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Photoproduction of Proton Gradients
with p-Stacked Fluorophore
Scaffolds in Lipid Bilayers
Sheshanath Bhosale,1 Adam L. Sisson,1 Pinaki Talukdar,1 Alexandre Fürstenberg,2

Natalie Banerji,2 Eric Vauthey,2 Guillaume Bollot,1 Jiri Mareda,1 Cornelia Röger,3

Frank Würthner,3 Naomi Sakai,1 Stefan Matile1*

Rigid p-octiphenyl rods were used to create helical tetrameric p-stacks of blue, red-fluorescent
naphthalene diimides that can span lipid bilayer membranes. In lipid vesicles containing quinone
as electron acceptors and surrounded by ethylenediaminetetraacetic acid as hole acceptors,
transmembrane proton gradients arose through quinone reduction upon excitation with visible
light. Quantitative ultrafast and relatively long-lived charge separation was confirmed as the origin
of photosynthetic activity by femtosecond fluorescence and transient absorption spectroscopy.
Supramolecular self-organization was essential in that photoactivity was lost upon rod shortening
(from p-octiphenyl to biphenyl) and chromophore expansion (from naphthalene diimide to
perylene diimide). Ligand intercalation transformed the photoactive scaffolds into ion channels.

I
n biological systems, light harvesting uses

the energy in photons to drive chemical

reactions. Although many biomimetic and

supramolecular compounds have been de-

vised to collect photons, the output of these

systems often consists of photons of lower

energy. The outstanding challenge is to devise

schemes in which acceptor chromophores can

transfer the charge carrier (electron or hole)

to generate a chemical product (for example,

Hþ or O
2
) before relaxation to the initial state

occurs.

In proteins, a series of chromophores is used

to separate charges and avoid back reactions

(1–3). In smaller biomimetic assemblies, an al-

ternative strategy is to transfer charge to elec-

tron donors and acceptors in solution, provided

that these donors and acceptors can be spatially

separated and that these transfers occur faster

than the charge recombination (4–7). We report

the design, synthesis, and evaluation of blue,

red-fluorescent rigid-rod photosystems (1), in

which the p-stack apparently supports sufficient

charge-separation lifetimes for conversion into

chemical gradients (Fig. 1).

The construction of complex and multifunc-

tional p-architecture is difficult because of the

poor directionality of p,p-interactions (8–18).

Apart from a central role in oligonucleotide chem-

istry and biology (18), cofacial p-stack architec-

ture contributes very little to electron transfer in

biological (1–3) and synthetic (4–7) photosys-

tems, not to speak of the structure of biological

or synthetic ion channels or pores (19). Re-

cently, we have demonstrated that the rational

design of refined transmembrane p-stack archi-

tecture is feasible with the use of rigid-rod

molecules as preorganizing scaffolds (20, 21).

This strategy was applied not only to create

photosystem 1 but also to introduce multifunc-

tionality; that is, to enable photosystem 1 to

open up into ion channel 2 in response to the

intercalation of ligands 3 (Fig. 1).

Photosystem 1 was prepared by self-assembly

of four p-octiphenyls (4), each bearing eight

core-substituted naphthalene diimides (NDIs)

(22) along the rigid-rod scaffold (Fig. 2 and

scheme S1). The NDI octamer 4 was synthe-

sized from simple commercial starting ma-

terials 5 to 10 in 20 steps altogether. Pyrene 5

was oxidized to the core-chlorinated dianhy-

dride to allow for the introduction of terminal

(6 and 7) and central (8) amines before attach-

ment along the p-octiphenyl rod made from

four biphenyls (10) (23). The following control

molecules were synthesized in a similar man-

ner: NDI dimer 11, NDI monomer 12, perylene

diimide (PDI) octamer 13, and PDI dimer 14

(schemes S2 and S3).

Unsubstituted NDIs are colorless nonfluo-

rescent electron traps. However, recent findings

show that a minor change on the structural

level suffices to introduce all of the character-

istics needed for photosynthetic activity. Core

substitution with electron-donating alkylamines

produces compact blue, red-emitting push-

pull fluorophores (excitation wavelength l
ex

0

638 nm; emission wavelength l
em

0 678 nm),

lowers the reduction potential by 300 mV, and

moves the oxidation potential within reach

(22). The resulting potentials for NDI reduc-

tion to the radical anion NDI&– Eredox poten-

tial (E
1/2
) 0 –710 mV^ and oxidation to

NDI&þ (E
1/2

0 þ1290 mV) appeared compat-

ible with photoinduced charge separation in

p-stack architecture 1 for electron transfer to
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Fig. 1. Smart photosystem 1 with an indication of the ligand-gated opening into ion channel 2
and fluorometric detection of photosynthetic activity in bilayer membranes with HPTS as internal
increase in pH after photoinduced charge separation (1CS), followed by external EDTA oxidation
and internal reduction of quinones (Q). hn, photonic energy.
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2-sulfonato-1,4-naphthoquinone (Q) (E
1/2

0 –60

mV) and hole transfer to EDTA (E
1/2

, þ430

mV) (table S1). This photoredox process is

thermodynamically unfavorable and thus con-

verts photonic energy into chemical energy.

The photosynthetic activity of quadruple

p-M-helices 1 was measured in egg yolk phos-

phatidylcholine large unilamellar vesicles (EYPC

LUVs). The vesicles were loaded with quinone

acceptor Q and pH detector 8-hydroxypyrene-

1,3,6-trisulfonate (HPTS) and surrounded with

the electron donor EDTA (Fig. 1) (4, 20). In-

ternal quinone reduction in response to the

irradiation of the externally added NDI rods 4

at 635 nm was detectable as an increase in

intravesicular pH (Ba[ in Fig. 3A and fig. S4).

The initial velocity of change in HPTS emission,

which reflects internal proton consumption, was

analyzed with Hill_s equation. The value of n 0

3.9 T 1.2 that was found indicated that the

active photosystem 1 is a tetrameric supra-

molecule with a median effective concentration

of 1.3 mM (Fig. 3B) (24). Judged from exciton

coupling between twisted proximal NDI chro-

mophores throughout circular dichroism (CD)

spectra (21), this tetramer is a heat-insensitive

(melting temperature Q 70-C) M-helix with

sensitivity toward chemical denaturation Ewith

guanidinium chloride, free energy of self-

organization (DGH2O) e 1.17 kcal/mol, fig.

S7^. Support for cofacial p-stacking (8) in

quadruple p-M-helix 1 was secured with the

appearance of a hypsochromic maximum at

598 nm that was absent in the absorption spec-

trum of monomer 12 and was much weaker

with dimer 11 (fig. S9).

Time-resolved fluorescence and transient ab-

sorption measurements provided direct experi-

mental evidence that, upon irradiation of 4, a

charge-separated state characterized by a rela-

tively long lifetime (61 ps with 4 versus 23 ps

with 11) is populated almost quantitatively

(997%, compared to 68% with 11) on an ul-

trafast time scale (with a distribution of time

constants between G2 and È7 ps) (Fig. 4 and

figs. S12 to S17). These features account for the

marked activity of photosystem 1. The appear-

ance of new bands in the transient absorption

spectrum of the NDI monomer 12 (trace a in

Fig. 4) in the presence of the electron donor

N,N-dimethylaniline (DMA) confirmed that the

radical anion NDI&– was being detected (trace b

in Fig. 4). The presence of the NDI&– bands in

the transient absorption spectra of dimer 11, as

well as bands of the more pronounced, more

stable octamer 4, supported photoinduced pop-

ulation of charge-separated state 1CS (trace c in

Fig. 4).

The addition of intercalator 3 caused a

ligand-gated helix-barrel transition from pho-

tosystem 1 to ion channel 2 (fig. S5) (20, 21)

and thus resulted in the deletion of light-

induced proton gradients EFigs. 1 and 3A (parts

a and b)^; addition of the ion channel gram-

icidin A caused the same result. Photosynthetic

activity was naturally inhibited by inter-

calator 3 (part d in Fig. 3A). The helix-barrel

transition by intercalator 3 was also reflected

in the expected CD silencing (21, 25), to-

gether with a small increase in emission in-

tensity that may be interpreted as hindered

charge separation in barrel-stave complex 2

(figs. S6 and S8).

Control molecules 11, 13, and 14 were made

to elucidate the dependence of photosynthetic

activity of photosystem 1 on rod contraction

from p-octiphenyl to biphenyl and on chromo-

phore expansion from NDI to PDI. Inactivity of

NDI dimer 11 (part c in Fig. 3A) coincided with

CD silencing, the partial disappearance of the

598-nm absorption indicative of cofacial p-

stacking, and incomplete photoinduced charge

separation with a reduced lifetime (Fig. 4 and

figs. S9 to S17). Notably, in contrast, the in-

dependence of both chiroptical and poor photo-

synthetic activity on rod length was found for

the PDI series represented by octamer 13 and

dimer 14 (fig. S20 and table S4). In agree-

ment with molecular models (Fig. 5 and figs.

S18 and S19), these results confirmed that the

smart rigid-rod p-stack NDI nanoarchitecture

of photosystem 1 is distinctive (that is, incom-

patible with the PDI series) and essential for

function.
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Fig. 4. Intensity-normalized transient absorption spectra of
NDI octamer 4 (trace c) and NDI monomer 12 in the
presence (trace b) or absence (trace a) of DMA in methanol
after excitation with a 50-fs laser pulse at 600 nm. D
absorbance, change in absorbance; a.u., arbitrary units. The
bands at 510 and above 670 nm seen with 4 and 12 in the
presence of DMA are attributed to the NDI&– radical,
whereas with 12 in the absence of DMA, the 450- to 580-
nm band originates from singlet excited-state absorption.
The negative signal between 600 and 670 nm is due to
ground-state bleaching and stimulated emission. (Inset)
Time profiles of the absorption due to the radical anion of
octamer 4 (circles) and dimer 11 (�). The lines represent
best fits to the data.

Fig. 5. Molecular dynamics simulations of photosystem 1
(A) and ion channel 2 (B) with 12 ligands 3 (red) in axial
view (top) and side view (bottom). In (A) (closed pore),
helicity (M) 0 –50.2- and height (h) 0 32 Å; in (B), inner
diameter 0 4.8 Å, M 0 –8.8-, and h , 40 Å.
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