
Probing three-state Potts nematic fluctuations by ultrasound attenuation

Kazuhiro Kimura,1, ∗ Manfred Sigrist,2 and Norio Kawakami1

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

(Dated: January 25, 2022)

Motivated by recent studies of three-state Potts nematic states in magic-angle twisted bilayer
graphene and doped-Bi2Se3, we analyze the impact of critical nematic fluctuations on the low
energy properties of phonons. In this study we propose how to identify the three-state Potts nematic
fluctuations by ultrasound attenuation. The Gaussian fluctuation analysis shows that the Landau
damping term becomes isotropic due to fluctuations of the C3-breaking bond-order, and the nemato-
elastic coupling is also shown to be isotropic. These two features lead to an isotropic divergence
of the transverse sound attenuation coefficient and an isotropic lattice softening, in contrast to the
case of the C4-breaking bond-order, which shows strong anisotropy. Moreover, we use a mean-field
approximation and discuss the impurity effects. The transition temperature takes its maximum
near the filling of the van-Hove singularity, and the large density of states favors the nematic phase
transition. It turns out that the phase transition is of weak first-order in the wide range of filling and,
upon increasing the impurity scattering, the first-order transition line at low temperatures gradually
shifts towards the second-order line, rendering the transition a weak first-order in a wider range of
parameters. Furthermore, it is confirmed that the enhancement of the ultrasound attenuation
coefficient will be clearly observed in experiments in the case of a weak first-order phase transition.

I. INTRODUCTION

Recent discoveries of electron-nematic phases, which
break a certain point group symmetry of the system,
have suggested that the superconducting pairing mecha-
nism may be closely related to nematicity in some corre-
lated electron systems, such as cuprates, iron-based com-
pounds, heavy-fermions, doped-Bi2Se3, and magic-angle
twisted-bilayer graphene (MA-TBG)1–14. Obviously, the
relation between electron-nematic order and unconven-
tional superconductivity is a pressing question in present
condensed matter physics15–24.

In the case of MA-TBG, an electron-nematic state,
which breaks the lattice C3z symmetry, has been
detected by scanning tunneling microscopy25–27 and
transport measurements28. This C3z-broken electron-
nematic state, referred to as a three-state Potts nematic
state, is of interest for its competition with nematic
superconductivity28 and for the mystery of the Landau
level degeneracy28–30 in different regions of its phase
diagram26,28. From a theoretical point of view20,22,30–35,
it has been pointed out that unique properties of the
moiré phonon, which reflects a non-rigid crystal36,37, as-
sist a nematic phase transition32, and the microscopic ori-
gin of this nematic state is attributed to the interference
of the valley+spin fluctuation35. Moreover, in the case of
doped-Bi2Se3, which is a candidate material of nematic
superconductors38–46 , a three-state Potts nematic state
has been reported47–49 above the superconducting transi-
tion temperature. Although this seems to contradict the
nematic superconductivity for which an order parameter
is accompanied with a breaking of the lattice point group
symmetry, it is pointed out that this nematic state is a
vestige16 of the nematic superconductivity17,49,50 caused
by the strong superconducting fluctuation. Besides the
relationship between nematicity and superconductivity,

it is also important to identify the critical behavior of
electron-nematic states and to distinguish whether it is
intrinsic (i.e. induced spontaneously) or extrinsic (i.e.
due to trivial strains or the structural distortion).

Motivated by recent studies of the three-state Potts
nematic state, we investigate the impact of critical ne-
matic fluctuations on phonons, which in turn enables us
to identify the nematic properties by ultrasound atten-
uation experiments. Despite a lot of research, the iden-
tification of such a three-state Potts nematic state and
the clarification of whether it is induced spontaneously
or from trivial strains are not an easy task. We analyze
the influence of the nemato-elastic coupling on the low-
energy properties of phonons by a phenomenological ar-
gument using a Ginzburg-Landau-Wilson (GL) action51

and a model calculation based on the Hubbard model. It
is shown that nematic fluctuations induce an isotropic di-
vergence of the transverse sound attenuation coefficient,
which is defined as the inverse of the phonon mean free
path.

The plan of this paper is as follows. In Sec. II, we
present a phenomenological argument to see how the crit-
ical nematic fluctuation affects the properties of phonon.
In Sec. III, we present a model calculation of nematic-
ity, and we discuss a mean-field phase diagram. In Sec.
IV, we give a brief discussion on the application of our
results. Section V is devoted to a summary of the paper.

II. PHENOMENOLOGICAL APPROACH

In this section, we present a phenomenological theory
to show how the ultrasound attenuation detects the crit-
ical nematic fluctuations. In the following subsection,
we use models [see Eqs. (1) and (16)] that agree with
the pioneering work presented in Ref. 32. Because we
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consider how to capture the signature of the intrinsic
nematic phase transition, our focus is different from Ref.
32, where the nematicity affected by the static strain and
acoustic phonons was discussed.

A. GL action for nematic fluctuations

First, we deal with the nematic phase transition phe-
nomenologically. In hexagonal lattices, such as MA-TBG
and doped-Bi2Se3, the nematic order is described by a
two-component order parameter Φ = (Φ1,Φ2), which
belongs to a two-dimensional representation of the point
group D3

35, D6
32, and D3d

50, in the three-state Potts-
model class. The GL action for the nematic fluctuation32

is given by

Snem[Φ] =

∫
x

[1

2
rΦ+Φ− +

1

6
u3(Φ3

+ + Φ3
−) +

1

4
u4(Φ+Φ−)2

]
,

(1)

where x = (r, τ), Φ± = Φ1(x) ± iΦ2(x), and GL coef-
ficients r, u3, u4. Φ is naturally parametrized as Φ =
Φ(cos 2θ, sin 2θ), where the angle θ can be identified with
the orientation of the nematic director n̂ = (cos θ, sin θ)
with angle 2θ reflecting the invariance of π rotation. The
cubic term reflects the hexagonal anisotropy and is ex-
pressed as

1

6
u3(Φ3

+ + Φ3
−) =

1

6
u3Φ3 cos 6θ, (2)

which is minimized at θ = 2nπ/6 = {0, π/3, 2π/3} for
u3 < 0 and θ = (2n + 1)π/6 = {π/6, π/2, 5π/6} for
u3 > 0. These solutions represent threefold degenerate
nematic directors.

When we consider the Gaussian fluctuation region, the
corresponding action for nematic fluctuation is given by

SGauss[Φ] =

∫
q

Φq

[
χ̂−1
d (q, iεm)

]
Φ∗q , (3)

with q = (q, iεm), the boson Matsubara frequency εm,
and Φ∗iq = Φi−q, because of Φi(x) ∈ R. Here,

χ̂−1
d (q, iεm) = (r + ξ2

0q
2)1l + D̂

( |εm|
Γd(q)

)
, (4)

is the matrix of the d-wave density correlation function,
where r ∝ Tc0−T measures the distance from the mean-
field transition temperature Tc0, with the mean-field cor-
relation length ξ0 and the damping rate Γd(q). The Lan-

dau damping term D̂
(
|εm|

Γd(q)

)
depends on the type of or-

der parameter and the microscopic details of the system.
In the following subsection, we derive the functional

form of D̂
(
|εm|

Γd(q)

)
coming from the C3-breaking bond-

order [see Eq. (11)], which is an example of the three-
state Potts nematic order. Remarkably, we find that the
C3-breaking case has an isotropic angular dependence of

the Landau damping, in sharp contrast to the strong an-
gle dependence of the Landau damping in the case of the
C4-breaking bond-order52,53, which is an example of the
Ising nematic order.

B. Phenomenology of a C3-breaking bond-order
fluctuation

According to the standard Hertz-Millis-Moriya
description54–57, the dynamics of a ferroic order pa-
rameter which couples to an itinerant electron system
is overdamped at low frequency. This is based on
the simplest treatment of the critical order parameter
fluctuation. On the other hand, the dynamics of
electron-nematicity is more complicated15,57,58. For
example, in isotropic Fermi liquids, the order parameter
fluctuation of the d-wave Pomeranchuk instability is
decomposed into a ballistic (z = 2) transverse mode and
an overdamped (z = 3) longitudinal mode, where z is a
dynamical critical exponent. This nature leads to various
intriguing properties unique to the nematic quantum
critical point, such as an unusual non-Fermi-liquid
behavior59–61 and the multiscale quantum criticality62.
Moreover, in lattice systems with C4-breaking bond-
order fluctuation, the appearance of a ballistic mode
and its effect on the critical properties have been
discussed52,53.

Now we ask what happens for the dynamics of the ne-
matic fluctuation for the C3-breaking bond-order case,
which is one of the microscopic origins of electron-
nematicity (see Appendix A). For simplicity, we as-
sume a circular Fermi surface around the Γ point. The
interaction between the nematic fluctuation (Φ1q,Φ2q)

and the electrons (c†k, ck) resulting from the Hubbard-
Stratonovich transformation is given by

Hcoup ∝
∑
q,k

[
d1kΦ1q + d2kΦ2q

]
c†k+q/2ck−q/2, (5)

with form factors d1k ∼ (k̂2
x − k̂2

y) = cos 2θk and

d2k ∼ 2(k̂xk̂y) = sin 2θk. θk represents the propa-

gating direction of the wave vector k = |k|(k̂x, k̂y) =
|k|(cos θk, sin θk). It reflects a two-dimensional represen-
tation of a C3 symmetric lattice, meaning that two waves,
the dx2−y2 -wave and the dxy-wave, cannot be treated sep-
arately. The coupling term is expressed in terms of the
relative angle between the wave vector and the nematic
director (θk − θ) as follows,

Hcoup ∝
∑
q,k

Φq cos 2(θk − θ)c†k+q/2ck−q/2, (6)

where we have used Φ1q = Φq cos 2θ, Φ2q = Φq sin 2θ,
and the coupling term vanishes at θk − θ = ±π/4.

The low-energy contribution of a nematic polarization
matrix χijq =

∑
k dikdjkGkGk+q with i, j = 1, 2 and an

electron Green’s function Gk determines the dynamical
properties of the nematic polarization Dij

q = χijq − χ
ij
q,0.
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The k-summation can be performed by linearizing the
electronic dispersion, leading to

Dij
q = −iaρ0

∫ 2π

0

dψ

2π

dikdjk
ia− cosψ

, (7)

with ψ = (θk − θq), a = εm
vF|q| , the density of states at

the Fermi level ρ0, the Fermi velocity vF, and the boson
Matsubara frequency εm. After evaluating the above in-
tegration, the dynamical part of the nematic polarization
matrix in the static region (|εm| � vF|q|) is,

D̂q = −ρ0
|a|
2

1l− ρ0

[ |a|
2
− 2a2

](
cos 4θq sin 4θq
sin 4θq − cos 4θq

)
.

(8)

At first glance, this would seemingly break the C3-
symmetry, but later calculations show that the C3-
rotation symmetry is preserved when the angle of the
nematic directors is taken into account. Next, we ex-
press D̂q in terms of the angle θ of nematic directors.
Thus the Gaussian action including the above discussion
is rewritten as

SGauss[Φ] =

∫
q

ΦT
q

[(
r + ξ2

0q
2
)
1l + D̂q

]
Φ∗q , (9)

ΦT
q D̂qΦ

∗
q = −Φ(q)ρ0

[ |εm|
vF|q|

cos2 (2θq − 2θ)

−2
|εm|2

(vF|q|)2
cos (4θq − 4θ)

]
Φ∗(q). (10)

The orientation of the nematic directors is restricted
to three directions by the cubic term as follows: θ =
{0, 2π/3, 4π/3} for u3 < 0 and θ = {−π/6, π/2, 7π/6} for
u3 > 0. Precisely speaking, the damping term preserves
this Z3 symmetry in a disordered state, thus we need
to treat three angles θ equivalently; cos2 (2θq − 2θ) →
1
3

[
cos2 (2θq) + cos2 (2θq − 2π

3 ) + cos2 (2θq − 4π
3 )
]

= 1
2 for

u3 < 0. Eventually, we arrive at the following action with
the single component scalar field Φ:

SGauss[Φ] =

∫
q

Φ(q)
[
χ−1
d (q)

]
Φ∗(q), (11)

χ−1
d (q) = r + ξ2

0q
2 +

|εm|
Γd(q)

, (12)

with Φ = Φ(cos 2θ, sin 2θ) and the damping rate
Γ−1
d (q) = ρ0

2vF
|q|−1. We conclude that the C3-breaking

bond-order fluctuation leads to an isotropic angular de-
pendence of the Landau damping.

The above results are quite contrasted to the Ising ne-
matic case where the nematic director is forced to be
θ = {0, π/2} for the dx2−y2-wave. In that case, the

term D
(
|εm|

Γd(q)

)
in Eq. (4) is expressed as the following

anisotropic form52,53:
[
|εm|
vF|q| cos2 2θq − 2 |εm|2

(vF|q|)2 cos 4θq

]
,

which leads to the angle-dependent dynamics of nematic

fluctuation. It is possible to understand from the cou-
pling term in Eq. (6) what is responsible for these differ-
ences between the three-state Potts nematicity and the
Ising nematicity, as follows. The dynamics of nematic
fluctuation is damped due to particle-hole pair excita-
tions close the Fermi surface, which is a source of the
Landau damping. It requires electrons to scatter along
the Fermi surface. One of the unique properties of bond-
orders is the presence of the nodal structure in the form
factor52,53. This implies that a particle-hole pair cre-
ation is prohibited at certain directions, leading to a
large anisotropy in physical quantities. For example, in
the case of the Ising nematicity, the nematic director is
forced to be θ = {0, π/2} for dx2−y2 -waves, so that the
coupling term vanishes at θk = ±π/4 in Eq. (6). On the
contrary, the three-state Potts nematic case of our inter-
est does not have such a specific direction of vanishing
coupling because nematic directors are not orthogonal to
each other, as we have discussed in this subsection.

C. Probing the nematicity through acoustic
phonons

In addition to the angle dependence of the Landau

damping D̂
(
|εm|

Γd(q)

)
in Eq. (4), there is a unique character

in the nematic order, i.e., the nematic order parameter
couples linearly to acoustic phonon modes32,50,53,63–66.
This is essentially different from the cases of other ferroic
orders, e.g., ferromagnetism or superconductivity, whose
order parameters only couple to the totally symmetric
mode of a phonon in quadratic order. Because of this
specific form of coupling, the unique properties are re-
flected in the transverse acoustic phonon. As a result,
through linear nemato-elastic coupling, phonon modes
affect the thermodynamic and transport properties near
the nematic critical point.

Despite a lot of research, an identification of the
electron-nematic phase transition and clarifying whether
it is induced spontaneously or from trivial strains is not
an easy task. The ultrasound attenuation of acoustic
phonons is one of the good techniques of identifying the
electron-nematic phase transition and its critical behav-
ior. It is also pointed out that the selection rules of ultra-
sound attenuation coefficients can determine the Ising ne-
matic phase transition64. In this section, we focus on the
impact of nemato-elastic coupling on acoustic phonons.

First we consider the dynamical properties of two
acoustic phonon modes, a transverse (T ) and a longitudi-
nal (L) one, with sound velocity vT (L). The displacement
field u is decomposed into two modes uµ=T,L = ũµêµ
with êT = (− sin θq, cos θq), êL = (cos θq, sin θq), and
θq = tan−1(qy/qx). The elastic action for two acoustic
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phonon modes reads51,

Sph[u] =
ρ

2

∑
µ=T,L

∫
q

ũµ(q)Kµ(q)ũ∗µ(q), (13)

Kµ(q) = K(0)
µ (q)− δKµ(q), (14)

with q = (q, iεm), the full (bare) inverse propagator

Kµ(K
(0)
µ ), the phonon self-energy δKµ, the boson Mat-

subara frequency εm = 2πTm, and the mass density

ρ. The bare inverse propagator has the form K
(0)
µ =

ε2m + v2
µq

2. The sound attenuation coefficient67 αµ is
defined as the inverse of the phonon mean-free path, as
follows:

αµ(q) = − lim
ω→0

1

vµω
ImKR

µ (q, ω), (15)

where KR
µ (q, ω) is the retarded function of the full inverse

propagator.
In general, the lowest order of the symmetry-allowed

nemato-elastic coupling32,50 in the free energy is

Fnem−ph[Φ,u] = −κ
∫
r

[
(εxx − εyy)Φ1 + 2εxyΦ2

]
,(16)

with the coupling constant κ and the strain tensor εij =
1
2 (∂iuj + ∂jui). Considering the nemato-elastic coupling

Snem−ph =
∫
τ
Fnem−ph, we calculate the effective action

for phonons coupled with nematic fluctuation. In terms
of ũL(q) and ũT (q), the nemato-elastic action reads

Snem−ph[Φ,u] = −κ
∫
q

(
ũL(q) ũT (q)

)
× i|q|

(
cos (2θq − 2θ)
− sin (2θq − 2θ)

)
Φ∗(q),

(17)

with the angle of nematic director θ (see Appendix
B). Treating the three angles equally does not show
anisotropy, with a similar argument as before, and thus
we obtain the following form

Snem−ph[Φ,u] = −κ
∫
q

i
|q|
2

[
ũL(q)− ũT (q)

]
Φ∗(q).

(18)

Therefore we conclude that the nemato-elastic coupling
has an isotropic angular dependence. After integrating
out the nematic order parameter field in the total action
Stot = SGauss[Φ] + Sph[u] + Snem−ph[Φ,u], an additional
contribution to the phonon Green’s function in Eq. (14)
is

δKµ(q) =
κ2q2

2ρ
χd(q). (19)

Indeed, up to the leading order correction, we can confirm
that the self-energy has no anisotropy.

As a consequence, we obtain the full inverse propa-
gator for phonons in Eq. (14), which gives rise to the
renormalization of sound velocities as,

v∗µ = vµ

√
1−

ReδKR
µµ(q, ω → 0)

v2
µq

2
,

= vµ

√
1− κ2

2v2
µρ

ReχRd (q, ω → 0). (20)

Note that a sound velocity renormalization implies a lat-
tice softening. They are tied together in the following
equation vµ =

√
cµ/ρ, where the corresponding elastic

constants are cµ. In the same way, sound attenuation
coefficients are

αµ(q) = − lim
ω→0

1

v∗µω
ImδKR

µµ(q, ω),

= lim
ω→0

κ2q2

2ρv∗µω
ImχRd (q, ω → 0), (21)

∼ κ2

2ρv∗µ

1

r2

|q|
γd
, (22)

with γd = 2vF
ρ0

. Thus αν(q) ∝ r−2. The symmetry-

allowed coupling term leads to the isotropic divergence
of transverse (longitudinal) sound attenuation αT (L) ∝
(Tc − T )−2 and an isotropic lattice softening.

In addition to the above equation, there is another
relevant term64,68 which is induced by the deformation
potential,

F ′nem−ph[Φ,u] = κ′
∑
q,q′

Φ∗a(q + q′)Φa(q′)[i|q|uL(q)],

(23)

where the longitudinal sound modes couple to the
quadratic term of nematic fields. It originates from a
change in volume due to the effective nematic-nematic
interaction. This term also leads to the divergent con-
tribution to the longitudinal sound attenuation αL ∝
(Tc − T )−2. Note that the latter term is essentially the
same as in weak ferromagnetism68 for sound attenuation
near the ferromagnetic transition in metals.69

Finally, we comment on the comparison with the Ising
nematic case. In the case of the Ising nematicity, the
nematic director is forced to be θ = {0, π/2}. Even if
we treat the two angles equally, the anisotropy of the
nemato-elastic coupling remains. As pointed out in pre-
vious studies, this leads to the angle dependent damp-
ing properties of acoustic phonons64 or the mass term
anisotropy of the Ising nematic fluctuation53.

We conclude that the following unique properties illus-
trate the three-state Potts nematic order: (i) the nematic
fluctuation affects the transverse acoustic phonon, (ii)
the ultrasound attenuation coefficients show an isotropic
divergence which is proportional to the momentum |q|
and (iii) the sound velocity renormalization also shows
an isotropic angle dependence. We therefore propose to
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detect the three-state Potts nematic order by measuring
the isotropic divergence of the transverse sound attenu-
ation coefficient and the isotropic sound velocity renor-
malization. The isotropic nature of these properties is in
contrast to the Ising nematic case where such quantities
are anisotropic and subject to selection rules64. Note that
the vanishing anisotropy of the acoustic phonon velocity
is consistent with Cowley’s classification70.

III. MODEL CALUCULATION

Now we move to the model calculation of the nematic
phase originating from a bond order on the honeycomb
lattice. In this section, we use the mean-field approxima-
tion by taking into account the higher order terms up to
the sixth order coefficients in Eq. (1). Since the critical
properties near the phase transition are evaluated in the
mean-field approximation, the power of divergence may
be changed in the presence of strong fluctuations, but
the stability and the extent of the ordered phase are ex-
pected to remain qualitatively unchanged even with the
inclusion of such effects of the mode coupling.

A. Model and method

In a TBG, a slight mismatch in the lattice periods of
two graphene layers gives rise to a long-period moiré in-
terference pattern. The regions that locally appear to
be AB-stacked bilayer grahene and BA-stacked bilayer
graphene form the emergent honeycomb lattice10,11,13.
Now we focus on the electron-nematic phase transition
near the van-Hove (VH) filling where the nematicity can
be seen in the experiment, as claimed in a previous the-
oretical study35. These authors showed that the C3-
breaking bond ordered state is stabilized near VH fill-
ing by using the so-called DW equation method beyond
our mean-field description. Based on this work35, we
restrict ourselves to the d-wave forward scattering chan-
nel of electron-electron interactions only. The forward-
scattering model71–75 derived from an extended Hubbard
model on the emergent honeycomb lattice (see Appendix
C) reads

H =
1

N

∑
kξσ

(
cAB†kξσ cBA†kξσ

)
Ĥξkσ

(
cABkξσ
cBAkξσ

)
+Hint +Himp,

(24)

Hint = −g
∑
ξσ

∑
i=1,2

∑
q

(
nABξσEi

(q)nBAξσEi
(−q)

)
,

(25)

with creation and annihilation operators cα†kξσ, c
α
kξσ, the

spin index σ, the sublattice index α ∈ {AB,BA}, the val-
ley index ξ ∈ {+,−}, and the coupling constant g = 2VNN

3
(VNN is the nearest-neighbor repulsive interaction). The

above forward-scattering interaction or the long-range in-
teraction comes from the three-peak structure of Wannier

orbitals in MA-TBG10,11,13. Here Hξkσ is a 2× 2 Hamil-
tonian for each valley ξ and spin σ.

Since our mean-field analysis aims at showing the crit-
ical properties of the nematic fluctuation and order of
the metallic phase, we use a reduced tight-binding model
with only the nearest-neighbor hopping term on the hon-
eycomb lattice and deal with all spin and valley de-
grees of freedom on an equal footing. Although the
band structure is somewhat different from the Bistritzer-
MacDonald model and other tight-binding models8–14,
our simple model captures the essential properties around
VH filling, including the correlated insulating phase near
half-filling. Imposing valley-U(1) symmetry, we intro-
duce two orbitals which do not hybridize with each
other. Each valley for ξ = ± is independent in the non-
interacting Hamiltonian. Although the Coulomb inter-
action term may have both contributions from the intra-
valley and the inter-valley interaction, the obtained form
factor from the DW-equation methods35 has no inter-
valley component. In our mean-field calculation, we an-
alyze all spin and valley degrees of freedom on an equal
footing in the following section. As is known, in order
to reproduce the correlated insulating phase near VH
filling, which is not expected in ordinary single layer
graphene76, valley degrees of freedom are needed. In
this paper, we focus on the nematic metallic phase with
the C3-breaking Fermi surface, in line with the trans-
port measurement in Ref. 28. The interaction term is
shown in Appendix C in terms of the di-wave density op-

erator nABξσEi
(q) = 1

N

∑
k E

i∗
k c

ABξ†
k+q/2σc

BAξ
k−q/2σ, where Ei∗k

are form factors in a two-dimensional E representation.
The third term Himp in Eq. (24) represents the spin-

independent short-range isotropic impurity scattering,

Himp =
∑
ξσαi

uimpξσα
i nξσαi , (26)

where the random impurity potential uimp obeys the
Gaussian ensemble 〈uimp

i 〉 = 0, 〈uimp
i uimp

j 〉 = nimp|u|2δi,j
with nimp and u being the impurity concentration and the
strength of the impurity potential. We resort to the Born
approximation, which results in the impurity-averaged
self-energy

Σ̂ξσαimp (iωn) = ni|u|2
T

N

∑
k

Ĝ(k, iωn),

= iΓsign(ωn)1l, (27)

where iωn is the Matsubara frequency and Γ is the
strength of the impurity scattering. In this calculation,
we use Eq. (27) or its retarded representation. With this
approximation, the impurity-averaged Green’s function
is solved as Ĝ−1(k) = Ĝ−1

0 (k)− Σ̂imp(k).
Next, we introduce the two-component nematic order

parameter field Φ(q), with Φ = (Φ1,Φ2). After inte-
grating out the electron degrees of freedom, we have an
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effective action (see Appendix D),

Seff [Φ] = g−1
∑
iξσ

∫
q

Φi(−q)Φi(q)− Trln
[
M̂ξσ
k+ q

2 ,k−
q
2

]
,

(28)

M̂ξσ
k+ q

2 ,k−
q
2

=
(
−iωn1l + Ĥξkσ

)
δk+ q

2 ,k−
q
2

−Φi(−q)√
βN

(
0 Ei∗k
Eik 0

)
, (29)

with q = (q, iωn), k = (k, iωm) and the form factor Eik in
Appendix C, where we have neglected any loop-current
order and only considered the (dx2−y2 , dxy)-wave compo-
nents for simplicity.

In terms of the order parameter field Φ, the partition
function is expressed in a functional integral form, Z =
Z0

∫
DΦe−Seff [Φ] and the Landau free energy is given by

exp (−F/T ) =
∫
DΦe−Seff [Φ], where the GL action up to

the sixth order terms reads,

Fnem[Φ0] =
1

2
rΦ+Φ− +

1

6
u3(Φ3

+ + Φ3
−) +

1

4
u4(Φ+Φ−)2

+
1

10
u5(Φ4

+Φ− + Φ+Φ4
−) +

1

6
u6Φ3

+Φ3
−,

(30)

with Φ± = Φ1(0)±iΦ2(0), the uniform (q = 0) and static
(iωn = 0) component Φ0 = Φ(q = 0), and coefficients un
and r defined in Appendix E.

To calculate the sound attenuation coefficients and
the sound wave renormalization, we derive an electron-
acoustic phonon coupling for arbitrary filling of the hon-
eycomb lattice. The electron-phonon coupling arises
from the lattice modulation by phonons, which leads to
a change in the nearest neighbor hopping t, the so-called
bond-length change77–79. The detailed derivation is sum-
marized in Appendix F. The dominant contribution to
the phonon self-energy in Eq. (14) is given by the bubble
diagrams with electron-phonon vertices,

δKµ,el−ph(q) = −
g2

ph

2ρ

∫
q

tr
[
Ĝk+q/2ŵ

µ
k,qĜk−q/2ŵ

µ
k,−q

]
,

(31)

with

ŵµk,q = − gph√
βN

(
0 ∆E∗k,q · êµ(−q)

∆Ek,q · êµ(−q) 0

)
,

∆Ek,q =

(
− 1

2

−
√

3
2

)
eik·a1(iq · a1) +

(
− 1

2√
3

2

)
eik·a2(iq · a2),

(32)

where êT = (− sin θq, cos θq) and êL = (cos θq, sin θq)
with θq = tan−1(qy/qx).

B. Mean-field phase diagram

Now we determine Landau free energy coefficients up
to the sixth order (r, u2, · · · , u6) numerically80. The

𝑢3 = 0

𝑢4 = 0

𝑇𝑐
1st

𝑇𝑐
2nd

FIG. 1. Phase diagram of a nematic bond-ordered state. We
use VNN/t = 4.5. T 1st

c (T 2nd
c ) is the first (second) order phase

transition point, and u3 = 0 (u4 = 0) is zeros of u3 (u4).
The three arrowheads surrounded by the circle represent the
set of the orientation of the nematic director. The set of the
orientation changes on the zeros of u3. We calculate this by
using a square mesh of 500 × 500 in the Brillouin zone. The
phase transition line T 1st

c is defined by Fnem[Φ1,Φ2] = 0 and
∂Fnem[Φ1,Φ2]/∂Φi = 0 with i = 1, 2.

𝑁 = 1.25

𝑇𝑐
1st

𝑁 = 1.2

𝑇𝑐
1st

(b)(a)
Φ1

𝑟

Φ2

Φ1

𝑟

Φ2

FIG. 2. Nematic order parameters (Φ1,Φ2) and r ∝ Tc0− T
measures the distance from the mean-field transition temper-
ature T 2nd

c . The three arrowheads surrounded by the circle
represent the set of the orientation of the nematic director.
T 1st
c (T 2nd

c ) is the first (second) order phase transition point.
(a) N = 1.25 which is very close to the VHs. (b) N = 1.2
which clearly shows the first order phase transition.

electron-nematic phase transition shown here is described
by a spontaneous distortion of the Fermi surface, caused
by C3-breaking hopping anisotropy. In addition, due to
the symmetry of spin and valley, we perform a mean-
field analysis dealing with all spin and valley degrees of
freedom on an equal footing. In the following section,
without loss of generality, we focus on one-spin and one-
valley degrees of freedom. We summarize the mean-field
phase diagram (T , N), with the temperature T and the
filling N , determined by the Landau free energy in Fig.
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1. The transition is of purely second-order at VH filling
(NVH ∼ 1.25) because of u3 = 0 and u4 > 0. We note
that N = 2 corresponds to the full filling and N = 1
corresponds to the charge-neutral point. The important
feature is that the transition is of weak first-order in
a wide range of filling. “Weak first-order” means that
the character of the phase transition is first order but
the transition temperature is close to the second-order
transition temperature, which is defined by u2 = 0. In
general, first-order transitions are not accompanied by a
divergence of the susceptibility, but a remnant of criti-
cal fluctuations can nevertheless be observed due to the
vicinity of the second order instability, as we will show
below.

We show the temperature dependence of the order pa-
rameters in Fig. 2. We note that a finite value of the
order parameter yields a deformation of the Fermi sur-
face which breaks the C3z symmetry. Although, in the
vicinity of VH filling, the transition is of almost second-
order with a continuous change of the order parameter
in Fig. 2(a), for other fillings, the transition is of weak
first-order with a small discontinuous change of the order
parameter in Fig. 2(b). In this weak first-order region,
we expect a nearly diverging behavior of the nematic sus-
ceptibility. See Appendix G for details about changes of
DOS, band structure, and Fermi surface.

Next, we show how weak impurity scattering modifies
the mean-field phase diagram. In graphene-based mate-
rials, it is known that there are impurity effects due to
the substrate and disorder effects due to sample inhomo-
geneity. Here, for simplicity, we treat the impurity effect
at the level of the Born approximation introduced in Eq.
(27). In Fig. 3, the mean-field phase diagrams for disor-
dered cases (Γ = 0.05 and Γ = 0.09) are shown. First,
we observe that the transition temperature of the three-
state Potts nematic state is suppressed with increasing
the impurity scattering. Second, the first order transi-
tion line at low temperatures gradually approaches the
second-order one, rendering the transition a weak first-
order. Thus we conclude that the transition becomes
weakly first-order in the presence of the weak impurity
scattering.

As described above, we have used the mean-field ap-
proximation for the free energy and the critical proper-
ties. In general, it is known that phase transitions and
critical properties can be modified by introducing mode-
coupling effects between fluctuations, such as third- and
fourth-order terms of GL action. In addition, due to the
peculiarities of the three-state Potts model, the classi-
cal phase transition at finite temperature is known to be
a second-order transition in two spatial dimensions81,82,
and it is expected that the first-order transition dis-
cussed here will be closer to the second-order transition
if we take into account the mode-coupling effect54–57. Of
course, in the case of quantum phase transitions83–85, the
order of the phase transition is not well understood, and
it is an open question what happens for the order of the
phase transition when the nematic phase transition is ac-

𝑢3 = 0

𝑢4 = 0

𝑇𝑐
1st

𝑇𝑐
2nd

𝑢3 = 0

𝑢4 = 0

𝑇𝑐
1st

𝑇𝑐
2nd

FIG. 3. Phase diagrams of a bond-ordered phase with the
impurity scattering (Γ = 0.05 and Γ = 0.09). T 1st

c (T 2nd
c ) is

the first (second)-order phase transition point, and u3 = 0
(u4 = 0) is zeros of u3 (u4). The calculation is done by using
a square mesh of 100×100 in the Brillouin zone and a mesh of
1000 in the energy. The phase transition line T 1st

c is defined
by Fnem[Φ1,Φ2] = 0 and ∂Fnem[Φ1,Φ2]/∂Φi = 0 with i = 1, 2.

companied by loop-current order or when the impurity
vertex corrections are applied. In our analysis, the criti-
cal properties near the phase transition point are due to
the mean-field approximation, but the stability and the
extent of the ordered phase are expected to remain quali-
tatively unchanged even if the effects of such fluctuations
are included.

Before closing this subsection, we comment on the con-
nection between the calculation and experimental obser-
vations. In Ref. 28, the authors obtained the phase dia-
gram by changing the filling with a gate voltage, where
the electron-nematic state is realized only in a narrow
filling range. This observation is consistent with the fact
that the electron-nematic state is stable only near the
VHs in our mean-field calculations.
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𝛤 = 0.05

𝛤 = 0.05

𝛤 = 0.09

𝑣nem /𝑣el−ph

𝑣nem /𝑣el−ph

𝛼nem /𝛼el−ph

𝛼nem /𝛼el−ph

𝛤 = 0.09

FIG. 4. Temperature dependence of the sound ve-
locities vnem/vep−ph and the sound attenuation coefficients
αnem/αep−ph for the transverse acoustic wave for N = 1.2.
T 1st
c (T 2nd

c ) is the first (second) order phase transition point.
The points only make sense above the transition temperature
for T > T 1st

c .

C. Sound attenuation coefficients

Next, we show the sound attenuation coefficients and
the sound wave velocity for the transverse acoustic
phonons, which are modified by the Fermi surface fluc-
tuation. The phonon self-energy [δKµ,el−ph(q) due to
the electron-phonon couplings and δKµ,nem(q) due to the
nemato-elastic couplings in Eq. (14)] are obtained nu-
merically. Using these self-energies, we calculate the nor-
malized sound velocities vnem/vel−ph and the normalized
sound attenuation coefficients αnem/αel−ph, which quan-
tify the contribution of the nematic fluctuation (vnem,
αnem) to the electron-phonon coupling (vel−ph, αel−ph).
The temperature dependencies of the transverse sound
velocity and the transverse sound attenuation coefficient
for several impurity scatterings are shown in Fig. 4. The
parameter region is in the weak first-order phase transi-
tion for N = 1.2. We note that the ratio of the sound
velocity vnem/vel−ph takes about 0.8 at T 1st

c for the choice
of parameters.

It is confirmed that the ultrasound attenuation coef-
ficient is enhanced by a factor of about 100 around the
first-order transition temperature T 1st

c even if the impu-
rity effect is present in Fig. 4 (Γ = 0.05). Furthermore, in
the region where the impurity scattering is much stronger
in Fig. 4 (Γ = 0.09), the ultrasound attenuation coeffi-
cient is still enhanced by a factor of 10 for the same pa-
rameters as above. These results suggest that the weak
first-order phase transition occurs and that the effect
of nematic fluctuations can be observed in the phonon
damping even in the presence of impurities.

IV. DISCUSSION

Here some additional comments are in order on the
characteristic properties discussed in the previous sec-
tions.

Superlattice effects: In this paper, we focus on the
long-wavelength limit of acoustic phonons with linear dis-
persions. Here we comment on the phonon modes in
MA-TBG, which are complicated due to the superlattice
structure. One of the unique properties of such moiré
phonon modes, which reflects a non-rigid crystal36,37, is
the appearance of rotation tensors in addition to the
ordinary strain tensors in the elastic degrees of free-
dom. While for a rigid crystal the velocity of longi-
tudinal phonons is much larger than that of transverse
phonons, for twisted bilayer graphene having a non-rigid
crystal property, the velocity of transverse phonons may
exceed that of longitudinal phonons due to the coupling
between the strain tensor and the rotation tensor32,36,37.
Although there are such quantitative differences, as far
as the acoustic phonons in the long-wavelength limit are
concerned, there is no qualitative change in their linear-
dispersion properties. Thus we believe, even in the moiré
materials, that our theory can be applied to the low-
energy properties of acoustic phonons with linear disper-
sions. It is also important to consider the effect of the
rotation tensor to the nematicity as discussed in Ref. 32.
Since the electron-nematic order parameter does not cou-
ple to the rotation tensor in the leading order correction,
we have not considered it in this paper. Nevertheless,
the detailed study including the higher order corrections
to phonons and nematicity is important; this is left for
future work.

Impurity effects: In addition to the discussions in Secs.
II. C and III. C, it is also important to consider several
scattering mechanisms. In this connection, we comment
here on the impurity effects beyond the Born approxi-
mation in Eq. (27). We expect that the impurity vertex
correction changes the dynamical critical exponent, lead-
ing to the change of the wavenumber dependence of the
ultrasound attenuation coefficients from |q| to |q|2.

The damping rate Γd(q) in Eq. (11) depends on the
dynamical critical exponent z as,

Γd(q) = γd|q|z−2, (33)

where z = 3 for a usual ferroic order in clean systems.
One of the unique properties of the electron-nematic state
is that the sound attenuation coefficient in Eq. (21) re-
flects the damping rate of nematic fluctuations, as fol-
lows;

αµ(q) ∼ κ2

2ρv∗µ

1

r2

q2

Γd(q)
=

κ2

2ρv∗µ

1

r2

|q|4−z

γd
. (34)

We discuss how the impurity effect would modify the
above nematic fluctuations via a possible change in the
exponent z. It is known that for charge density fluctu-
ations, a diffusion pole appears from vertex corrections
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for the impurity scattering57,86–88 , and the dynamical
critical exponent becomes z = 4. This is related to the
conservation law of electric charge, and such a diffusive
mode appears when there is charge U(1)-gauge symme-
try. On the other hand, in the present case of electric
quadrupoles (the electric quadrupole density is not a con-
served quantity52,89), it is expected that the normal diffu-
sion mode does not appear due to impurity effects90, and
we expect the relaxation mode91 with z = 2, etc. In this
case, the dynamical critical exponent may be changed to
a value other than z = 3, unlike the usual charge density
fluctuation, and this change will be probed through the
wave-number dependence of the ultrasound attenuation
coefficient. To identify the correct dynamical exponent is
an open problem, and further analysis will be required.

Candidate materials for experiments: A three-state
Potts nematic order has been reported for doped-
Bi2Se3

47–49. Even in these materials, as the 2D nematic
ordered state which breaks the in-plane C3z-symmetry
is stacked in the z-direction, the formulation developed
here can be applied to phonon modes propagating in the
plane with a slight modification. In these materials, it has
been suggested that a vestigial nematic order50 is caused
by nematic superconducting fluctuations, rather than the
bond-order discussed here. Nevertheless, a similar treat-
ment can be applied, and thus we expect the isotropic
divergence of sound attenuation and the isotropic lat-
tice softening for transverse modes within the GL theory
discussed here. The scenario presented here is useful to
probe the nematic fluctuation, predicting a weak first-
order transition like behavior.

In the case of MA-TBG, an electron-nematic state
has been reported at several fillings by scanning tunnel-
ing microscopy25–27, transport measurement28, and the
quantum oscillation28,29. Our mean-field analysis for the
C3-breaking bond order is based on Ref. 35. It is shown
that the C3-breaking intra-valley bond ordered state is
stabilized near the VH filling, and the other magnetically
ordered states are suppressed by using the so-called DW
equation method including the Aslamazov-Larkin vertex
correction35. Besides the weak-coupling approaches22,35,
there are some theoretical proposals such as an orbital or-
der and a vestigial nematic order in the strong coupling
theory20. We think that our phenomenological theory
can also be applied to the above scenarios with a slight
modification. Detailed study on this point is left for fu-
ture work.

Unfortunately, MA-TBG does not allow us to conduct
usual sound attenuation experiments due to its purely
2D character, but this does not change the fact that the
mean-free path l = α−1 of phonons becomes isotropi-
cally shorter. In this 2D case, experiments using optical
methods such as Brillouin scattering92 and double res-
onant Raman scattering93 provide alternative probes to
detect the nematic fluctuation. For these experiments,
the formulation developed here can be applied with a
slight modification to identify such a three-state Potts
nematic state and figure out whether it is induced spon-

taneously or from trivial strain.

V. SUMMARY

We have analyzed the impact of nemato-elastic cou-
pling on the low-energy properties of phonons by using
a phenomenological argument and a model calculation.
Phenomenological analysis has clarified that the Landau
damping term becomes isotropic due to fluctuations of
the C3-breaking bond-order in the Gaussian fluctuation
region, and the nemato-elastic coupling is also isotropic.
As a result, we have proposed to detect the intrinsic
three-state Potts nematic phase transition by measur-
ing the ultrasound attenuation of the transverse acoustic
phonon. Namely, the ultrasound attenuation coefficient
shows an isotropic divergence which is proportional to the
momentum |q|, and the sound velocity renormalization
also shows an isotropic angle dependence. Both features
are quite contrasted to the strong anisotropy in the case
of the C4-breaking nematic case.

We have determined the phase diagram by using an
extended Hubbard model in a mean-field approxima-
tion to investigate the critical properties. According to
the mean-field approximation, the transition tempera-
ture takes its maximum near VHs, and the large density
of states favors the nematic phase transition. The order
of phase transition is of weak first-order in a wide range
of band filling and, with increasing the impurity scat-
tering, the first order transition line at low temperatures
gets closer to the second-order line, making the transition
weakly first-order in a wider parameter region. Further-
more, it has been confirmed that the enhancement of the
ultrasound attenuation coefficient can be observed in the
case of a weak first-order phase transition. Even if the ef-
fect of mode coupling between the nematic fluctuations is
considered, the qualitative features of the isotropic sound
attenuation coefficients and the phase diagram are ex-
pected to be unchanged, but the order of the transition
could be changed to the second-order as expected for a
classical phase transition of three-state Potts nematicity
in 2D.
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Appendix A: Nematic Polarization for a circular
Fermi surface

Here, we derive the functional form of the Landau

damping D̂
(
|εm|

Γd(q)

)
in Eq. (4), which results in Eq.

(11). We assume the circular Fermi surface around the
Γ point and the single band system in a C3 symmetric
lattice. The interaction between the nematic fluctuation
(Φ1q,Φ2q,) and the electrons (c†k, ck) is given by

Hcoup ∝
∑
q,k

[
d1kΦ1q + d2kΦ2q

]
c†k+q/2ck−q/2, (A1)

where form factors of a two-dimensional representation

are d1k ∼ (k̂2
x − k̂2

y) = cos 2θk and d2k ∼ 2(k̂xk̂y) =

sin 2θk with the wave vector of electron k = |k|(k̂x, k̂y) =
|k|(cos θk, sin θk). Furthermore, the order parameter is
parametrized as Φ = Φ(cos 2θ, sin 2θ) with the nematic
director n̂ = (cos θ, sin θ) and its angle θ. Thus, the cou-
pling term is expressed in terms of the relative angle θk−θ
as follows:

Hcoup ∝
∑
q,k

Φq cos 2(θk − θ)c†k+q/2ck−q/2, (A2)

where the coupling term vanishes at θk − θ = ±π/4.
The low-energy contribution of a nematic polarization

χijq determines the dynamical properties of the nematic
fluctuations. The k-summation can be performed by lin-
earizing the electronic dispersion,

χijq =
∑
k

dikdjkGkGk+q ∼ −iεmρ0

∫
kFS

dikdjk
iεm − vFk · q

,

= − iεm
vF|q|

ρ0

∫ 2π

0

dθk
2π

dikdjk
iεm/vF|q| − cos (θk − θq)

,

(A3)

with d1kd1k = cos2 2θk, d2kd2k = sin2 2θk, d1kd2k =
sin 2θk cos 2θk, ρ0 is the density of states at the Fermi
level, an electron Green’s function G−1

k = iωn − εk − µ,
the energy dispersion εk = k2/2m, the electron mass m,
the Fermi velocity vF, the fermion Matsubara frequency
ωn, and the boson Matsubara frequency εm. Now we set
ψ = (θk − θq) and rewrite each component of dikdjk as,

d1kd1k = cos2 2θk = cos2 (2ψ + 2θq)

∼ cos2 2θq cos2 2ψ + sin2 2θq sin2 2ψ, (A4)

d2kd2k = sin2 2θk = sin2 (2ψ + 2θq)

∼ cos2 2θq sin2 2ψ + sin2 2θq cos2 2ψ, (A5)

d1kd2k =
1

2
sin 4θk =

1

2
sin (4ψ + 4θq)

∼ 1

2
cos 4θq sin 4ψ +

1

2
sin 4θq cos 4ψ,

=
1

2
sin 4θq

(
2 cos2 2ψ − 1

)
, (A6)

where we have ignored terms proportional to
sin 2ψ cos 2ψ, because they vanish after ψ integral.
Combined with the above equations, the dynamical part
of nematic polarization D̂q = χ̂q − χ̂q,0 is calculated as,

Dij
q = −iaρ0

∫ 2π

0

dψ

2π

dikdjk
ia− cosψ

, (A7)

with a = εm
vF|q| and

D11
q = iaρ0

{
cos2 2θq

[
iSgn(a)− 2ia

]
+ sin2 2θq

[
2ia
]}
,

(A8)

D22
q = iaρ0

{
cos2 2θq

[
2ia
]

+ sin2 2θq

[
iSgn(a)− 2ia

]}
,

(A9)

D12
q = iaρ0

{
sin 4θq

[
iSgn(a)− 2ia

]
− 1

2
sin 4θq

[
iSgn(a)

]}
,

(A10)

with D12
q = D21

q . We have used the following equations
in the above calculations:

IC(a) = −
∫ 2π

0

dψ

2π

cos2 2ψ

ia− cosψ
,

= i(1 + 2a2)
[ (1 + 2a2)√

1 + a2
Sgn(a)− 2a

]
|a→0,

→ iSgn(a)− 2ia, (A11)

IS(a) = −
∫ 2π

0

dψ

2π

sin2 2ψ

ia− cosψ
,

= 2ai
[
1 + 2a2 − 2|a|

√
1 + a2

]
|a→0,

→ 2ia. (A12)

As a consequence, the frequency-dependent part of ne-
matic polarization is given as,

D̂q = −aρ0

2

(
1 0
0 1

)
−ρ0

[a
2
− 2a2

](
cos 4θq sin 4θq
sin 4θq − cos 4θq

)
.

(A13)

Next, we express the above function in terms of the angle
of nematic director θ and consider the dynamical part of
Eq. (3),

ΦT
q D̂qΦ

∗
q = Φq

(
cos 2θ sin 2θ

)
D̂q

(
cos 2θ
sin 2θ

)
Φ∗q ,

= −Φqρ0

[ |εm|
vF|q|

cos2 (2θq − 2θ)

−2
|εm|2

(vF|q|)2
cos (4θq − 4θ)

]
Φ∗q , (A14)

where Φq = Φq(cos 2θ, sin 2θ) and Φq is the norm of Φq.
Thus the Gaussian theory for the three-state Potts ne-

matic fluctuation is described by SGauss[Φ] =
∫
q

Φq

[
r +
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ξ2
0q

2 −Dq

]
Φ∗q with

Dq = −ρ0

[ |εm|
vF|q|

cos2 (2θq − 2θ)

−2
|εm|2

(vF|q|)2
cos (4θq − 4θ)

]
, (A15)

where r ∝ Tc0−T measures the distance from the mean-
field transition temperature Tc0, where the mean-field
correlation length is ξ0. The orientations of the nematic
directors are restricted to three directions by the cubic
term in Eq. (1) as follows: θ = {0, 2π/3, 4π/3} for u3 < 0
and θ = {−π/6, π/2, 7π/6} for u3 > 0. Precisely speak-
ing, the damping term preserves this Z3 symmetry in
a disordered state, thus we need to treat three angles
equivalently,

cos2 (2θq − 2θ)

→ 1

3

[
cos2 (2θq) + cos2 (2θq −

2π

3
)

+ cos2 (2θq −
4π

3
)
]
, (A16)

=
1

3

[
cos2 (2θq) +

1

2
cos2 (2θq) +

3

2
sin2 (2θq)

]
,

=
1

2
. (A17)

Therefore, within this treatment, there is no anisotropy
of Landau damping in the three-state Potts nematic case,
and thus we can use the following action,

SGauss[Φ] =

∫
q

Φq

[
r + ξ2

0q
2 −Dq

]
Φ∗q ,

Dq = −ρ0

2

|ωm|
vF|q|

, (A18)

as shown in Eq. (11).

Appendix B: Nemato-elastic coupling

Here, we derive the nemato-elastic coupling in Eq.
(18). In terms of ũL(q) and ũT (q), the nemato-elastic
action reads

Snem−ph[Φ,u] = −κ
∫
q

(
ũL(q) ũT (q)

)
× i|q|

(
cos 2θq sin 2θq
− sin 2θq cos 2θq

)(
Φ1(−q)
Φ2(−q)

)
,

= −κ
∫
q

(
ũL(q) ũT (q)

)
× i|q|

(
cos (2θq − 2θ)
− sin (2θq − 2θ)

)
Φ∗(q),

(B1)

where θq shows the propagating direction of a wave
vector q. In the second line, we have used Φ =
Φ(cos 2θ, sin 2θ).

In the case of the Ising nematicity, the nematic director
is forced to be θ = {0, π/2} for dx2−y2 -wave. Even if
we treat the two angles equally, the anisotropy of the
nemato-elastic coupling remains, as follows,

cos2 (2θq − 2θ)→ cos2 (2θq), (B2)

sin2 (2θq − 2θ)→ sin2 (2θq). (B3)

This form is the same as in Ref. 53. However, in the case
of the three-state Potts nematicity, treating the three
angles equally does not show any anisotropy. Thus we
conclude that Z3 symmetry leads to an isotropic angular
dependence of the nemato-elastic coupling.

cos2 (2θq − 2θ)→ 1

2
, (B4)

sin2 (2θq − 2θ)→ 1

2
. (B5)

Thus we obtain the following isotropic form:

Snem−ph[Φ,u] = −κ
∫
q

i
|q|
2

[
ũL(q)− ũT (q)

]
Φ∗(q).

(B6)

Appendix C: Quadrupole-Quadrupole interaction

Here, we derive the forward-scattering interaction71–75

in Eq. (25). We note the atomic structure of TBG. In a
small twist angle TBG, a slight mismatch in the lattice
periods of two graphene layers gives rise to a long-period
moiré interference pattern. The regions that locally ap-
pear to be AB-stacked bilayer grahene and BA-stacked
bilayer graphene form the emergent honeycomb lattice in
Fig.C.1(a). Furthermore, it is pointed out that the Wan-
nier state10,11,13 is centered at the AB or BA spot in the
moiré pattern, while the maximum amplitude is at three
AA spots. Because of the three-peak form of the Wan-
nier state, the Coulomb interaction between the neigh-
boring sites is as important as the on-site interaction11.
Considering the nearest-neighbor (NN) direct channel on
the multi-orbital Hubbard model, the interaction term is
given by

Hint =
1

2

∑
ab

∑
σσ′

Vabc
†
aσcaσc

†
bσ′cbσ′ , (C1)

=
VNN

2N

∑
α6=β

∑
q

γNN
αβ (q)ρα(q)ρβ(−q), (C2)

γNN
AB,BA(q) =

(
e−iq·τ1 + e−iq·τ2 + e−iq·τ3

)
, (C3)

where a = (i, α, ξ) denotes the unit cell index i, the sub-
lattice index α ∈ {AB,BA}, the valley index ξ ∈ {+,−},
and the density operator ρα(q) =

∑
α,ξ,σ

∑
k c

αξ†
k+qσc

αξ
kσ.

We change the ordering of fermion operators in the NN
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FIG. C.1. (a) The primitive lattice vectors on the honeycomb

lattice: a1 = (
√
3

2
, 1
2
), a2 = (0, 1) with vectors of the nearest-

neighbor bond τ1 = (− 1

2
√
3
,− 1

2
), τ2 = ( 1√

3
, 0), and τ3 =

(− 1

2
√
3
, 1
2
). The basis function of E (or Eg) representation of

form factor: (b) dx2−y2 -wave, (c) dxy-wave

.

direct channel as∑
p1p2p3

γNN
AB,BA(p2)cαξ†p1+p2σc

αξ
p1σc

βξ′†
p3−p2σ′c

βξ′

p3σ′

∼ −
∑
kk′q

γNN
AB,BA(k − k′)cαξ†k+q/2σc

βξ
k−q/2σ′c

βξ†
k′−q/2σc

αξ
k′+q/2σ′ ,

(C4)

where we have ignored the inter-valley component and
consider only σ = σ′. Now we decouple γNN

AB,BA(k − k′)
as γNN

AB,BA(k−k′) = 1
3s
∗
ksk′ + 2

3E
1∗
k E

1
k′ + 2

3E
2∗
k E

2
k′ , where

sk, E1
k, and E2

k are the form factors in Figs.C.1(b) and
C.1(c), such as

sk = eik·τ1 + eik·τ2 + eik·τ3 ,

E1
k = eik·τ1 − 1

2
eik·τ2 − 1

2
eik·τ3 ,

E2
k = −

√
3

2
eik·τ2 +

√
3

2
eik·τ3 . (C5)

We can rewrite Eq. (C4) in terms of the density operator,
which is in the E-representation of the point group D3,

nABξσEi
(q) = 1

N

∑
k E

i∗
k c

ABξ†
k+q/2σc

BAξ
k−q/2σ,

HAB
int = −VNN

3N

∑
ξσ

∑
k,k′,q

(
nABξσE1

(q)[nABξσE1
(q)]†

+nABξσE2
(q)[nABξσE2

(q)]†
)
. (C6)

Finally, we have Hint = HAB
int + HBA

int as shown in Eq.
(25).

In the D3 point group case11, form factors result from

TABLE.C.1. The real part of nABξσEi
(q) corresponds

to the d-wave components of the density operator, re-
ferred to as nematic fields, whereas the imaginary part

of nABξσEi
(q) corresponds to the p-wave components, re-

ferred to as loop-current fields35. We note that, if we
consider the D6 point group case14 which is another sym-
metry of MA-TBG, nematic fields appear irrespective of
loop-current fields.

E C3z C2y linear quadratic

A1 1 1 -1 x2 + y2

A2 1 1 -1

E 2 -1 0 (x, y) (x2 − y2, xy)

TABLE C.1. The character table of the D3 point group.

Appendix D: Effective Action

Here, we derive the action in Eq. (28). The effective
model containing the quadrupole-quadrupole interaction
in Eq. (25) or in Appendix C is given by

H =
1

N

∑
kξσ

(
cAB†kξσ cBA†kξσ

)
Ĥξkσ

(
cABkξσ
cBAkξσ

)
+Hint,

(D1)

Hint = −g
∑
ξσ

∑
i=1,2

∑
q

(
nABξσEi

(q)nBAξσEi
(−q)

)
,

(D2)

where g = 2VNN

3 is a coupling constant and Ĥξkσ is a 2×2
Hamiltonian for each valley ξ and σ. We perform the
Hubbard-Stratonovich transformation by using the two-
component complex field (Ψ, Ψ̄), with Ψ = (Ψ1,Ψ2),
Ψi ∈ C, and Ψ̄ = Ψ∗, as follows

Sint = −
∑
iξσ

∫
q

1√
βN

(
Ψ̄i(−q)nABξσEi

(q)

+Ψi(−q)nBAξσEi
(q)
)

+
1

g

∑
iξσ

∫
q

Ψi(−q)Ψ̄i(q),

=
∑
iξσ

∫
q

∫
k

∑
αβ

c̄αk+ q
2 ξσ

[
V iαβ(k, q)

]
cβ
k− q

2 ξσ

+
1

g

∑
iξσ

∫
q

Ψi(−q)Ψ̄i(q), (D3)

where V iαβ(k, q) is an (α, β) component of the matrix

V̂ i(k, q). In terms of form factors Eik in Eq. (C5), it
is expressed,

V̂ i(k, q) = − 1√
βN

(
0 Ei∗k Ψ̄i(−q)

EikΨi(−q) 0

)
,(D4)

with q = (q, iωn), k = (k, iωm), where σx, σy are Pauli
matrices and c̄, c are Grassmannian variables correspond-
ing to creation and annihilation operators.

Next, we divide Ψ into nematic fields Φi(q) and loop-
current fields Φ′i(q), where Φi(q) = ReΨi(q) ∈ R and
Φ′i(q) = ImΨi(q) ∈ R. In the following calculation, for
simplicity, we only consider an electron-nematic order
and in this case the matrix V̂ i(k, q) is written as

V̂ i(k, q) = −Φi(−q)√
βN

(
0 Ei∗k
Eik 0

)
. (D5)
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The total action in this system is given by the two-
component real field Φ = (Φ1,Φ2),

Stot[c̄, c,Φ] = S0[c̄, c] + Sint[c̄, c,Φ], (D6)

with

S0[c̄, c] =
∑
iξσ

∫
q

∫
k

∑
αβ

c̄αk+ q
2 ξσ

[(
−iωnδαβ +Hξkσ,αβ

)
×δq,0

]
cβ
k− q

2 ξσ
. (D7)

After integrating out the electron degrees of freedom, we
have an effective action for the nematic field,

Seff [Φ] =
1

g

∑
iξσ

∫
q

Φi(−q)Φi(q)− Trln
[
M̂ξσ
k+ q

2 ,k−
q
2

]
,

(D8)

M̂ξσ
k+ q

2 ,k−
q
2

= −Ĝ−1
0 δk+q/2,k−q/2 −

∑
i=1,2

V̂ i(k, q),

(D9)

where we have introduced the non-interacting Green’s

function Ĝ−1
0 (k) = iωn1l− Ĥξkσ. This leads to Eq. (28).

Appendix E: Ginzburg-Landau Expansion

Here, we derive the GL expansion in Eq. (30). For
simplicity, we approximate the 2 × 2 Dirac Hamiltonian
with chiral symmetry on the honeycomb lattice,

Ĥk =

(
µ ε∗k
εk µ

)
, (E1)

Ûk =
1√
2

(
1 1

eiθk −eiθk

)
, (E2)

where a phase factor is introduced as θk = εk
|εk| with

εk = t(1 + e−ik·a1 + e−ik·a2), the hopping parameter t,
and the chemical potential µ. The band representation of
the non-interacting Green’s function and the interaction
vertex in Eq. (D9) is given by

Ĝ0(k) = Ûk

(
g+
k 0

0 g−k

)
Û†k, (E3)

V̂ i(k, q) = − 1√
βN

Ûk

{(
1 0

0 −1

)
×
[
dikΦi(−q)− pikΦ′i(−q)

]
+

(
0 −i
i 0

)[
−pikΦi(−q) + dikΦ′i(−q)

]}
Û†k,

(E4)

where [g±k ]−1 = iωn ∓ |εk| − µ is the electron Green’s
function, ωn is the fermion Matsubara frequency, and we

have introduced the d- and p- wave components of the
form factor Eik in Eqs.(C5),

dik = Re
[
Eike

−iθk
]
, (E5)

pik = Im
[
Eike

−iθk
]
. (E6)

If the system has space inversion symmetry, the p-wave
component of the nematic field vanishes. Now we focus
on the d-wave component, for which the matrix V̂ i(k, q)
is obtained in a diagonal form,

V̂ i(k, q) = −d
i
kΦi(−q)√
βN

Ûk

(
1 0

0 −1

)
Û†k,

= v̂i(k, q)Φi(−q), (E7)

where we have introduced the shorthand notation of the
interaction vertex v̂i(k, q).

As described in Appendix D, we have used the effective
action in Eq. (D9). In terms of the order parameter field
Φ = (Φ1,Φ2), the partition function is expressed in a
functional integral form,

Z = Z0

∫
DΦe−SGL[Φ], (E8)

SGL[Φ] =
∑

n=1,··· ,6
S

(n)
GL [Φ]. (E9)

We expand the above GL action up to the sixth or-
der terms in the nematic order parameter, by us-
ing the following relation: TrlnM = Trln

(
−Ĝ−1

0

)
−∑∞

n=1
1
nTr

(
Ĝ0V̂

)n
where M̂ is shown in Eq.(D9). The

first order term of Φ is

Tr
(
Ĝ0V̂

)
=

1√
βN

∑
i

∫
k

[
Ĝk

]
αβ

[
v̂i(k, q)

]
βα

Φi(−q),

(E10)

where this integration becomes zero because Ĝk has C3

symmetry. The second order term is

1

2
Tr
(
Ĝ0V̂

)2
=

1

2

∫
q

∑
ij

χijq Φi(−q)Φj(q),

(E11)

χijq =
T

N

∑
k,iωn

tr
[
Ĝk+q/2v̂

i(k, q)Ĝk−q/2v̂
j(k,−q)

]
.

(E12)

Thus the Gaussian term is

S
(2)
Gauss[Φ] =

∫
q

∑
ij

[
χ−1
d (q)

]
ij

Φi(−q)Φj(q), (E13)

[
χ−1
d (q)

]
ij

=
1

g
δij − χijq ,

∼ (r + ξ2
0q

2)δij + D̂ij
q , (E14)

where g = 2VNN

3 is a coupling constant, the dynamical

part of nematic fluctuation is defined as D̂q = χ̂q − χ̂q,0,
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r = 1/g − χ11
q=0 ∝ Tc0 − T measures the distance from

the mean-field transition temperature Tc0, and the mean-
field correlation length is ξ0.

In a similar way, we evaluate the coefficients up to
sixth order. GL coefficients un+1 comes from uniform
contributions of the (n + 1)-th order term in the non-
interacting Dirac dispersion,

un+1 =
T

N

∑
k,iωn

tr
[
Ĝkv̂

i(k, 0)
]n+1

, (E15)

=
1

N

∑
k

(dik)n+1 1

n!

[ ∂n
∂nε

f(ε+k ) + (−1)n+1 ∂
n

∂nε
f(ε−k )

]
.

(E16)

where we have used the non-interacting formula in Eqs.
(E3) and (E7) with T

∑
iωn

[gi(k)]n+1 = 1
n!

∂n

∂nεf(εi) at
the second line. If we treat the impurity effect in a Born
approximation, the electron Green’s function is evaluated
as Ĝ−1(k) = Ĝ−1

0 (k) − Σ̂imp(k) and the self-energy is
obtained in Eq. (27).

As a consequence, we arrive at the following GL action
up to sixth order,

SGL[Φ] =

∫
x

[1

2
rΦ+Φ− +

1

6
u3(Φ3

+ + Φ3
−) +

1

4
u4Φ2

+Φ2
−

+
1

10
u5(Φ4

+Φ− + Φ+Φ4
−) +

1

6
u6Φ3

+Φ3
−

]
, (E17)

where x = (r, τ),Φ± = Φ1 ± iΦ2 and r = 1/g − u2 as
shown in Eq. (30).

Appendix F: Electron-phonon coupling

Here, we derive the electron-phonon coupling in Eq.
(31) from a change in the bond length77–79. We assume
that the electron-phonon coupling arises from the lattice
modulation by phonons, which leads to a change in the
nearest-neighbor hopping t,

Hel−ph =
∑
δ

g(δ)
∑
ri,ξσ

[
uα(ri)− uβ(ri + δ)

]∑
α

cα†ξσc
ᾱ
ξσ,

(F1)

where uα(ri) is the lattice displacement vector at ri, δ
is the nearest neighbor lattice vector, g(δ) = ∇t(δ) =
gnnδnn with the hopping amplitude t(δ) between sites ri
and ri + δ. The Fourier representation of the electron-

phonon coupling is

Hel−ph =
∑
τi

τi
gph√
N

∑
pq

[
uAq − uBqeiq·τi

]
×
[
c†Ak+q/2cBk−q/2e

ik·τi

+c†Bk+q/2cAk−q/2e
i(k+q/2)·τi

]
,

=
gph√
N

∑
pq

[
uAq ·

(
E1
k−q/2

E2
k−q/2

)
− uBq ·

(
E1
k+q/2

E2
k+q/2

)]
× c†Ak+q/2cBk−q/2

+
gph√
N

∑
pq

[
uAq ·

(
E1∗
k+q/2

E2∗
k+q/2

)
− uBq ·

(
E1∗
k−q/2

E2∗
k−q/2

)]
× c†Bk+q/2cAk−q/2,

=
gph√
N

∑
pq

[
uOP
q ·Ek + uAC

q ·∆Ek,q
]

× c†Ak+q/2cBk−q/2

+
gph√
N

∑
pq

[
uOP
q ·E∗k + uAC

q ·∆E∗k,q
]

× c†Bk+q/2cAk−q/2, (F2)

where we have introduced displacement fields of an op-
tical phonon uOP

q = 1√
2
(uAq − uBq) and an acoustic

phonon uAC
q = 1√

2
(uAq + uBq) in the long-wave length

limit. The vectors Ek and ∆Ek,q are obtained from
the Taylor expansion for small q as follows, Ek+q/2 −
Ek−q/2 = Ek + ∆Ek,q · · · and Ek = (E1

k, E
2
k),

∆Ek,q =

(
− 1

2

−
√

3
2

)
eik·a1(iq · a1) +

(
− 1

2√
3

2

)
eik·a2(iq · a2).

(F3)

Finally, the electron-phonon coupling term for acoustic
phonons resulting from the bond-length change is

Sel−ph[c̄, c, ũL, ũT ]

=
∑
iξσ

∫
q

∫
k

∑
αβ

c̄αk+ q
2 ξσ

[
ŵµ(k, q)

]
αβ
cβ
k− q

2 ξσ
ũµ(−q),

(F4)

with the displacement field of acoustic phonons uµ=T,L =
ũµêµ where êT = (− sin θq, cos θq) and êL =
(cos θq, sin θq) with θq = tan−1(qy/qx) and

ŵµk,q = − gph√
βN

(
0 ∆E∗k,q · êµ(−q)

∆Ek,q · êµ(−q) 0

)
.

(F5)

After integrating out the electron degrees of freedom, we
have a self-energy correction to the phonon action in Eq.
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(14),

δKµ,el−ph(q) = −
g2

ph

2ρ

∫
q

tr
[
Ĝk+q/2ŵ

µ
k,qĜk−q/2ŵ

µ
k,−q

]
.

(F6)

This is shown in Eq. (31).

Appendix G: Hartree-Fock approximation of a
bond-order

Here, we derive the mean-field theory of the three-
state Potts nematic phase transition following Ref. 75
and show the Fermi surface and DOS in Sec. III B. The
effective model containing the quadrupole-quadrupole in-
teraction is shown in Eq. (25) and in Appendix C. Af-

ter introducing the mean-field decoupling nαβkσ = nαβkσ −
〈nαβkσ〉 + 〈nαβkσ〉 and ignoring the second order correction

(nαβkσ − 〈n
αβ
kσ〉), we arrive at

HMF
int =

1

N

∑
k,k′

[
fk,k′〈nBAk′ 〉nABk + f∗k,k′〈nABk′ 〉nBAk

]
,

− 1

N

∑
k,k′

fk,k′〈nBAk′ 〉〈nABk 〉,

=
∑
k

(
cA†k cB†k

)(
0 ∆AB

k

∆BA
k 0

)(
cAk
cBk

)
−
∑
k

∆AB
k 〈nABk 〉, (G1)

with fk,k′ = g(E1∗
k E

1
k′ + E2∗

k E
2
k′), a coupling constant

g = 2
3VNN, the mean-field ∆AB

k = 1
N

∑
k′ fk,k′〈nBAk′ 〉 and

form factors Eik in Eq. (C5). The two-component com-
plex order parameter (Ψ, Ψ̄) with Ψ = (Ψ1,Ψ2) con-
tributes to the above mean-field as,

∆AB
k = − g

N

∑
k′

[
E1∗
k E

1
k′〈nBAk′ 〉+ E2∗

k E
2
k′〈nBAk′ 〉

]
,

=
[
E1∗
k Ψ1 + E2∗

k Ψ2

]
, (G2)

where the order parameters are defined as Ψ1(2) =

− g
N

∑
k E

1(2)
k 〈nBAk 〉. Moreover, the energy shift result-

ing from the mean-field theory is

−
∑
k

∆AB
k 〈nABk 〉 = −

∑
k

[
E1∗
k Ψ1 + E2∗

k Ψ2

]
〈nABk 〉,

=
N

g

[
Ψ∗1Ψ1 + Ψ∗2Ψ2

]
. (G3)

For example, for a tight-binding model on the honey-
comb lattice

Ĥ0
k =

(
0 t(1 + e−ik·a1 + e−ik·a2)

t(1 + eik·a1 + eik·a2) 0

)
,

(G4)
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FIG. G.1. (a)The density of states, and the particle num-
ber N . (b)The band structure along the high-symmetric line
of the Brillouin zone. (c)The Fermi surface. The data are
plotted for the disordered phase (Ψ = (0, 0), T/t = 0.15)
and the nematic phase (Ψ = (0.12, 0), T/t = 0.05). We use
VNN/t = 4.5, N = 1.2.

the mean-field term induces the hopping anisotropy as

ĤMF
k =

(
0 E1∗

k Ψ1 + E2∗
k Ψ2

E1
kΨ∗1 + E2

kΨ∗2 0

)
.

(G5)

Finally, we obtain the mean-field Hamiltonian, ĤMF
k .

We show numerical results obtained in the Hartree-
Fock approximation; The density of states, the band
structure and the Fermi surface in the disordered phase
and the nematic phase are summarized in Fig.G.1. In the
vicinity of VH filling in Fig.G.1(a), which corresponds to
the saddle point of the band in Fig.G.1(b), a finite value
of the order parameter yields a deformation of the Fermi
surface which breaks the C3z symmetry in Fig.G.1(c).
We note that N = 2 corresponds to the full filling and
N = 1 corresponds to the charge-neutral point.
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