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Probing the stability of the spin-liquid phases in the Kitaev-Heisenberg model
using tensor network algorithms
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YTheoretische Physik, ETH Ziirich, 8093 Ziirich, Switzerland
2Institute for Theoretical Physics, University of Amsterdam, Science park 904 Postbus 94485, 1090 GL Amsterdam, The Netherlands
(Received 29 August 2014; published 3 November 2014)

We study the extent of the spin liquid phases in the Kitaev-Heisenberg model using infinite projected entangled-
pair states tensor network ansatz wave functions directly in the thermodynamic limit. To assess the accuracy of
the ansatz wave functions, we perform benchmarks against exact results for the Kitaev model and find very good
agreement for various observables. In the case of the Kitaev-Heisenberg model, we confirm the existence of six
different phases: Néel, stripy, ferromagnetic, zigzag, and two spin liquid phases. We find finite extents for both
spin liquid phases and discontinuous phase transitions connecting them to symmetry-broken phases.

DOI: 10.1103/PhysRevB.90.195102

I. INTRODUCTION

The field of frustrated magnets is arguably one of the most
exciting areas of research in modern condensed matter physics.
The competing interactions in these systems give rise to a
rich variety of remarkable states of matter. In some cases,
strong quantum fluctuations will preclude the formation of
any conventional symmetry-breaking order, even in the limit
of zero temperature, giving rise to so-called quantum spin
liguids (QSL) [1-3]. Interestingly enough, certain instances
of phases lacking a Landau-type description may give rise
to so-called topological order [4,5], possibly hosting exotic
anyonic excitations.

The possibility of finding novel materials exhibiting such
exotic phases has motivated the search for QSLs from several
directions [3,6,7]. Among others, interesting proposals have
been developed based on so-called iridate compounds of the
form A,IrO;3 (A = Na, Li). Even though these compounds are
now known to be magnetically ordered at low temperatures [8—
10] and the question of which effective model underlies
their low-energy physics remains under debate with ideas
ranging from spin-orbit coupled Mott insulators [11,12] to
the formation of quasimolecular orbitals [13], there appears to
be consensus on the fact that anisotropic exchange interactions
play a key role. In particular, Na,IrO3 being an insulator with
Curie-type magnetic susceptibility as well as a large spin-orbit
splitting strongly suggests that it may belong to the category
of spin-orbit coupled Mott insulators with well-localized
magnetic moments [12]. These ingredients have sparked an
interest in the possibility of finding anisotropic Kitaev-type
physics [14] in these and related compounds [15,16].

However, the study of such highly correlated systems has
posed tremendous challenges to their understanding as Monte
Carlo based methods may fail to provide accurate results due
to the infamous sign problem arising in generic fermionic or
strongly frustrated spin models.

Over recent years, the development of so-called tensor
network algorithms (TNA) opened the doors to a new approach
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towards understanding the physics of novel strongly correlated
phases based on the notion of entanglement. One of the earliest
triumphs of such entanglement-based algorithms was the
development of the density matrix renormalization group [17]
(DMRG) based on renormalization group ideas originally
developed by Wilson [18]. The DMRG is now understood
to produce variational wave functions belonging to the class
of so-called matrix product states (MPS) which have been
rigorously shown to provide efficient approximations to the
ground states of one-dimensional (1D) gapped local Hamilto-
nians [19]. By now, two decades after its development, MPS (or
the DMRG) have become the golden standard for the simula-
tion of 1D lattice models. Furthermore, their two-dimensional
(2D) generalizations known as projected entangled-pair states
(PEPS) [20,21] (and their thermodynamic limit version infinite
PEPS or iPEPS) [22,23] have been successfully used to study
both fermionic systems as well as frustrated magnets [24-28],
with a notable example being the lowest variational energies
for the ¢-J model available to date for large systems [29].

In what follows, we will make use of the iPEPS ansatz
to study the simple yet remarkably rich Kitaev-Heisenberg
model [11,12] originally developed to encode the low-energy
degrees of freedom in the iridates. In particular, we will focus
on the stability of the spin-liquid phases around the Kitaev
points in the model and we will provide strong evidence for
their survival over a considerable extent of the phase diagram
in the thermodynamic limit.

II. KITAEV-HEISENBERG MODEL

A very interesting proposal was recently put forward
by Chaloupka et al. [12] based on the Kitaev-Heisenberg
model [11] yet extended to its full parameter space, i.e.,

Hi(,’;.) = A(cos ¢ S-S +2sing S,'(V)Sj‘y))’ @

with (i,j) labeling nearest-neighbor sites of a honeycomb
lattice, the first term being an isotropic Heisenberg interaction,
the second an anisotropic Kitaev interaction in which y €
(x,y,z) determines the spin components interacting along a
givenbond, ¢ € [—m,7), and A an overall scaling factor which
we set to one.

©2014 American Physical Society
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This model has been tackled in the past using a variety
of approaches in different regions of its full parameter
regime [11,12,30-32]. In its original formulation [11] (cov-
ering only the region ¢ € [—m/2,0]), small system stud-
ies [11,31] found either a second- or weak first-order phase
transition joining a spin liquid phase to a so-called stripy
phase at roughly ¢ ~ —76° (or o =~ 0.8 in the original
formulation) (see Fig. 4). This value is also reported in the
extended formulation on a 24-site system [12]. The restricted
formulation was also studied from a slave-particle mean field
approach [30] where the behavior of the order parameter
itself showed a discontinuity, yet it was suggested that the
transition could indeed be of either second- or weak first-order
type at a value of ¢ &~ —72° (a =~ 0.76), owing to the lack
of quantum fluctuations beyond the mean field level in their
approach. Finally, a so-called mixed PEPS approach found a
phase transition at ¢ &~ —89° (o ~ 0.99) [32].

In this study, we approach the model directly in the
thermodynamic limit and provide results that go systematically
beyond the mean field level using iPEPS.!

III. THE METHOD (IPEPS)

In general, TNA rely on the use of tensors as variational
parameters used for the optimization of the ansatz wave
function, i.e., in the TNA approach ansatz wave functions take

on the form
=y Tr H Alrls 1{S,}) )

{Se}r

where A[r] are tensors of rank k + 1, with k (typically) the co-
ordination number of the lattice and an additional index label-
ing the local basis elements, with [{S,},) = [S¢,, e, - - - Sey)
a many-body basis state (r; labeling the different lattice sites)
and T'r symbolizing the contraction of all auxiliary (also called
virtual) indices between adjacent tensors (see Fig. 1).

The dimension of the virtual indices is referred to as the
bond dimension and is usually denoted by D. The bond
dimension determines the amount of entanglement that can
be encoded in the wave function and controls the underlying
accuracy of the algorithm. At the heart of the efficiency of
the algorithms lies the fact that the number of variational
parameters only scales polynomially with D and linearly with
the system size for finite systems.

A. Ansatz

In this study, we formulate the iPEPS ansatz on the
honeycomb lattice by mapping it onto a brick-wall lattice in
which the connectivity of the honeycomb lattice is reproduced
exactly by introducing a trivial index on each tensor [26].
We have studied wave functions made of up to 2 x 2 unit
cells with all four (rank-5) tensors being independent (see
Fig. 1). Despite the increase in computational complexity,
tensors with complex entries were employed as these yielded
the best results.

"Here, however, we do not claim that the iPEPS mean field ansatz
provides a quality equivalent to the slave-particle mean field study in
Ref. [30] which was designed to represent the Kitaev point exactly.
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FIG. 1. (Color online) Top: four-site unit cell iPEPS ansatz on the
brick-wall lattice. Introducing trivial (dashed) bonds in a square lattice
leads to a so-called brick-wall lattice reproducing the connectivity
of the honeycomb lattice. The blue, red, green, and purple tensors
(circles) in the unit cell (highlighted cluster) provide the variational
parameters. Bottom: effective mapping used for the evaluation of
observables. On the left, the ket portion of the network prior to
contraction. On the right, a contracted bra-ket network is shown
from the top with tensors labeled by lowercase letters representing
a bra-ket pair contracted. The orange tensors (squares) labeled by E
represent environment tensors, obtained, e.g., via the CTM algorithm,
accounting for an effectively infinite environment. Thick lines (bonds)
correspond to indices of dimension yx, solid lines to indices of
dimension D, and dashed lines represent trivial bonds. Bond labeling
convention adopted is given by the x,y,z labels.

B. Contraction

As mentioned above, in the TNA approach an efficient
representation of ground-state wave functions can be achieved
via a tensor decomposition ansatz. It should be noted, however,
that in the case of PEPS the computational complexity
of contracting a full tensor network involved in, e.g., the
evaluation of expectation values of observables increases
exponentially with system size and thus can only be evaluated
in an approximate way.

In practice, approximate contraction schemes based on
corner transfer matrices (CTM) [33,34], MPS [35,36], tensor-
entanglement renormalization group (TERG) [37,38], and
higher-order (HOTRG) variants [39,40] are used for the
contraction of tensor networks both in the finite and infinite
cases. Here, we have relied on the directional CTM scheme
of Ref. [34] for constructing the tensor networks involved in
both the optimization of the tensors as well as the evaluation of
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observables. In this scheme, the contraction of the infinite bra
and ket tensor networks surrounding a unit cell is effectively
represented by introducing a boundary made up of so-called
environment tensors (see Fig. 1). The environment tensors
are constructed via iterative absorption and renormalization
of unit-cell tensors into the boundary tensors in Fig. 1.
Importantly, the accuracy of the contraction is controlled by the
bond dimension of the environment tensors, usually denoted by
x . For the data presented here, x was chosen to be larger than
D? in all cases and large enough to yield negligible variations
in the energies. For a more precise description of the details
involved in the contraction scheme, we refer the reader to
Ref. [34].

C. Optimization

Optimization of the tensors generating the ansatz wave
functions is typically performed using either direct energy
minimization or imaginary-time evolution. Here, we have used
the latter combined with the so-called full update scheme [23].
In the imaginary-time evolution procedure by starting from
some initial state |1y) of the form (2) we perform subsequent
projection steps

e |yn)
le="8 |y’

so provided that the initial state |{) had some overlap with
the ground state of the model enough iterations will eventually
converge to the ground state.

For the data presented it was observed that values below
7 = 0.01 for the imaginary-time evolution did not provide
a significant improvement in the quality of the data. In all
cases, the number of cumulative iterations was such that it
led to values of at least 8 = 20 and in all cases it was found
to be large enough to achieve convergence of the variational
energies. Here, we point out that lower-cost variants such as
the simple update [41], in which an explicit construction of
the environment is omitted, failed to yield good results in
the Kitaev limit and thus we opted for performing all the
simulations using the full update, in spite of its significantly
larger computational cost [23].

V1) = (3)

IV. KITAEV LIMIT BENCHMARKS

In the limits ¢ = £90°, the model in Eq. (1) becomes the
well-known Kitaev honeycomb model [14] with equal bond
couplings (B phase). Indeed, even though the interactions on
each bond are of Ising type, the fact that different bonds
correspond to different quantization axes makes the Kitaev
model a highly frustrated one, even classically, since it is
impossible to satisfy all energy constraints simultaneously.
From the exact solution of the Kitaev model [14] it is known
that inside the B phase two different types of excitations
arise: magnetic vortices which are gapped and localized
in the absence of an external magnetic field and gapless
Majorana fermions moving in the static background field of
the vortices. Perhaps more interestingly, these excitations can
be gapped into a topological phase exhibiting non-Abelian
anyonic statistics [14].
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FIG. 2. (Color online) (a) Energy per site and (b) magnetization
as a function of inverse bond dimension. Errors in the energy for the
largest value studied (D = 7) are of the order of 10~*. Magnetization
values are normalized to 1.

From both Kitaev’s seminal paper [14] as well as later
work [42] it can be gathered that the energy per site for
this model at the equal coupling limit considered here is
Ege = —0.3936 independent of the nature of the couplings,
ie., for both ferromagnetic as well as antiferromagnetic
couplings. Our best variational approximations to the energy
per site are EEM = —0.3931 and E4EM = —0.3933 with a
bond dimension D =7 (x = 60), yielding good agreement
with the exact value (see Fig. 2).

A feature of the Kitaev model is that the ground state
is known to be a Z; spin liquid and as such develops
no local order parameter. In our case, we find variational
states exhibiting a strongly suppressed magnetization, with
the largest values of the magnetization being around 0.03
and 0.02 in the ferromagnetic and antiferromagnetic cases,
respectively, with a bond dimension D = 4. The level of
symmetry breaking is observed to decrease in general as a
function of increasing D (entanglement), and for our best
variational states the magnetization reaches a minimum of
approximately 0.02 for the ferromagnetic case and 0.01 for
the antiferromagnetic case, with D = 7. See Egs. (4)—(8) for
our definition of magnetization as well as similar magnetic
order parameters.

The fact that the model is strongly frustrated and exhibits
gapless excitations turns it into a formidable challenge for
numerical methods in general. In what follows, we will show
that iPEPS ansatz wave functions are capable of capturing
the essential features of this model quite well, even in the
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FIG. 3. (Color online) Nearest-neighbor correlators for corre-
sponding bond types in the ferromagnetically coupled case (a) and
antiferromagnetically coupled case (b). All remaining correlators are
at most of the order of 1073 for the largest value of D and exhibit
similar improvement with increasing D.

absence of an energy gap, using only a modest value of the
bond dimension D.

As mentioned above, the bond dimension D controls the
amount of entanglement in the wave functions. This means
that one may systematically tune the degree to which quantum
fluctuations manifest themselves in the ansatz state. In par-
ticular, the case D = 1 represents a product state and as such
leads to a mean field level ansatz potentially overestimating the
degree of symmetry breaking inside a phase. Upon increasing
D, additional quantum fluctuations allow for a renormalization
of observables such as the magnetization and thus lead to the
observed suppression above.

Another remarkable feature of the Kitaev model has to do
with the peculiar form of the spin-spin correlators, for which
it is known that only spin components matching the type
of a given bond will exhibit nonvanishing correlations [42],
ie., (0”0") =0.525 iff y = (i,j). Examining the spin
correlators we find that the correlator structure is well
represented by our ansatz wave functions with all correlators
heading towards the exact values monotonically as the bond
dimension increases (see Fig. 3). Here, a curious stronger
deviation for the Z-type correlators can be initially observed.
This is nothing but a consequence of the way we map the
honeycomb lattice onto a brick-wall lattice when constructing
the environment. Importantly, this feature is systematically
reduced as we increase the amount of variational parameters

PHYSICAL REVIEW B 90, 195102 (2014)
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-102° ~80°

FIG. 4. (Color online) Regions spanned by the different phases
found using iPEPS. Four different magnetically ordered (collinear)
phases are found: Néel (orange/top right), zigzag (yellow/top left),
ferromagnetic (dark green/bottom left), and stripy (light green/bottom
right). Magnetically ordered phases are characterized using the order
parameters in (4)—(8). Blue regions correspond to the spin liquid
phases. Phase boundary angles correspond to D = 6 estimates with
the spin liquid regions increasing their extent as the bond dimension
D is increased.

nicely reflecting the putative nonsymmetry-broken nature of
our wave functions.

Indeed, the quality of our data could be improved even
further by increasing the value of the bond dimension D.
We have, however, not pushed our simulations beyond this
point as we believe the current data already provide strong
support for the spin liquid character of our variational wave
functions.

V. KITAEV-HEISENBERG RESULTS

Having established the accuracy of our ansatz wave
functions in the Kitaev limit, we proceed to evaluate the
stability of the spin liquid phases in the Kitaev-Heisenberg
model of Eq. (1). In their proposal, Chaloupka et al. [12]
performed a 24-site Lanczos diagonalization study of this
model in which six different phases were identified, namely,
antiferromagnetically coupled QSL (ASL), ferromagnetically
coupled QSL (FSL), Néel, stripy, ferromagnetic, and zigzag.
We have found the same phases using iPEPS (see Figs. 4
and 5).

In the study by Chaloupka et al., the phase transi-
tions between symmetry-broken phases (stripy/Néel and
ferromagnetic/zigzag) were found to be of first order, whereas
the FSL to ordered transitions were found to be of either second
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FIG. 5. (Color online) Order parameters as a function of the angle
@ in the vicinity of the points ¢ = £90°, normalized to 1. Regions
of strongly suppressed symmetry breaking are clearly visible in both
cases with finite discontinuities in the order parameters. The shaded
regions indicate the estimated extents of the regions covered by the
QSL phases. All order parameters not shown remain very close to
zero.

or weak first order [12]. In the case of the ASL phase, the
nature of the transitions to the ordered zigzag and Néel phases
was not directly identified but observed to correspond to level
crossings, thus pointing towards first-order-type transitions.
For a summary of the locations of the phase transitions found
in the small cluster, see Table 1.

Here, in order to capture the different types of mag-
netic order, we define five different order parameters,

TABLEI Transition points between different phases found using
iPEPS with a bond dimension D = 6. We include the original 24-site
Lanczos results from Chaloupka et al. [12] for reference.

iPEPS Lanczos
ASL-Néel 88° 88°
ASL-zigzag 92° 92°
FSL-stripy —80° —76°
FSL-ferro —102° —108°
Ferro-zigzag 161° 162°
Stripy-Néel —33° —34°

PHYSICAL REVIEW B 90, 195102 (2014)

ie.,

1 - - >
Omag = \/Z(<0A>2 +(08)* + (0c)* +(op)?), D

1 - . -
Oferro = \/Z((UA) + (o) + (oc) + (D)%, ®)

| R - - -
Ostripy = \/Z(<6A> - (UB> - <GC> + <UD>)zv (6)

1 . . . .
Ovigzag = \/Z((GA) + (o) — (6¢c) — (0p))?, (N

1 - - -
Ongel = \/Z(<8A> — (o) + (oc) — (op))?, ®)

with the first one providing a signature for any form of
magnetic order and the rest being designed to identify the
different types of order expected inside different regions of
the phase diagram.

To locate different phase transitions, we proceed as follows.
Starting from a set of preliminary runs across the phase
diagram in which the different competing phases are identified
by performing imaginary-time evolution for all angles ¢ €
[—m,7), we locate regions far away from potential, yet to
be accurately determined, phase transitions. Once we have
optimized tensors well inside each phase we use these tensors
as starting states for a second set of imaginary-time evolution
runs across a given range of ¢ values and compare the
energies of the two (competing) phases inside this angle
window.

The reasoning behind this procedure relies on the fact that
in the presence of a first-order phase transition we expect
to observe a certain amount of hysteresis as we cross the
transition point. This should allow us to evaluate the energies
of two different (competing) phases across a (possibly narrow)
parameter range, thus making a potential level crossing
visible. This, together with the behavior of the different order
parameters as the transition is crossed, should allow us to
identify the type of the transition.

A. FSL-stripy transition

In order to illustrate the procedure proposed above, let us
consider the region corresponding to FM Kitaev couplings and
AFM Heisenberg couplings defined by ¢ € [—90°,0]. After a
preliminary set of runs, we find three different phases in this
quadrant: FSL, stripy, and Néel as one moves from ¢ = —90°
to 0. Noting that this matches the results from previous
studies [11,12,30-32], it remains to verify how our results
agree with the transition points found previously. Having
obtained tensors representing the phases at the two extremes of
the angle window shown in Fig. 6, we perform imaginary-time
evolution on these states for all values of ¢ in this window.

There, an energy crossing at a finite angle is clearly
observed for a value of ¢ & —80° with D = 6. We argue that
this is an actual level crossing in the system. Moreover, the
magnetization data show a pronounced jump consistent with
a first-order phase transition (see bottom plot in Fig. 6). Here,
all order parameters remain remarkably close to zero within
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FIG. 6. (Color online) Top: energy crossings for the FSL to stripy
phase transition. Dotted (purple), dashed-dotted (red), and dashed
(orange) lines correspond to the location of the phase transition for
D = 4,5,6, respectively. The inset shows the maximum deviation of
the bond energies from the mean value normalized to the mean value.
Bottom: Oy, Within each phase (green circles: stripy/blue squares:
FSL) and the reconstructed ground-state curve (red diamonds). The
inset shows the behavior of Ogipy Over the same range of angles. Order
parameters are normalized to one. Dashed orange lines indicate the
estimated location of the phase transition for D = 6.

the ¢ € [—90°, —80°] range, as expected for the FSL, and a
jump in both Op,e and Ogyipy occurs as the energies of the
FSL and stripy phases cross, indicating a transition into a
stripy ordered phase. In the upper inset in Fig. 6 we show the
relative deviation in bond energies from the average value and
here a jump is also visible. Similarly, the transition between
symmetry-broken stripy and Néel phases is found to be of first
order and located at ¢ &~ —33° (data not shown).

We also note that the phase boundary here systematically
shifts towards smaller values of ¢ (in norm) as we increase
the bond dimension D, effectively increasing the size of the
FSL region. A linear extrapolation in 1/D to the D — oo
limit yields a phase boundary at ¢, & —77°, very close to the
value found in previous studies[11,12,31], i.e., ¢ & —76° (or
o ~ (.8 in the original parametrization [11]). As it is not clear
that such an extrapolation should hold, we quote the transition
values for D = 6 in Table I and interpret this value as a lower
bound for the extent of the FSL phase on this part of the phase
diagram.

PHYSICAL REVIEW B 90, 195102 (2014)

B. FSL-ferromagnetic transition

Keeping the sign of the couplings for the Kitaev term and
flipping the interaction from AFM to FM for the Heisenberg
term (this puts us in the third quadrant of the phase diagram,
see Fig. 4), we find two phases: ferromagnetic and FSL, with
the phase boundary being located at ¢ &~ —102° for D = 6
and a D — oo extrapolated value of ¢, & —106°. An energy
crossing at a finite angle together with a discontinuity in the
order parameters Opmag and Orerr Of comparable magnitude to
that of the FSL-stripy transition again indicate that this is a
first-order phase transition (see Fig. 7 and the bottom plot in
Fig. 5).

C. ASL-zigzag transition

Switching the character of the interaction of the Kitaev term
to AFM brings us to the second quadrant of the phase diagram
where we find three phases: ferromagnetic, zigzag, and ASL
with the zigzag phase in-between the ASL and ferromagnetic
phases (see Fig. 4). The transition from ASL to zigzag is
located at ¢ ~92° with D =6 (a D — oo extrapolation
increases this value only very slightly to ¢, & 93°) (see
Fig. 7), whereas that from ferromagnetic to zigzag is found to
be at ¢ ~ 161°. These transitions also exhibit energy crossings
at finite angles with the angle (strength of the transition) being
significantly enhanced between the symmetry-broken phases.
Discontinuities in the order parameters Opag/ Oigzag in the first
case (see the top plot in Fig. 5) and Oferro/ Ozigzag in the second
(data not shown) again allow us to infer that these transitions
are of first-order type.

D. ASL-Néel transition

Finally, in the regime with all antiferromagnetic couplings
¢ € [0°,90°], we find two phases: ASL and Néel. The phase
transition is located at ¢ &~ 88° with D = 6 (extrapolating
D — oo again brings only a very slight lowering to ¢o, ~
87°) and an energy crossing at a finite angle together with
discontinuities in Opyag/ Onger tell us that this transition is of
first-order type as well (see Fig. 7). It should be said that
the magnitude of the jumps in the ASL-Néel and ASL-zigzag
cases is somewhat weaker than in the lower half of the phase
diagram (see top plot in Fig. 5).

As noted previously, the regions corresponding to Néel and
zigzag phases are connected via a four-sublattice transforma-
tion [11]. The same transformation connects the stripy phase to
the ferromagnetic phase. As is well known, stronger quantum
fluctuations in the Néel phase lead to a suppression in the order
parameters compared to the ferromagnetic phase thus yielding
weaker discontinuities in the phase transitions in the upper
half of the phase diagram as compared to those found in the
lower half. This is also nicely reflected in the order parameters
shown in Fig. 5 as their magnitudes at the phase transition
points match quite well.

As a concluding remark, we note that a weak suppression
in the order parameters as a function of bond dimension D
both for the spin liquid (as in Fig. 2) as well as the symmetry-
broken phases (data not shown) is observed, albeit small so
that ultimately we expect the discontinuities found to persist
in the large-D limit. For a graphical summary of the results
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FIG. 7. (Color online) Left: energy crossings (top) and Oy, (bottom) for Néel and spin liquid phases. Center: energy crossings (top) and
magnetization (bottom) for zigzag and spin liquid phases. Right: energy crossings (top) and magnetization (bottom) for ferromagnetic and spin

liquid phases.

pertaining to the span of the spin liquid phases, see Figs. 4
and 5.

VI. SUMMARY AND DISCUSSION

In summary, we have complemented previous stud-
ies [11,12,30-32] with accurate iPEPS simulations of the
Kitaev-Heisenberg model in the thermodynamic limit. We
have found excellent results when comparing with the pure
Kitaev model even for moderate bond dimensions.? The full
ground-state phase diagram of the Kitaev-Heisenberg model
was obtained where we were able to identify spin liquid phases
covering regions of finite span.

In the case of the spin liquid with antiferromagnetic cou-
plings, we found first-order phase transitions into symmetry-
broken Néel and zigzag phases, thus clarifying the nature of
these transitions in the thermodynamic limit. In the case of the
spin liquid with ferromagnetic couplings, we have also found
first-order phase transitions leading to ferromagnetic and stripy
ordered phases in contrast with results from previous small
system studies [11,12,31] and a reduced extent compared to

2This shows that contrary to recent claims in Ref. [32], the iPEPS
ansatz can in fact properly encode the basic features of the Kitaev
honeycomb model ground state.

these previous results. Given that the phase boundaries showed
a systematic shift as a function of D effectively increasing the
size of the QSL phases, we conclude that our D = 6 results
correspond to lower bounds. This means that upon increas-
ing the bond dimension in our ansatz beyond D = 6, we expect
the FSL to span at least aregion ¢ € [—102°, — 80°], whereas
the ASL is expected to cover at least the region ¢ € [88°,92°].
The effect being more noticeable in the former case can be
related to the nature of the competing phases (ferromagnetic
and stripy) allowing the ferromagnetic spin liquid phase to
profit more effectively from additional quantum fluctuations
introduced as the bond dimension is increased.

Interesting future directions extending this study could
involve a tensor network approach to the doped system, a
direction which even at the mean field level has brought to
light an interesting variety of superconducting phases arising
in the model [43-45].
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