I(d, f) is shown in fig. 3.2 for two examples: a model of strange quark

matter and a model of hadronic matter; details of the models are discussed below.

We see that the function has the same qualitative form in both cases. It has a global

maximum value of 1, reached in the sub-thermal limit and a line of local maxima

along a parabola in the d-f -plane. Thus the maximum value (3.27) of the sub-thermal

viscosity is also the maximum in the general case and depends only on the equation

of state, the density and the frequency but is independent of the weak rate. The weak

rate influences, however, at what temperatures and amplitudes the local maxima are

reached. As seen from eq. (3.20), the parameter d is directly proportional to the

amplitude, so that at moderate feedback an amplitude increase does initially not

affect the viscosity at all, corresponding to the amplitude-independent sub-thermal

result. But once the amplitude becomes sufficiently large we enter the supra-thermal

regime and the viscosity increases strongly by orders of magnitude until it reaches
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its maximum. The size of the amplitude A is denoted in fig. 3.2 by the darkness of

shading of the surface. This qualitative behavior has already been observed in [78]

but we find that at even higher amplitudes the viscosity decreases again according to

the limiting behavior eq. (3.33). In contrast, at large feedback the viscosity becomes

basically amplitude independent over the relevant parameter range as described by

the sub-thermal result.

Let us now discuss the dependence of the viscosity on the underlying parameters

in eq. (3.20). An amplitude increase (keeping all other variables fixed) results in a

linear increase in the variable d as shown by the dashed (blue) curves in fig. 3.2. An

increase in temperature changes the viscosity along a line shown by the solid (red)

curves. In order to assess the frequency and amplitude dependence we must take into

account the prefactor in eq. (3.34). This prefactor, given by the maximum viscosity

in the subthermal regime, is shown in fig. 3.3, for the hadronic model of fig. 3.2(a). It

exhibits a monotonic increase with density and inverse angular frequency. An increase

in angular frequency therefore changes the viscosity via a change of I towards the

negative f -direction and furthermore via the overall prefactor featuring an additional

1/ω dependence. A density increase has an even more indirect impact since it depends

on the detailed form of the susceptibilities C (n̄∗) and B (n̄∗) which likewise arise in

the prefactors of the viscosity. These dependencies will be studied in more detail

below.

3.3 Strange quark matter

3.3.1 General features

It has been suggested that the true ground state of matter at high densities may

be strange quark matter [22, 23] consisting of u, d and s quarks. In that case self-
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(a) Hadronic matter, modified Urca process (b) Quark matter, non-leptonic process

Figure 3.2: The function I arising in the general solution eq. (3.34) for two models of
dense matter. Left panel: hadronic matter with modified Urca equilibration. Right
panel: quark matter with the non-leptonic equilibration process eq. (3.36). The
function has a global maximum of 1 reached asymptotically for d → 0, f = 1 and
a line of slowly decreasing local maxima along a parabola in the d-f plane. The
shading of the surface denotes the size of the amplitude A so that dark shades of grey
represent the supra-thermal regime. Eq. (3.20) relates d and f to underlying physical
parameters such as temperature T and amplitude. An amplitude increase (keeping
all other variables fixed) results in a linear increase in the variable d as shown by the
dashed (blue) curves. An increase in temperature changes the viscosity along a line
shown by the solid (red) curves.

bound strange stars could exist. In this section we apply the results obtained above

to strange quark matter, which is both an interesting physical scenario and a useful

introductory example in which one can make illuminating simplifications which are

not possible for the case of hadronic matter discussed in the next section. The bulk

viscosities of various forms of strange quark matter have previously been analyzed

[78, 66, 84, 85, 86, 76, 65, 87, 88, 89], and the influence of strong magnetic fields has

recently been discussed [90].

The dominant channel in unpaired strange quark matter is the non-leptonic flavor

changing process

d+ u↔ s+ u . (3.36)
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Figure 3.3: The maximum viscosity in the supra-thermal limit eq. (3.47) of hadronic
matter (upper surface) and a hadronic gas (lower surface) as a function of baryon
density and angular frequency. This represents also the analytic prefactor of the
general expression in eq. (3.22). The corresponding plot for strange quark matter
eq. (3.53) would be trivial since it does not depend on the density to leading order
and only shows the analytic 1/ω dependence.

The corresponding quark Urca processes, which involve leptons, are parametrically

suppressed in the ratio T/µq. The conserved quantity that tracks the driving oscil-

lation can be chosen as the baryon number, with density n = 1
3
(ns + nd + nu). The

equilibrating chemical potential eq. (3.8) carries in this case the quantum numbers of

neutral K-mesons and is therefore denoted by

µK ≡ µs − µd (3.37)

The rate of the non-leptonic process eq. (3.36) is given by [91]

Γ(↔)
q = − 16

5π5
G2

F sin2θC cos2θCµ
5
dµK

(

4π2T 2 + µ2
K

)

(3.38)

From this expression one can directly obtain the equilibration rate parameters Γ̃, κ

and χi in the parameterization eq. (3.17). Their values are given in the first row of
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table 3.1.

Matter/Channel Γ̃
[

MeV(3−κ)
]

κ χ1 χ2 χ3

quark non-leptonic 6.59×10−12
( µd

300 MeV

)5

2
1

4π2
0 0

hadronic direct Urca 5.24·10−15
(

xn

n0

)1
3

4
10

17π2

1

17π4
0

hadronic modified Urca 4.68·10−19
(

xn

n0

)1
3

6
189

367π2

21

367π4

3

1835π6

Table 3.1: Weak interaction parameters describing the considered damping process.
Here µq is the quark chemical potential, n is the baryon density, n0 nuclear saturation
density and x the proton fraction.

3.3.2 Analytic approximation

Since in this case only cubic non-linearities arise, it is possible to obtain an approxi-

mate analytic solution to the non-linear equation (3.19) that goes beyond the simple

approximation eq. (3.30). Taking into account the above observation that only the

leading Fourier coefficient in the expansion of the chemical potential oscillation con-

tributes to the bulk viscosity it is natural to seek such a solution via a Fourier ansatz

up to a given order O

A (t) =
O
∑

n=−O

Ãne
inωt (3.39)

where the complex form is used to simplify the computation. In principle, the ampli-

tude of the leading Fourier mode will depend on the truncation order O, but analyti-

cally solving eq. (3.19) via a computer algebra system to order O = 2 we find that the

coefficients Ã±2 vanish identically. Correspondingly anharmonicities do not directly

contribute to the viscosity and are even absent to next to leading order so that we can

restrict our analysis to the leading order O = 1. Although such a parameterization
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neglects any anharmonicities it properly captures both the amplitude and the phase

shift of the oscillation even in the large amplitude regime. Due to the reality of the

solution there is only one independent complex Fourier exponent determined by a

non-linear algebraic equation. In the case of quark matter where χi = 0 for i > 1

and only the leading non-linear term χ (µK/T )
3 is present an analytic solution of

this equation is possible. In this case we can decompose the amplitude into real and

imaginary parts Ã1 = AR + iAI , obeying coupled equations

fAR

(

1 + 3χ(A2
R + A2

I)
)

+ AI = −d/2 (3.40)

fAI

(

1 + 3χ(A2
R + A2

I)
)

− AR = 0 (3.41)

Note that an analytic solution is only possible because the quark matter equations

are cubic; other forms of matter with higher order non-linearities in eq. (3.17) require

a numeric solution. The above system of algebraic equations has a lengthy analytic

solution which we refrain from giving here because, as we will see below, it can be

very accurately approximated by a much simpler expression (E.3) constructed from a

combination of the solutions in the sub-thermal and supra-thermal regimes. Therefore

we now concentrate on the supra-thermal case, denoted by the index >, where the

temperature-dependent term can be neglected,

A>(ϕ) = 2AR cos (ϕ)− 2AI sin (ϕ)

= −3d

2

(

(q(z)2 − 1)
2

√
3z q(z)2

cos(ϕ) +
q(z)2 − 1

z q(z)
sin(ϕ)

)

, (3.42)

where the dimensionless quantity z is defined by

z ≡ 9
√
3

8
χd2f =

9
√
3χ

8

Γ̃C2B

ω
T κ−2

(

∆n∗
n̄∗

)2

(3.43)
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and

q(z) ≡
(√

z2 + 1− z
) 1

3
. (3.44)

Eq. (3.22) then yields the approximate analytic result for the bulk viscosity in the

supra-thermal regime

ζ> ≈ 2

3
√
3

C2

Bω
h

(

9
√
3χ

8

Γ̃C2B

ω
T κ−2

(

∆n∗
n̄∗

)2)

(3.45)

in terms of the dimensionless function

h(z) =
9

4z

(

(√
z2+1−z

) 2
3
+
(√

z2+1+z
) 2

3 −2

)

. (3.46)

This function has a maximum at zmax = 3
√
3. Since h(zmax) = 3

√
3/4, the corre-

sponding maximum value of the viscosity is

ζ>max =
2

3
√
3

C2

Bω
h(zmax) =

C2

2Bω
(3.47)

which strikingly is the same expression as in the sub-thermal limit eq. (3.27). Corre-

spondingly the bulk viscosity has a universal upper bound ζmax that is independent

of the particular weak damping process. It is directly proportional to the oscillation

period with a coefficient that only depends on the response of the strongly interacting

matter. However, the corresponding temperature (3.27) and amplitude

(

∆n∗
n̄∗

)

max

=

√

8ω

3χΓ̃T κ−2C2B
(3.48)

at which this maximum is reached both depend on the weak rate.

Knowing the upper bound ζmax and the functional behavior in the extreme sub-

thermal and supra-thermal limits as well as the additive form eq. (3.31) in the low
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temperature regime, allows us to give a simple parameterization of the full function

for all temperatures and amplitudes. We construct a weighted sum of the analytic

results in the sub-thermal eq. (3.26) and the supra-thermal regime eq. (3.45),

ζpar ≈ ζ< + θ(Tmax − T )
ζmax − ζ<

ζmax

ζ> =
C2

2Bω

(

2ωΓ̃BT
κ

ω2 + Γ̃2B2T 2κ
(3.49)

+ θ

(

(

ω

Γ̃B

) 1
κ

− T

)

4

3
√
3

(

ω − Γ̃BT
κ
)2

ω2 + Γ̃2B2T 2κ
h

(

9
√
3χ

8

Γ̃BC2T κ−2

ω

(

∆n∗
n̄∗

)2
)

)

Studies of the damping of compact star oscillations previously took into account

only the first, sub-thermal term in the parameterization eq. (3.49). The simple an-

alytic form allows one to conveniently extend these studies in order to include large

amplitude effects encoded in the second term. The small deviations of the simplified

parameterization eq. (3.49) from the exact value of the bulk viscosity are negligi-

ble compared to the considerable uncertainties inherent in such a damping analysis.

Evaluation of this expression requires knowledge of the susceptibilities B and C that

depend on the equation of state.

3.3.3 Models of quark matter

We now apply the results derived above to some simple models of quark matter. We

start with the simplest model, free quarks in a “confining bag”. We will call this

a “quark gas” (QG). We consider a 3-flavor quark and electron gas, with massless

electron, up and down quarks and strange quark of mass ms with pressure

pQG =
1

4π2

(

µ4
d+µ

4
u+µsp

3
Fs−

3

2
m2

sµspFs

+
3

2
m4

s log
(µs + pFs

ms

)

)

− B +
µ4
e

12π2
(3.50)
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where the strange quark Fermi momentum is given by p2Fs = µ2
s − m2

s. Here B is

the phenomenological bag constant that is important for the equilibrium composition

of a strange star, but does not affect transport properties like the bulk viscosity.

The equilibrium state is determined from eq. (3.50) by taking into account charge

neutrality and weak equilibrium with respect to both the explicitly considered non-

leptonic channel as well as the quark Urca channel.

In quark matter there are multiple channels for beta equilibration: as well as

the nonleptonic channel (3.36) there are Urca channels which convert d or s quarks

in to u quarks and electrons, and emit neutrinos. However, at temperatures and

oscillation frequencies of interest for compact star physics the Urca rates are much

slower, and their contribution to the bulk viscosity is heavily suppressed. This means

that the fractions xu and xe remain constant during the oscillation. The required

susceptibilities then are given by

Cq = n̄

(

∂µs

∂n
− ∂µd

∂n

)

xs,xu,xe

, (3.51)

Bq =
1

n̄

(

∂µs

∂xs
− ∂µd

∂xs

)

n,xu,xe

. (3.52)

Taking into account charge neutrality, the above equation of state yields to leading

order in ms/µq the susceptibilities given in table 4.2 (for the case c = 0).

According to eq. (3.47) the maximum viscosity of a quark gas is given by

ζmax ≈ m4
s

12π2ω
(3.53)

which depends on density only through possible density-dependence of the strange

quark mass.

In Fig. 3.4 we give a comparison between the parameterization eq. (3.49) and
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B [MeV−2] C [MeV]

quark matter (gas: c=0)
2π2

3(1− c)µ2
q

(

1+
m2

s

12(1− c)µ2
q

)

− m2
s

3(1− c)µq

hadronic matter
8S

n
+

π2

(4 (1−2x)S)2
4(1−2x)

(

n
∂S

∂n
−S

3

)

free hadron gas
4m2

N

3 (3π2)
1
3 n

4
3

(3π2n)
2
3

6mN

Table 3.2: Strong interaction parameters describing the response of various models
of dense matter. In the case of hadronic matter with baryon density n a quadratic
ansatz in the proton fraction x parameterized by the symmetry energy S eq. (3.61) is
employed. The expressions for a free hadron gas are given to leading order in n/m3

N ,
and for quark matter with quark chemical potential µq using eq. (3.54) to next to
leading order in ms/µq. The parameter c takes into account interaction effects within
the employed quark matter model and vanishes for an ideal quark gas.

the full numeric solution. We show the amplitude dependence of the viscosity of

strange quark matter for a range of temperatures These results are analogous to

those given by Madsen in his initial analysis of supra-thermal effects [78]. The analytic

solution features the qualitative form that has been observed for the general result

in fig. 3.2 and shows a striking agreement with the full solution in the physically

relevant region of amplitudes below the maximum. Note that for temperatures around

Tmax the parametrization eq. (3.49) overestimates the viscosity for amplitudes above

(∆n/n̄)max, as can be seen for the T = 109 K curve in fig. 3.4. However, if such

amplitudes are reached then suprathermal bulk viscosity is overwhelmed, and other

physics will have to be invoked to stop the growth of the mode.

We now examine the sensitivity of our results to uncertainties in the quark matter

equation of state. We use an extension of the phenomenological parameterization

proposed in [14] that allows us to study the behavior of the equation of state around

chemical equilibrium. Expanding the ideal gas pressure to quartic order in ms, the
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Figure 3.4: The viscosity of a strange quark gas as a function of the amplitude of
the density oscillation ∆n/n̄ for different temperatures. The plots are given for an
intermediate density n̄ = 2n0 and a frequency ω = 8.4 kHz corresponding to the
oscillation frequency ω = 4/3Ω of the quadrupole r-mode of a millisecond pulsar.
The viscosity increases with the given temperatures starting from 106 K (bottom)
to 109 K (top) and then decreases again. The thick, dashed curves represent the
analytic model parametrization eq. (3.49) and the thin, full curves beneath them give
the full numeric result. Clearly the parametrization is very accurate in the relevant
regime below the maximum. At high temperatures the viscosity does not reach the
supra-thermal regime for any physical value of the amplitude, hence the horizontal
lines for T > 1010 K.
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ms-independent quartic terms in the individual quark are modified

ppar =
1− c

4π2

(

µ4
d + µ4

u + µ4
s

)

− 3m2
sµ

2
s

4π2

+
3m2

s

32π2

(

3 + 4 log

(

2µs

ms

))

− B +
µ4
e

12π2
(3.54)

where c is a new parameter which incorporates some effects of strong interactions

between the quarks and ms can parametrize here, in addition to corrections arising

from the strange quark mass, also other interaction effects, like the pairing gap in

color superconducting matter [14].

The bulk viscosity is sensitive (via the susceptibilities) to the parameters c and

ms, but not to the bag constant. We show in fig. 3.5 the effect on the bulk viscosity

of varying c and ms within their expected range of values, at twice nuclear saturation

density and a temperature T = 108 K. We calculate the bulk viscosity for an angular

frequency of the oscillation of ω = 8.4 kHz (corresponding to the r-mode of a pulsar

with a period of 1 ms). We find that the uncertainty amounts to more than an order of

magnitude. In contrast to the equilibrium composition of strange stars which proved

to be strongly dependent on the parameter c [14], in the present case the effective

strange quark mass has a larger impact.

Finally we show in fig. 3.6 the dependence of the viscosity of a quark gas on the

density of the matter and the frequency of the oscillation. The density dependence is

most pronounced in the sub-thermal regime and becomes basically irrelevant in the

supra-thermal regime, in accordance with the density-independence of the maximum

of the viscosity eq. (3.53). Further, we see that the viscosity increases strongly with

frequency, according to the 1/ω-dependence of the maximum eq. (3.53) which arises

as a prefactor in eq. (3.49). Therefore, the results for a millisecond-pulsar given here

in all other figures present a lower limit for the viscosity, whereas the damping of
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Figure 3.5: The dependence of the viscosity on parameters of the equation of state
of strange quark matter using the simple parameterization eq. (3.54). We show the
amplitude dependence at T = 108 K for ω = 8.4 kHz and n̄ = 2n0. Dashed curves are
for c = 0, solid curves are for c = 0.3. We show ms = 100MeV (lowest two curves,
magenta), ms = 150MeV (middle two curves, blue) and ms = 200MeV (highest two
curves, cyan).

slower rotating stars is much faster.

3.4 Hadronic matter

3.4.1 General features

The bulk viscosity has been calculated for various phases of nuclear matter (unpaired,

superfluid, kaon-condensed etc) with flavor equilibration via either direct or modified

Urca processes [7, 92, 93, 94, 95, 96]. The leptonic contribution has recently been

calculated [97], and hyperonic matter has also been studied [53, 98, 99, 100]. We
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Figure 3.6: The dependence of the viscosity of quark matter on the density and
oscillation frequency, using the phenomenological equation of state eq. (3.54) with
ms = 150MeV and c = 0, at T = 108 K. The dashed (blue) “baseline” curve is for
n̄ = 2n0 and a high angular frequency ω = 8.4 kHz corresponding to a millisecond
pulsar. The dot-dashed (orange) curves show the variation from the baseline with
density: a low value n̄ = 0.5n0 and a high value of n̄ = 5n0. The dotted (purple)
curves give the variation from the baseline with angular frequency: a lower value
ω = 0.84 kHz and an intermediate value ω = 2.8 kHz.

concentrate on the simplest case of non-superfluid hadronic npe matter. We note

however, that the generic properties of our results also apply to more complicated

forms of matter like hyperonic and/or superfluid nuclear matter. In the case of

hadronic matter we assume that weak equilibration occurs via the Urca channel

p+ e− → n+ νe , n→ p+ e− + ν̄e (3.55)

There are two qualitatively different cases depending on whether the direct process is

possible or only the modified version where a bystander nucleon is necessary to satisfy
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energy-momentum conservation. The latter represents a particular strong interaction

vertex correction to the above process. However, from the point of view of the weak

interaction these different processes belong to the same channel. Taking into account

baryon number and charge conservation δnp − δne = 0, the driving baryon number

density oscillation yields here the oscillating chemical potential difference

µI ≡ µn − µp − µe . (3.56)

where the notation reflects that the equilibrating quantity in this case is isospin.

Taking into account the effect of supra-thermal oscillation amplitudes requires

the non-linear µI-corrections to the corresponding rates. These have been given for

hadronic matter in [101, 7, 102] in the standard case that only modified Urca processes

are allowed

Γ
(↔)
hm µI = −3.5 · 1013 ergs

cm3s

(

xn

n0

) 1
3 T 8

8

11513
(3.57)

·
(

14680
µ2
I

π2T 2
+ 7560

µ4
I

π4T 4
+ 840

µ6
I

π6T 6
+ 24

µ8
I

π8T 8

)

and in the enhanced case when direct Urca processes dominate [101, 103]

Γ
(↔)
hd µI = −4.3 · 1021 ergs

cm3s

(

xn

n0

) 1
3 T 6

8

457
(3.58)

·
(

714
µ2
I

π2T 2
+ 420

µ4
I

π4T 4
+ 42

µ6
I

π6T 6

)

where T8 is the temperature in units of 108 K. Here we use the expressions given

in [101], but we note that the hadronic rates depend on model assumptions for the

behavior of the strong interaction at high density (see [102, 103]) and thereby involve

uncertainties. These expressions yield the parameter values given in table 3.1. There
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are major differences between these hadronic rates and the corresponding one for

strange quark matter. In quark matter, non-leptonic processes are naturally allowed

and only particles that have a Fermi surface (quarks in this case) are involved. In

contrast in hadronic matter such processes are absent (unless hyperons are present)

and equilibration must proceed via semi-leptonic processes involving particles with no

Fermi surface (neutrinos in this case) giving a much stronger temperature dependence.

As noted before the simple analytic approximation suitable for strange quark matter

is not applicable here. Nevertheless we will see that many qualitative aspects of that

solution obtain in the general case. We note that although the prefactors of the non-

linear terms decrease strongly as the power of µI/T rises, it is not sufficient to neglect

them since they enter the non-linear differential equation (3.19) where they dominate

at sufficiently large amplitudes.

According to eq. (3.15), the susceptibilities for hadronic matter are

Ch = n̄

(

∂µn

∂n

∣

∣

∣

∣

xn

− ∂µp

∂n

∣

∣

∣

∣

xn

− ∂µe

∂n

∣

∣

∣

∣

xn

)

, (3.59)

Bh =
1

n̄

(

∂µn

∂xn

∣

∣

∣

∣

n

− ∂µp

∂xn

∣

∣

∣

∣

n

− ∂µe

∂xn

∣

∣

∣

∣

n

)

. (3.60)

Computing these quantities requires the equation of state of dense neutron matter.

We will perform calculations using two model equations of state of nuclear matter.

The first one is the “hadron gas”, consisting of an electrically neutral beta-equilibrated

mixture of free neutrons, protons, and electrons. The second one is “APR hadron

matter”, using the well-known model by Akmal, Pandharipande and Ravenhall [11]

which relies on a potential model that reproduces scattering data at nuclear densities.

As a low density extension of the APR data we use the equation of state given by

Baym, Pethick and Sutherland [12, 13]. In order to make it easy to apply our general

results to other equations of state, we implement the APR equation of state using
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the simple parameterization employed in [104] to approximate the dependence of the

energy per particle on the proton fraction x by a quadratic form

E(n, x) = Es(n) + S(n)(1− 2x)2 (3.61)

where Es and S are the corresponding energy for symmetric matter and the symmetry

energy. We perform a global quartic fit to the APR prediction for symmetric and pure

neutron matter En which then yields the symmetry energy as

S(n) = En(n)− Es(n) (3.62)

and the complete pressure including the electron contribution reads

p(n, x, µe) = n2

(

dEs(n)

dn
+
dS(n)

dn
(1−2x)2

)

+
µ4
e

12π2
(3.63)

In the absence of oscillations the β-equilibrium condition µI = 0 yields the electron

chemical potential as

µe = 4 (1− 2x)S(n) (3.64)

and the requirement of charge neutrality np = ne allows us to determine the proton

fraction x(n) so that the pressure becomes a function of the baryon density alone.

With these explicit expressions the susceptibilities in table 4.2 can be computed and

the general results in section 3.2 can be employed. In the following we will discuss

the numerical results for the bulk viscosity of nuclear matter, comparing it with those

for one particular model of quark matter, the one given by eq. (3.54) with ms = 150

MeV and c = 0.3.
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3.4.2 Sub-thermal case

When µ∆ ≪ T we obtain from the analytic expression eq. (3.26) the results shown in

fig. 3.7 where the bulk viscosity of strange quark matter discussed in the previous sec-

tion is also included for comparison. Here and in the following plots we study matter

at twice nuclear saturation density, n̄ = 2n0, and a compression cycle with a high an-

gular frequency ω = 8.4 kHz corresponding to an r-mode in a pulsar with a period of

1 ms. We see in fig. 3.7 that the maximum bulk viscosity of hadronic matter as a func-

tion of temperature (or equivalently as a function of angular frequency) is roughly an

order of magnitude smaller than the maximum value for strange quark matter. This

is unrelated to the beta-equilibration rate: the maximum viscosity depends according

to eq. (3.27) on the relevant susceptibilities of the matter in question.

Other features of the plot do depend on the equilibration rate. As we expect from

(3.26), quark matter achieves its maximum viscosity at the lowest temperature, and

has less suppression at low temperatures. This is because the nonleptonic equilibra-

tion only involves two particles in the initial and final state, each of which has a large

Fermi momentum ∼ µq and hence large phase space factors. This leads to a low

κ = 2 and a large value of Γ̃ (table 3.1). Thus the suppression at low temperature

is only T 2, and, according to eq. (3.27), Tmax is relatively low. The next fastest is

the direct Urca process in nuclear matter, which involves more particles (including

neutrinos which have no Fermi surface and thus very little phase space) and therefore

has a higher κ and lower Γ̃, giving it stronger T 4 suppression at low temperatures,

and a higher Tmax. The slowest is the modified Urca process in nuclear matter, which

involves additional spectator nucleons, raising κ to 6 and further lowering Γ̃, raising

Tmax, and increasing the low-T suppression to T 6.

Note that the right-most solid and dashed curves in fig. 3.7, for hadronic matter

with modified Urca equilibration, correspond roughly to the leftmost of the three
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solid (red) curves in fig. 3.2(a) that run along the surface from front to back.

We draw two important conclusions from fig. 3.7. First, we have retained the

full resonant structure of the viscosity compared to previous analyses [7, 103] where

a low temperature approximation Γ̃BT κ ≪ ω was used. This allows us to see that

the viscosity decreases again at large temperatures and the maximum (3.27) occurs

at millisecond-scale frequencies at potentially physically relevant temperatures of the

order 1010 K for direct Urca and 1011 K for modified Urca. This means that the

resonant structure may be important in some astrophysical applications and from

eq. (3.27) it is clear that it becomes increasingly important at lower frequencies.

Second, we see in fig. 3.7 that for nuclear matter there is a considerable difference

between the solid curves which are based on an interacting equation of state [11, 12, 13]

and the dashed curves which are for a free gas4 of nucleons and electrons. These

models have different susceptibilities B and C, and the main effect of this is a vertical

shift of the whole curve. The shift in Tmax is smaller because of the square root in

eq. (3.27). Hadronic matter with interactions has been considered (with a more

simplified equation of state) in [103, 92] but many analyses [45, 50, 9] rely on the

simple analytic result5 given by Sawyer [7] which is based on the free gas expression.

We see that these differ by roughly a factor of three for the given density of n̄ = 2n0,

but according to fig. 3.3 this difference can increase strongly both at lower and higher

density.

4Note that strictly speaking there are no modified Urca processes in an ideal hadron gas. Yet,
for comparison with previous studies we use here the interacting matter expression for the rate but
the ideal gas expressions for the strong susceptibilities.

5Note that the numerical prefactor given in [7] is too large by two orders of magnitude, see also
[8].
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Figure 3.7: The sub-thermal approximation to the viscosity in the low amplitude limit
as a function of temperature for ω = 8.4 kHz and n = 2n0. The curves forming the
right-hand (red) peak represent the standard case of hadronic matter with modified
Urca processes. The curves forming the middle (green) peak are for hadronic matter
when direct Urca process are allowed. The curves forming the left-hand (blue) peak
are for strange quark matter with non-leptonic processes. The dashed curves are for
the free hadron and free quark models; the solid curves are for APR hadron matter,
and interacting quarks eq. (3.54) with ms = 150MeV and c = 0.3. With APR nuclear
matter the bulk viscosity is ∼ 3 times larger than for the free hadron gas used e.g. in
[7, 8, 9].
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3.4.3 The supra-thermal regime

Beyond the sub-thermal limit, in general a numeric evaluation of eqs. (3.19) and (3.22)

is required. As discussed in sect. 3.2, the temperature and amplitude dependence of

the bulk viscosity for a given form of matter can be expressed in terms of the function

I(d, f) which was plotted in a form that is independent of the equation of state of

hadronic matter with modified Urca processes in fig. 3.2.

Using this result, we show in fig. 3.8 plots of the amplitude dependence of the

bulk viscosity at two temperatures (left panel: T = 106 K; right panel: T = 109 K)

for the various forms of hadronic and quark matter considered in this chapter. Here

solid lines again show the results for interacting matter whereas the dashed lines

show the free hadron/quark gas results. The dotted lines, which are in most places

invisible beneath the solid lines, show the analytic approximation eq. (3.30) valid in

the intermediate regime.

Note that the right-most curves in fig. 3.8, for hadronic matter with modified Urca

equilibration, correspond roughly to the foremost of the three dashed (blue) curves

in fig. 3.2(a) that run along the surface from left to right.

At the lower temperature the viscosity reaches the supra-thermal regime already

for small amplitudes, whereas at the higher temperature the sub-thermal regime ex-

tends to large amplitudes, giving a flat amplitude-independent plateau at low ampli-

tudes. The stronger non-linear feedback in the hadronic cases leads to a significantly

steeper rise that correlates with the largest power in eq. (3.17). Interestingly, despite

these differences the maximum value reached by varying the amplitude is still roughly

the same as the maximum value in the sub-thermal limit eq. (3.27), as has been ana-

lytically found in the case of strange quark matter. This is important since it means

that oscillations are approximately equally damped at all temperatures once the am-

plitude becomes sufficiently large. The maximum arises for amplitudes of the order
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0.01, 0.1 and 1 for strange quark matter and hadronic matter with direct and modi-

fied Urca, respectively. Therefore the simple analytic expression eq. (3.30) provides a

remarkably good approximation, at physical amplitudes and oscillation period close

to a millisecond, for hadronic matter in general and in particular for modified Urca

processes. As can be seen from fig. 3.6, at lower frequencies the maxima occur at lower

amplitudes and correspondingly the non-linear saturation of the viscosity, described

by the full numeric solution, becomes relevant. The supra-thermal enhancement of

the bulk viscosity is so strong, particularly for hadronic matter, that it could well pro-

vide the main saturation mechanism for unstable r-modes, stopping their growth at

amplitudes that are below the threshold for other competing saturation mechanisms

(e.g. non-linear hydrodynamics) but large enough to allow spin-down of a neutron

star via gravitational radiation on astrophysical time scales.

3.5 Conclusions

In this chapter we have studied the bulk viscosity of dense matter including its non-

linear behavior at large amplitudes (suprathermal regime). In particular we give a

general numerical solution for the bulk viscosity of degenerate matter in Sec. 3.2 that is

valid for all types of matter where equilibration occurs via fermions as well as arbitrary

equations of state and retains the full parameter dependence. This allows one to

include these supra-thermal effects in a systematic r-mode analysis. Furthermore, we

give an approximate analytic result for any arbitrary form of matter that is valid over

a large part of the supra-thermal regime, as well as a refined version for strange quark

matter with non-leptonic processes in Sec. 3.3 which is valid at all amplitudes. We

found that the free hadron gas model of nuclear matter, used for example in [45, 50, 9]

to compute the susceptibilities that enter the viscosity, is not accurate even in the
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Figure 3.8: Comparison of the bulk viscosity of the different forms of matter studied
in this work as a function of the density oscillation amplitude ∆n/n̄. The frequency
is ω = 8.4 kHz, corresponding to an r-mode in a millisecond pulsar and n̄ = 2n0.
Left panel: low temperature T = 106 K; right panel: high temperature T = 109 K.
The dashed curves are for the free hadron and free quark models; the solid curves
are for APR hadron matter, and interacting quarks eq. (3.54) with ms = 150MeV
and c = 0.3; for interacting matter the dotted curves which deviate just below the
peak represent the approximation eq. (3.30). The bottom (red) curves represent the
standard case of hadronic matter with modified Urca processes, the middle (green)
curves are for hadronic matter when direct Urca process are allowed and the top (blue)
curves are for strange quark matter with non-leptonic processes. Our calculations are
valid only for ∆n/n̄ ≪ 1, but we show their extrapolation to higher amplitudes in
order to compare with the qualitative general structure of the solution in fig. 3.2.
Note that this plot uses a high oscillation frequency and that the viscosity is even
larger at smaller values.
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sub-thermal regime, and underestimates the viscosity. An analogous observation

holds for models of interacting quark matter. Moreover, we find that the standard

low temperature (high frequency) approximation is not applicable for temperatures

around 1010 K and the full resonant form of the bulk viscosity is required. We confirm

previous results for the amplitude-dependence of the bulk viscosity of strange quark

matter [78] and find that these supra-thermal effects are parametrically even more

important in nuclear matter, because of higher-order non-linearities in the amplitude-

dependence of the Urca rate.

The most obvious application of our results is to the damping of unstable r-mode

oscillations in neutron stars. As the amplitude of the mode enters the supra-thermal

regime the viscosity will increase steeply above the sub-thermal result and can exceed

it by many orders of magnitude, but eventually it reaches an upper bound that is

completely independent of the particular weak damping process and depends only

on susceptibilities of the dense matter in question. The viscosity then decreases at

even larger amplitudes. We conclude that if r-mode growth is not stopped by the

supra-thermal bulk viscosity before this maximum is reached then other non-linear

dynamic effects [105, 106, 107, 108] will be required to stop it.

There are several other directions in which this work could be developed: Other

equations of state for quark matter could be studied, for example the perturbative

equation of state [109], and also other phases with different equilibration mechanisms.

The same is true for the various equations of state and phases of hadronic matter. Our

analysis was for the case of a single equilibration channel, and it would be interesting

to extend it to multiple channels, which may be relevant to both hadronic and quark

matter (see appendix A of [84] and [87]). In quark matter the non-Fermi liquid

enhancement of the Urca rate [110] should further increase resonant effects. The

application of our results to r-modes in neutron stars also raises interesting questions
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concerning the correct treatment of the crust [111], and possible modification of the

radial profile of the r-mode due to strong radial dependence of the bulk viscosity in

layered stars such as hybrid stars.

Finally we note that at low temperatures the suprathermal enhancement of bulk

viscosity becomes large, and the amplitude threshold for entering the suprathermal

regime becomes low. This may not be relevant to the damping of r-modes because

they are also damped by shear viscosity which becomes large at low temperature.

But for other modes of compact stars [112], such as monopole pulsations [113], shear

viscosity will not play such a significant role, and suprathermal bulk viscosity might

be the dominant source of damping if external perturbations make the amplitude

large enough. This might be relevant to old, cold, accreting stars in binary systems.
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Chapter 4

Viscous damping of r-modes: Small

amplitude instability

4.1 Introduction

In the previous chapter we studied the bulk viscosity of large amplitude oscillations

and showed that the supra-thermal enhancement of the bulk viscosity is so strong

that it could well provide the main saturation mechanism for unstable r-modes at

finite amplitudes. In this chapter, however, we restrict ourselves to the subthermal

regime µ∆ ≪ T , and study the viscous damping of the r-modes of compact stars

and analyze in detail the regions where small amplitude modes are unstable to the

emission of gravitational radiation. In the next section, Sec. 4.2, we explain different

star models that will be used later on in this chapter and in the next chapter, and

also we discuss the profile of the r-mode oscillations in neutron stars. Shear viscosity

of quark matter and hadronic matter are given in Sec. 4.3. In Sec. 4.4 we present

general expressions for the viscous damping times for arbitrary forms of interacting

dense matter. In Sec. 4.5 we derive general semi-analytic results for the boundary

of the instability regions of the r-modes, and also give the numerical results for the
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4.2 Star models and r-modes

instability regions for the considered star models. And finally the conclusions are

given in Sec. 4.6.

4.2 Star models and r-modes

4.2.1 Static star models

The analysis of compact star oscillations and their damping requires as a first step

the stable equilibrium configuration of the star. In this section we will discuss the

considered star models that are used later on. We employ the general relativistic

Tolman-Oppenheimer-Volkov (TOV) equations [38] to determine the equilibrium star

configuration. This requires the equation of state of neutral and β-equilibrated dense

matter. The recent measurement of a neutron star with the large mass 1.97±0.04M⊙

[4, 54] puts bounds on the equation of state of dense matter. We generally study

equations of state that can accommodate such a heavy star. We consider three qual-

itatively different classes and study in each case both a star model with a standard

value of 1.4M⊙ and one with a large mass 2M⊙:

1. Neutron stars (NS) are obtained for an equation of state that is hadronic at all

relevant densities. Whereas the above maximum mass does not pose problems

for neutron stars obtained from most hadronic equations of state, it seem nearly

impossible to obtain such heavy stars which contain a significant amount of hy-

peronic matter [54]. Therefore we do not study this possibility here and consider

only stars consisting of neutrons, protons and electrons as well as muons at suf-

ficiently high density. We also neglect the possible presence of hadronic pairing

which in general significantly reduces the bulk viscosity [92, 93]. Such pairing

is only realized in certain shells within the star and as long as they are not

large this might not qualitatively change the results obtained here. However,
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4.2 Star models and r-modes

the intricate dynamics of a two-component fluid can change this simplistic pic-

ture [114]. For our numerical results we employ the equilibrated equation of

state by Akmal, Pandharipande and Ravenhall (APR) [11] which relies on a

potential model that reproduces scattering data in vacuum supplemented by a

model for three-body interactions in order to reproduce the saturation proper-

ties at nuclear densities. As a low density extension of the APR data we use the

equation of state given by Baym, Pethick and Sutherland (BPS EoS) [12, 13].

Furthermore, we study in this class also a neutron star with an ultra-high mass

2.21M⊙ close to the mass limit for the APR equation of state, since in this

case direct Urca interactions are possible in the interior of the star leading to a

significantly enhanced weak rate, cf. e.g. [81].

2. Hybrid stars (HS) with an outer hadronic part and a core of quark matter

are obtained from an equation of state where at some density the effective

degrees of freedom change from hadrons to quarks. In general the equation of

state of interacting quark matter is unknown and there are only hints from the

perturbative regime [115, 116, 109] or model studies. We use the simple quartic

parameterization for the equation of state of ungapped 3-flavor quark matter

[14, 81] given by eq. 3.54 in the previous chapter.

ppar =
1− c

4π2

(

µ4
d + µ4

u + µ4
s

)

− 3m2
sµ

2
s

4π2
(4.1)

+
3m4

s

32π2

(

3 + 4 log

(

2µs

ms

))

− B +
µ4
e

12π2

where c, ms and B are effective model parameters that incorporate some ef-

fects of the strong interactions between the quarks. From this equation of state

we find the β-equilibrated and charge neutral ground state which depends on
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4.2 Star models and r-modes

a single quark number chemical potential µq. We use the general form since

the computation of transport properties below requires susceptibilities around

the equilibrium state. Within the parameterization eq. (4.1) the recent mea-

surement of a heavy star strongly restricts the equation of state so that only

equations of state that are strongly interacting (c > 0.3) are compatible [14, 54].

These are equations of state where the transition to quark matter is at rather

low values of the baryon number . 1.5n0, where n0 is nuclear matter density,

and we choose here one where it occurs at 1.5n0. Since the APR equation

of state happens to be very similar to the above form eq. (4.1) so that even

multiple transitions are possible [14], we do not expect the transition density

to be a robust result that is independent of the considered equations of state.

Therefore we study here in addition also two 1.4M⊙ hybrid star models ob-

tained with quark equations of state that cannot accommodate a heavy star

when combined with the APR equation of state. Ona has a small quark core,

obtained for a transition density of 3.25n0, and the other a medium-sized quark

core, obtained for a transition density of 3n0.

There are many possible phases of quark matter that feature various color su-

perconducting pairing patterns. Here we do not explicitly study star models

with pairing, but note that the parameterization eq. (4.1) can also describe su-

perconducting matter. For our hybrid star models we make the assumption of

local charge neutrality, excluding the possibility of a mixed phase and thereby

circumventing the description of the wealth of possible geometric structures of

such a mixture.

3. Strange stars (SS) that are self-bound could exist according to the strange

matter hypothesis [23] that the true ground state of strongly interacting matter

is 3-flavor quark matter. For strange stars we use the same equation of state
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eq. (4.1), but use parameter sets that realize the strange matter hypothesis. In

contrast to the case of hybrid stars large mass strange stars are possible even for

c = 0 and due to our ignorance of the precise form of the interacting equation

of state we choose this value to keep our model as simple as possible. For a

strange quark mass of ms = 150 MeV stable strange stars exist in this case for

bag constants Blim < (158MeV )4, whereas heavy strange stars exist for this

mass value only for bag constants B . (140MeV )4. Lower effective quark mass

values or changes in the quartic term (c 6= 0) relax these bounds.

We note already at this point that although the detailed parameters we chose here for

our star models are rather arbitrary, we will give general analytic expressions below

that will reveal the dependence of our main results on the various model parameters.

The characteristic parameters of the considered star models are given in table 4.1. As

is a well known property, the radii of the different models vary only moderately with

the mass for masses of 1 to 2M⊙. The density profiles are shown in fig. 4.1. The core

densities of these star models range from below 3n0 to more than 7n0. In contrast

to neutron and hybrid stars that vary in density by 14 orders of magnitude, strange

stars feature a roughly constant density profile.
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M [M⊙] Mcore [M⊙] R [km] nc [n0] 〈n〉 [n0] ΩK [kHz]

NS 1.4 (1.39) 11.5 3.43 1.58 6.02

2.0 (1.99) 11.0 4.91 2.46 7.68

2.21 0.85 10.0 7.17 3.37 9.31

SS 1.4 − 11.3 2.62 1.91 6.17

2.0 − 11.6 4.95 2.43 7.09

HS 1.4 (S) 0.38∗ 10.8 5.89 1.85 6.61

1.4(M) 0.66∗ 10.3 6.66 2.09 7.06

1.4(L) 1.06 12.7 2.32 1.17 5.16

2.0 1.81 12.2 4.89 1.84 6.62

Table 4.1: Results of the considered models of neutron stars (NS), strange stars (SS)

and hybrid stars (HS). Shown are the mass of the star M , the mass of the core Mcore

(in the case of 2.21M⊙ neutron star, Mcore is the mass of the region where direct

Urca interactions are possible), the radius R, the baryon density at the center of the

star nc given in units of nuclear saturation density n0, the average density 〈n〉 and

the Kepler frequency ΩK . The neutron stars were obtained by solving the relativistic

TOV equations for catalyzed neutron matter using the APR equation of state [11]

with low density extension [12, 13] and the strange stars with a quark gas bag model

with c = 0, ms = 150MeV and a bag parameter B = (138MeV )4. Large mass

hybrid stars are only found when strong interaction corrections are considered, cf.

[14], and we find a 2M⊙ star for c = 0.4, ms = 140MeV , B = (137MeV )4. The

additional two 1.4M⊙ hybrid models with smaller cores, marked with an asterisk,

result from equations of state that do not allow large mass models. They correspond

to c = 0, ms = 150MeV , B = (164.5MeV )4 and (171.5MeV )4 which are chosen to

obtain transition densities of 3n0 and 3.25n0, respectively.
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4.2 Star models and r-modes

4.2.2 R-mode profile

In section 1.3 we introduced the r-mode oscillations of neutron stars. Here we will

explain the calculations of the r-mode profile which is necessary in the computations

of the damping time scales.

The analysis of the oscillation modes of compact stars requires the solution of the

corresponding hydrodynamics equations [117]. Whereas the solution of the general

relativistic equations for static star models is straightforward, the corresponding dy-

namic equations are more involved and explicit analytic expressions for the r-mode

oscillation are only available in non-relativistic approximation. Yet numerical analy-

ses of the general relativistic equations show that except for very compact stars the

relativistic corrections are moderate [118, 119, 120]. In the non-relativistic case the

current state of the art is the comprehensive analysis [43]. It might therefore seem

more consistent to employ Newtonian equations for the static star models as well, but

we prefer to perform the necessary approximation for the oscillation at least around

the correct equilibrium configuration. In particular since we study heavy quark and

hybrid stars where the different approximations could differ. In particular in the large

amplitude regime, a consistent general relativistic analysis would clearly be desirable.

Furthermore, so far these analyses assume that the oscillation modes are solutions of

an ideal fluid. For these modes the damping is then computed in a second step.

R-modes are normal oscillations of rotating stars and correspondingly they require

as a first step the solution of a uniformly rotating stellar model. Since neutron stars

are cold, dense systems we assume a barotropic fluid where the pressure p is only a

function of the energy density ρ. The hydrodynamic Euler equation for this spherical

system, determining the enthalpy h and the equation for the gravitational potential

Φ of the star, have to be solved with appropriate boundary conditions [43]. To

simplify the demanding analysis a slow rotation expansion is performed and, since
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Figure 4.1: The density profiles of the star models considered in this work. The solid
lines represent neutron star models with an APR equation of state, the dotted lines
represent strange stars with a bag model equation of state and the dashed, dot-dot-
dashed and dot-dashed lines represent hybrid star models with a large, medium and
small quark matter core respectively. Thick lines represent 1.4M⊙ stars and thin lines
represent massive 2M⊙ stars. In contrast to strange stars that are basically homoge-
neous, stars that contain hadronic matter have a very strong density dependence that
extends over 14 orders of magnitude reflected by the near zero segments in this plot.
The very thin solid curve presents the maximum neutron star model for the APR
equation of state ∼ 2.2M⊙ where hadronic direct Urca processes are allowed to the
left of the dot. The dotted horizontal line denotes the density n = n0/4 chosen as the
beginning of the crust whose contribution is not taken into account in the damping
time integrals below.
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the density fluctuation of the r-mode vanishes to leading order in the expansion, the

computation of bulk viscosity damping times requires an expansion of h, Φ and of

the energy density ρ to next-to-leading order

X(r, cos θ) = X0(r) +X2(r, cos θ)

(

Ω2

πGρ̄0

)

+ · · ·

where X stands for either of the three quantities, Ω is the angular velocity of the

rotation and ρ̄0 the average energy density of the corresponding non-rotating star. The

main effect of the rotational corrections is a flattening of the star due to centrifugal

forces.

The next step is the search for eigenmodes of the rotating star in a linear low

amplitude approximation, e.g. for the conserved baryon number ∆n ≪ n̄. They

can completely be described by the change in the gravitational potential δΦ and the

hydrodynamical perturbation

δU =
δp

ρ
− δΦ .

These are likewise expanded to next-to-leading order in Ω in the form

δX(r, cos θ) = R2Ω2

(

δX0(r)+δX2(r, cos θ)
Ω2

πGρ̄0
+· · ·

)

where δX stands again either for δΦ or δU and R is the radius of the static star. The

potentials obey complicated differential equations with corresponding boundary con-

ditions given in [43]. The boundary conditions require that the oscillation frequencies

ωr in the rotating and ωi in the inertial frame are connected to the rotation frequency

Ω via

ωr ≡ ω = κ(Ω)Ω , ωi = ωr −mΩ (4.2)
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where the parameter κ can likewise be expanded in Ω

κ = κ0 + κ2
Ω2

πGρ̄0
+ · · ·

We study classical r-modes which are a one parameter class of eigenmode solutions,

l = m, that are to leading order determined by κ0 = 2/ (m+ 1) and given by

δU0(~r) =

√

m

π (m+1)3 (2m+1)!
α
( r

R

)m+1

Pm
m+1(cos θ) e

imϕ (4.3)

where Pm
m+1 are associated Legendre polynomials and α is the dimensionless amplitude

of the r-mode. There are different conventions for the amplitude α in the literature

and we follow the convention for the amplitude given in [45] but take into account

the corrections to the latter result in [43]. This convention is usually used in the

literature and in this case the above expression breaks down for α>O (1). For more

details on the r-mode expression see Appendix D. For the lowest r-mode that couples

to gravitational waves with m = 2 the oscillation frequency in the inertial frame is

given by ωi = −4/3Ω, corresponding to a counter-rotating flow. The leading order

gravitational potential obeys a differential equation that is given by eq. (4.9) and its

analytic solution in the special case that the star is of uniform density is given in

eq. (4.10). In general it requires a numeric solution and then completely determines

the r-mode to this order.

At next-to-leading order there are two qualitatively different effects: First the

connection between oscillation and rotation frequency as described by the parameter κ

becomes non-linear via a non-vanishing value of κ2 that has to be obtained numerically

from a corresponding differential equation [43]. In fig. 4.2 the solution is shown

for the star models discussed here. Whereas the corrections are small for quark

stars, at large frequency they can become sizable for hadronic and hybrid stars. The
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Figure 4.2: Connection of the oscillation frequency ωi of the r-mode in the inertial
frame to the rotation frequency of the considered star models to next to leading
order in the Ω-expansion. The horizontal line shows the leading order result and the
conventions for the other curves are the same as in fig. 4.1.

second effect is the change of the potentials arising as solutions of rather involved

partial differential equations. At next-to-leading order they feature nontrivial radial

and angular dependences that are not described by simple power laws or spherical

harmonics anymore.

We are interested in the amplification of these modes due to gravitational radiation

and their viscous damping which are described by the energy dissipation

dE

dt
=− ω (ω −mΩ)2m+1 |δJmm|2

−
∫

d3x
(

2ηδσabδσab + ζδσδσ∗
)

(4.4)

where η and ζ are the shear and bulk viscosity, respectively. The fluctuations δJmm

and δσab couple to gravitational waves and shear viscosity, respectively. The fluctu-
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Figure 4.3: The density dependence of the inverse squared speed of sound A ≡ dρ/dp
(which enters the r-mode profile multiplicatively) for the different forms of matter in
table 4.2 as well as generic polytropic models. The solid line represents interacting
APR matter, the dashed line a hadron gas and the dotted line shows the result for
a quark gas. The structure at intermediate densities in the APR curve arises from
phase transitions and the use of finite differences to compute the derivative, but due
to the mild contribution of the denser inner regions of the star to the damping these,
as well as the known problem that the APR equation of state becomes acausal at
high density, have no influence on our results below.

ation δσ ≡ ~∇ · δ~v of an r-mode oscillation which is subject to dissipation via bulk

viscosity reads

δσ = −i2AR
2Ω3

m+ 1
(δU0 + δΦ0 + · · · ) +O

(

Ω5
)

(4.5)

where A denotes the inverse speed of sound

A ≡ ∂ρ

∂p

∣

∣

∣

∣

0

(4.6)
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evaluated at equilibrium and the dots represent several further terms of next-to-

leading order in Ω given in [43]. The terms in the parenthesis depend on the expansion

coefficients of the potentials and on the connection parameter κ, but are by virtue

of the expansion independent of frequency. The fluctuation δσ is finally connected

to the fluctuations of energy ∆ρ and baryon number density ∆n via their continuity

equations

|δσ| =
∣

∣

∣

~∇ · δ~v
∣

∣

∣ = κΩ

∣

∣

∣

∣

∆ρ

ρ̄

∣

∣

∣

∣

= κΩ

∣

∣

∣

∣

∆n

n̄

∣

∣

∣

∣

Substituting δU0 from eq. (4.3) in eq. (4.5) gives

∣

∣

∣

∣

∆ρ

ρ̄

∣

∣

∣

∣

=

∣

∣

∣

∣

∆n

n̄

∣

∣

∣

∣

≈
√

4m

(m+ 1)3 (2m+ 3)

2

(m+ 1)κ(Ω)
αAR2Ω2 (4.7)

·
((

( r

R

)m+1

+ δΦ0

)

∣

∣Y m
m+1(θ, φ)

∣

∣+ · · ·
)

Following [9], in our numerical analysis we will consider the change of κ at second

order, but because of the involved numerics [43], we will not take into account all

explicit second order terms in eq. (4.5). A standard approximation [45] is to replace

the Lagrangian density fluctuation by the Eulerian one which corresponds to neglect-

ing the terms denoted by the ellipsis in eq. (4.7). E.g. the density fluctuation for a

m = 2 r-mode reads then to leading order

∣

∣

∣

∣

∆ρ

ρ̄

∣

∣

∣

∣

≈
∣

∣

∣

∣

δρ

ρ̄

∣

∣

∣

∣

=

√

8

189
αAR2Ω2

(

( r

R

)3

+δΦ0 (r)

)

Y 2
3 (θ, φ) (4.8)

in terms of the spherical harmonics Y 2
3 . However, we will give general semi-analytic

expressions below that are valid to full next to leading order. These show that the

influence of the neglected terms on important aspects of the instability regions is
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rather mild. Here we give an analytic solution for the density fluctuation profile of

the r-mode to leading order in Ω for a star of constant density. The part of the

leading order density fluctuation eq. (4.8) that is generally not analytic is given by

the change in the gravitational potential δΦ0 whose radial part δΦ0(r) is defined by

δΦ0(~r) =

√

m

π (m+1)3 (2m+1)!
αδΦ0(r)P

m
m+1(cos θ) e

imϕ

It fulfills the differential equation [43]

d2δΦ0

dr2
+

2

r

dδΦ0

dr
+

(

4πGρ
dρ

dp
− (m+ 1) (m+ 2)

r2

)

δΦ0

= −4πGρ
dρ

dp

( r

R

)m+1

(4.9)

with boundary conditions δΦ0(0) = 0 and

dδΦ0(r)

dr

∣

∣

∣

∣

r=R

= −
(

1

2
+

√

1

4
+ (m+ 1) (m+ 2)

)

δΦ0(R)

R

Here we specialize to the fundamental m = 2 r-mode where an analytic solution is

possible for the idealized case ρ = const. and dρ/dp = const. which is approximately

realized for strange stars. The solution obtained with a computer algebra system

reads

δΦ0(r) = − r3

R3
(4.10)

+
7LR2

(

(r3 − 15L2r) cos
(

r
L

)

+ 3L (5L2 − 2r2) sin
(

r
L

))

r4
(

(3L2 −R2) sin
(

R
L

)

− 3LR cos
(

R
L

))

in terms of the intrinsic length scale
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L ≡ 1
√

4πGρ δρ
δp

Unfortunately the above expression is rather ill behaved due to strong cancellations

and not suitable for a direct evaluation. However, employing the series representations

of the trigonometric functions it is possible to transform it into an alternative form

δΦ0(r) = g

(

r

L
,
R

L

)

r3

R3

in terms of hypergeometric functions

g(x, y) ≡
0F2

(

1
2
, 7
2
+ 1;−x2

8

)

0F2

(

1
2
, 5
2
+ 1;−y2

8

) − 1 ≈ −x
2

18
+
y2

14
+ · · ·

Correspondingly, |g| < 0.07 over the entire parameter range so that in view of the

large uncertainties inherent in an r-mode analysis the gravitational potential term in

eq. (4.8) can be neglected leaving a simple analytic expression for the r-mode profile

of strange stars with approximately constant density

∣

∣

∣

∣

δρ

ρ̄

∣

∣

∣

∣

SS

≈
√

8

189
αAR2Ω2

( r

R

)3

Y 2
3 (θ, φ) .

For our numerical analysis below we have made the approximation to neglect the

additional second order corrections in the slow rotation expansion given by the ellipsis

in eq. (4.7), which amounts to replacing the Lagrangian perturbation by the Eulerian

perturbation, but we include the second order corrections to the frequency eq. (4.2).

General analytic results show that this is a good approximation for the computation

of the small amplitude instability regions.But in the next chapter we will see that, in

obtaining a precise assessment of the damping time of large amplitude r-modes, the

radial dependence of the density perturbation plays a vital role. The radius enters
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4.3 Shear viscosity of dense matter

eq. (4.7) explicitly and also via the density dependence of the inverse squared speed of

sound A (fig. 4.3), and the radial density dependence of the star (fig.4.1). The radial

variation of the density is moderate in a strange star, but much more pronounced in

neutron stars where the r-mode amplitude grows strongly in the outer regions of the

star.

4.3 Shear viscosity of dense matter

As we mentioned earlier, the bulk viscosity is the relevant damping mechanism for

the growth of the r-modes at high temperatures and the shear viscosity is the relevant

damping mechanism at low temperatures. Therefore to compute the viscous damp-

ing of the r-modes we need to have both bulk viscosity and shear viscosity for the

considered form of matter. In the previous chapter we explained the bulk viscosity of

dense matter in details and gave the results for different forms of matter. So in this

section we give the shear viscosity results for the same forms of matter in order to

compute the viscous damping times.

The shear viscosity arises from strong or electromagnetic interactions. In contrast

to the bulk viscosity, the shear viscosity of dense matter is independent of the fre-

quency of an external oscillation and approximately depends on temperature via a

simple power law. Shear viscosity becomes large at low temperatures and therefore

it is the dominant process for damping of the r-modes of cooler stars. Thereby, to

leading order it can be parameterized as

η = η̃T−σ (4.11)

by simply factoring out the temperature dependence with exponent σ. In general

several processes can contribute so that the full shear viscosity can approximately be
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4.3 Shear viscosity of dense matter

A B C

hadronic matter mN

(

∂p
∂n

)−1 8S
n
+ π2

(4(1−2x)S)2
4(1−2x)

(

n∂S
∂n

− S
3

)

hadronic gas
3m2

N

(3π2n)
2
3

4m2
N

3(3π2)
1
3 n

4
3

(3π2n)
2
3

6m

quark matter (gas: c = 0) 3+ m2
s

(1−c)µ2
q

2π2

3(1−c)µ2
q

(

1+ m2
s

12(1−c)µ2
q

)

− m2
s

3(1−c)µq

Table 4.2: Strong interaction parameters, defined in eqs. (4.6) and (3.15), describing
the response of the particular form of matter. In the case of interacting hadronic
matter a quadratic ansatz in the proton fraction x parameterized by the symmetry
energy S is employed. The expressions for a hadron and quark gas are given to leading
order in n/m3

N respectively next to leading order in ms/µ.

written as a sum of such power laws for the individual processes.

In the following we discuss the shear viscosity for the phases of dense matter

presented in the considered classes of compact stars. We note however, that the

general results given in this chapter likewise apply to more complicated forms of

matter like hyperonic and/or superfluid nuclear matter as well as various forms of

superconducting quark matter.

Further, the inverse speed of sound A, eq. (4.6), as well as the strong susceptibil-

ities B and C, eq. (3.15), that parameterize the deviation from chemical equilibrium

are required.

In previous r-mode analyses the shear viscosity in hadronic matter has been ap-

proximated by the contribution from strong hadron-hadron-scattering using the fit in

[8] to the standard low density (. n0) data given in [10]

ηn = 347ρ
9
4T−2

g

cm s
(4.12)

where T is in units of Kelvin and ρ is given in g/cm3 . Extrapolating this fit to high

densities relevant for neutron stars overestimates the viscosity. The new evaluation

in [121] shows instead that due to a non-Fermi liquid enhancement arising from the
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4.3 Shear viscosity of dense matter

Strong/EM process η̃
[

MeV(3+σ)
]

σ

quark scattering 1.98×109α
− 5

3
s

( µq

300MeV

) 14
3 5

3

leptonic scattering 1.40×1012
(

xn
n0

) 14
9 5

3

nn-scattering 5.46×109
(

ρ
mNn0

) 9
4

2

Table 4.3: Parameters arising in the parameterization eq. (4.11) of the shear viscosity
for different strong and electromagnetic interaction processes. The leptonic and quark
scattering arises from a non-Fermi liquid enhancement due to unscreened magnetic
interactions.

exchange of Landau-damped transverse photons, the main contribution to the shear

viscosity of hadronic matter, at temperatures relevant to the spin-down evolution of

the compact stars, comes from electron scattering and is given by

ηe = 4.26× 10−26(xn)
14
9 T−

5
3

g

cm s
(4.13)

where T is in Kelvin and the baryon number density n is in units of cm−3. In the

calculation of ηe we have only considered electron-electron and electron-proton scat-

tering and neglected the small effect of the muons to the shear viscosity. For densities

larger than nuclear matter saturation density this electron contribution dominates

over the hadronic one down to temperatures below 107 K. This region contains the

part of the instability region that is relevant for the spin-down evolution of stars.

Therefore in our main analysis we will completely neglect the hadronic component

of the shear viscosity. However, we will compare with the previous form of the shear

viscosity eq. (4.12) in order to discuss the effect of our improved analysis on the

instability region1.

1The leftmost part of the instability region below ∼ 10
7 K only features an instability at very

large frequencies. This part would only be relevant for old stars that are spun up by accretion,
yet frequencies very close to the Kepler frequency are not reached via this mechanism anyway, cf.
fig. 1.1, due to turbulent effects.
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4.4 R-mode time scales

In the case of ungapped quark matter, the shear viscosity is dominated by quark-

quark scattering, and in the limit of T ≪ qD, where qD is the Debye wave number, it

is given by [122]

ηq =
1

40πa

(

2Nq

π

) 1
3

α
− 5

3
s µ

14
3
q T

− 5
3 (4.14)

where αs = g2

4π
is the QCD coupling constant, a ≃ 1.81, Nq = 3 and µq and T are

in units of MeV. The temperature dependence arises again from a non-Fermi liquid

enhancement of the quark interaction. These expressions yield the parameters in the

parameterization of the shear viscosity eq. (4.11) as given in table 4.3.

4.4 R-mode time scales

4.4.1 General expressions

The amplitude of the r-mode oscillations evolves with time dependence eiωt−t/τ , where

ω is the real part of the frequency of the r-mode and 1/τ is the imaginary part of

the frequency. The latter describes both the exponential rise of the r-mode driven by

the Friedman-Schutz mechanism [49] and its decay due to viscous damping. We can

decompose 1/τ as

1

τ(Ω, T )
=

1

τG(Ω)
+

1

τB(Ω, T )
+

1

τS(T )

where τG, τB and τS are gravitational radiation, bulk viscosity and shear viscosity

time scales, respectively. The lowest of these individual time scales determines if the

r-mode is unstable or damped. The damping time for the individual mechanisms is

in general given by

1

τi
≡ − 1

2E

(

dE

dt

)

i

(4.15)
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4.4 R-mode time scales

and requires both the total energy of the r-mode

E =
1

2
α2R4Ω2

∫ R

0

ρ(r)
( r

R

)2m+2

dr (4.16)

and the dissipated energy which is given by the corresponding part of eq. (4.4) [43].

For instance the dissipated energy eq. (4.4) due to the bulk viscosity reads

(

dE

dt

)

ζ

= −κ2Ω2

∫

d3x

∣

∣

∣

∣

∆ρ

ρ

∣

∣

∣

∣

2

ζ

(

∣

∣

∣

∣

∆ρ

ρ

∣

∣

∣

∣

2
)

where the dependence of the bulk viscosity on the conserved number density fluc-

tuation amplitude has been expressed in terms of the conserved energy density. If

the star consists of several shells consisting of different forms of matter with different

viscosity, as is the case for hybrid stars, neutron stars with a high density core where

direct Urca reactions are allowed, etc., the integral consists of partial integrals over

the individual shells s and the inverse viscous damping times can be written as

1

τi
=
∑

s

1

τ
(s)
i

Therefore, the contribution of the different shells enters additively. We will in the

following expressions suppress the explicit label (s) but implicitly assume that the

damping times consist of several contributions when different layers are present. With

these expressions the individual r-mode time scales can be obtained. The time scale

of the r-mode growth due to gravitational wave emission is given by [45]

1

τG
= −32π (m− 1)2m

((2m+ 1)!!)2

(

m+ 2

m+ 1

)2m+2

J̃mGMR2mΩ2m+2 (4.17)

with the radial integral constant
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4.4 R-mode time scales

J̃m ≡ 1

MR2m

∫ R

0

ρ(r) r2m+2dr (4.18)

Shear viscosity damping time

The damping time of an r-mode with angular quantum number m due to shear

viscosity is given by

1

τS
=

(m− 1) (2m+ 1)

J̃mMR2m

∫ R

0

η r2mdr

Using the parameterization eq. (4.11) this can be written as

1

τS
=

(m− 1) (2m+ 1) S̃mΛ
3+σ
QCDR

J̃mMT σ
(4.19)

in terms of the dimensionless constant

S̃m ≡ 1

R2m+1Λ3+σ
QCD

∫ Ro

Ri

η̃r2mdr (4.20)

where Ri and Ro are the inner and outer radius of the corresponding shell, if there

are several ones. This constant contains the complete dependence on the particular

microscopic processes. To make this quantity dimensionless the generic scale ΛQCD

has been introduced that is chosen as ΛQCD = 1 GeV for the numeric values. For

the fundamental m = 2 r-mode the parameter S̃ is given for the different star models

considered here in table 4.4.

Bulk viscosity damping time

The bulk viscosity damping time is given by
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4.4 R-mode time scales

1

τB
=

κ2

α2J̃mMR2

∫

d3x

∣

∣

∣

∣

∆n

n̄

∣

∣

∣

∣

2

ζ

(

∣

∣

∣

∣

∆n

n̄

∣

∣

∣

∣

2
)

(4.21)

where the bulk viscosity is in general a function of the amplitude [78, 81]. As has

been noted before the strongly enhanced damping can provide a mechanism for the

saturation of the r-mode as will be discussed elsewhere. Here we restrict ourselves to

a study of the initial instability of small amplitude r-modes and in the subthermal

regime the viscosity eq. (3.26) is independent of the r-mode amplitude. In this case

only the angular integral over the density fluctuation enters and it is useful to define

the angular averaged form

δΣ(r) ≡ m+ 1

2αAR2Ω3

√

(m+ 1)3 (2m+ 3)

4m

(∫

dΩ |δσ|2
) 1

2

−→
l.o.

( r

R

)m+1

+ δΦ0 (4.22)

which reduces to the second line to leading order in the Ω-expansion, where the angu-

lar integral in eq. (5.1) is trivial due to the normalization of the spherical harmonics.

The damping time in the subthermal regime is then given by

1

τ<B
=

16m

(2m+ 3) (m+ 1)5 κ

R5Ω3

J̃mM
T <
m

(

T δ

κΩ

)

(4.23)

where the dependence on all local quantities, like the equation of state, the weak

rate, the density dependence of the particular star model and its r-mode profile is

contained in the function
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4.4 R-mode time scales

T <
m (b) ≡ b

R3

∫ Ro

Ri

dr r2
A2C2Γ̃

1 + Γ̃2B2b2
(δΣ(r))2 (4.24)

depending on a single external parameter and which has to be determined numerically

for a given star model. In the asymptotic limits the damping time simplifies to

1

τ<B
−−→
f≪1

16m

(2m+ 3) (m+ 1)5 κ2

Λ9−δ
QCDṼmR

5Ω2T δ

Λ4
EW J̃mM

(4.25)

1

τ<B
−−→
f≫1

16m

(2m+ 3) (m+ 1)5
Λ4

EWΛδ−1
QCDW̃mR

5Ω4

J̃mMT δ
(4.26)

with the dimensionless constants

Ṽm ≡ Λ4
EW

R3Λ9−δ
QCD

∫ Ro

Ri

dr r2A2C2Γ̃ (δΣ(r))2 (4.27)

W̃m ≡ 1

R3Λ4
EWΛδ−1

QCD

∫ Ro

Ri

dr r2
A2C2

Γ̃B2
(δΣ(r))2 (4.28)

Since the bulk viscosity originates from weak interactions here the second normaliza-

tion scale ΛEW is used with a generic value ΛEW = 100 GeV. These normalization

scales are only introduced to obtain dimensionless constants of order one and drop

out of the final results for the damping times.

Finally, we want to stress that in these expressions for the r-mode time scales

the complete local dependence on the star profile, the r-mode oscillation and the

microscopic damping processes is contained in the few constant J̃ , S̃, Ṽ and W̃ , but

the dependence on the global parameters of the r-mode evolution [50] Ω and T is

entirely explicit. These constants include in particular also the complete dependence
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4.4 R-mode time scales

on the non-trivial radial and angular dependence of the full next-to-leading order

expression for the r-mode[43]. Since to our knowledge results for the bulk viscosity in

the crust of neutron stars are not yet available, we neglect the damping of the crust

in our numerical analysis. It has, however, been argued that the shear viscosity of

the crust could be crucial [123] and a more detailed study of this issue is definitely

desirable.
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Figure 4.4: Damping times of the different 1.4M⊙ star models discussed in this work. Shown are a hadronic star with
modified Urca processes (solid), hybrid stars with a small (dot-dashed) and large (dashed) quark core as well as a strange
star (dotted). The horizontal curves give the time scale τG associated to the growth of the mode due to gravitational wave
emission. The monotonically increasing curves show the damping time τS due to shear viscosity and the non-monotonic
curves the damping time τB due to bulk viscosity. Left panel: Stars rotating at their Kepler frequency ΩK . Right panel:
Same for stars rotating at ΩK/4.
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4.4 R-mode time scales

4.4.2 Results for the considered star models

Before we discuss the damping times for particular star models let us point out a

few generic properties of the damping times that follow directly from the general ex-

pressions eqs. (4.17), (4.19) and (5.5). The gravitational time scale is independent of

temperature and decreases strongly with frequency. The shear viscosity damping time

increases with temperature and is independent of frequency. Because of the resonant

behavior of the bulk viscosity, the corresponding damping time decreases with tem-

perature, has a minimum and increases again at large temperatures. Furthermore, it

also decreases with frequency, but slower than the gravitational time scale.

A numeric solution requires the integration over the star profiles to obtain the

constants J̃ , S̃ and the function T <, respectively the constants Ṽ and W̃ describing

its asymptotic behavior. The constants are given for the fundamental m = 2 r-mode

of the various star models discussed in this work, and where applicable also for their

different shells, in table 4.4. For the bulk viscosity of a 1.4M⊙ neutron star we

compute the APR result employing the proper susceptibilities for interacting matter,

as well the result when the susceptibilities are evaluated in the idealized case of a

hadronic gas, as has been done previously [8, 7]. As can be seen the parameters

in the interacting case are more than an order of magnitude larger, owing to the

larger viscosity [81], which leads to a correspondingly smaller damping time. In the

following we will consider only the proper interacting form unless otherwise noted.
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star model shell J̃ S̃ Ṽ W̃ Tmin[K] Ωmin[Hz] Tmax[K] Ωmax[Hz]
NS 1.4M⊙ core 1.81× 10−2 7.68× 10−5 1.31× 10−3 1.61× 10−6 3.49× 109 371 − −

NS 1.4M⊙ gas 4.32× 10−6 1.28× 10−4 1.76× 10−7 3.70× 109 226 − −
NS 2.0M⊙ 2.05× 10−2 2.25× 10−4 1.16× 10−3 1.72× 10−6 4.19× 109 368 − −
NS 2.21M⊙ d.U. core 2.02× 10−2 5.05× 10−4 1.16× 10−8 7.11× 10−7 2.03× 109 493 − −

m.U. core 9.34× 10−4 1.55× 10−6

SS eq. (4.1) all 3
28π

η̂µ
14/3
q

5Λ
14/3
QCDα

5/3
s

Λ4
EW Γ̂m4

sµ
3
q

9Λ7
QCD(1−c)2

m4
s

4π4Λ4
EWΛQCDΓ̂µ3

q
eq. (4.43) eq. (4.42) eq. (4.45) eq. (4.44)

SS 1.4M⊙ 3.08× 10−2 3.49× 10−6 3.53× 10−10 0.191 7.86× 106 1020 1.01× 109 8340
SS 2.0M⊙ 2.65× 10−2 4.45× 10−6 3.38× 10−10 0.157 8.58× 106 955 8.07× 108 6600

HS 1.4M⊙ L quark core 1.93× 10−2 2.19× 10−6 1.38× 10−10 1.03× 10−2 9.87× 106 1170 5.83× 108 7270∗

hadr. core 6.72× 10−6 1.40× 10−3 1.51× 10−6 6.88× 109 1040† − −
HS 1.4M⊙ S quark core 1.68× 10−2 2.88× 10−7 7.96× 10−13 6.85× 10−5 1.01× 108 1070 4.35× 108 3690∗

hadr. core 3.29× 10−6 1.25× 10−3 1.56× 10−6 3.61× 109 394⋄ − −
HS 2.0M⊙ quark core 2.00× 10−2 5.25× 10−6 3.76× 10−10 2.34× 10−2 7.73× 106 1080 4.77× 108 6310∗

hadr. core 5.24× 10−6 1.07× 10−3 1.32× 10−6 7.65× 109 925† − −

Table 4.4: Radial integral parameters and characteristic points of the instability region of a m = 2 r-mode for the star
models considered in this work. The constant J̃ , S̃, Ṽ and W̃ are given by eqs. (4.18), (4.20), (5.7) and (4.28) using the
generic normalization scales ΛQCD = 1 GeV and ΛEW = 100 GeV. The temperatures and frequencies are obtained with the
analytic expressions for the minima eqs. (4.31), (4.32), (4.37) and (4.38) and for the maxima eqs. (4.34) and (4.35). The
expressions for a generic strange star (or quark core) in terms of the parameters of the quark model equation of state eq.
(4.1), using the constants Γ̂ and η̂ defined in eq. (4.41) are given as well. (∗) These values deviate significantly from the
actual results due to the inappropriate approximation of constant radial profiles, whereas this idealization entirely fails for
hadronic parts. (†) The second minimum arises from the competition of the bulk viscosity damping in the quark and the
hadronic shell. (⋄) The second minimum arises from the competition of bulk and shear viscosity damping in the hadronic
shell.
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4.4 R-mode time scales

In the left panel of fig. 4.4 the numeric solution for the different time scales is shown

as a function of temperature for 1.4M⊙ stars of the different classes considered here

rotating at their Kepler frequency ΩK . Shown are gravitational time scales (horizontal

lines), the shear viscosity damping times (monotonically increasing curves) and bulk

viscosity damping times (non-monotonic curves). The solid lines denote the neutron

star model, the dotted lines a strange star and the dashed and dot-dashed lines

show hybrid star models with a small and large quark core, respectively. Whereas

damping due to shear viscosity dominates for strange and hybrid stars for T . 107

K and for neutron stars even for T . 109 K, the bulk viscosity damping time of the

neutron and the strange star feature the generic resonant form, where the minima

are around 109 K and 1011 K, respectively, and the higher gradients in case of the

neutron star arise from the higher power of δ (tab. 3.1). It is clear that as a function

of the core size the family of hybrid curves interpolates continuously between the two

uniform star models. Correspondingly, for hybrid stars the contribution of the quark

core dominates at low temperature, whereas the hadronic shell dominates at higher

temperatures, which leads to a curve with two minima. For all star models at ΩK the

gravitational time scale is the lowest over a range of temperatures.

The right panel of fig. 4.4 shows the same plot at the lower frequency ΩK/4.

As is clear from the general discussion the shear curves are unchanged whereas the

gravitational curves and the bulk curves are shifted upwards compared to the left

panel of fig. 4.4. Since the gravitational time scale moves upwards faster than the

bulk viscosity curve, the instability region shrinks from both sides as the frequency

is lowered. For hybrid stars with a large quark core the gravitational time scale can

move above the minimum of the bulk viscosity arising from the quark core as the

frequency is lowered and the instability region is divided by a stability window. Yet,

for a hybrid star with a sufficiently small quark core the minimum can move above
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4.5 R-mode instability regions

the shear curve before the gravitational time scale can overtake it. In this case there

would be no signature of the quark core and the instability regions of such a hybrid

star and of the corresponding neutron star would look basically indistinguishable2.

This is nearly the case for the small core hybrid star model denoted by the dot-dashed

curve as will be discussed below.

4.5 R-mode instability regions

The boundary of the instability region is given by the condition |τG| = |τV |, where τV

is the viscous damping time. This reads in terms of the individual contributions

1

τG
+
∑

s

(

1

τ
(s)
S

+
1

τ
(s)
B

)

= 0 (4.29)

Since at the boundary the time scale of the gravitational instability is identical to

the viscous time scale, the r-mode amplitude neither increases nor decreases. If the

viscous damping time is shorter modes induced by external perturbations will quickly

be damped away, whereas in the opposite case they are unstable and will initially

grow. As will be shown in a second article the increase in the bulk viscosity at large

amplitude can eventually saturate the r-mode, but here we will limit ourselves to

the small amplitude regime and analyze the regions where small amplitude modes

are unstable. In general eq. (4.29) has no analytic solution and has to be solved

numerically. However there are various limiting cases for which analytic solutions

exist and we will study them below.

2The fact that the volume of the neutron shell is slightly smaller is not significant for the damping
times that vary over many orders of magnitude, so that the dashed curves in fig. 4.4 are invisible
underneath the solid neutron star curves.
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4.5.1 Analytic expressions

The boundary of the instability region eq. (4.29) can generally not be found an-

alytically due to the occurrence of several terms with non-trivial temperature and

frequency dependencies. Since the viscous damping times vary extremely strongly

with temperature and frequency (fig. 4.4) in general there is over nearly the whole

parameter space one component that clearly dominates the others in the sum. In such

a case the equation can easily be solved analytically and yields analytic expressions

for the different segments of the instability region. Although the numeric solution

of eq. (4.29) is straightforward, these analytic expressions reveal the general depen-

dence on the various unknown model parameters entering the r-mode analysis and

therefore provide a measure for the uncertainty of these results in a situation where

most properties of dense strongly interacting are basically unknown.

General semi-analytic expressions for the boundary of the instability re-

gion

Here we give the general semi-analytic expressions for the boundary of the instability

region that are valid for arbitrary multipoles and can be applied to stars involving

several shells. The only non-analytic input in these expressions enters via the radial

integral constants J̃ , S̃, Ṽ and W̃ arising in the gravitational time scale, the shear

viscosity time scale as well as the low and high temperature limit of the bulk viscosity

time scale. In general these constants, which are given for the star models discussed

in this work and the normalization scales ΛQCD = 1 GeV and ΛEW = 100 GeV in

table 4.4, have to be computed numerically. However, since the dependence of many

of the following results on these constants is surprisingly weak, these expressions are

often essentially analytic.

On the low temperature side of the instability region the shear viscosity dominates
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and neglecting the bulk viscosity yields the analytic result for the boundary in this

region

Ω(T ) −−−−−→
T≪Tmin

(

(2m+ 1) ((2m+ 1)!!)2 (m+ 1)2m+2

32π (m+ 2)2m+2 (m− 1)2m−1

·
S̃mΛ

3+σ
QCD

J̃2
mGM

2R2m−1T σ

) 1
2m+2

(4.30)

In the case of a hybrid star with two or more distinct shells one of them generally

dominates and the above expression applies using only the contribution S̃ of the

dominant shell as well as the corresponding exponent σ. The dominant contribution

to the inverse shear viscosity damping time arises from the hadronic shell. Since

the shear damping time increases monotonically with temperature whereas the bulk

viscosity decreases in this regime monotonically, the minimum of the instability region

is taken at the temperature where τS = τB. The minimum frequency is then obtained

from 1/τG + 2/τB = 0 and taking into account that at low frequency κ ≈ κ0 it yields

Ωmin ≈
((

m (m+ 1)2m−1 ((2m+ 1)!!)2

4π (2m+ 3) (m+ 2)2m+2 (m− 1)2m

)σ

(4.31)

·
(

((2m+1)!!)2 (2m+1) (m+1)2m+2

16π (m− 1)2m−1 (m+ 2)2m+2

)δ

·
Ṽ σ
mS̃

δ
mΛ

3δ+9σ
QCD

J̃
2(δ+σ)
m Λ4σ

EWG
δ+σR2m(δ+σ)−δ−5σM2(δ+σ)

) 1
2m(δ+σ)+2δ

whereas the corresponding minimum temperature is
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Tmin ≈
(

(2m+ 3) (2m+ 1) (m+ 1)3 (m− 1)

4m

·
S̃mΛ

4
EWΛδ+σ−6

QCD

ṼmR4

) 1
δ+σ

Ω
− 2

δ+σ

min (4.32)

Above the minimum the bulk viscosity dominates and increases until it reaches a

maximum. Within a temperature range in between these two extrema shear viscosity

can be neglected and the low temperature approximation to the bulk viscosity can be

applied. In the general case the equation 1/τB + 1/τG = 0 for the boundary cannot

be solved analytically as a function of T due to the non-linear second order terms

in Ω. However, it is possible to solve the equation analytically as a function of Ω

which provides an equally valid parameterization of the segment in between the two

extrema

T (Ω)
Ωmin≪Ω−−−−−→
Ω≪Ωmax

(

2π (2m+3)(m+2)2m+2(m−1)2mκ2

m (m+ 1)2m−3 ((2m+ 1)!!)2

· J̃m
2
Λ4

EWGM
2Ω2m

ṼmΛ
9−δ
QCDR

5−2m

)
1
δ

(4.33)

Since there is no analytic expression for the bulk viscosity around the maximum only

for the special case of constant density stars a result is possible. In this case the

maximum frequency is
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Ωmax
unif.−−−→
dens.

(

2πm (m+ 1)2m−2 (2m+ 3) ((2m+ 1)!!)2

9 (2m+ 5) (m+ 2)2m+2 (m− 1)2m

·Ā
2C̄2 (R3

o −R3
i )

GB̄M2R2m−2

)
1

2m−1

(4.34)

where Ri and Ro are the inner and outer radii of the dominant shell (0 and R for

a homogeneous star) and bars denote average quantities over the shell in case the

density is only approximately constant. The corresponding maximum temperature is

Tmax
uniform−−−−→
density

(

2Ωmax

(m+ 1) ¯̃ΓB̄

) 1
δ

(4.35)

In general the constant density approximation is only valid for quark matter and the

corresponding results in this case are given in the main text. However, for neutron

stars the corresponding maximum is in general above the Kepler frequency anyway

and therefore not physically interesting. Far above the temperature where the maxi-

mum is located the high temperature approximation to the bulk viscosity is valid and

the boundary 1/τB + 1/τG = 0 condition yields here

Ω(T ) −−−−−→
T≫Tmax

(

m (m+ 1)2m−3 ((2m+ 1)!!)2

2π (2m+ 3) (m+ 2)2m+2 (m− 1)2m

·
W̃mΛ

4
EWΛδ−1

QCDR
5−2m

J̃2
mGM

2T δ

) 1
2m−2

(4.36)

For homogeneous stars the present approximations cover nearly the entire boundary

of the instability region. If the star has more than one layer, there may be a second

minimum. Depending on the size of the layers here it can be either the bulk viscosity

of the second layer that equals the dominant shear viscosity at the minimum, in
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which case the above expressions hold, or the bulk viscosities of the different layers

are identical τ
(i)
B = τ

(o)
B which yields analogously

Ω
(B)
min =





(

m (m+ 1)2m−3 ((2m+ 1)!!)2

π (2m+ 3) (m− 1)2m (m+ 2)2m+2

)δ(o)+δ(i)

·
(

m+ 1

2

)2δ(i) Λ9δ(i)−δ(o)

QCD

(

Ṽ
(o)
m

)δ(i) (

W̃
(i)
m

)δ(o)

Λ
4(δ(i)−δ(o))
EW G(δ

(o)+δ(i))J̃
2(δ(o)+δ(i))
m

· R
(5−2m)(δ(o)+δ(i))

M2(δ(o)+δ(i))

)
1

2m(δ(o)+δ(i))−2δ(o)

(4.37)

and the corresponding temperature is

T
(B)
min =

(

4

(m+ 1)2
(4.38)

·
W

(i)
m Λ8

EWΛδ(o)+δ(i)−10
QCD

V
(o)
m

)
1

δ(o)+δ(i) (

Ω
(B)
min

) 2

δ(o)+δ(i)

Low temperature boundary

As is clear from the analytic expressions for the damping times and confirmed by

fig. 4.4 at low temperatures shear viscosity damping dominates. Furthermore, in the

case of hybrid stars the damping due to hadronic shear viscosity dominates over the

quark core. Comparing it with the gravitational time scale yields

Ω (T ) −−−−−→
T≪Tmin

1.12
S̃

1
6Λ

7
9
QCD

J̃
1
3G

1
6M

1
3R

1
2

T−
5
18 (NS and SS)
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where the irrational power arises from the Landau damping of the corresponding

interactions that induce shear viscosity. Interestingly this expression depends only

mildly on the constant S̃ that encodes the microscopic interaction. This segment

of the boundary is important for old stars in binary systems that are spun up by

accretion from a companion star and enter the instability region from below

Minimum of the instability region

Since the shear viscosity damping time monotonically increases with temperature

whereas the bulk viscosity damping time monotonically decreases at low temperature

there is a minimum of the instability boundary given by τB = τS. Due to the non-

linear frequency dependence of the second order damping times an exact analytic

solution is not possible. However, since these minima are located at frequencies far

below the Kepler frequency it is according to fig. 4.2 a very good approximation to

use the leading order frequency connection κ = κ0 in which case an analytic solution

is possible. For neutron stars it reads

Ω
(NS)
min ≈ 1.06

Λ
99
128
QCDS̃

9
64 Ṽ

5
128

R
49
128 J̃

23
64G

23
128M

23
64Λ

5
32
EW

(4.39)

T
(NS)
min ≈ 1.89

S̃
3
32Λ

1
64
QCDΛ

9
16
EWG

3
64 J̃

3
32M

3
32

Ṽ
9
64R

27
64

(4.40)

Note, the appearance of surprisingly low powers in these expressions. In particular,

due to the arising 5/128 power a change of Ṽ by an order of magnitude results only

in a mild deviation of the minimum frequency of less than 10%, and even a very

drastic change by three orders of magnitude does not change the result by more than

30%. Whereas the viscosity constants eqs. (5.7) and (4.28) can vary by many orders

of magnitude for different classes of stars with different transport processes as can
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be seen from tab. 4.4, they are generically of similar order of magnitude within a

given class due to the identical parametric dependence on the microscopic physics.

Recall, that the minimum of the instability region is of particular importance for

the r-mode analysis since it determines to what frequency r-modes can spin down a

star. It is needless to say that such an insensitivity of the minimum frequency on the

microscopic physics is more than welcome in the present situation where there are still

huge uncertainties on the underlying equation of state and the transport coefficients

of dense matter. This presents one of the main results of this article.

In the general case studied in appendix 4.5.1 the (2m (δ + σ) + 2δ) /σ-th root of

the bulk viscosity constants Ṽm arises in the expression for the minimum frequency

eq. (4.31). For short-range (Fermi liquid) interactions the shear viscosity exponent

is generically σ = 2 whereas it reduces to σ = 5/3 when long-ranged, only Landau-

damped (non-Fermi liquid) gauge interactions are present. Since the rate of the weak

interactions vanishes in equilibrium and requires phase space both for initial and

final state particles in general δ ≥ 2. A similar argument should hold for processes

mediated by Goldstone bosons in color superconducting phases. Therefore the above

root is for all multipoles and corresponding processes higher than 11 so that change

of the viscosity constants Ṽm by an order of magnitude still changes the minimum

only by at most ∼ 20%, making it very insensitive to them. This extends the finding

obtained in an explicit comparison of various different neutron star models in [45]

to general forms of matter and damping processes. This insensitivity is particularly

interesting since these constants contain the complete dependence on the detailed

second order r-mode profiles, so that the minimum frequency is hardly affected by

the second order effects. This observation had already been made for the particular

neutron star model studied in [43]. A similar statement holds for the dependence on

the shear viscosity constants S̃m, where the corresponding root is at least of 6th order
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reached in the limit δ ≫ σ. The temperature of the minimum is more sensitive to

these constants, as likewise observed in [45, 43], since it only involves the (σ + δ)-th

root.

Finally we give the explicit expression for the minimum frequency of strange stars

with the general quark model equation of state eq. (4.1). The parameter dependence

of the quark matter viscosity coefficients given in tables 3.1 and 4.3 can be factored

out according to

Γ̃(q) ≡ Γ̂µ5
q , η̃(q) ≡ η̂α−5/3s µ14/3

q (4.41)

where Γ̂ and η̂ are pure constants, so that the minimum is located at

Ω
(SS)
min ≈ 2.23

Γ̂
5
56 η̂

3
28m

5
14
s µ

43
56
q

G
11
56 (1− c)

5
28α

5
28
s R

13
56M

11
28

(4.42)

T
(SS)
min ≈ 2.78

η̂
3
14G

3
28µ

1
28
q (1− c)

9
14 M

3
14

Γ̂
9
28α

5
14
s m

9
7
sR

27
28

(4.43)

Assuming that eq. (4.1) gives an estimate for the uncertainty in the unknown quark

matter equation of state and estimating the uncertainty in the quadratic and quartic

parameters ms and 1 − c each by a factor of two and that in the strong coupling

αs generously by an order of magnitude, the minimum could vary here by roughly

a factor of two owing to the uncertainty in the unknown microscopic dynamics. As

noted before the quark model equation of state is also valid for color superconducting

phases [14]. In this case the gap reduces the parameter ms which would lower the

minimum frequency and enlarge the instability region.
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Intermediate boundary

Above the minimum the damping is dominated by the bulk viscosity and below its

maximum it can be approximated by the asymptotic low temperature form eq. (4.25).

The semi-analytic result to next-to leading order in Ω is given in the appendix, but

because of the small effect of the next-to-leading order corrections of the oscillation

frequency on the instability regions, observed above, we can simply neglect these and

obtain

Ω (T )
T≫Tmin−−−−−→
T≪Tmax

0.360
Ṽ

1
4Λ

9
4
QCDR

1
4

J̃
1
2ΛEWG

1
4M

1
2

·











(

T
ΛQCD

) 3
2

(NS)
(

T
ΛQCD

) 1
2

(SS)

This part of the instability boundary is important for the spin down of young compact

stars since it determines where they hit the instability region during their initial fast

cooling phase.

Maximum of the instability region for strange stars

Due to the resonant form of the bulk viscosity eq. (3.26) whose maximum eq. (3.27)

translates into a minimum of the corresponding damping time, the instability region

features a maximum if the corresponding frequency is below the Kepler frequency or

otherwise splits into two parts. Since there is no analytic expression for the damping

time in the vicinity of the maximum there is no general expression for the maximum.

Yet, for hadronic matter the corresponding maximum frequency is usually above the

Kepler frequency anyway so it is not relevant for physical applications. In contrast,

for strange stars, where the maximum is generally below the Kepler frequency and

important for the r-mode analysis, the density profile varies only mildly and can be

approximated by a uniform density. In this case a general analytic expression for the

maximum of the instability region is given in eqs. (4.34, 4.35) in appendix 4.5.1 and
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reduces using the susceptibilities in tab. 4.2 to

Ω(SS)
max ≈ 0.434

m
4
3
sR

1
3

(1− c)
1
3 G

1
3M

2
3

(4.44)

T (SS)
max ≈ 0.210

(1− c)
1
3 m

2
3
sR

1
6

Γ̂
1
2G

1
6µ

3
2
qM

1
3

(4.45)

where the tiny second order corrections to the oscillation frequency, cf. fig. 4.2,

were neglected in this case. Note that analogous to the expression for the maximum

of the viscosity of quark matter given in [81] the chemical potential drops out and

therefore there is no ambiguity where to evaluate the susceptibilities in case the

density distribution of the considered star model is not entirely constant. This gives

for the dimensionless ratio

Ω
(SS)
max

ΩK

≈ 1.03
m

4
3
150R

11
6
10

(1− c)
1
3 M

7
6
1.4

(4.46)

where m150, M1.4 and R10 are the effective strange quark mass in units of 150 MeV,

the stars mass in units of 1.4M⊙ and the radius in units of 10 km, respectively.

Whereas the dependence on the parameter c, which in the perturbative regime

is positive and thereby increases the maximum frequency, is comparatively mild, the

dependence on the effective strange quark mass is significant and can within the

probable uncertainty region 100MeV . ms . 200MeV strongly change the position

of the maximum frequency from values considerably below to values above the Kepler

frequency. For superconducting matter the gap can reduce the effective parameter

ms. Whereas the maximum frequency of massive stars can be significantly lower, the

radii of sufficiently massive strange stars do not vary much with mass along a mass-

radius curve so that the dependence on the radius is mild despite the arising high
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power. To judge the implicit dependence of the masses and radii on the equation of

state it is useful to recall that the solution of the TOV equations for a uniform density

star exhibits scaling with the bag constant R/R0,M/M0 ∼
√

B0/B [124]. Despite

the uniform density approximation, the analytic result eq. (4.46) for the maximum,

given in tab. 4.4, agrees nicely with the numeric results for the considered strange

star models. The above expression can also be applied to the corresponding analysis

of Jaikumar, et. al. [9]. Using their lower strange quark mass ms = 100 MeV as well

as their slightly smaller radius and taking into account that these authors erroneously

used the angular velocity in the inertial frame to evaluate the bulk viscosity yields

Ω
(SS)
max/ΩK ≈ 0.47 in very good agreement with the plot of the exclusion region shown

in their fig. 4. When employing the proper angular velocity in the rotating frame, eq.

(4.46), gives instead the corrected result Ω
(SS)
max/ΩK ≈ 0.59.

The analytic results section 4.5.1 to some extent also apply to the maxima of the

instability regions of hybrid stars but in this case the agreement is less precise since

the density profile of their quark core features a more pronounced radial dependence.

High temperature boundary

For completeness we also give the high temperature part of the boundary.

Ω (T ) −−−−−→
T≫Tmax

8.66× 10−2
W̃

1
2Λ2

EWR
1
2

J̃Λ
1
2
QCDG

1
2M

·











(

ΛQCD

T

)3

(NS)

ΛQCD

T
(SS)

Due to the resonant behavior of the bulk viscosity which decreases again at large

temperatures, the r-mode is unstable for all forms of matter at large temperatures

above the corresponding boundary of the shell with the largest resonance temperature

eq. (3.27). This part could be less relevant for the r-mode evolution since stars cool

very fast initially and could leave this region before the r-mode can develop.
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General properties of the analytic analysis

Finally let us note a few generic properties of these analytic results. Since the mass

appears in the denominator in all these expressions, an increase of the mass of the

star increases the instability region and moves it uniformly downward and slightly

to the right in a T − Ω-plot. The dependence on the radius is less uniform, but

in general these expressions are less sensitive to the radius than to the mass of the

star. Furthermore for a given equation of state the radius of a star varies very little

for masses of 1 to 2M⊙. As already noted, the dependence of the minima of the

instability region on the viscosity parameters is extremely mild. Due to the arising

small powers O (1/10) even a large variation of the viscosity parameters by three

orders of magnitude within the set of possible equations of state for a given class of

stars, like e.g. pure neutron stars would not change the minimum by more than a

factor of two. In contrast the dependence of the maxima on the viscosity parameters

is far more pronounced and as discussed above changes by more than a factor of two

are here easily possible.

4.5.2 Numeric results

Let us now discuss the numeric results for the exclusion regions and compare them

to the semi-analytic expressions obtained in the last section in order to assess the

quality of the latter. Fig. 4.5 compares the expressions for particular segments of the

instability region and for the extrema to the numeric solution. The left panel shows

the results for a standard 1.4M⊙ neutron star model (solid) and a corresponding

strange star model (dotted). The thick curves show the numeric results and the

thin curves the analytic approximations and the dots denote the minima. Since we

neglect the contribution from the neutron star crust there is only a single shell in

each case. As can be seen, except for the regions around the extrema, the analytic
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expressions for the different segments approximate the boundary of the instability

region extremely well and are mostly hidden underneath the numeric curves. Yet,

the extrema are in turn well described by the corresponding analytic expressions. As

noted in [44, 117, 9], due to the resonant form of the bulk viscosity there is a stability

window around 109 K where strange stars are not unstable against r-modes up to large

frequencies. For the considered strange star model the maximum of the instability

region is above the Kepler frequency so that two separate regions appear, but as

discussed before the position of the maximum depends on the particular microscopic

parameters. Due to the same qualitative resonant structure of the bulk viscosity there

is also a second instability region at high temperatures & 1011 K for neutron stars that

has previously been neglected due to the employed low temperature approximation

to the hadronic bulk viscosity [8, 7]. Although the r-mode is initially unstable the

naive expectation is that this should be irrelevant for the spin-down evolution since

the star cools extremely fast at such high temperatures and might leave this region

before r-modes can develop. Yet, since the interior of the star is initially opaque to

neutrinos and the cooling is delayed this is not entirely clear and requires further

study.

On the right panel of fig. 4.5 the comparison for the 1.4M⊙ hybrid star model

is shown. Here there are contributions from the different layers, but strikingly the

analytic approximation works even in this more complicated case. This plot shows

nicely the generic structure of the boundary of the instability region, discussed in the

previous subsection, when several shells are present that feature qualitatively different

damping mechanisms. Around its resonant temperature the bulk viscosity damping

mechanism of a given shell in general clearly dominates over those of the other shells.

If the resonant temperatures of the different bulk viscosities are sufficiently separated

there are several maxima, that define corresponding stability windows. Below each
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Figure 4.5: Comparison of the numeric results for the instability region (thick lines)
with the various approximate semi-analytic expressions (thin lines and dots) presented
in the text for the different classes of compacts stars. The dots present the results
for the extrema and the thin lines which are valid away from the extrema represent
the corresponding analytic results taking into account only the contribution from the
dominant process and shell in the respective region. Left panel: Instability regions for
the 1.4M⊙ neutron star (solid) and strange star model (dotted). Right panel: Same
for the 1.4M⊙ hybrid star model. The thin dot-dashed curve on the right panel which
deviates slightly close to the maximum is the leading order result without the fre-
quency corrections in fig. 4.2, whereas the corresponding curves are indistinguishable
on the left panel. Note that here in the following where the ratio Ω/ΩK is plotted
this ratio is taken with the respective Kepler angular frequency for each star model,
see table 4.1, so that the same value of Ω/ΩK corresponds to a different value of Ω
for different curves.

of these maxima there is a minimum where a dominant mechanism is replaced by the

next. However, in case two resonant temperatures are too close or a shell is too small

to have a sizable impact, individual stability windows can be fully or partly washed

out. We discuss such cases below.

Fig. 4.6 shows the exclusion region for the standard 1.4M⊙ neutron star model

compared to approximations used previously in the literature. The solid curve shows

our new result with shear viscosity due to the dominant Landau-damped lepton scat-
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tering [121] and bulk viscosity due to modified Urca processes based on susceptibilities

for interacting matter [81]. The dotted curve shows the exclusion region when using

the result for the shear viscosity from the fit in [8] to the standard low density (. n0)

data from hadron-hadron-scattering given in [10]. Extrapolating this fit to high den-

sities relevant for neutron stars overestimates the viscosity compared to its actual,

subleading size [121], leading to the smaller exclusion region. The dashed curve shows

the result when employing the previously used expression for the bulk viscosity [8, 7]

which employs susceptibilities in the approximation of an ideal hadron gas, see table

4.2. It is again the insensitivity to the viscosity parameter Ṽ discussed in the previous

subsection that is responsible for the fact that these corrections, which change the

damping time by more than an order of magnitude, have only such a mild effect on

the exclusion region and the minimum eq. (4.39). It is interesting that the effect of

the interactions is opposite to that of the 2nd order Ω-corrections [43]. The combined

curve formed by the dotted and the dashed segment is the exclusion region that had

previously been studied in the literature. As can be seen the combined effect of both

corrections is to move the instability region to lower temperatures so that it extends

to roughly 105 K. This is relevant for old stars at low temperatures that are spun up

by accretion since the r-mode becomes unstable already at lower frequencies.

The left panel of fig. 4.7 compares the instability regions of the different 1.4M⊙

star models considered here and also includes the analytic results for the extrema. The

minima in these plots corresponds to the maxima where two damping mechanisms

cross in fig. 4.4 whereas the maxima in fig. 4.7 correspond to the minima in fig. 4.4.

As can be seen the instability regions of the hybrid stars interpolate between the

neutron star and the strange star curve as the size of the quark core increases, even

though all these curves are based on rather different equations of state distinguished

by the interaction parameter c, see table 4.1. The right panel of fig. 4.7 shows the
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Figure 4.6: Modification of the instability region of a 1.4M⊙ neutron star due to
improved approximations for the microscopic transport properties. The solid curve
shows the standard neutron star model with shear viscosity due to the dominant
Landau-damped lepton scattering and bulk viscosity based on the proper susceptibil-
ities for interacting matter (as all other neutron star results in this work). The dashed
curve shows the result when using the fit given in [8] to the density data . n0 for the
shear viscosity from hadron-hadron scattering obtained in [10]. The dotted line shows
the result when employing the previously used expression neglecting interactions to
the susceptibilities contributing to the bulk viscosity [8, 7].

instability regions for the 2M⊙ models discussed in this work. As has already been

observed as a generic feature of the analytic analysis, the r-mode instability in heavy

stars is enhanced and the boundary of the instability region moves slightly to lower

frequencies. As predicted by the mass dependences of the analytic expressions this

is most pronounced in the vicinity of the maxima and milder in the vicinity of the

minima. The approximate analytic results for the maxima deviate slightly from the

maxima of the numerical curves. The reason for this is that the uniform density

approximation is not justified in this case due to the strong radial dependence of the
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Figure 4.7: Instability regions for the different star models considered in this work.
Shown are neutron star models with APR equation of state (solid), hybrid stars
with a small (dot-dashed), a medium (dot-dot-dashed) and a large quark matter core
(dashed) and strange star models (dotted) with an ideal gas equation of state. The
dots show again the analytic estimates for the extrema. Left panel: 1.4M⊙ stars.
Right panel: 2M⊙ stars, for which for the considered equations of state stars with
smaller quark cores could not be found.

density profiles, see fig. 4.1.

Fig. 4.8 shows the instability region for an ultra-heavy neutron star M ≈ 2.2M⊙

denoted by the solid curve. Here, the instability region has grown to the point that

the lower and the upper part are about to merge. For this star the densities that are

reached are high enough that direct Urca processes are kinematically allowed within

an inner core with radius of roughly R/2. The enhanced damping due to direct Urca

bulk viscosity in the inner core leads to a notch at the right side of the instability

region, as also found in [125]. Yet, the modification is rather mild in this case: the

dashed curve shows the same star model when direct Urca processes are artificially

suppressed. In the opposite extreme when direct Urca processes are artificially al-

lowed in the entire core, shown by the dotted curve, the enhanced damping does

lead to a significant change of the instability region. Moreover, the frequency of the
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minimum of the instability region increases. Due to the resonant form of the bulk

viscosity, however, the instability region does not uniformly shrink over the whole

temperature range where bulk viscosity dominates, but the stability window moves

to lower temperatures leaving the r-mode unstable at higher temperatures where it is

otherwise stable in the presence of modified Urca processes. The temperature scales

of the corresponding stability windows agree with the temperature scales of the reso-

nant maximum of the bulk viscosity, see [81]. Direct Urca processes are very sensitive

to the proton fraction of dense matter. Whereas the required fraction is roughly 14%

in the case of the APR equation of state, reached at relatively high densities & 5n0,

this could be different for other equations of state. In a case where the direct Urca

core is larger but a modified Urca shell is still present so that both of them have

a sizeable volume fraction, their combined damping could lead to a larger stability

window, yet still at parametrically larger temperatures than the stability window of

strange stars.

Fig. 4.9 shows the result for the higher multipoles for the different 1.4M⊙ star

models. As can be seen, the right boundaries of the instability regions for the higher

multipoles are extremely close to the boundary of the fundamental m = 2 mode.

Correspondingly these modes could easily be excited once the evolution of a star

enters the instability region. Each mode that is triggered would lead to a further en-

hancement of the spindown of the star and could change the evolution. This could be

particularly relevant for young neutron stars that enter the instability region at high

temperatures when the cooling is still fast but there are no strong reheating mech-

anisms which could prevent the star from substantially penetrating the instability

region.

Fig. 4.10 finally compares our numeric results to astrophysical data. Although

the rotation frequencies of pulsars are known to high accuracy, the relevant core
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Figure 4.8: The instability region with direct Urca interactions is shown for the
2.21M⊙ maximum mass neutron star model (solid curve), where direct Urca processes
are allowed in the inner core but only modified Urca processes in the layer surrounding
it. For comparison the instability region is shown when direct Urca reactions are
artificially suppressed (dashed curve) as well as when they are artificially allowed in
the entire hadronic core (dotted curve).

temperatures are not known for most pulsars and involve large uncertainties even for

those stars where estimates are available. The reason is that the temperature of the

surface is indirectly inferred from the data and it is necessary to abstract from it the

core temperature via models. Such an analysis has been performed for two low mass

X-ray binary systems Aql X-1 and SAX J1808.4-3658 [126], where the pulsars accrete

matter from companion stars. The horizontal lines give an optimistic estimate for the

uncertainty of the temperature. As can be seen these data points are well within the

instability region of neutron stars. This holds in particular for the faster one of the

two pulsars, Aql X-1, which is right in the middle. Our analysis shows this statement

cannot be undermined by the unknown equation of state. So if r-modes would spin
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Figure 4.9: Instability regions for the first four multipole r-modes (m = 2 to 5) of the
different 1.4M⊙ star models (top, left: neutron star; top, right: hybrid star, small
quark core; bottom, left: hybrid star, large quark core; bottom right: strange star).
The minima from eqs. (4.31) & (4.32), the second minima of the large core hybrid
star from eqs. (4.37) & (4.38) and the maxima from eqs. (4.34) & (4.35) are denoted
by the dots. For higher multipoles the size of the instability regions decreases and
they move to higher rotation frequencies, so that all modes with m ≥ 7 are entirely
stable in the physical range of frequencies. In particular in the cases of neutron and
hybrid stars the right boundaries of the instability regions of the higher multipoles
are very close to the fundamental m = 2 mode, so that several modes can easily be
excited if the evolution significantly enters the fundamental instability region.
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Figure 4.10: Comparison of the instability regions in absolute frequencies for the
different star models considered in this work with the two low mass X-ray binaries
Aql X-1 (filled square) and SAX J1808.4-3658 (open circle). The horizontal bar gives
a partial measure for the error within the model computations which should be larger
due to uncontrolled assumptions that are not considered in its size.

down stars so fast that the stars would leave the unstable region on time scales short

compared to astrophysical ones these stars could not be pure neutron stars and would

require some form of enhanced damping. Yet, in the case of strange stars and hybrid

stars with a sufficiently large quark core, the data points are close to the boundary of

the corresponding stability window and would be compatible in such a scenario3. As

our results show, hybrid stars with a small quark core or neutron stars with enhanced

hadronic direct Urca damping, in contrast, would not be sufficient.

3A potential problem with such an explanation of the data would be the observation of a very
fast and at the same time very cold pulsar, since, after the accretion stops, stars within the stability
window would re-enter the instability region due to cooling and correspondingly would have to spin
down to a fraction of their Kepler frequency.
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4.6 Conclusions

Using general expressions for the viscosities of dense matter we have derived semi-

analytic results for the damping times of small amplitude r-mode oscillations and the

boundary of the instability region. Our results show that the boundary of the insta-

bility region and in particular its minimum, which determines to what extent r-modes

can spin down a fast star, are extremely insensitive to the quantitative details of the

microscopic interactions that induce viscous damping. However, the instability re-

gions can nevertheless effectively discriminate between qualitatively different classes

of stars. In particular strange stars and hybrid stars with sufficiently large quark

cores feature a stability window that cannot be reproduced with standard neutron

stars without some admixture of exotic matter that provides enhanced damping. We

find that the presence of some form of exotic matter does not automatically lead

to a stability window since the instability region of hybrid stars with a sufficiently

small quark core is almost indistinguishable from that of a neutron star. Similarly, the

presence of neutron matter with direct Urca interactions will in most cases not consid-

erably change the instability region. However, due to the demonstrated insensitivity

of the instability regions to quantitative microscopic details, the clear determination

of a very fast pulsar with Ω > 300 Hz in the temperature range around 109 K could

provide a convincing signature for some exotic form of matter. What remains to be

shown in order to transform this into a strict signature is that the crust does not

dominate the damping, and that r-modes do not saturate at amplitudes that are so

small that the spindown takes billions of years in which case the instability region

would not really present a no-go area. The second point requires a thorough under-

standing of the dynamical evolution of compact stars and a step towards this goal is

taken in the next chapter where we show that the large amplitude behavior of the
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bulk viscosity can saturate r-modes at amplitudes that are large enough for a fast

spindown.
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Chapter 5

Large amplitude saturation of the

r-modes

5.1 Introduction

In the previous chapter we analyzed the instability regions of the r-mode oscillations.

The main result of that chapter was that these regions vary greatly between qual-

itatively different classes of stars containing distinct phases of strongly interacting

matter, but are extremely insensitive to unknown quantitative details of the equa-

tion of state and the transport properties within a given class. Therefore, a proper

understanding of the r-mode dynamics could in the future provide robust signatures

for the presence of exotic phases in compact stars.

Since exponentially growing r-modes will destroy the star if their growth is not

stopped by some non-linear mechanism, the fact that fast spinning compact stars

are observed suggests that such a non-linear damping mechanism is indeed present.

More importantly, even if stopped at a finite amplitude, r-modes still strongly emit

gravitational waves and could provide an extremely efficient mechanism for the spin-

down of compact stars [50] and an interesting signal for terrestrial gravitational wave
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detectors. Spin-down due to r-modes could explain the observed absence of fast-

spinning young stars despite the fact that their creation during a supernova could

naturally lead to a fast spinning remnant. For spin-down via r-modes the size of the

saturation amplitude is crucial. If the amplitude α is too low, it takes too long to

spin down the star; if the amplitude is too large, α>O (1) , the r-mode would disrupt

the star’s structure, and even before this point the r-mode could be destroyed. If the

r-mode amplitude saturates at an intermediate value, a fast spin-down is possible.

Previously, various mechanisms for the large-amplitude behavior of r-modes have

been suggested [105]. They include the coupling between different modes [108, 127],

the decay into daughter modes and the eventual transformation of the r-mode energy

into differential rotation [106, 107], friction between different layers of the star, and

surface effects in the star‘s crust [123].

In this chapter, which is based on Ref. [128], we study an alternative mechanism

that does not involve such complicated non-linear dynamical or structural effects. It

is present already in a standard hydrodynamical description and exploits the fact

that at large amplitudes the damping due to bulk viscosity increases dramatically

with the amplitude [81, 79, 78, 129]. In this suprathermal regime, where the deviation

from chemical equilibrium µ∆ fulfills µ∆&T , the viscous damping could overcome the

initial gravitational instability and saturate the r-mode. However, as shown in chapter

3, the bulk viscosity has a maximum as a function of the amplitude and decreases

again at even larger amplitudes. If the amplitude exceeds this critical value then the

r-mode growth cannot be stopped by viscous damping and other non-linear dynamic

effects [105, 106, 107, 127, 108] are required to saturate it. Nevertheless, we find that

over a significant region of the parameter space the suprathermal enhancement is

indeed sufficient to saturate the r-mode at a finite amplitude and the r-mode can then

efficiently spin down the star. This is in contrast to certain non-linear hydrodynamical
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5.2 Bulk viscosity damping time scale

effects where the r-mode could completely decay [107] and would not be able to cause

an appreciable spin-down of the star.

For r-modes with amplitudes sufficiently below the maximum, we give general

analytic expressions for the suprathermal damping time valid for various forms of

dense matter. For r-modes with arbitrary amplitudes, where an analytic evaluation

is not possible, we give a general expression for the bulk viscosity damping time that

includes the complete parameter dependence required for the analysis of the star’s

evolution, encoded in a two-parameter function that can be numerically computed

and tabulated for different star models. This offers an explicit framework for the con-

sistent inclusion of the r-mode saturation into a star evolution analysis and supersedes

previously necessary model assumptions [50]. We will analyze the same star models as

in chapter 4. These include neutron stars, hybrid stars and strange stars. In addition,

motivated by the recent observation of a 2M⊙ star [4, 54] we only study models that

also yield heavy stars. Moreover, similar to the analytic results in chapter 3, we give

approximate analytic expressions for the maximum saturation amplitude that exhibit

the detailed parameter dependence on the equation of state and the transport prop-

erties of dense matter. In addition to the standard fundamental m=2 r-mode we also

study the saturation of higher multipoles and find that they saturate at significantly

lower amplitudes. In this work we concentrate on the effects of suprathermal bulk

viscosity on the damping times (see chapter 4) and the suitably extended concept of

the instability regions.

5.2 Bulk viscosity damping time scale

In the previous chapter we gave the expressions for the bulk viscosity damping time

scales in the small amplitude limit. Here we give the general results for the bulk
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5.2 Bulk viscosity damping time scale

viscosity time scales which are valid in the large amplitude limit as well. As we saw

in the last chapter, the bulk viscosity damping time is given by [43]

1

τB
=

κ2

α2J̃mMR2

∫

d3x
∣

∣

∣

∆ρ

ρ̄

∣

∣

∣

2

ζ
(∣

∣

∣

∆ρ

ρ̄

∣

∣

∣

2)

(5.1)

Using the general expressions for the bulk viscosity eqs. (3.34) and (3.35) and express-

ing the fluctuation in the conserved energy density ∆ρ/ρ̄ by the same fluctuation of

the baryon density ∆n/n̄, gives for the damping time the general expression

1

τB
=

4πΩ3

(m+ 1)2J̃mMR2κ

∑

l

T (l)(a, b) . (5.2)

in terms of integrals over the individual shells. Defining the reduced density oscillation
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depending on only two independent parameters
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a ≡ κ0αΩ
2

κω1/δ
=

2αΩ(2δ−1)/δ

(m+ 1)κ(δ+1)/δ

b ≡ T δ

ω
=
T δ

κΩ

Note that in eq. (5.4) all local quantities can have different functional forms in differ-

ent shells, as given in tables 4.2 and 3.1, but to make the expression readable we do

not show the explicit suffixes (l). Whereas strange stars are basically homogeneous

and consist of a single phase, the crust of neutron and hybrid stars is extremely in-

homogeneous and complicated. Although there are no free protons and thereby no

Urca processes, the ultra-heavy nuclei present in the inner crust as well as the clus-

ters in potential pasta phases still feature analogous beta-processes. Since oscillations

likewise push the system out of beta-equilibrium an analogous suprathermal enhance-

ment of the bulk viscosity contribution from these phases is expected. However, there

are to our knowledge no results for the bulk viscosity in the inner crust, yet [130].

Therefore we will in our numeric results given below neglect the contribution from

the crust and only include the contribution from the core. The core does not have

a sharply-defined boundary: we chose it conventionally to be at baryon density n0/4

corresponding to the lowest point in the APR table, but check the dependence on

this choice.

5.2.1 Approximate limits of the bulk viscosity damping time

In the subthermal regime µ∆≪T the bulk viscosity eq. (3.26) is independent of the

r-mode amplitude, so the angular integral in eq. (5.1) is trivial. The damping time in

the subthermal regime is then given by
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1

τ<B
=

16m

(2m+ 3)(m+ 1)5κ

R5Ω3

J̃mM

∑

l

T <(l)
m

( T δ

κΩ

)

(5.5)

in terms of the one dimensional radial integral

T <(l)
m (b) ≡ b

R3

∫ R
(l)
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R
(l)
i

dr r2
A2C2Γ̃

1 + Γ̃2B2b2

(

( r

R

)m+1

+ δΦ0

)2

This expression was used to study the small amplitude instability regions in chapter

4. Here we want to study the large-amplitude saturation and therefore it is useful to

obtain an analytic expression that includes the large-amplitude enhancement of the

bulk viscosity. In the intermediate, linear regime and for f≪ 1 the general analytic

approximation for the bulk viscosity eq. (3.30) is valid. Since this local condition has

to be fulfilled everywhere in the star, the global parameters a and b must be smaller

than certain bounds that are determined by the particular properties of the considered

stars. We recall from chapter 3 that the approximation is particularly useful for

hadronic matter with modified Urca processes where it covers almost the entire range

of physical local density amplitudes at millisecond frequencies. A plot of the regions

of validity of the individual analytic approximations of the bulk viscosity for different

forms of matter is given in [82]. Analogous to the low temperature/high frequency

approximation in the subthermal regime eq. (5.5), in the intermediate, linear regime

an explicit evaluation is possible. With the analytic expression for the bulk viscosity

eq. (3.30) the angular integrals over the spherical harmonics arising in the r-mode

profile take the form

∫

dΩθφ

∣

∣Y m
m+1(θ, φ)

∣

∣

2n
=
4π (2n− 1)!!(mn)!

(2(m+ 1)n+ 1)!!

((2m+ 3)!!

4πm!

)n

and this yields a result that apart from the evaluation of the remaining radial integrals

is analytic (see also [79, 80])
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1
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=
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The dependence on all local parameters, like the equation of state, the weak rate, the

density dependence of the particular star and its r-mode profile is contained in a few

dimensionless radial integral constants (ΛEW is a typical electroweak scale)

Ṽm,j ≡
Λ4

EW

Λ
7−δ+2(j+1)
QCD R3

(5.7)

·
∫ R

0

dr r2Γ̃(r)

(

A(r)C(r)

(

( r

R

)m+1

+δΦ0(r)

))2(j+1)

but the dependence on the parameters of the r-mode evolution Ω, α and T is entirely

explicit in eq. (5.6). The j=0 term in eq. (5.6) is precisely the approximate subthermal

result eq. (5.5) in the considered approximation. The constants Ṽj ≡ Ṽ2,j for the

fundamental r-mode are given for several stars in table 5.1. Although these parameters

can vary significantly for different stars, it is quite striking that as far as the bulk

viscosity is concerned, the complex details of the individual stars are encoded in a few

constants. Note in particular that the parametric form eq. (5.6) remains valid for the

full second order r-mode expression and only the constants eq. (5.7) are changed. At

sufficiently large amplitudes the largest power in the sum in eq. (5.6) dominates and

due to the connection δ=2N the bulk viscosity damping time becomes temperature

independent in this approximation. Note also that the integrals Ṽm,N , as well as the

general expression eq. (5.4) feature an extremely pronounced radial dependence, both

due to the explicit radial dependence and the radial dependence of the inverse squared
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speed of sound A, that strongly weights the outer parts of the star.
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star model shell Ṽ0 Ṽ1 Ṽ2 Ṽ3 αsat (ΩK)
NS 1.4M⊙ core 1.31× 10−3 4.24× 10−3 2.02× 10−2 0.105 3.68

NS 1.4M⊙ gas 1.28× 10−4 5.52× 10−5 3.88× 10−5 3.03× 10−5 14.3
NS 2.0M⊙ 1.16× 10−3 4.92× 10−3 3.25× 10−2 0.238 2.52
NS 2.21M⊙ d.U. core 1.16× 10−8 7.24× 10−12 5.39× 10−15 − −

m.U. core 9.34× 10−4 4.42× 10−3 3.39× 10−2 0.288 2.60

SS eq. (4.1) all
Λ4
EW Γ̂m4

sµ
3
q

9Λ7
QCD(1−c)2

Λ4
EW Γ̂m8

sµq

15Λ9
QCD(1−c)4

− − eq. (5.10)

SS 1.4M⊙ 3.53× 10−10 1.24× 10−12 − − 1.16
SS 2.0M⊙ 3.58× 10−10 9.70× 10−13 − − 1.56
HS 1.4M⊙ quark core 1.38× 10−10 1.75× 10−13 − − 2.25

hadr. core 1.39× 10−3 4.70× 10−3 2.23× 10−2 0.116 3.66
HS 2.0M⊙ quark core 3.76× 10−10 7.75× 10−13 − − 1.59

hadr. core 1.07× 10−3 4.12× 10−3 2.31× 10−2 0.134 2.94

Table 5.1: Radial integral parameters and static saturation amplitude of a m=2 r-mode for the stars considered in this
work. The constant J̃ , S̃ and Ṽi are given by eqs. (4.18), (4.20) and (5.7), respectively, using the generic normalization
scales ΛQCD = 1 GeV and ΛEW = 100 GeV. Note that the subthermal parameter Ṽ0 corresponds to Ṽ in [15] where the
subscript was omitted for simplicity and the strange star expressions are given to leading order in ms/µ.
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5.2.2 Results for the damping times

Using the expressions for the microscopic parameters given in tables 4.2 and 3.1 and

the general expressions for the r-mode growth and damping time scales, eqs. (4.17),

(4.19) and (5.2), we obtain the gravitational and viscosity time scales as a function of

their dependent macroscopic parameters. These are given in fig. 5.1 for the cases of a

neutron star with damping due to modified Urca reactions (left panel) and a strange

star (right panel) by the solid lines as a function of temperature and for different

amplitudes ranging from top to bottom from the subthermal result at infinitesimal

amplitude to the extreme case α=10.

At sufficiently low temperature the strong increase of the bulk viscosity with the

(local) amplitude ∆n/n̄ damps r-modes with large (global) dimensionless amplitude

α at significantly shorter time scales. As found before from the analytic expression

eq. (5.6), given by the dotted curves, the damping time is temperature independent

in this low temperature and intermediate amplitude regime. In contrast, due to the

generic form of the bulk viscosity, featuring a universal maximum, the damping of

large amplitude r-modes is not enhanced at high temperatures. As a direct con-

sequence of the subthermal maximum of the bulk viscosity [81], the corresponding

“resonant” temperature where the damping time is minimal is at roughly 109 K for

strange stars and 1011 K for neutron stars. Correspondingly, r-modes are entirely un-

stable at high temperatures. However, due to the strong suprathermal enhancement

at low temperatures the damping undercuts the gravitational time scale at sufficiently

large amplitude so that the r-mode growth will slow down and eventually saturate.

The corresponding amplitudes are strikingly very similar for the two different classes

of stars, as will be discussed in more detail below. At very large amplitudes α∼O (10)

the damping times decrease again at all temperatures as a consequence of the behavior

of the bulk viscosity [81].
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Figure 5.1: The relevant r-mode time scales for 1.4M⊙ stars rotating at their Kepler frequency. Left panel: Neutron star.
Right panel: Strange star. The dotted horizontal line presents the time scale τG associated to the growth of the mode due
to gravitational wave emission. The dashed rising curve shows the damping time τS due to shear viscosity. The damping
time τB due to bulk viscosity is given for different dimensionless r-mode amplitudes α = 0, 0.01, 0.1, 1 and 10 by the solid
curves. The thin dotted curves correspond to the analytic linear approximation eq. (5.6) and are below the shown plot
range for the largest amplitude. The thin dot-dashed curves on the left panel show the change when only a smaller core
(ranging to a density of n0/2 instead of n0/4) is taken into account. The thin dashed curves on the right panel represent
the approximate analytic expression eq. (E.5) given in the appendix which is not valid above the maximum of the bulk
viscosity and therefore not shown for the large amplitude results.
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5.2 Bulk viscosity damping time scale

The dot-dashed curves in the neutron star plot on the left panel of fig. 5.1 show

the damping time if the crust is assumed to start already at the higher density n0/2

instead of n0/4 so that only the contribution from the correspondingly smaller core

is taken into account1. Although the damping times are larger, as expected, the

amplitude at which the viscous damping can saturate the mode is not drastically

changed, so that our results given below remain qualitatively unchanged in this case.

Actually, when the damping from the crust would be properly taken into account this

should rather enhance the damping and decrease the r-mode amplitude compared to

those obtained in this work. In the case of the strange star on the right panel of

fig. 5.1 the dashed curves also show the analytic approximation discussed in appendix

E, where the star is assumed to be homogeneous. As can be seen, the corresponding

expression eq. (E.5) gives an approximate estimate for the damping time at all

temperatures and for amplitudes up to the maximum of the viscosity, and only fails

at higher amplitudes, where the bulk viscosity cannot saturate the r-mode anymore

and where it is thereby not physically relevant. The deviations compared to the

numeric result stem mainly from the fact that the density in the strange star is not

entirely constant (fig.4.1 in chapter 4).

Previous neutron star analyses [79, 80] have employed an r-mode profile that does

not feature the stronger additional radial dependence due to the low density enhance-

ment of the inverse squared speed of sound A, shown in fig. 4.3, for a realistic equation

of state. E.g. the r-mode profile given in eq. (6.6) of [53] features roughly a generic

r3-dependence. The strong r-dependence in our present treatment, however, strongly

amplifies the damping in the outer regions of the star. Therefore, the contribution

of the crust to the viscous damping should be relevant and would further decrease

the saturation amplitude. The current restriction of our analysis to the core presents

1The range n0/4 to n0/2 should provide an estimate for the uncertainty of this boundary. For
instance in [130] an intermediate value of n0/3 is given.
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therefore an upper bound for the saturation amplitude obtained when the damping of

the whole star is considered. The second order effects in contrast increase the small

amplitude instability region [43] and can correspondingly be expected to likewise in-

crease the saturation amplitude. A more thorough treatment of all these effects in

the future is clearly desirable.

5.3 Saturation amplitudes

Because of the strong decrease of the viscous damping time due to the suprathermal

enhancement the damping can dominate at sufficiently large amplitudes. In this case

the definition of the instability regions have to be extended. The latter are standardly

defined in the subthermal regime and are independent of the amplitude. One could

extend this concept by the definition of amplitude dependent instability regions which

would shrink with increasing amplitude. However, since the amplitude can neither

be inferred from observation nor is it a parameter that can be dialed, but is rather

determined dynamically, we refrain from this possibility and rather introduce the

concept of a static saturation amplitude. The latter is defined by the amplitude at

which the r-mode would saturate at fixed temperature and frequency and is given by

the solution of the equation

1

τG(Ω)
+
∑

l

(

1

τ
(l)
S (T )

+
1

τ
(l)
B (T,Ω, αsat)

)

= 0 (5.8)

where l runs over the contributions from the different shells of the star. The bound-

aries of the above mentioned amplitude dependent instability regions are by definition

simply the contour lines αsat(T,Ω)=const. and the boundary of the classic instability

region, in particular, corresponds to αsat = 0. In case several solutions of eq. (5.8)

exist, only the smallest one is physical and if no solution exists then viscous damping
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5.3 Saturation amplitudes

alone cannot saturate the r-mode according to this definition. Actually, at the same

time the r-mode grows, the star generally also cools or reheats and spins down re-

spectively up so that the above amplitudes do not have to be reached. In particular

the star could leave the parameter regions where a saturation according to the above

criterion is not possible before the r-mode can actually explode.

5.3.1 Analytic approximation

Similar to the analytic expression for the boundary of the instability region [15] an

analytic expression for the static saturation amplitude can be obtained. The analytic

linear approximation τ∼B applies as long as the r-mode amplitude is small enough so

that the bulk viscosity is sufficiently below its maximum. When the r-mode amplitude

is at the same time large enough that the highest power in eq. (5.6) dominates, the

damping time becomes temperature independent. Both conditions are met sufficiently

far inside the instability region so that the damping time simplifies to

1

τ∼B
−−−−−→
j=N=δ/2

24+NmN ((2m+ 1)!!)N+1 ((2N + 1)!!)2 (m (N + 1))!χN Ṽm,N

πN (m+ 1)5(N+1) (m!)N (m− 1)! (N + 1)! (2 (m+ 1) (N + 1) + 1)!!κ2N+2J̃m

·
Λ9

QCDR
5+4Nα2NΩ4N+2

Λ4
EWM

At saturation this has to match the gravitational time scale 1/τB + 1/τG = 0 which

yields the general result
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αsat =





π1+δ/2 (m− 1)2m (m+ 1)3+5δ/2−2m (m+ 2)2+2m ((m− 1)!)1+δ/2 ( δ
2
+ 1
)

!

2δ/2−1 ((2m+ 1)!!)3+
δ
2 ((δ + 1)!!)2 (m

(

δ
2
+ 1
)

)!χ δ
2





1/δ

·
((

2 (m+ 1)
(

δ
2
+ 1
)

+ 1
)

!!κδ+2
)1/δ

J̃
2/δ
m Λ

4/δ
EWG

1/δM2/δ

Ṽ
1/δ

m, δ
2

Λ
9/δ
QCDR

2+(5−2m)/δΩ2−2m/δ
(5.9)

where κ is defined by eq. (4.2). In the cases of strange stars with non-leptonic

processes δ = 2 and hadronic matter with modified Urca processes δ = 6 this gives

for the m = 2 r-mode

α
(SS)
sat ≈ 5.56 · 10−5 J̃

Ṽ
1/2
1

M1.4

R
5/2
10

≈ 1.61
(1− c)2M1.4

m4
150µ

1/2
300R

5/2
10

(5.10)

α
(NS)
sat ≈ 10.8

J̃1/3

Ṽ
1/6
3

M
1/3
1.4

R
13/6
10 Ω

4/3
ms

where J̃ ≡ J̃2 and Ṽi ≡ Ṽ2,i are given for the normalization scales used in table 5.1.

Here m150, µ300, M1.4, R10 and Ωms are the effective strange quark mass in units

of 150 MeV, the quark chemical potential in units of 300 MeV, the stars mass in

units of 1.4M⊙, the radius in units of 10 km and the angular velocity in units of

2π kHz corresponding to a millisecond pulsar, respectively. For strange stars the

above expression for the intermediate amplitude bulk viscosity damping time has

the same frequency dependence as the gravitational time scale eq. (4.17), so αsat is

basically constant throughout the instability region. However, it rises with decreasing

frequency for neutron stars where the frequency dependence of the bulk viscosity is

weaker. In contrast to the analytic expressions for the extrema of the instability region

given in [15], which are very insensitive to the microscopic transport parameters, the

saturation amplitude is more sensitive to the suprathermal bulk viscosity parameter

152



5.3 Saturation amplitudes

Ṽ . Whereas the saturation amplitude of neutron stars still depends on Ṽ rather

mildly due to the power 1/6, the saturation amplitude for strange stars obtained

from the generic equation of state eq. (4.1) decreases with the “interaction parameter”

c and even more strongly with the effective strange quark mass ms.

5.3.2 Numeric solution

Let us now discuss the numerical solution for the saturation amplitude. In the fol-

lowing plots figs. 5.2 to 5.6 the static saturation amplitude is shown as a function of

temperature and amplitude and they feature generally 3 distinct regions. The light

(blue) surface shows the saturation amplitude where the r-mode growth is stopped

by suprathermal damping. Due to the characteristic behavior of the bulk viscosity

[81] which does not feature an amplitude enhancement for temperatures above the

temperature Tmax eq. (4.35), the r-mode is not damped at all by viscous effects in the

high temperature regime as denoted by the dark (red) area on the right hand side. In

the flat (green) region surrounding the instability region the r-mode is entirely stable

and already damped by the shear or the subthermal bulk viscosity so that αsat=0.

The left panel of fig. 5.2 shows the static saturation amplitude for the m = 2

r-mode of a 1.4M⊙ neutron star. Although this might be hard to see in certain

regions of the plot, the saturation amplitude rises steeply, within a narrow interval,

from zero at the boundary of the instability region towards its interior. At large

frequencies it reaches a plateau value that is nearly independent of the temperature

as predicted by the analytic expression eq. (5.9). As described by the latter expression,

inside the instability region the saturation amplitude rises strongly with decreasing

frequency and since the instability region shrinks in width and eventually ends at

low frequencies where the amplitude vanishes and the mode is damped, it features a

peak-like structure. The maximum static saturation amplitude reached at the peak
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is in this case unphysically large whereas the plateau value at the Kepler frequency is

still roughly 3.5. The suprathermal bulk viscosity can therefore in principle saturate

r-modes within the lower part of the instability region. However, in the present

case, where only the damping of the core is taken into account, the static saturation

amplitudes are at the limit where a standard r-mode analysis is valid. Moreover

these amplitudes are so far larger than those of alternative saturation mechanisms

[108, 127, 106, 107].

It is interesting to mention once more, though, that the extreme radial dependence

of the r-mode profile eq. (4.7) strongly weights the outer regions of the star due to

power law dependences of the inverse bulk viscosity damping time eq. (5.1) with

exponents O (30) for neutron and hybrid stars which is further enhanced by the

density dependence of the inverse speed of sound. The contribution of the crust

could thereby be decisive to obtain a realistic estimate of the impact of the non-

linear viscosity. In this context it is also important that a similar enhancement of the

bulk viscosity has been found for superfluid matter [131]. As noted in [15] there is

a second instability region at high temperatures above 1011 K and as argued above

the suprathermal bulk viscosity cannot saturate the r-mode in this high temperature

regime. It is an interesting question if the r-mode can become large during this initial

part of a star’s evolution, and if so whether the r-mode is saturated at sufficiently

small values by other non-linear mechanism or if the r-mode growth is not stopped

before it reaches the regime where the structural stability of the star is at stake.

In the latter case this instability phase might extend the violent supernova stage

and actively shape the remnant by additional mass shedding and thereby determine

its initial size and angular momentum. We will discuss these points further in the

conclusion.
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Figure 5.2: The static saturation amplitude, at which the r-mode growth is stopped by suprathermal viscous damping for
the APR neutron stars. Left panel: 1.4M⊙ . Right panel: 2.0M⊙. The light (green) shaded area denotes the stable region
where the r-mode is damped away. At large frequencies a plateau with amplitudes O(1) is reached. In the dark (red)
region at high temperatures the r-mode is entirely unstable and cannot be saturated by viscous effects.
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Figure 5.3: The saturation amplitude for the considered strange stars. Left panel: 1.4M⊙ . Right panel: 2.0M⊙ . In
the latter case the suprathermal viscosity cannot stop the r-mode instability at frequencies larger than the maximum
frequency of the stability window (where the saturation amplitude diverges) - for the considered star slightly below the
Kepler frequency - as well as in the high temperature part of the instability region. The saturation amplitudes of the
plateau in the lower part of the instability region are of the same order as in the hadronic case shown in fig. 5.2.
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5.3 Saturation amplitudes

The saturation amplitude for the 1.4M⊙ strange star is shown on the left panel

of fig. 5.3. Since the maximum of the stability window is above the Kepler frequency

there are in this plot two separate parts of the instability region. As predicted by

eq. (5.9) the plateau value of the saturation amplitude in the lower part is approxi-

mately temperature and frequency independent. Strikingly it is of similar size as the

saturation amplitude for the 1.4M⊙ neutron star at its Kepler frequency. The high

temperature part of the instability region where the viscosity again cannot saturate

the r-mode extends in this case down to lower temperatures than for neutron stars.

The left panel of fig. 5.4 shows the corresponding plot for the 1.4M⊙ hybrid

star. As found previously in [15] the instability region has here three parts that are

separated by two stability windows arising from the resonant behavior of the bulk

viscosities in the different shells. Due to their parametrically different temperature de-

pendence the bulk viscosity of the quark shell dominates at low temperature, whereas

the bulk viscosity of the hadronic shell dominates at high temperatures. Correspond-

ingly the saturation amplitude in the low temperature part of the instability region

shows the qualitative behavior found for strange matter whereas the intermediate

temperature part shows the qualitative behavior found for hadronic matter. Since

the region where the peak in fig. 5.2 is located is “cut out” by the stability window,

the remaining peak of the hadronic intermediate part of the instability region in

fig. 5.4 reaches only a much lower amplitude.
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Figure 5.4: The saturation amplitude for the considered hybrid stars. Left panel: 1.4M⊙ . Right panel: 2.0M⊙ . The
saturation in the low temperature part of the instability region is mostly established by the bulk viscosity of the quark
core, whereas the saturation in the mid temperature part comes mainly from the hadronic shell.
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Figure 5.5: The static saturation amplitude, at which the r-mode growth is stopped by suprathermal viscous damping for
the APR neutron stars at the maximum mass 2.21M⊙, where direct Urca processes become allowed. Left panel: direct
Urca is only allowed in a small inner core region, see Table 4.1. Right panel: the same model when direct Urca is artificially
turned on in the entire core.
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The result for the heavy 2.0M⊙ neutron star is given on the right panel of fig. 5.2.

As had been found previously in [15] the instability region is larger for such heavy

stars. The figure shows in addition that saturation occurs at a somewhat higher

amplitude. The 2.0M⊙ strange star is given on the right panel of fig. 5.3. In this case

the maximum of the stability window is below the Kepler frequency. Similar to the

high temperature behavior discussed before, the r-mode cannot be damped by viscous

effects above this maximum. It is interesting to recall from [15] that in the case of

quark matter an approximate analytic expression for the location of the maximum of

the stability window exists

Ω(SS)
max ≈ 0.434m

4/3
s R1/3

(1− c)1/3G1/3M2/3
(5.11)

T (SS)
max ≈ 0.210 (1− c)1/3m

2/3
s R1/6

Γ̂1/2G1/6µ
3/2
q M1/3

(5.12)

where Γ̂ ≡ Γ̃/µ5
q. This shows that in addition to a large star mass, a small effective

strange quark mass in the quark matter equation of state eq. (4.1) increases the total

instability region both at high frequency and high temperature. In contrast, for the

heavy 2.0M⊙ hybrid star shown on the right panel of fig. 5.4 such a total instability

region does not arise since although the quark core cannot saturate the r-mode,

the hadronic shell alone still provides sufficient damping to do so. In summary r-

modes in massive stars are more unstable than in light stars since both their small

amplitude instability regions are larger and they are less efficiently saturated by the

large amplitude enhancement of the bulk viscosity.

The left panel of fig. 5.5 shows the static saturation amplitude for a neutron star

with 2.21M⊙ which is the maximum mass allowed by the APR equation of state.

In this case direct Urca reactions are possible in a small inner core region of mass
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0.85M⊙. As had already been observed in [15], direct Urca reactions only slightly alter

the instability boundary by a small notch at its right hand side. Since suprathermal

damping from outer layers dominates due to the strong radial dependence of the r-

mode the static saturation amplitude is likewise only slightly reduced by the small

direct Urca core. However, because the size of the inner direct Urca core depends

strongly on the equation of state and there are equations of state where the direct

Urca core is considerably larger, we show on the right panel of fig. 5.5 for comparison

the (unphysical) case that the direct Urca reactions are artificially switched on in

the entire core. This represents an upper limit for the possible effect of direct Urca

reactions and shows that in this extreme case the static saturation amplitude at

large frequency is reduced and the increase towards lower frequencies is considerably

weakened according to the 1/Ω-behavior predicted by eq. (5.9).

In contrast to the previous results that evaluated the damping time eq. (5.1) nu-

merically the top, left panel of fig. 5.6 employs the approximate analytic expression

eq. (5.6) for the m = 2 mode of the 1.4M⊙ neutron star. Comparing it to the nu-

merical result in fig. 5.2 shows that the corrections are very small and because the

maximum of the bulk viscosity of hadronic matter with modified Urca reactions is

reached only for large amplitudes, eq. (5.6) provides a very good approximation in

this case. In contrast, the use of the linear approximation which neglects the large

amplitude decrease of the bulk viscosity, strongly overestimates the damping for the

case of strange stars and misses the previously discussed total instability region at

high frequency in fig. 5.3.

Fig. 5.6 also shows the saturation amplitudes of different multipole r-modes, given

for the first four multipoles m = 2 to 5 of the 1.4M⊙ neutron star . The higher

multipoles saturate at lower amplitudes than the m = 2 and therefore the use of

the linear approximate is well justified in this case. Interestingly, although the right
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5.3 Saturation amplitudes

Figure 5.6: Saturation amplitudes for the first four multipole r-modes of the 1.4M⊙
neutron star (top, left: m = 2; top, right: m = 3; bottom, left: m = 4; bottom right:
m = 5). The results are obtained in the linear approximation eq. (5.6).

segments of the lower part of the instability boundary of these higher order r-modes

had been shown to be very similar to that of the fundamental m = 2 mode (see

chapter 4), fig. 5.6 shows that although the peak value of the saturation amplitude

of these modes decreases, the value at the Kepler frequency stays nearly constant.

Therefore, these higher multipoles could be relevant for the spin-down evolution since

the spin-down torque due to gravitational wave emission depends strongly on the am-

plitude [50]; for sufficiently small amplitude modes this dependence is quadratic. So

if the suprathermal damping is responsible for the r-mode saturation, the restriction

to the lowest order mode, that had been employed in all present analyses, should

present only a first approximation. The saturation amplitudes of the different 1.4M⊙
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Figure 5.7: Comparison of the saturation amplitudes for the different 1.4M⊙ stars.
Left panel: Stars spinning with a period of 1 ms. Right panel: Same for stars rotating
with a period of 4 ms. Shown are the considered neutron star (solid), the hybrid
star (dashed) and the strange star (dotted). The thick curves present the numerical
results and the thin horizontal segments denote the analytic values obtained from
eq. (5.9).

stars are finally compared with each other and the analytic approximation eq. (5.6)

in fig. 5.7. Surprisingly, all stars feature saturation amplitudes of the same order of

magnitude for millisecond pulsars, despite their very different microscopic and struc-

tural aspects. As noted before, for larger oscillation periods hadronic stars and to

some extent also hybrid stars feature considerably larger saturation amplitudes than

strange stars due to the parametrically different frequency dependence, see eq. (5.9).

The analytic approximation yields in most cases a reasonable approximation to the

full results with errors below the 10% level. In general the analytic result overes-

timates the actual amplitude since it only describes the result far away from the

boundaries and boundary effects play a role. In contrast at large frequencies the

analytic approximation underestimates the saturation amplitude since the considered

frequencies are already close to the critical values, where the saturation amplitude di-

verges, see fig. (5.3). Nevertheless, the analytic approximation provides an important
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and reliable estimate for the order of magnitude of the static saturation amplitude

which, as will be discussed in more detail below, provides an upper limit for saturation

amplitudes taken in dynamical star evolutions.

5.4 Conclusions

Using the general results for the bulk viscosity that include its non-linear behavior

at large amplitudes we have derived expressions for the r-mode damping time that

show that in the regime below the resonant temperature of the bulk viscosity, large

amplitude r-modes are damped on considerably shorter time scales than low ampli-

tude oscillations. In contrast, the universal maximum of the bulk viscosity found in

chapter 3 implies that at very high temperatures and frequencies r-modes cannot be

damped at all by viscous effects since there is no enhancement in the suprathermal

limit. We find that for most stars considered in this work the corresponding critical

frequency is above the Kepler frequency. On the other hand the r-modes of all con-

sidered stars are unstable at temperatures that are expected to be present when a

proto-neutron star is created. At lower temperatures our results lead to an extension

of the concept of the instability region of an r-mode since the latter is only initially

unstable at small amplitudes but the suprathermal viscous damping can saturate the

r-mode growth at finite amplitudes. We find that well within the instability region

the static saturation amplitude αsat defined in the text is temperature independent

and takes values O(1) at milli-second frequencies for all considered stars. This is

incidentally the order of magnitude that had been assumed in early r-mode analyses

[50]. Yet, the static values obtained here represent only an upper limit for the actual

amplitude reached in the dynamic evolution. Our numeric results are confirmed by

approximate analytic expressions which reveal the dependence of these results on the
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various underlying parameters. We also studied higher multipoles and find that al-

though the first few multipoles have instability regions that are sizable, they feature

similar saturation amplitudes as the fundamental m=2 mode for millisecond pulsars

and could thereby be relevant.

It is interesting to compare our saturation mechanism and the obtained results

for the saturation amplitudes with previously proposed mechanisms. In general when

there are different competing saturation mechanisms, the one with the smallest satura-

tion amplitude should dominate and effectively saturate the mode. Explicit numerical

analyses of the general relativistic hydrodynamical equations [105, 106, 107] would

present the ideal way to study the saturation and star evolution. Whereas some of

these studies find saturation only at large amplitudes, in others the r-mode can be

completely destroyed by the decay into daughter modes once it exceeds amplitudes

O (10−2) [107], see also [132]. However, the numerical complexity limits these analy-

ses so far to unphysically large values of the radiation reaction force that are orders

of magnitude above the physical value and it is not clear to what extent the obtained

results can be extrapolated to the physical case. Another proposed saturation mecha-

nism relies on the non-linear coupling of different oscillation modes [127, 108, 133, 132].

These analyses find that this mechanism could saturate r-modes at amplitudes as low

as O (10−5). Due to the considerable difficulties of a complete description of such a

mode coupling mechanism, these analyses use systems of coupled oscillators which

represent a simplification of the complicated coupling of collective star oscillations.

In summary, within the present approximation to neglect the neutron star crust, com-

peting mechanisms will very likely dominate and saturate the r-mode at lower values

than the suprathermal enhancement of the viscosity. However, these mechanisms still

involve simplifications and uncertainties. Our novel saturation mechanism, in con-

trast, relies on standard viscous effects and microscopic physics that is quantitatively
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well understood.

Let us now discuss the implications of our results for the spin-down of compact

stars. In the supernova formation process where a much larger star contracts to a very

compact object that takes over the angular momentum it seems plausible that fast

rotating proto-neutron stars could be formed which spin with frequencies close to the

Kepler limit. According to our results r-mode oscillations are unstable in this initial

hot stage T & 1010K and cannot be saturated by viscous effects for all considered

forms of dense matter. Generically, the cooling is very fast in this regime so that the

evolution could leave this instability region before large amplitude r-modes develop

or spin down the star. The star will then cool until it reaches the lower instability

zone and the r-mode develops. According to fig. 5.7 in this regime the r-mode can be

saturated by viscous damping. For strange stars such a saturation does not seem to

be required at all since the instability region is in this case located at comparably low

temperatures [134] where the cooling becomes slow and the star either quickly spins

down [135], or when reheating effects are considered it reheats again [136], and leaves

the instability region before the amplitude becomes large. In this case the evolution

wiggles around the instability line thereby spinning down the star, but this can take

billions of years due to the strong reheating.

In contrast in the case of neutron and hybrid stars without strangeness, the insta-

bility region is reached at large temperatures where cooling is still fast and reheating

effects are moderate, so that the evolution quickly penetrates the instability region

and a saturation mechanism is indeed required to stop the r-mode growth [50]. Since

the static saturation amplitude increases continuously at the boundary of the insta-

bility region the discussed static value does not have to be reached but a dynamic

equilibrium could be established at a lower saturation amplitude that is reached once

the r-mode is sufficiently large that the spindown becomes efficient. Due to this the
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viscous saturation could dominate competing saturation mechanisms. Once the r-

mode is saturated, the question is which one of two competing processes, cooling or

spin-down, is faster. Since the cooling is slowing down at lower temperatures it is

likely that the spin-down wins and the evolution leaves the instability region near its

lower boundary. In this case no young compact stars with frequencies larger than

a tenth of the Kepler frequency would be possible which is in good agreement with

observations. An answer to the above questions requires a detailed study of the

combined spin-down and cooling evolution of the star.

Strikingly our results suggest even another possibility for the spindown of young

stars that would be even faster and more violent. The core bounce during the super-

nova process should excite rather large amplitude oscillation modes in the forming

compact core. Since r-modes are unstable in this regime (see chapter 4) these will

grow further. Because of the initial high temperatures, neutrinos are trapped inside

the proto-neutron stars for roughly a minute [137]. Since a neutron star crust that

could provide an efficient damping mechanism [123] is not formed at this point, and

as our results show viscous effects cannot stop the r-mode growth, the amplitude

could indeed become large if other non-linear saturation mechanisms likewise cannot

operate efficiently in this turbulent environment. In this case the loss of angular

momentum could proceed not by gravitational wave emission but by actual mass

shedding and thereby effectively as an extension of the supernova explosion that is

driven by r-modes. Since such a violent spindown should be fast the star could end

up at the lower boundary of the high temperature instability region before the star

becomes transparent to neutrinos and the cooling process starts. Clearly, in this ini-

tial stage, which cannot rigorously be separated from the aftermath of the supernova

explosion, the dynamics is highly non-linear and our simple r-mode analysis might

not directly apply. Whether such a mechanism is feasible will therefore require fur-
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ther study, but this mechanism would naturally explain the observed absence of fast,

young pulsars independent of their internal composition and it is striking that the

frequencies of the high temperature instability boundary also seem to agree well with

fastest pulsars that are young enough that they cannot be spun up by accretion [1].

Finally, r-modes should also be relevant for old accreting stars in binary systems

that are spun up and could enter the instability region at low temperatures from

below [125]. As discussed in chapter 4, strange and hybrid stars feature stability

windows at low temperatures where the r-mode is absent, so that such stars could

accelerate to frequencies close to the Kepler frequency. In contrast for neutron stars

there is no stability window at low temperatures so that an accreting star would enter

the unstable regime already at low frequencies. Recall that the saturation amplitude

of neutron stars due to bulk viscosity has a characteristic form with a pronounced

peak close to the minimum of the instability region. In case the r-mode is saturated

by suprathermal bulk viscosity, the steep rise of the amplitude close to the maximum

should spin down the star quickly and so that it cannot penetrate deep into the

instability region. This means that such stars should cluster close to the boundary

which might be a signature once more observational data for the temperature of

compact stars becomes available.
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Appendix A

Scattering mean free path

The scattering mean free path is determined by the 2-body interaction cross sec-

tion [66]. The relevant scattering amplitude is the sum of four Feynman diagrams,

the contact term and the s, t, and u-channel diagrams, see Fig. 2.1. In the s, t,

and u-channels there is a virtual particle that can go on-shell, which means that its

self-energy must be included to avoid an unphysical divergence. (The fact that the

virtual particle can go on-shell means that the 2 → 2 collision rate already includes

the contribution from 1 → 2 splitting process, so these need not be calculated sepa-

rately [138, 139]. We have performed this separate calculation and verified that the

result has the same parametric dependence as the one we obtain below.) The rate

(per unit volume) for the 2 → 2 scattering process is

Γ2→2 =
1
2

∫

p,k,p′,k′
(2 π)4δ4(P +K − P ′ −K ′)|M|2 fp fk (1 + fp′) (1 + fk′), (A.1)

where
∫

p

=

∫

d3p

2 ǫp (2 π)3
fp =

1

eEp/T − 1
(A.2)

and

|M|2 = |Ms|2 + |Mt|2 + |Mu|2 + I (A.3)
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where I represents the contact and interference terms, and the matrix elements are

given in Eq. (2.53). The dominant contribution in the scattering matrix |M|2 comes

from |Ms|2 + |Mt|2 + |Mu|2, since these each have a large enhancement when the

virtual particle is close to being on-shell. The contact term and interference terms

have no such enhancement, and so make a much smaller contribution to the rate. Note

that to avoid the collinear singularities in our calculations, we include the one-loop

self energy in the calculation of kaon propagator and |M|2.

We now give a detailed explanation of the evaluation of |Ms|2; the others can be

obtained by similar methods. We first define the virtual particle momentum Q =

(Eq,q) and shift the integral over k to an integral over q. We can then still use the

momentum-conserving delta-function to do the integral over k′. We then choose the

direction of q as the z-axis, so the angular part of the q integral gives a factor of 4 π

and the remaining integrand is azimuthally symmetric, so the 2 remaining azimuthal

integrals give a factor of 2π. This leaves three integrals over the magnitudes of p , k′

and q as well as over two polar angles, between q and p and between q and k′. We

then introduce the auxiliary variable ω via the identity

δ(Ep + Ek − Ep′ − Ek′) =

∫ ∞

−∞

dωδ(ω − Ep + Ep′) δ(ω + Ek − Ek′). (A.4)

The integral over the two polar angles can then be done using these two delta-

functions, leaving behind four integrals over p, k′, ω and q,

Γs = A

∫ ∞

0

dq

∫ ∞

ν q

dω

∫ (ω+ν q)/2ν

(ω−ν q)/2ν

dp

∫ (ω+ν q)/2ν

(ω−ν q)/2ν

dk′ |Ms|2 fνp fω−νp (1+fω−νk′) (1+fνk′)

(A.5)

To make the temperature dependence explicit we introduce a new set of variables
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(x, y, w, and z). For the s-channel these are

x =
νp

T
y =

νk′

T
w =

ω

T
z =

νq

T
, (A.6)

and the Mandelstam variable is s = w2 − z2. This leads to the full expression for the

s-channel rate,

Γs =
g4T 12

16ν17(2π)5f 8
π

∫ ∞

0

dz

∫ ∞

z

dw

∫ (w+z)/2

(w−z)/2

dx

∫ (w+z)/2

(w−z)/2

dy F (x, y, w)
G(x, w, s)G(y, w, s)

s2 + (Π+/T 2)2

(A.7)

where Π+ is related to the imaginary part of the self energy (see below) and

F (x, y, w) = fx fw−x(1 + fy)(1 + fw−y) G(x, w, s) = w2
(

3x(1− ν2)(w − x)− s
)2

(A.8)

The self-energy term has both a real and an imaginary part, however the real part

is much smaller [66]. We will therefore only consider the imaginary part Im Π(ω, q),

obtained in Refs. [76, 77, 66],

Im Π(w, z) = Π+Θ(w2 − z2) + Π−Θ(z2 − w2)

Π+ =
g2 T 6

16πν7f 4
π

1

zfw

∫ w+z
2

w−z
2

dy G(y, w, s) fy fw−y

Π− =
g2 T 6

8πν7f 4
π

1

zfw

∫ ∞

w+z
2

dy G(y, w, t) fy [1 + fy−w]

where Π+ is relevant for the s-channel where w > z, and Π− is relevant for the t-

and u-channels where w < z. We have neglected the tadpole contribution to the

self-energy: it only corrects the kaon velocity by term proportional to λT 4 [66].

In the remaining 4-dimensional integral (A.7) we can now use a simple approxi-

mation to greatly simplify the integral. In the expression for Γs the integral over w

is sharply peaked at the limit of integration where w = z, i.e. ω = ±νq (s = 0). The
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integral takes the form

∫ ∞

z

dw
I(w, z)

(w2 − z2)2 + (Π+(w, z)/T 2)2
≈ πT 2

4Π+(z, z) z
I(z, z) , (A.9)

This expression is valid when I(w, z) is slowly varying near the singular point w =

z and when Π+/T 2 ≪ 1 because Π ∼ g2T 6 and T ≪ fπ,∆, µK . Applying this

approximation to the s-channel contribution, we find

Γs =
g4T 14

16ν17(2π)5f 8
π

π

4

∫ ∞

0

dz

∫ z

0

dx

∫ z

0

dyfxfz−x(1 + fy)(1 + fz−y)
G(x, z, 0)G(y, z, 0)

Π+(z, z)z
.

(A.10)

where

Π+(z, z) =
g2T 6

16πν7f 4
π

1

zfz

∫ z

0

dx fx fz−xG(x, z, 0) . (A.11)

We can then see that the integral over x in Eq. (A.10) partially cancels the integral

contained in Π+ leaving behind only a double integral. UsingG(y, z, 0) from Eq. (A.8),

we have

Γs =
g2T 8(1− ν2)2

ν10f 4
π

J , (A.12)

where J is a pure number given by

J =
9

128π3

∫ ∞

0

dz

∫ z

0

dy y2 z2 (z − y)2 fz (1 + fy) (1 + fz−y)

≈ 0.466 . (A.13)

Applying the same method to the t- and u-channel integrals, we find that they all

give the same rate, so the total rate is

Γtotal = 1.40
g2 T 8 (1− ν2)2

ν10f 4
π

. (A.14)
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The scattering mean free path is defined as

lscatK =
νn

Γ
, (A.15)

where n is the particle density (2.19). So the scattering mean free path of the Gold-

stone kaons is

lscatK = 0.0881
ν8

(1− ν2)2
f 4
π

g2T 5
= 3.44× 10−4

ν8

(1− ν2)2
f 2
π ∆

4

C2 µ2
K sin2 ϕ

T−5 , (A.16)

For comparison, the scattering mean free path of the phonon is [66]

lscatH = 0.181
v8

(1− v2)2
µ4
q

T 5
= 5.02× 10−3

µ4
q

T 5
(A.17)

so the ratio of the two is

lscatK

lscatH

= 17.546
ν8

(1− ν2)2
f 4
π

g2µ4
q

≈ 2.14× 10−4
f 2
π∆

4|δm|3
C2m5

Kµ
4
q

. (A.18)

Since µq is much larger than any of the other energy scales, this implies that the

scattering mean free path of the kaon, like the shear mean free path, is generally

much shorter than that of the phonon, giving the Goldstone kaon a much wider range

of temperatures where it can be treated hydrodynamically.

We have noted in Sec. 2.3 that we expect the shear mean free path to be a better

indicator of the range of validity of hydrodynamics, but for the sake of completeness

we now estimate the temperature at which lscatK will become greater than 1 km, in the

case of very unfavorable parameter choices that lead to a long mean free path. We will

use the values used at the end of Sec. 2.5.2 to illustrate how high the shear viscosity

can be, namely fπ = 150 MeV, ∆ = 150 MeV, δm = −1.0 MeV, mK = 4.0 MeV

and C = 0.2. In this case the scattering mean free path is shorter than 1 km for
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T & 0.006 MeV. For more favorable choices of the couplings this critical temperature

will be much lower. In comparison, from (A.17) the scattering mean free path for

phonons is shorter than 1 km for T > 0.04 MeV.

We have used a linear dispersion for the kaon in calculating the mean free path,

which is a requirement for getting a co-linear enhancement. However, there are sources

of non-linearities in the dispersion. One comes directly from our expansion of the

full kaon dispersion in (2.11). If we had kept higher order terms, we would get a

contribution that behaves as

E = νp(1 + γp2) (A.19)

where γ > 0. This positive curvature would still allow for the co-linear splitting and

joining processes. Therefore, keeping this term would provide a subleading contribu-

tion to the calculation presented here.

However, we ignored how the higher order derivative interactions themselves could

change the kaon dispersion. Something similar has been calculated for the superfluid

phonons, [140], where γ was found to be negative and therefore the 1 ↔ 2 processes

are kinematically forbidden. If the corresponding non-linearity for the kaons were

positive, then as above, the calculation presented here would remain the same. How-

ever, if the curvature were negative as for the phonons, then the mean free path would

be altered at leading order. This is basically because the non-linearity itself would act

to regulate the on-shell propagator and the scattering rate would go like 1/γ instead

of 1/Π (where Π is the self-energy). The appropriate scales to compare are γT 2 and

Π/T 2 and in the case of the phonons, γT 2 ≫ Π/T 2, such that this correction would

make the mean free path even larger and affect the validity of hydrodynamics. See

[141] for a calculation involving the non-linear phonon dispersion and its affect on reg-

ulating the phonon propagator in a calculation of the thermal conductivity. However,

it should be noted that including the non-linearity would only provide a subleading
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correction to the shear viscosity for either sign of γ because the shear viscosity is

insensitive to that region of phase space.
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Appendix B

Power counting sharply peaked

integrals

Here we discuss in more detail the evaluation of integrals of the type (A.9), having a

slowly-varying component I multiplied by a function with a sharp Lorentzian peak at

the edge of the range of integration. In appendix A we assumed that I was non-zero

at the edge of the range and we kept only the leading contribution. Here we include

higher-order corrections by Taylor-expanding the numerator,

∫ z

0

dw
I(w, z)

(w2 − z2)2 + ǫ2
∼
∫ z

0

I(z, z) + (w − z)I ′(z, z) + 1
2
(w − z)2I ′′(z, z) + . . .

(w2 − z2)2 + ǫ2
,

(B.1)

where I ′(z, z) is the first derivative of I with respect to w, evaluated at w = z. We

then find

J1 ≡
∫ z

0

dw
1

(w2 − z2)2 + ǫ2
∼ π

4zǫ

J2 ≡
∫ z

0

dw
z − w

(w2 − z2)2 + ǫ2
∼ − lnǫ

4z2

J3 ≡
∫ z

0

dw
(z − w)2

(w2 − z2)2 + ǫ2
∼ 1

8z
(B.2)
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This gives us a scheme for power counting any integrals of the form given by (B.1).

The relevant property is the dependence on ǫ, since the collision integrals for transport

properties take the form (B.1) with ǫ = Π/T 2 ∝ g2T 4 ≪ 1.

We can now justify the statement made in Sec. 2.4 that when we calculate the

shear viscosity using a polynomial expansion of the function g(p) (2.43), the dominant

contribution comes from g(p) = 1/p, i.e. choosing the minimum-exponent parameter

n to be −1.

Calculations of the mean free path and the shear viscosity both involve a rate

calculation which contains collision integrals. In the mean free path collision integral

(A.7) there is a sharp peak in the integrand at w = z corresponding to a co-linear

divergence, where two kaons have parallel momenta, and exchange a kaon whose

momentum lies in the same direction. In the mean free path calculation this near-

divergence is regulated by the self-energy, so the result depends on the self-energy

(∼ 1/ǫ).

In the case of the shear viscosity, we expect the integral not to have a co-linear di-

vergence, since shear viscosity measures momentum transfer, so processes that do not

change the momentum direction of the particles make no contribution. We therefore

expect that the collision integrand in the shear viscosity should go to zero at w = z

in such a way that the result does not depend on the self-energy. The true physical

g(p) function will give an integrand that has this property. However, if we make a

bad guess at g(p) (by using inappropriate basis polynomials in the expansion (2.43))

then each individual term will have a co-linear divergence, which will only cancel out

when we add up the contributions from many terms. The best guesses for g(p) are

therefore ones which yield a collision integrand with no co-linear divergence, i.e no

dependence on the self-energy.

In both the mean free path and the shear viscosity calculations the collision in-
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Min-exponent
parameter n

Behavior of
∆0

ij near w = z
ǫ-dependence of
collision integral

n = −1 (z − w)2 independent
n = −2 (z − w) − ln ǫ

n 6= −2,−1 (z − w)0 1/ǫ

Table B.1: Table of behavior of ∆ij (part of the collision integrand) near the co-
linear singularity, and the collision integral; ǫ represents the self-energy. Only the
n = −1 case has the proper physical suppression of co-linear contributions to the
shear viscosity.

tegral takes the form (B.1). The difference between them lies in behavior of the

numerator I(w, z) in the co-linear regime w → z. In the mean free path calculation

(appendix A), the numerator stays finite in this regime, so the collision integral is of

the form J1 (B.2) and is strongly dependent on the self-energy. In the shear viscos-

ity calculation, the numerator contains an additional factor ∆s
ij∆

t
ij (see Eq. (2.48)),

which we’ll call the transport term. The behavior of the transport term in the co-

linear regime is therefore crucial in suppressing the self-energy dependence.

Using expansions of g(p) with only one term (N = 0) we calculate ∆0
ij and the

shear-viscosity collision integral for different choices of n. We summarize the results

in Table B.1. We see that the choice n = −1 fully suppresses the co-linear singularity

and gives a collision integral that is independent of the self-energy. The choice n =

−2 partially suppresses co-linear scattering and gives the collision integral a very

weak dependence on the self-energy. Other values of n do not suppress the co-linear

scattering at all and are akin to the calculation of the mean free path. This explains

our finding in Sec. 2.4, Table 2.2 that n = −1 is the the optimal choice for fast

convergence of the polynomial approximation for g(p) in the shear viscosity, that

n = −2 is the next best choice, and other values of n have very poor convergence.
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Appendix C

Approximate evaluation of the

collision integral

Here we describe how the collision integral is reduced to a five-dimensional numerical

integral, in which we have factored out the temperature dependence and part of the

dependence on the kaon speed ν. We begin with the matrix M (2.48) that enters in

to the calculation of the shear viscosity. As described in Sec. 2.4 and appendices A

and B, we get a good estimate of the shear viscosity by assuming g(p) = 1/p, i.e. we

set N = 0 and n = −1. Then, as described after Eq. (2.54), we can eliminate seven

of these integrals by using the δ-function and spherical symmetry. We rescale the

momenta with temperature, and find

M00 =
1

10 · 28 π6 ν6

(

T

ν

)13 ∫

dΓ fx fy (1 + fz) (1 + fw)|M(ν, g, λ)|2 ∆̄0
ij ∆̄

0
ij (C.1)

where fx ≡ 1/(ex − 1), and

∫

dΓ =

∫ ∞

0

dx

∫ ∞

0

dy

∫ 1

−1

dα

∫ 1

−1

dβ

∫ π

0

dφ
z2

1− α
, (C.2)

180



x =
νp

T
y =

νk

T
z =

νk′

T
=

x y (1− α)

x(1− β) + y(1− γ)
w =

νp′

T
= x+ y − z ,

(C.3)

α = p̂ · k̂ β = p̂ · k̂′ γ = k̂ · k̂′ = αβ +
√

(1− α2)(1− β2) cos(φ) (C.4)

From (2.53), M ≡ (ν/T )8M depends on the speed ν and the couplings g and λ as

well as the rescaled momenta x, y, z. From (2.49), ∆̄0
ij ≡ (ν/T )∆0

ij depends only on

the rescaled momenta. The expression for z comes from solving the energy-conserving

δ-function, and φ is the difference in azimuthal angles between the vectors p,k and

p,k′.

We have scaled out all the temperature dependence of the integrand, but there is

still some dependence on ν and the couplings g and λ which comes in via M. The

integral can be evaluated numerically using (2.49) and (2.53) for given values of ν, g,

λ.

We now show how to obtain the approximate analytic forms for η given in (2.59),

which are valid in the regime g2/λ≪ 1 and g2/λ≫ 1.

Using (C.1) in (2.51) and evaluating A−10 from (2.44), we find that

η =
const

ν8M00(ν)
(C.5)

where const represents a function independent of ν. We can obtain the function h1(ν)

in (2.59) by going to large λ in which case M = Mc, and then calculating the shear

viscosity with all the dimensionful parameters in the coupling constant λ set equal to

unity. To calculate h2(ν), we go to large g where M = Ms +Mt +Mu and do the

same thing. In both cases we find

h1,2 =
A1,2 ν

11

∫

dΓf(Γ)|M1,2(ν)|2
(C.6)
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where A1,2 is a pure number and f(Γ) represents the parts of the integrand of (C.1)

that are independent of ν. From (2.48) we find that

M1,2 ∼ c
(0)
1,2 + c

(1)
1,2ν

2 + c
(2)
1,2ν

4 (C.7)

Therefore, we expect

h1,2(ν) = C1,2
ν11

∑4
i=0 a

(i)
1,2ν

2i
, (C.8)

justifying our statement in the paragraph below Eq. (2.59) and the resulting scaling

in Fig. 2.4.

Finally, we can explain why h1 and h2 are so small (see Fig.2.4). This is a di-

rect result of M00 being large. Because the all interactions of the Goldstone kaons

are derivative interactions, the collision integral involves high powers of momenta.

Schematically, it has the form

∫ ∞

0

dx xdfx ∼ (d+ 1)! (C.9)

where d = 12 in our case. Since 1/13! ≈ 1.6 × 10−10 it is not surprising that h1 and

h2 are of that order.
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Appendix D

R-mode and amplitude conventions

In this appendix we review a few standard expressions for r-modes and discuss dif-

ferent conventions used in the literature. The form of the r-mode oscillation is most

conveniently derived [142] from the underlying equations that determine the fluctua-

tion of the potential δU = δh + δΦ, where h is the enthalpy and Φ the gravitational

potential, since then the hydrodynamic Euler equation for the harmonic, cylindrically

symmetric perturbation reduces from a differential to an ordinary linear equation and

can be solved analytically by matrix inversion. The expression for δU reads to leading

order in a slow rotation expansion

δU ≈
√

m

π (m+ 1)3 (2m+ 1)!
αR2Ω2

( r

R

)m+1

Pm
m+1 (cos θ) e

imφ (D.1)

The velocity fluctuation is obtained from δU by application of a differential operator

[142] and yields to leading order in a slow rotation expansion [45]

δ~v = αRΩ
( r

R

)m
~Y B
mme

iωt

This expression provides the definition of α within the convention used here. In

spherical coordinates this expression yields the explicit form
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δ~v =
(−1)m

2mm!

√

m (2m+ 1) (2m)!

4π (m+ 1)
αRΩ

·
( r

R

)m

(sin θ)m−1 ei(mφ+ωt)
(

−iθ̂ + cos θφ̂
)

where θ̂ and φ̂ are unit vectors in polar and azimuthal direction. With this definition

and for α = 1 the maximum value, taken at the equator and in direction of θ̂, is

roughly δ~v/~v ≈ 0.3, so that the approximation breaks down for α ≫ 1 since mass

shedding will occur for fast spinning stars. The corresponding maximum density

fluctuation δn/n̄ obtained from eq. (4.7) is more than an order of magnitude smaller.

In contrast in [43] an alternative convention α′ of the amplitude was introduced

that is related to the above α by

α =

√

π (m+ 1)3 (2m+ 1)!

m
α′

i.e. defined by eq. (D.1) without the algebraic prefactor.
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Appendix E

Approximate result for the viscous

damping of the strange quark matter

Whereas the bulk viscosity of semi-leptonic processes in hadronic and quark matter

require in general a numeric solution, for the dominant contribution from non-leptonic

processes in strange quark matter an approximate solution valid in both subthermal

and suprathermal regimes is possible. The approximate analytic result for the bulk

viscosity in the suprathermal regime obtained from a Fourier analysis, is given by

(see chapter 3)

ζ> ≈ 2

3
√
3

C2

Bω
h

(

9
√
3χ

8

Γ̃BC2T δ−2

ω

(∆n∗
n̄∗

2))

(E.1)

where χ≡χ1 and

h(z) =
9

4z

(

(√
z2+1−z

) 2
3
+
(√

z2+1+z
) 2

3 −2

)

(E.2)

A very good parameterization valid in both the sub- and suprathermal regime is given

by [81]
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ζpar ≈ ζ< + θ(Tmax − T )
ζmax − ζ<

ζmax

ζ> (E.3)

Since the functional form of the suprathermal viscosity eq. (E.2) is still complicated

and does not allow to perform the necessary subsequent integrations to obtain the

r-mode damping time in an analytic form, we give an approximate analytic result

that is valid up to the maximum of the bulk viscosity. To this end we perform

a global polynomial interpolation to the function h(z) in the interval [0, zmax]. In

order to appropriately describe the low amplitude behavior and the qualitative form

below the maximum requires at least a quartic polynomial which is then uniquely

determined as

hpol(z) = z − 1

2
√
3
z2 +

1

27
z3 − 1

324
√
3
z4 (E.4)

The leading linear term in eq. (E.4) reproduces the approximate intermediate linear

result given by Madsen [78], whereas the other terms ensure the proper large ampli-

tude saturation. The analytic form and the polynomial approximation agree in the

relevant region below the maximum point-wise on the 5% level and the corresponding

integrals required for the damping time to even better accuracy.

The density in a strange star is nearly constant and so the density dependent

quantities can be approximated by their value at the radius of the star, denoted by

the suffix R. Performing the integration over the r-mode profile eq. (4.7), we find the

approximate analytic result for the viscous damping time

1

τ>B
≈ 16

5103

A2
RC

2
RΩ

3R5

BRMJ̃

(

3
2
ΩΓ̃RBRT

δ

Ω2 + 9
4
Γ̃2
RB

2
RT

2δ
(E.5)

+
2430

143
θ
(

Tmax − T
)(Ω− 3

2
Γ̃RBRT

δ)2

Ω2 + 9
4
Γ̃2
RB

2
RT

2δ
g
(

χΓ̃RA
2
RBRC

2
RR

4Ω3T δ−2α2))
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where g is the polynomial

g(x) = x− 151875

9044
x2 +

1063125

7429
x3 − 290631796875

587723048
x4
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