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Most atomic nuclei are deformed with a quadrupole shape described by its overall strength β2 and
triaxiality γ. The deformation can be accessed in high-energy heavy-ion collisions by measuring the
collective flow response of the produced quark-gluon plasma to the eccentricity ε2 and the density
gradient d⊥ in the initial state. Using an analytical estimate and a Glauber model, I show that the
variances, ⟨ε22⟩ or ⟨(δd⊥/d⊥)2⟩, and skewnesses, ⟨ε22δd⊥/d⊥⟩ or ⟨(δd⊥/d⊥)3⟩, have a simple analytical
form of a′+b′β2

2 and a′+(b′+c′ cos(3γ))β3
2 , respectively. From these, I constructed several normalized

skewnesses to isolate the γ dependence from that of β2, and show that the correlations between a
normalized skewness and a variance can constrain simultaneously the β2 and γ. Assuming a linear
relation with elliptic flow v2 and mean-transverse momentum [pT] of final-state particles, v2 ∝ ε2
and δ[pT]/[pT] ∝ δd⊥/d⊥, similar conclusions are also expected for the variances and skewnesses of
v2 and [pT], i.e. a+ bβ2

2 for ⟨v22⟩ and ⟨(δ[pT]/[pT])
2
⟩ and a+ (b+ c cos(3γ))β3

2 for ⟨v22δ[pT]/[pT]⟩ or
⟨(δ[pT]/[pT])

3
⟩. These findings motivate a dedicated system scan of high-energy heavy-ion collisions

at RHIC and LHC to measure triaxiality of atomic nuclei: one first determines the coefficients b
and c by collisions of isobaric near prolate nuclei, cos(3γ) ≈ 1, and near oblate nuclei, cos(3γ) ≈ −1,
with known β2 values, followed by collisions of other species of interest with similar mass number.
The (β2, γ) values for this species can be inferred directly from the measured variance and skewness
observables from these collisions. The results demonstrate the unique opportunities offered by high-
energy collisions as a tool to perform interdisciplinary nuclear physics studies.

PACS numbers: 25.75.Gz, 25.75.Ld, 25.75.-1

I. INTRODUCTION

Most atomic nuclei in their ground state are deformed from a well-defined spherical shape. Nuclear deformation
arises due to short-range strong nuclear force among nucleons themselves, and depending on the proton and neutron
number, the minima in the total energy of the system can be found for spherical, ellipsoidal, octuple and hexade-
capole shapes [1–5]. Information about nuclear deformation is primarily extracted from spectroscopic measurements
and models of reduced transition probability B(En) between low-lying rotational states, which involves nuclear exper-
iments with energy per nucleon less than few tens of MeVs. Recently, the prospects of probing the nuclear deformation
at much higher beam energy, energy per nucleon exceeding hundreds of GeVs, by taking advantage of the hydrody-
namic flow behavior of large number of produced final-state particles, have been discussed [6–16], and evidence from
several experiments has been observed [17–21].

The shape of a nucleus, including only the dominant quadrupole component, is often described by a nuclear density
profile of the Woods-Saxon form,

ρ(r, θ, φ) =
ρ0

1 + e[r−R(θ,φ)/a]
, R(θ, φ) = R0 (1 + β2[cosγY2,0(θ, φ) + sinγY2,2(θ, φ)]) , (1)

where the nuclear surface R(θ, φ) is expanded into real form spherical harmonics Y2,m in the intrinsic frame. The
positive number β2 describes the overall quadrupole deformation, and the triaxiality parameter γ controls the relative
order of the three radii ra, rb, rc of the nucleus in the intrinsic frame. It has the range 0 ≤ γ ≤ π/3, with γ = 0, γ = π/3,
and γ = π/6 corresponding, respectively, to prolate (ra = rb < rc), oblate (ra < rb = rc) or rigid triaxiality (ra < rb < rc
and 2rb = ra + rc), see top row of Fig. 1 for an illustration. Most nuclei have axially symmetric prolate or oblate
shapes, and triaxiality is a rather elusive signature in nuclear structure physics. The triaxial degree of freedom is
related to a number of interesting phenomena including the γ-band [22], chirality [23] and wobbling motion [24, 25],
but the extraction of γ value has significant experimental and theoretical uncertainties. An interesting question is if
and how triaxiality may manifest itself in other fields of nuclear physics.

High-energy heavy-ion collisions at RHIC and the LHC, especially head-on collisions with nearly zero impact
parameter (ultracentral collisions or UCC), provide a new way to image the shape of the nucleus. The large amount
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of energy deposited in these collisions leads to the formation of a hot and dense quark-gluon plasma (QGP) [26] in
the overlap region, whose shape and size are strongly correlated with nuclear deformation as illustrated by the second
row of Fig. 1. The transverse area S⊥ (or size R⊥) and eccentricity of the overlap can be quantified by

S⊥ ≡ πR
2
⊥
= π

√
⟨x2⟩ ⟨y2⟩ , ε2 ≡ ε2e

i2Φ2 = −
⟨r2
⊥
ei2φ⟩

⟨r2
⊥
⟩

, (2)

where the average is over nucleons in the transverse plane (x, y) = (r⊥, φ) in the rotated center-of-mass frame such that
x (y) corresponds to the minor (major) axis of the ellipsoid. Within the liquid-drop model with a sharp surface, the
variances of ε2 and R⊥ over many head-on collisions are directly related to the β2: ⟨ε2

2⟩ =
3

2π
β2

2 , ⟨(δR⊥/R⊥)
2⟩ = − 1

16π
β2

2 ,
where δR⊥/R⊥ ≡ (R⊥−⟨R⊥⟩)/ ⟨R⊥⟩ denotes the event-by-event fluctuations relative to the average. Driven by the large
pressure gradient forces and subsequent hydrodynamic collective expansion, the initial shape and size information is
transferred into azimuthal and radial flow of final-state hadrons [27]. Specifically, the particle momentum spectra in

each collision event can be parametrized as d2N
pTdpTdφ

= N(pT) [1 + 2v2(pT) cos 2(φ −Ψ)] in φ and transverse momentum

pT. The magnitude of the radial flow, characterized by the slope of the particle spectrum N(pT) or the average [pT],
is positively correlated with the gradient of nucleon density or inverse transverse size d⊥

d⊥ =
√
Npart/S⊥, (3)

in the overlap region [28, 29], with Npart being the number of participating nucleons. This is because d⊥ ∝ 1/R⊥ is
proportional to the pressure gradient and therefore is expected to be correlated with [pT]. Similarly, the amplitude
and orientation of elliptic flow, characterized by V2 = v2e

i2Ψ, is directly related to ε2 = ε2e
i2Φ. In fact, detailed

hydrodynamic model simulations [29, 30] show good linear relations, for events with fixed Npart.

v2 = k2ε2,
δ[pT]

[pT]
= k0

δd⊥
d⊥

= −k0
δR⊥
R⊥

= −k0
1

2

δS⊥
S⊥

. (4)

The response coefficients k2 and k0 capture the transport properties of the QGP and they have been constrained
theoretically [31–34].

As indicated clearly in the second row of Fig. 1, in ultracentral collisions of prolate nuclei, the shape of overlap
falls in between “body-body” and “tip-tip” configurations with the long-axis perpendicular or parallel to the beam,
respectively. The body-body collisions have large ε2 and larger size R⊥ and therefore smaller d⊥, while the tip-tip
collisions have near-zero ε2 and larger d⊥, i.e. the correlation of ε2 and d⊥ is negative ⟨ε2

2δd⊥⟩ < 0 [35]. In contrast, the
covariance of ε2 and d⊥ is expected to be positive for collisions of oblate nuclei, and zero for collisions of rigid triaxial
nuclei [14]. Eq. (4) would then imply that ⟨v2

2δ[pT]⟩ < 0, > 0 and = 0 for collisions of prolate, oblate and rigid triaxial

nuclei, respectively. In fact, one find that both ⟨ε2
2δd⊥⟩ and ⟨v2

2δ[pT]⟩ are dominated by a cos(3γ) dependence in the
ultracentral collisions, not surprising given the three-fold symmetry of nuclear shape in the γ angle.

Another interesting aspect of the deformation in heavy ion collisions, not discussed yet in the literature, concerns
the nature of the event-by-event fluctuations of R⊥ or d⊥ in the presence of deformation and how they influence
the [pT] fluctuations. As shown in the bottom row of Fig. 1, the probability for various overlap configurations are
not equal. In collisions of rigid triaxial nuclei, the shape of the overlap in the transverse plane falls in between three
configurations for the two axes of the ellipse: “rb−ra”, “rc−ra” and “rc−rb”. The combination “rc−ra” has the largest
probability, and as the nucleus becomes more prolate (oblate), the middle branch merges with the right (left) branch
and the distribution becomes more asymmetric. This gives rise to a nonvanishing skewness ⟨(δd⊥)

3⟩ ∼ − ⟨(δR⊥)
3⟩,

and the sign of ⟨(δd⊥)
3⟩ is expected to be opposite to that of ⟨ε2

2δd⊥⟩. Indeed, one finds that ⟨(δd⊥)
3⟩ contains a

large cos(3γ) term, which is expected to drive a similar term for the skewness ⟨(δ[pT])3⟩ in the final state. Therefore,

I have identified two three-particle correlation observables, ⟨v2
2δ[pT]⟩ and ⟨(δ[pT])3⟩, to probe nuclear triaxiality in

heavy ion collisions. The β2 value on the other hand can be constrained from two-particle correlation observables
⟨v2

2⟩ and ⟨(δ[pT])2⟩.
Several experimental studies of nuclear deformation in heavy ion collisions have been carried at RHIC [13, 17] and

the LHC [18–20], focusing mostly on the relation between β2 and v2 in the UCC. However, the most striking evidence
is provided by the recent measurement of ⟨v2

2δ[pT]⟩ and ⟨(δ[pT])3⟩ in 197Au+197Au and 238U+238U collisions at

RHIC [21]. The large prolate deformation of 238U yields a large negative contribution to ⟨v2
2δ[pT])⟩ and a large

positive contribution to ⟨(δ[pT])3⟩, consistent with the picture in Fig. 1 discussed above. A few model studies on the
feasibility of constraining triaxiality in heavy ion collisions appeared recently [14–16]. In light of these measurements
and model work, I aim to clarify, via a Monte-Carlo Glauber model and a transport model, the influence of deformation
on the cumulants of ε2 and [pT]. Remarkably, one finds that the β2 and γ dependencies of these observables follow
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FIG. 1. The cartoon of a nucleus with quadrupole deformation β2 = 0.25 (top row) with prolate (left), rigid triaxial
(middle), and oblate (right) shape, the overlap containing the quark-gluon plasma in the ultracentral collisions (middle row)
and distributions of the transverse size, δR⊥/R⊥ = −δd⊥/d⊥, derived from Eq. (11) (bottom row). The distributions in the
bottom are given in units of β2.

very simple parametric functional forms. In particular, one finds that ⟨ε2
2⟩ and ⟨δ(d⊥)

3⟩ can be well described by a

function of the a′ + b′β2
2 form, while ⟨ε2

2δd⊥⟩ and ⟨δ(d⊥)
3⟩ by a function of the a′ + (b′ + c′ cos(3γ))β3

2 form, with b′ and
c′ nearly independent of the size of the collision systems. This finding provides a motivation for a collision system
scan of nuclei at ultrarelativistic energies with similar β2 but different γ values, which may provide additional insight
on the question of shape evolution and shape coexistence [1] in low-energy nuclear structure physics.

II. SIMPLE ANALYTICAL ESTIMATE

I first predict the analytical form for the (β2, γ) dependencies using a simple heuristic argument. For small defor-
mation β2, the values of d⊥ and ε2 in a given event are expected to have the following form:

δd⊥
d⊥

= δd + p0(Ω1,Ω2, γ)β2 +O(β2
2) , ε2 = ε0 + p2(Ω1,Ω2, γ)β2 +O(β2

2), (5)

where the scalar δd and vector ε0 = ε0e
i2Φ2;0 are values for spherical nuclei, which in UCC collisions are dominated

by random fluctuations of nucleons positions but in noncentral collisions are also affected by the impact-parameter-
dependent average shape of the overlap. The p0 and p2 are phase-space factors controlled by the Euler angles Ω = φθψ
of the two nuclei; they also contain the γ parameter. For example, in collision of prolate nuclei (see left of the middle
row of Fig 1), ∣p0∣ and ∣p2∣ are largest for the “body-body” orientation and smallest for the “tip-tip” orientation. Since
the fluctuation of δd (ε0) is uncorrelated with p0 (p2), an average over collisions with different Euler angles is expect
to give the following expression for the variances

Cd{2} ≡ ⟨(
δd⊥
d⊥

)

2

⟩ = ⟨δ2
d⟩ + ⟨p0(Ω1,Ω2, γ)

2⟩β2
2 , c2,ε{2} ≡ ⟨ε2

2⟩ = ⟨ε2
0⟩ + ⟨p2(Ω1,Ω2, γ)p

∗

2(Ω1,Ω2, γ)⟩β
2
2 . (6)
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The ⟨p2
0⟩ and ⟨p2p

∗

2⟩ are constants obtained by averaging over Ω1 and Ω2. This argument can be generalized to
higher-order cumulants. For example, the skewness and kurtosis of p(d⊥) and kurtosis of ε2 can be written as,

Cd{3} ≡ ⟨(
δd⊥
d⊥

)

3

⟩ = ⟨δ3
d⟩ + ⟨p3

0⟩β
3
2 ,

Cd{4} ≡ ⟨(
δd⊥
d⊥

)

4

⟩ − 3 ⟨(
δd⊥
d⊥

)

2

⟩

2

= ⟨δ4
d⟩ − 3 ⟨δ2

d⟩
2
+ (⟨p4

0⟩ − 3 ⟨p2
0⟩

2
)β4

2

c2,ε{4} ≡ ⟨ε4
2⟩ − 2 ⟨ε2

2⟩
2
= ⟨ε4

0⟩ − 2 ⟨ε2
0⟩

2
+ (⟨p2

2p
∗2
2 ⟩ − 2 ⟨p2p

∗

2⟩
2
)β4

2 , (7)

where I use the fact that ⟨pn2p
∗m
2 ⟩ = 0 for n ≠ m due to the invariance under a global rotation. I shall skip the

straightforward expression for higher-order cumulant of ε2. Another interesting example is mixed-skewness ⟨ε2
2
δd⊥
d⊥

⟩,

a good estimator for ⟨v2
2
δ[pT]

[pT]
⟩,

⟨ε2
2

δd⊥
d⊥

⟩ = ⟨ε2
0δd⟩ + ⟨p0p2p

∗

2⟩β
3
2 . (8)

Note that in noncentral collisions, the cross-term like ⟨p0(p2ε
∗

0 + p
∗

2ε0)⟩β
2
2 term may not vanish due to possible

alignment between ε0 and p2.
This argument can be generalized to simultaneous presence of octuple or hexadecapole deformations for which

additional axial symmetric components are added to the nuclear surface in Eq. (1),

R(θ, φ) = R0 (1 + β2[cosγY2,0(θ, φ) + sinγY2,2(θ, φ)] + β3Y3,0(θ, φ) + β4Y4,0(θ, φ)) , (9)

as well as to the higher-order eccentricities of the overlap region in the transverse plane, defined as εn ≡ εne
inΦn =

− ⟨rn
⊥
einφ⟩ / ⟨rn

⊥
⟩. In this case, the leading order expression for δd⊥ and eccentricity are δd⊥/d⊥ = δd +∑

4
m=2 p0;mβm and

εn ≈ εn;0 +∑
4
m=2 pn;m(Ω1,Ω2)βm, respectively. The variances have the following more general form

⟨(
δd⊥
d⊥

)

2

⟩ ≈ ⟨δ2
d⟩ + ∑

m,m′
⟨p0;mp0;m′⟩βmβm′ , ⟨ε

2
n⟩ ≈ ⟨ε2

n;0⟩ + ∑
m,m′

⟨pn;mp
∗

n;m′⟩βmβm′ . (10)

The off-diagonal coefficients ⟨p0;m′p0;m′⟩m≠m′ and ⟨pn;mp
∗

n;m′⟩m≠m′
may not vanish especially in the non-central

collisions. These mixing contributions have been observed in my previous study of ⟨ε2
n⟩ [14], and are expected to

influence all other cumulants discussed above. I leave this interesting topic to a future study.
For a more quantitative estimation, I consider the liquid-drop model where the nucleon density distribution has

a sharp surface. I limit the discussion to head-on collisions with nearly maximum overlap, i.e. the two nuclei not
only have zero impact parameter, but are also aligned Ω1 = Ω2 to ensure the overlap region contains all the nucleons
Npart = 2A. In this case it is easy to show (see Ref. [15] and Appendix B)

δd⊥
d⊥

=

√
5

16π
β2 (cosγD2

0,0 +
sinγ
√

2
[D2

0,2 +D
2
0,−2]) , ε2 = −

√
15

2π
β2 (cosγD2

2,0 +
sinγ
√

2
[D2

2,2 +D
2
2,−2]) , (11)

where the Dl
m,m′(Ω) is the Wigner matrix. From this, one obtain directly the probability density distributions of

δd⊥/d⊥ shown in the bottom row of Fig. 1 (the distribution for the prolate case was previously derived in a different
context [36]). From these, one can easily integrate to obtain the expression for cumulants of any order, e.g.:

⟨(
δd⊥
d⊥

)

2

⟩ = β2
2

5

16π
∫ (∑

m

α2,mD
2
0,m)

2
dΩ

8π2
=

1

16π
β2

2 , α2,0 ≡ cosγ, α2,±2 ≡
sinγ
√

2
,

⟨(
δd⊥
d⊥

)

3

⟩ = β3
2 (

5

16π
)

3/2

∫ (∑
m

α2,mD
2
0,m)

3
dΩ

8π2
=

√
5

224π3/2
cos(3γ)β3

2

⟨ε2
2

δd⊥
d⊥

⟩ = β3
2

15

2π

√
5

16π
∫ (∑

m

α2,mD
2
2,m)(∑

m

α2,mD
2
2,m)

∗

(∑
m

α2,mD
2
0,m)

dΩ

8π2
= −

3
√

5

28π3/2
cos(3γ)β3

2 . (12)
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The results for several cumulants of interest are listed in the Table I 1. If one uses the transverse nucleon density
Npart/S⊥ = d

2
⊥

as the estimator as done in Ref. [29], the nth-order cumulant would be larger by 2n. The values for
appropriately normalized cumulants are also given to the lower-right side of the observable.

The skewness and kurtosis of d⊥ are conventionally normalized by the variance,

Sd =
Cd{3}

Cd{2}3/2
, Kd =

Cd{4}

Cd{2}2
. (13)

The four and six-order cumulants of ε2 are defined by nc2,ε{4} = (⟨ε4
2⟩ − 2 ⟨ε2

2⟩
2
)/ ⟨ε2

2⟩
2

and nc2,ε{6} =

(⟨ε6
2⟩ − 9 ⟨ε4

2⟩ ⟨ε
2
2⟩ + 12 ⟨ε2

2⟩
3
) /(4 ⟨ε2

2⟩
3
), respectively. The normalization of ⟨ε2

2δd⊥/d⊥⟩ is defined in two different ways,

ρorig(ε
2
2, δd⊥/d⊥) =

⟨ε2
2δd⊥/d⊥⟩

√

(⟨ε4
2⟩ − ⟨ε2

2⟩
2
) ⟨(d⊥/d⊥)

2
⟩

, ρ(ε2
2, δd⊥/d⊥) =

⟨ε2
2δd⊥/d⊥⟩

⟨ε2
2⟩

√

⟨(d⊥/d⊥)
2
⟩

. (14)

The ρorig is the original definition known as the Pearson correlation coefficient [29, 37]. The term involving ε2 in its
denominator can be expressed as,

⟨ε4
2⟩ − ⟨ε2

2⟩
2
≡ ⟨ε2

2⟩
2
+ c2,ε{4} = ⟨ε4

0⟩ − ⟨ε2
0⟩

2
+ 2 ⟨ε2

0⟩ ⟨p2p
∗

2⟩β
2
2 + (⟨p2

2p
∗2
2 ⟩ − ⟨p2p

∗

2⟩
2
)β4

2 . (15)

This expression unfortunately contains also an annoying β2
2 term that mixes nucleon fluctuations with deformation,

which becomes dominant in the mid-central and peripheral collisions. The second definition, ρ, preferred in this paper,
avoid such analytical complication. But for completeness, the values for both are quoted in Table I.

The normalization of four-particle symmetric cumulants between ε2 and δd⊥ is defined as

nc(ε2
2, (δd⊥/d⊥)

2
) =

⟨ε2
2 (δd⊥/d⊥)

2
⟩ − ⟨ε2

2⟩ ⟨(δd⊥/d⊥)
2
⟩

⟨ε2
2⟩ ⟨(δd⊥/d⊥)

2
⟩

. (16)

This correlator should be measurable with a few hundred millions of events in large systems. Lastly I also calculated the
three-particle mixed harmonics ⟨ε2

2ε
∗

4⟩, the β4
2 dependence arises because the ε4 has a β2

2 dependence [15]. Interestingly,

in the presence of only quadrupole deformation, one has ⟨ε2
2ε

∗

4⟩ = ⟨ε2
4⟩ =

45
14π2 β

4
2 . To limit the scope of this paper, I

shall skip the discussion of these two observables and the fourth- and higher-order cumulants of ε2.
The results in Table I are obtained with the assumption Ω1 = Ω2. In reality, the selection of UCC events naturally

encompasses a wider range of rotation angles and also a finite range of Npart, therefore I also study a second case
which requires zero impact parameter but independent orientation for the two nuclei. Since the contributions of the
two nuclei are independent, the additive nature of the cumulants implies that the value of the nth-order cumulant of
intensive quantity is reduced by a factor of 2n−1, i.e a factor two smaller for Cd{2} and ⟨ε2

2⟩, a factor of four smaller

for Cd{3}, and a factor of eight smaller for Cd{4} and ⟨ε4
2⟩ − 2 ⟨ε2

2⟩
2

etc. These values are provided in Tab. II. In
realistic model study, Ω1 and Ω2 are expected to be only partially aligned and the results for these observables are
expected to be in between those given in Tab. I and Tab. II.

A few remarks are in order. The skewness ⟨ε2
2(δd⊥/d⊥)⟩ and ⟨(δd⊥/d⊥)

3
⟩ show clear sensitivity to triaxiality in

the form of a characteristic cos(3γ) dependence, but with opposite sign. Therefore, when the nuclear shape is
varied from prolate to oblate, ⟨ε2

2(δd⊥/d⊥)⟩ is expected to change from negative to positive, while ⟨(δd⊥/d⊥)
3⟩ is

expected to change from positive to negative. In particular, the normalized skewness ρ and Sd, defined in Eqs. (14)
and (13), have equal magnitudes, suggesting a comparable sensitivity to the triaxiality. Secondly, all two- and
four-particle correlators have no explicit γ dependence, while the six-particle eccentricity cumulant contains a small

cos(6γ) modulation. An interesting case is the normalized fourth-order cumulant of ε2, nc2{4} = ⟨v4
2⟩ / ⟨v

2
2⟩

2
−2 = −2/7.

Assuming linear-response relation v2{2k} = k2ε2{2k} and a large β2, one expects a large four-particle cumulant signal

v2{4}, v2{4}/v2{2} = ε2{4}/ε2{2} ≡ (−nc2{4})1/4 = 0.73. This naturally explains the much larger v2{4} value in
238U+238U collisions than that in 197Au+197Au collisions due to the large β2 for 238U nucleus [17].

1 The expression for 5th- and 6th-order cumulants of d⊥ are Cd{5} = − 15
√

5

9856π5/2 cos(3γ)β5
2 and Cd{6} = 15

7007×512π3 (113 − 90 cos(6γ))β6
2 .
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⟨(δd⊥/d⊥)2⟩ ⟨(δd⊥/d⊥)3⟩ ⟨(δd⊥/d⊥)4⟩ − 3 ⟨(δd⊥/d⊥)2⟩
2

1
16π

β2
2

√
5

224π3/2 cos(3γ)β3
2

2
√

5
7

cos(3γ) −
3

896π2 β
4
2 −6/7

⟨ε22⟩ ⟨ε42⟩ − 2 ⟨ε22⟩
2

(⟨ε62⟩ − 9 ⟨ε42⟩ ⟨ε
2
2⟩ + 12 ⟨ε22⟩

3
) /4

3
2π
β2
2 −

9
7π2 β

4
2 −4/7 27(373−25cos(6γ))

8008π3 β6
2

373−25cos(6γ)
1001

⟨ε22(δd⊥/d⊥)⟩ ⟨ε22(δd⊥/d⊥)
2
⟩ − ⟨ε22⟩ ⟨(δd⊥/d⊥)

2
⟩ ⟨ε22ε

∗
4⟩

−
3
√

5

28π3/2 cos(3γ)β3
2 −

2
√

5
7

cos(3γ),−
√

20
21

cos(3γ) −
3

112π2 β
4
2 −1/4 45

14π2 β
4
2

TABLE I. The value of various cumulants of ε2 and d⊥, calculated for nucleus with sharp surface by setting a = 0 in Eq. (1). The
two nuclei are placed with zero impact parameter and results are obtained by averaging over common random orientations. For
many observables, I also provide the values after normalizing with second-order cumulants, which are listed in the bottom-right
half of the cell (In the case of ⟨ε22(δd⊥/d⊥)⟩, both values of ρ (the first number) and ρorig (the second number) are provided).

⟨(δd⊥/d⊥)2⟩ ⟨(δd⊥/d⊥)3⟩ ⟨(δd⊥/d⊥)4⟩ − 3 ⟨(δd⊥/d⊥)2⟩
2

1
32π

β2
2

√
5

896π3/2 cos(3γ)β3
2

√
10
7

cos(3γ) −
3

7168π2 β
4
2 −3/7

⟨ε22⟩ ⟨ε42⟩ − 2 ⟨ε22⟩
2

(⟨ε62⟩ − 9 ⟨ε42⟩ ⟨ε
2
2⟩ + 12 ⟨ε22⟩

3
) /4

3
4π
β2
2 −

9
56π2 β

4
2 −2/7 27(373−25cos(6γ))

32×8008π3 β6
2

373−25cos(6γ)
4004

⟨ε22(δd⊥/d⊥)⟩ ⟨ε22(δd⊥/d⊥)
2
⟩ − ⟨ε22⟩ ⟨(δd⊥/d⊥)

2
⟩ ⟨ε22ε

∗
4⟩

−
3
√

5

112π3/2 cos(3γ)β3
2 −

√
10
7

cos(3γ),−
√

2
7

cos(3γ) −
3

896π2 β
4
2 −1/8 45

56π2 β
4
2

TABLE II. Same calculation as Table I, except assuming independent random orientations for the two nuclei.

III. MODEL SETUP

For a more realistic estimation of influence of nuclear deformation, a Monte-Carlo Glauber model [38] is used to
simulate collisions of 238U and 96Zr systems. These systems are chosen because the experimental collision data exist
already. The setup of the model and the data used in this analysis are exactly the same as those used in my previous
work [15]. The nucleons are assumed to have a hard-core of 0.4 fm in radii, with a density described by Eq. (1). The
nuclear radius R0 and the surface thickness a are chosen to be R0 = 6.81 fm and a = 0.55 fm for 238U and R0 = 5.09 fm
and a = 0.52 fm for 96Zr, respectively. The nucleon-nucleon inelastic cross-section is chosen to be σnn = 42 mb at
√
sNN = 200 GeV. In each collision event, nucleons are generated in each nucleus at a random impact parameter.

Each nucleus is then rotated by randomly generated Euler angles before they are set on a straight line trajectory
towards each other along the z direction. From this, the nucleons in the overlap region are identified, which are used
to calculate the ε2 and d⊥ defined in Eqs. (2) and (4), and the results are presented as a function of Npart. Most of
the study focuses on the influence of quadrupole deformation, but I also performed a limited study on the influence
of the observables from octuple and hexadecapole deformations, for which additional axial symmetric component are
added to the nuclear surface (see Eq. (9)). A special study is performed to also investigate the presence of multiple
shape components, where two or three nonzero values for β2, β3 and β4 are enabled.

It is well known that particle production in nucleus-nucleus collisions scale only approximately with Npart. A
better scaling can be achieved by considering the constituent quarks as effective degrees-of-freedom for particle pro-
duction [39–43], which would naturally give rise to slightly different ε2 and d⊥ in each event. Defining centrality
with constituent quarks is also expected to change the fluctuations of eccentricity, and provides a way to quantify the
centrality smearing effects (also known as volume fluctuations) [44–46]. For this purpose, a quark Glauber model from
Ref. [41] is used. Three quark constituents are generated for each nucleon according to the “mod” configuration [47],
which ensures that the radial distribution of the three constituents after re-centering follows the proton form factor
ρproton(r) = e

−r/r0 with r0 = 0.234 fm [48]. The value of quark-quark cross-section is chosen to be σqq = 8.2 mb in
order to match the σnn. The ε2 and d⊥ are then calculated from the list of quark participants in the overlap region,
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and the number of quark participants Nquark is used as an alternative centrality estimator.
In the presence of large deformation, the total volume of the nucleus increases slightly. Considering the quadrupole

deformation only, for the largest value considered, β2 = 0.34, the ratio to the original volume is approximately (exact

for sharp surface nucleus) 1 + 3
4π
β2

2 +
√

5
28π3/2 cos(3γ)β3

2 = 1.021 + 0.0004 cos(3γ). To keep the overall volume fixed, it
would require less than 1% decrease of the R0, which is safely ignored in the present study.

The results for each cumulant observable are obtained in four different ways. Taking the variance ⟨(δd⊥/d⊥)
2⟩ for

instance, d⊥ in each event is calculated either from nucleons or quarks in the Glauber model, after which the averaging
“⟨⟩” is then performed for events with the same Npart or the same Nquark. The latter can produce different variances
due to slightly different volume fluctuations which can be quite important in the UCC region. Each cumulant can be
obtained from either nucleons or quarks and then plotted as a function of Npart or Nquark.

I also carried out an independent study based on AMPT transport model to understand the conversion from ε2

and d⊥ in the initial overlap to v2 and [pT] in the final state. Unfortunately, this model is known to have the wrong
hydrodynamic response for the radial flow [14, 49], therefore it is only used to study the parametric dependence of
various observables on (β2, γ) and compare with the trends in the initial state. The detail of the model and the study
are presented in Appendix A.

IV. RESULTS

To highlight the general feature of the (β2, γ) dependence, Fig. 2 shows the correlations between ε2 and δd⊥/d⊥ =
−δR⊥/R⊥

2 calculated with nucleon Glauber model in the 0–0.1% most central U+U collisions selected on Npart. They
can be contrasted directly with the expectations illustrated by Fig. 1. A clear anticorrelation (positive correlation)
between ε2 and δd⊥/d⊥ is observed for the prolate (oblate) deformation as expected. The distribution of δd⊥/d⊥ also
indicates clearly a positive (negative) skewness as expected. These distributions are broader than the ideal case in
Fig. 1 due to randomness of Ω1 relative to Ω2, surface diffuseness, smearing from nucleon position fluctuations and
centrality selection.

    /ddδ
0.1− 0 0.1

2ε

0

0.1

0.2

0.3

0.4

0
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100

150

200Prolate)=1γ=0.28,cos(3
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    /ddδ
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Triaxial)=0γ=0.28,cos(3

2
β

(b)

 1/R∝  d
U+U

    /ddδ
0.1− 0 0.1
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0
50
100
150
200

Oblate)=-1γ=0.28,cos(3
2

β

(c)

body-body

tip-tip

    /ddδ
0.1− 0.05− 0 0.05 0.1

2−10

1−10

1

(d)

)=1γ=0.28,cos(3
2

β

)=0γ=0.28,cos(3
2

β

)=-1γ=0.28,cos(3
2

β

FIG. 2. Correlation between ε2 and δd⊥/d⊥ for quadrupole deformation β2 = 0.28 with prolate (left panel), rigid triaxial
(second left panel) and oblate (third left panel) shape in the 0–0.1% most central U+U collisions selected on Npart. The right
panel show the distributions of δd⊥/d⊥ in the three cases.

The goal of this paper is to explore the (β2, γ) dependence of various cumulants in Tabs. I and II, and to provide
guidance for the experimental measurements. The main finding is that the β2, γ dependence for the nth-order cumulant
can be described by a simple equation with the following general form

a′ + (b′ + c′ cos(3γ))βn2 , (17)

including the variance ⟨(δd⊥/d⊥)
2⟩ and ⟨ε2

2⟩, the skewness ⟨(δd⊥/d⊥)
3⟩ and ⟨ε2

2δd⊥/d⊥⟩, and the kurtosis ⟨(δd⊥/d⊥)
4⟩−

3 ⟨(δd⊥/d⊥)
2⟩

2
and ⟨ε4

2⟩ − 2 ⟨ε2
2⟩

2
. It is remarkable that most γ dependences can be described by a cos(3γ) function,

and the higher-order terms allowed by symmetry cos(6γ), cos(9γ) etc are very small. The coefficients a′, b′ and c′ are
functions of centrality and collision systems, but are independent of β2 and γ. The coefficient a′ represents the values

2 In principle full expression should also contain contribution from volume fluctuations, i.e. δd⊥/d⊥ = −δR⊥/R⊥+ 1
2
δNpart/Npart. However,

the second term drops out when one classifies events according to Npart.
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for spherical nuclei, it is usually a strong function of centrality and size of the collision systems. In contrast, the values
of b′ and c′ are similar between nucleon and quark Glauber models and between U+U vs Zr+Zr (i.e. independent
of collision systems). They also have rather weak dependence on event centrality. These behavior are the result of
geometrical effects: the deformation changes the distribution of nucleons in the entire nucleus, therefore the values
of b′ and c′ in each collision event depend only on the Euler angles of the two nuclei and the impact parameter, and
they should be insensitive to the size of the collision system in the Glauber model.

The results are organized as follows. Section IV A discusses the variance of d⊥ in detail, which corresponds to
experimentally measured [pT] variance. Results of higher-order cumulants, skewness and kurtosis of d⊥ fluctuations,
are presented in Sec. IV B. Section IV C considers the mixed cumulant between d⊥ and ε2, which is identified to be
the most promising observable to constrain γ. I then summarize in Sec. IV D the Glauber results in terms of Eq. (17)
and discuss the effects of volume fluctuations, and the centrality and system dependences of the results. The results
of the AMPT model are included in the Appendix A.

A. Variance of d⊥ fluctuations

In the hydrodynamic picture, the variance of d⊥ fluctuation is proportional to the variance of [pT] fluctuation,
Cd{2} = ⟨(δd⊥/d⊥)

2⟩∝ ⟨(δ[pT]/ ⟨pT⟩)2⟩.
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FIG. 3. ⟨(δd⊥/d⊥)2⟩ for several β2 values with γ = 0 (top row) and several γ values with β2 = 0.28 (bottom row) in U+U
collisions. The left column show the Npart dependence where markers and lines represent d⊥ obtained with nucleons and quarks,
respectively. The middle column shows results in several centrality ranges, which follows a linear function of β2

2 (top panel) or
cos(3γ) (bottom panel). The right column shows the coefficients b′ (top) and c′ (bottom) as a function of centrality in U+U
(black) and Zr+Zr (red) systems for d⊥ calculated from nucleons (markers) or quarks (lines). The three vertical lines in the
left column mark the locations of 2%, 1% and 0.2% centrality, respectively.

The left column of Fig. 3 shows the Npart dependence of Cd{2} for various values of β2 or γ with fixed β2 = 0.28
in U+U collisions, calculated from the participating nucleons. In the absence of deformation, the Cd{2} decreases
approximately as a power-law function of Npart. The presence of large β2 increases Cd{2} over a very broad centrality
range. On the other hand, the triaxiality parameter γ only has a small influence, as reflected by the clustering of all
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FIG. 4. ⟨(δd⊥/d⊥)2⟩ for several values of β3 (top row) and β4 (bottom row) as a function of Npart (left column) or β2
n

(middle column) in U+U collisions. The latter dependences can be described by a simple a′ + b′β2
n function. The right column

summarizes the values of b′ from the middle column as a function of centrality in U+U (black) and Zr+Zr (red) systems.

different curves in the bottom-left panel. In the same panels, I also show results calculated from quark participants as
solid lines, with the same color as those calculated from nucleon participants. Little differences are observed between
the two, implying that the influences of deformation are insensitive to nucleon substructures.

To quantify the (β2, γ) dependencies, Cd{2} values obtained for fixed Npart are averaged in narrow centrality ranges,
which are then plotted as a function of β2

2 or cos(3γ) in the middle column of Fig. 3. Very good linear trends are
observed in most of the cases, confirming Eq. (17) 3. The slopes in the middle-top panel equal to b′ + c′ (since γ = 0)
and the slopes in the middle-bottom panel equal to c′β2

2 . The two panels in the right column summarize the centrality
dependence of b′ and c′, respectively. They are shown for d⊥ calculated from both nucleons and quarks in U+U and
Zr+Zr collisions. It is quite remarkable that the values of b′ and c′ are insensitive to subnucleon structures and are
similar in both collision systems, this is expected since deformation influences the global geometry of the overlap
region. The values of c′ is about a factor 20–30 smaller than b′. A qualitatively similar functional form was also
observed between ⟨ε2

2⟩ and (β2, γ) in a previous study [15].
Although the axial quadrupole distortion is the nuclear deformation of primary importance, contributions from

octupole and hexadecapole components often coexist and can be important in some regions of nuclear chart [50].
Therefore, it is interesting to study how d⊥ is affected by β3 and β4. I have performed such calculations and the
results are shown in Fig. 4 with a similar layout as Fig. 3. These higher-order deformations have no influence on
the variance of d⊥ in the UCC region, but significant enhancement associated with β3 is observed in near-central and
mid-central collisions, and the β4 only has a modest enhancement in the peripheral region. These enhancements can
be described by a quadratic function b′β2

3 or b′β2
4 according to Eq. (10). The coefficients b′ are shown in the right

panels.
To better visualize and quantify the effects of deformation, Fig. 5 shows the ratios of Cd{2} in U+U (top row) or

in Zr+Zr (bottom) collisions. The results in the top row are obtained directly from the data from the left columns of

3 In 0–0.2% centrality one also observes significant cos(6γ) component in Fig. 3, but not in quark Glauber model.
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FIG. 5. Ratios of ⟨(δd⊥/d⊥)2⟩ to the default as a function of Npart for several values of cos(3γ) with β2 = 0.28 (left column),
several values of β2 with cos(3γ) = 1 (second column), several values of β3 (third column) and β4 (right column) in the U+U
(top row) and the Zr+Zr (bottom row) collisions. The results calculated using nucleons or quarks are shown in markers and
lines respectively. The three vertical bars around unity mark the locations of 2%, 1% and 0.2% centrality, respectively.
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β2 = 0.1, while the right column shows results with large β2 = 0.28. Both d⊥ and centrality are based on nucleon participants.



11

Figs. 3 and 4. These results can be related to the ratios of ⟨(δ[pT]/[pT])2⟩ between two systems with similar mass
number but different deformation parameters. Most trends are obvious, but the results for different γ cases deserve
some discussion. The separation between different γ cases increases linearly with Npart, reaching its maximum around
2% centrality and then decreasing in the more central region. The maximum relative difference is about 3–4%, which
is about twice of the influence of γ for ε2 [15]. As discussed later, such a γ dependence may arise from the higher-order
expansion of δd⊥/d⊥ in powers of β2, which is particularly important for the kurtosis of the d⊥ fluctuations.

It is also interesting to study how the fluctuations of d⊥ depend on the simultaneous presence of quadrupole and
higher-order deformations, in particular, whether the contribution from each component to d⊥ is independent of each
other. For this exploratory study, only combinations of axial-symmetric components Yn,0, n = 2,3,4 are considered.
The analysis is carried out for different combinations of (β2, β3, β4) from the values β2 = ±0.1,0, β3 = 0.1,0, and
β4 = 0.1,0, and results are shown in the left column of Fig. 6. The contributions from different deformation components
are not fully independent of each other. In particular, the influence of β4 and to some extent also β3 is enhanced in
the presence of β2. This suggests that the mixing between different deformation, i.e. terms such as β2β4, β2β3 and
β3β4 in Eq. (10) are more important, but these nonlinear effects are always very small in the UCC region. The right
column of Fig. 6 considers a different scenario where the quadrupole component β2 = 0.28 is much larger than the
octupole and hexadecapole. Similar conclusions can be drawn.

B. Skewness and kurtosis of d⊥ fluctuations

Figure 7 shows the results of skewness Cd{3} = ⟨(δd⊥/d⊥)
3⟩, which is directly related to the skewness of transverse

momentum fluctuations ⟨(δ[pT]/ ⟨pT⟩)3⟩, for different values of β2 and γ with similar layout as Fig. 3. The Npart

dependence in the left column show a strong sensitivity to the deformation parameter values across a broad centrality
range. In particular, the Cd{3} in the presence of large β2 is nearly constant from the mid-central to central collisions,
a salient feature observed in the skewness of [pT] fluctuations in the U+U data by the STAR collaboration [21]. The
bottom panel also shows that the Cd{3} is largest for prolate deformation cos(3γ) = 1 and smallest for the oblate
deformation cos(3γ) = −1. In the latter case, Cd{3} changes sign to negative in central collisions. The Cd{3} values
are plotted as a function of β2

3 or cos(3γ) in the middle panels. Very good linear dependencies, described by Eq. (17),
are observed.

The right panels show the centrality dependence of the coefficients b′ and c′ for various cases. The results are similar
between U+U and Zr+Zr collisions, but the values of b′ obtained from quark Glauber model are systematically larger,
especially towards more peripheral collisions. The values of c′ are larger than b′ in the 0%–10% most central collisions,
and are smaller than b′ in the mid-central and peripheral collisions. This should be contrasted to the expectation of
liquid-drop model, which predicts b′ = 0 in the UCC region. The strong sensitivity to γ suggests that the skewness
of the [pT] fluctuation is an excellent probe of nuclear triaxiality. For smaller Zr+Zr collision system, one does not
observe a sign change from prolate deformation to oblate deformation even with β2 = 0.28 (see Fig. 19 in Supplemental
Material)

Results for kurtosis Cd{4} = ⟨(δd⊥/d⊥)
4⟩−3 ⟨(δd⊥/d⊥)

2⟩
2

are shown Fig. 8, which can be used to provide guidance on

the behavior of kurtosis of transverse momentum fluctuations ⟨(δ[pT]/ ⟨pT⟩)4⟩−3 ⟨(δ[pT]/ ⟨pT⟩)2⟩
2
. For large prolate

deformation (top row), Cd{4} changes sign in the UCC region. It also shows a strong dependence on γ (bottom row),
i.e. Cd{4} becomes more negative when nuclear shape change from probate to oblate. These dependencies again can
be parametrized according to Eq. (17). The centrality dependence of the extracted coefficients b′ and c′ are shown in
the right panels. Besides the similarity between U+U and Zr+Zr, one finds b′ ≈ −c′ in the case of nucleon Glauber
model, but ∣b′∣ ≫ ∣c′∣ in the quark Glauber model. The origin for this is related to a small cos(3γ) dependence in the
Cd{2}, which will be discussed later.

The behavior of the high-order cumulants are often analyzed in terms of cumulant ratios. In an independent source
picture and without deformation, the cumulants of intensive quantities scales approximately as Cd{k} ∼ 1/Nk−1

part. The

normalized skewness Sd and normalized kurtosis Kd in Eq. (13) are expected to scale naively as Sd ∼ 1/
√
Npart and

Kd ∼ 1/Npart, respectively. The results of Glauber model using Npart-based event averaging in Fig. 7 show clear
deviation from this scaling expectation, although results obtained using Nquark-based event averaging are closer to
this scaling. The presence of nuclear deformation is expected to cause further deviation from this baseline. The top
row of Fig. 9 shows the Sd (left two panels) and Kd (right two panels) as a function of Npart for various β2 and
γ values. In the presence of large β2, the values of Sd are greatly enhanced, while the values of Kd decrease more
strongly and even change sign in the UCC region. As one varies γ from prolate to oblate with fixed β2 = 0.28, the
behavior of Sd changes from an increase with Npart to a decrease with Npart, while Kd deceases nearly linearly with
Npart with an increasingly larger slope. The results of Kd suggest a fairly sizable cos(3γ) component on the order of
0.1–0.2. As mentioned earlier, the origin is related to the residual cos(3γ) dependence in the Cd{2} in Fig. 5. This
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FIG. 7. The skewness ⟨(δd⊥/d⊥)3⟩ for several β2 values with γ = 0 (top row) and several γ values with β2 = 0.28 (bottom
row). The left column shows the Npart dependence where markers and lines correspond d⊥ obtained with nucleons and quarks,
respectively. The middle column shows the respective results in several centrality ranges based on Npart, which can be mostly
described by a linear function of β3

2 (top panel) or cos(3γ) (bottom panel) via Eq. (17). The right column summarizes extracted
coefficients b′ (top) and c′ (bottom) as a function of centrality in U+U (black) and Zr+Zr (red) systems calculated from nucleons
(markers) or quarks (lines).

small γ dependence at the level of ∆Cd{2}/Cd{2} ≈ ±0.03 is found to contribute to the kurtosis approximately as

∆Kd =
∆Cd{4}
Cd{2}2

− 6∆Cd{2}
Cd{2}

≈ −4∆Cd{2}
Cd{2}

≈ ∓0.12.

The normalized skewness Sd and kurtosis Kd, while easier to construct experimentally, mix up the contributions
from nucleon fluctuations and nuclear deformation, which preclude a direct and intuitive interpretation of the results.
Therefore, I propose a modified form of the normalized cumulants,

Sd,sub ≡
Cd{3} −Cd{3}∣β2=0

(Cd{2} −Cd{2}∣β2=0)
3/2

≡ Sd(β2 =∞) , Kd.sub ≡
Cd{4} −Cd{4}∣β2=0

(Cd{2} −Cd{2}∣β2=0)
2
≡Kd(β2 =∞) (18)

With this definition, the baseline contributions are subtracted in the numerator and denominator and the β2 depen-
dence is expected to cancel. The final results contain only the cos(3γ) dependence and can be compared directly with
the normalized quantities in Tables I and II. Another important point is that the values of the normalized cumulant
are expected to lie in between two limits

Sd(β2 = 0) < Sd(β2) < Sd,sub , Kd,sub <Kd(β2) <Kd(β2 = 0) . (19)

The bottom panels of Fig. 9 show the results for these modified quantities. Results for different β2 values, as shown
by the first panel for Sd,sub and the third panel for Kd,sub, nearly collapse on a common curve, confirming the earlier
statement that these observables are a great way to isolate the coefficient b′ and c′ in Eq (17). The same panels also
show the range of the predicted values from Tabs. I and II by the shaded gray boxes. Remarkably, the values predicted
from the full Monte Carlo Glauber model falls within the ranges from the simple analytical estimates. These results
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FIG. 8. The kurtosis of p(d⊥) for several β2 values with γ = 0 (top row) and several γ values with β2 = 0.28 (bottom row). The
left column shows the Npart dependence where markers and lines correspond d⊥ obtained with nucleons and quarks, respectively.
The middle column shows the respective results in several centrality ranges based on Npart, which can be mostly described
by a linear function of β4

2 (top panel) or cos(3γ) (bottom panel). The right column shows centrality dependence of extracted
b′ (top) and c′ (bottom) via Eq. (17) in U+U (black) and Zr+Zr (red) systems for d⊥ calculated from nucleons (markers) or
quarks (lines).

suggest an approximate parametrization Sd,sub = b0+c0 cos 3γ, with coefficient c0 nearly independent of centrality and
coefficient b0 increasing from central to peripheral collisions.

Even though Sd,sub and Kd.sub can not be directly measured, they can be estimated by comparing results from
collisions of two species A and B with similar mass numbers. Taking the skewness for example, one could construct
the following ratio using Eq. (17),

Sd,AB =
Cd{3}A −Cd{3}B

(Cd{2}A −Cd{2}B)3/2
≈ Sd,sub,A (1 +

3

2
x2

−
b′ + c′ cos(3γB)

b′ + c′ cos(3γA)
x3

+
15

8
x4

) , (20)

where x = β2B/β2A ≪ 1 is assumed and I have ignored the negligible cos(3γ) term in Cd{2}. The b′ and c′ refers
those of Cd{3}, which are expected to be the same for the two species. The ideal case for Eq. (20) is between a pair
of isobaric system with different amount of deformations such as 96Zr+96Zr and 96Ru+96Ru collisions [51].

C. Correlation between eccentricity and d⊥

Let us turn our attention to the skewness ⟨ε2
2(δd⊥/d⊥)⟩ and the related final-state observable ⟨v2

2(δ[pT]/[pT])⟩. This
observable has been studied both experimentally [21, 52] and in models [14, 35], and, as discussed below, it has great
potential in constraining the triaxiality of the colliding nuclei.

Figure 10 shows the results of ⟨ε2
2(δd⊥/d⊥)⟩ for different values of β2 and γ with the usual layout. The Npart

dependences show a clear hierarchy between different β2 and/or γ values, and the sensitivity to these parameters are
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FIG. 9. Left part: Npart dependence of normalized skewness Sd = Cd{3}/Cd{2}3/2 (top) and modified version Sd,sub (bottom)
for several β2 values with γ = 0 (left) and for several γ values with β2 = 0.28 (right) in U+U collisions. Right part: results for
normalized kurtosis Kd = Cd{4}/Cd{2}2 and Kd,sub with the same layout. The shaded bands indicate the predicted range from
Tabs. I and II.

clearly visible across a broad centrality range. In the absence of deformation, ⟨ε2
2(δd⊥/d⊥)⟩ decreases gradually from

peripheral to more central collisions but remains positive. For prolate deformation, as β2 is increased, ⟨ε2
2(δd⊥/d⊥)⟩

decreases over the entire centrality range, and becomes negative in the central region. However, for large oblate
deformation, ⟨ε2

2(δd⊥/d⊥)⟩ increases in the central region. This behavior is fully consistent with the expectation from
Fig. 1.

The middle column shows the values of ⟨ε2
2(δd⊥/d⊥)⟩ as a function of either β3

2 or cos(3γ) in several narrow
centrality ranges. A linear dependence is observed, consistent with the now familiar parametetrization Eq. (17). The
right panels show the centrality dependencies of b′ and c′ for various cases. The results are similar between U+U and
Zr+Zr collisions and between nucleon Glauber and quark Glauber models. Both b′ and c′ are negative over the full
centrality range. But the magnitude of c′ is much larger than b′ in the 0%–10% central collisions, and is smaller than
b′ in the mid-central and peripheral collisions. The sensitivity of ⟨ε2

2(δd⊥/d⊥)⟩ to γ is stronger than ⟨(δd⊥/d⊥)
3⟩, even

though they are clearly complementary 4

The behavior of ⟨ε2
2(δd⊥/d⊥)⟩ can be analyzed using the normalized quantity, ρorig(ε

2
2, δd⊥/d⊥) and ρ(ε2

2, δd⊥/d⊥) de-

fined in Eq. (14). They are directly related to the analog experimentally-accessible observable ρorig(v
2
2 , δ[pT]/[pT]) [37]

and ρ(v2
2 , δ[pT]/[pT]). The results of ρ(ε2

2, δd⊥/d⊥) are shown in the left part of Fig. 11. The second column shows an
approximately linear function of β2 for moderate value of β2, but nonlinear behavior shows up at small and larger β2.
The reason for this complex β2 dependence can be attributed to the a′ terms in the numerator and the denominator.
Following the example for the Sd,sub, I define a modified correlator by subtracting out the baseline effects,

ρsub(ε
2
2,
δd⊥
d⊥

) =

⟨ε2
2
δd⊥
d⊥

⟩ − ⟨ε2
2
δd⊥
d⊥

⟩
∣β2=0

(⟨ε2
2⟩ − ⟨ε2

2⟩∣β2=0)

√

⟨(
δd⊥
d⊥

)2⟩ − ⟨(
δd⊥
d⊥

)2⟩
∣β2=0

≡ ρ(ε2
2,
δd⊥
d⊥

)∣β2=∞
, (21)

Just like the case for skewness of the d⊥ fluctuations, the β2 dependence completely cancels, and ρsub contains only
the cos(3γ) dependence. Therefore it can be compared directly to the values in Tabs. I and II. The ρ in general is
expected to be in between the value without deformation ρ

∣β2=0
and ρsub.

4 Given the importance of this observable, I also investigated the influence of β3 and β4 (see Fig. 22 in Appendix C). The influence is
negligible in the UCC region. But one finds that β3 enhances the value of ⟨ε22(δd⊥/d⊥)⟩ in central collisions. In the peripheral region,
both β3 and β4 reduce the signal, the relative change is less than 30% as long as β3, β4 < 0.2.
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FIG. 10. The ⟨ε22δd⊥/d⊥⟩ for several β2 values with γ = 0 (top row) and several γ values with β2 = 0.28 (bottom row). The
left column shows the Npart dependence. The middle column shows the respective results in several centrality ranges based
on Npart. The right column summarizes the centrality dependence of b′ (top) and c′ (bottom) obtained via Eq. (17) in U+U
(black) and Zr+Zr (red) collisions for ε2 and d⊥ calculated from nucleons (markers) or quarks (lines).

The right part of Fig. 11 shows the results for ρsub. Results for different β2 values nearly collapse on a common
curve, confirming the earlier statement that these modified quantities are a great way to separate the coefficient b′

and c′. The same panels also show the range of the predicted values from Tables I and II. Remarkably, the values from
the full Monte Carlo Glauber model agree well with my analytical estimates. The results suggest ρsub = b0 + c0 cos 3γ,
with c0 nearly independent of centrality, while b0 is roughly constant in 0%–5% centrality and but decreases beyond
that.

Repeating the same argument made for Sd,sub, the value of ρsub can be estimated by comparing collisions of two
species A and B with similar mass number, therefore canceling the baseline effects. The result is,

ρAB =
⟨ε2

2
δd⊥
d⊥

⟩
A
− ⟨ε2

2
δd⊥
d⊥

⟩
B

(⟨ε2
2⟩A − ⟨ε2

2⟩B)

√

⟨(
δd⊥
d⊥

)2⟩
A
− ⟨(

δd⊥
d⊥

)2⟩
B

≈ ρsub,A(ε2
2,
δd⊥
d⊥

)(1 +
3

2
x2

−
b′ + c′ cos(3γB)

b′ + c′ cos(3γA)
x3

+
15

8
x4

) , (22)

where I assume x = β2B/β2A ≪ 1 and I have ignored the small cos(3γ) terms in Cd{2} and ⟨ε2
2⟩. The b′ and c′ are the

coefficients for ⟨ε2
2
δd⊥
d⊥

⟩, which are also expected to be the same for the two nuclei. This approximation is accurate

within 5% for x < 0.5, and the contribution from x3 and x4 terms is less than 5% for x < 0.3 (the same also applies
for Eq. (20)). They can best done for a pair of isobaric system such as Zr+Zr and Ru+Ru collisions, but could also
be used for comparison between Au+Au and U+U systems 5.

5 A small correction is required to precisely cancel the a′ term [13]. This can be achieved by focusing on central events with similar
multiplicity, where the values of a′ are smallest and similar between the two systems.
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FIG. 11. Left part: The left column shows ρ(ε22, δd⊥/d⊥) for several β2 values with γ = 0 (top row) and and several γ values
with β2 = 0.28 (bottom row). The left column shows the Npart dependence. The right column shows the β2 (top panel) and
cos(3γ) (bottom panel) dependencies. Right part: similar plots for ρsub, and the shaded band in the top-left panel indicate the
predicted range from Tabs. I and II.
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FIG. 12. Same as Fig. 12 but calculated for Pearson correlation coefficients ρorig(ε
2
2, δd⊥/d⊥) defined in Eq. (14).

Although I do not prefer the standard normalization ρorig(ε
2
2, δd⊥/d⊥) for deformation studies, I nevertheless carried

out the same calculation since it is widely used before. Here the correlator with the baseline effects subtracted is
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defined as

ρorig,sub(ε
2
2,
δd⊥
d⊥

) =

⟨ε2
2
δd⊥
d⊥

⟩ − ⟨ε2
2
δd⊥
d⊥

⟩
β2=0

√

(⟨(δε2
2)

2
⟩ − ⟨(δε2

2)
2
⟩
β2=0

)(⟨(
δd⊥
d⊥

)2⟩ − ⟨(
δd⊥
d⊥

)2⟩
β2=0

)

≡ ρorig(ε
2
2,
δd⊥
d⊥

)β2=∞ , (23)

I shall present the final results in Fig. 12 without detailed discussion. The values and trends in the UCC region are

quantitatively similar to ρsub. This is expected since in central collisions, c2,ε{4} approaches zero and ⟨(δε2
2)

2
⟩ ≈ ⟨ε2

2⟩
2
,

therefore, ρorig,sub ≈ ρsub. In the more peripheral region, the two correlators are quantitatively different. The ρorig,sub

is relatively flat towards mid-central collisions for prolate deformation with different β2, however, its γ dependence is
much weaker than that for ρsub.

D. Effects of volume fluctuations and dependence on centrality and system size

Although d⊥ and ε2 in each event are calculated using either nucleons or quarks, the cumulants of these quantities
so far are obtained via an event averaging procedure based on Npart. As mentioned before, the averaging could also
be performed over event ensembles classified via Nquark. Figure 13 summarizes the coefficients b′ and c′ as a function

of centrality for the five quantities Cd{2},Cd{3},Cd{4}, ⟨ε2
2⟩ and ⟨ε2

2δd⊥/d⊥⟩. The results based on event averaging
via Nquark are shown in the right two columns, and the results based on event averaging via Npart, already presented
before in Figs. 3,7,8 and 10, are repeated in the left two columns.

For all observables and in almost all cases, the coefficients are quite consistent between U+U and Zr+Zr. Clear
differences between event averaging based on Npart and those based on Nquark are also visible in the UCC region,

reflecting the effects of volume fluctuations. These differences are negligible for ⟨ε2
2⟩, but reach up to 20% for Cd{2}

and ⟨ε2
2δd⊥/d⊥⟩; they are even larger for Cd{3}, and Cd{4}. What this means is that by selecting extremely central

events, one might introduce a large bias from volume fluctuations on skewness and kurtosis. Therefore, the optimal
centrality range to maximize the deformation effects, yet avoid strong volume fluctuations, should not be too narrow.
A more reasonable choice would be 0%–1% or 0%–5%. In general, the magnitudes of c′ are much smaller than b′, except
for skewness Cd{3} and ⟨ε2

2δd⊥/d⊥⟩ in central collisions where ∣c′∣ ≫ ∣b′∣. The latter reinforces earlier conclusion that
three-particle correlations involving v2 and [pT] in heavy ion collisions are sensitive probe of the nuclear triaxiality.
In some limited cases such as the b′ parameter for Cd{3} and Cd{4}, the results are quantitatively different between
the nucleon Glauber model and the quark Glauber model (compare the symbols with the lines), suggesting that the
deformation contribution to high-order cumulants of d⊥ are also sensitive to the subnucleon fluctuations.

Table III lists the values of a′, b′ and c′ from Eq. (17) in the 0%–1% most central collisions for the four cases for
calculating the observable and performing event averaging. One sees that the values of a′ could differ by up to a factor
of 2 among the four cases. From these values, one derives the analytical function form for the (β2, γ) dependence for
each observable, including various normalized cumulants discussed in pervious sections.

V. SUMMARY AND A PROPOSAL

I have shown that the two bulk quantities of the initial overlap of the heavy ion collisions, the ε2 and d⊥, which
quantifies the quadrupole shape and density gradient (or the inverse size) of the overlap region, respectively, are
directly related to the quadrupole deformation parameters (β2, γ) of the colliding nuclei. Aided by hydrodynamic
response in the final state, these initial quantities are transformed into the experimentally measured elliptic flow v2

and average transverse momentum [pT] in each event. Using an analytical argument and a Glauber model simulation,
I derive analytical relations between the cumulants of ε2/d⊥ and (β2, γ). Remarkably, the variances depend mainly
on β2 (i.e. ⟨ε2

2⟩ , ⟨(δd⊥/d⊥)
2⟩ ∼ a′ + b′β2

2), while the skewness are sensitive to both parameters in a simple factorizable

form (i.e. ⟨ε2
2δd⊥/d⊥⟩ , ⟨(δd⊥/d⊥)

3⟩ ∼ a′ + (b′ + c′ cos(3γ))β3
2). Similar analytical relations are naturally expected for

final-state observables involving v2 and [pT]. These robust relations provide an efficient way, via a dedicated system
scan, to constrain simultaneously the β2 and γ of the atomic nuclei.

To illustrate how this can be done, one refers to the results obtained from Glauber model for 0%–1% most central
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FIG. 13. The centrality dependence of the coefficients b′ and c′ from Eq. (17) for Cd{2},Cd{3},Cd{4}, ⟨ε22⟩ and ⟨ε22δd⊥/d⊥⟩
from the top row to the bottom row. In each row, the values obtained via event averaging based on Npart (left two columns)
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variable calculation nucleon quark nucleon quark

event class Npart Npart Nquark Nquark

a′ b′ c′ a′ b′ c′ a′ b′ c′ a′ b′ c′

⟨(
δd⊥
d⊥

)
2
⟩ × 102 0.033 0.93 0.0039 0.038 0.88 -0.015 0.039 0.83 0.019 0.04 0.85 0.023

a′ + (b′ + c′ cos(3γ))β2
2

⟨(
δd⊥
d⊥

)
3
⟩ × 104 0.006 1.3 3.0 0.0084 0.72 2.7 0.012 -0.087 2.2 0.0085 -0.43 2.4

a′ + (b′ + c′ cos(3γ))β3
2

(⟨(
δd⊥
d⊥

)
4
⟩ − 3 ⟨(

δd⊥
d⊥

)
2
⟩

2
) × 105 0.00033 -5.4 1.1 0.00065 -5.0 0.88 0.00064 -3.1 -0.1 0.00052 -3.4 -0.35

a′ + (b′ + c′ cos(3γ))β4
2

⟨ε22⟩ × 10 0.045 2.35 0.11 0.055 2.38 0.083 0.047 2.32 -0.19 0.056 2.34 -0.21

a′ + (b′ + c′ cos(3γ))β2
2

⟨ε22
δd⊥
d⊥

⟩ × 102 0.00051 -0.066 -1.36 0.00070 -0.12 -1.35 0.00097 -0.17 -1.17 0.00084 -0.19 -1.19

a′ + (b′ + c′ cos(3γ))β3
2

TABLE III. The values of the coefficients a′, b′ and c′ of Eq. (17) for each observable in 0–1% U+U collisions from the Glauber
model. They are listed for four cases: variables can be calculated with either nucleons or quarks and the event averaging are
also based on either nucleons or quarks.

U+U collisions from the first column of Tab. III,

⟨ε2
2⟩ ≈ [0.02 + β2

2] × 0.235

⟨(δd⊥/d⊥)
2
⟩ ≈ [0.035 + β2

2] × 0.0093

⟨(δd⊥/d⊥)
3
⟩ ≈ [0.006 + (1.3 + 3.0 cos(3γ))β3

2] × 10−4

⟨ε2
2δd⊥/d⊥⟩ ≈ [0.0005 − (0.07 + 1.36 cos(3γ))β3

2] × 10−2 (24)

From these I construct ratios ρ(ε2
2, δd⊥/d⊥) and Sd, as well as baseline subtracted ratios ρsub and Sd,sub (their definitions

are repeated in Fig. 14). Eq. (24) can map any trajectory in the (β2, γ) diagram from low-energy nuclear structure
side (so-called “Hill-Wheeler” coordinate) onto new trajectories in various correlation plots from high-energy side
as shown in the bottom panels (a)–(f). I note that the direction of the trajectory in the (ρ, ⟨ε2

2⟩) plane is opposite
to that in the (Sd, ⟨ε

2
2⟩) plane, and the trajectory in the (ρ,Sd) plane almost collapses into a straight line. The γ

dependences in these plots follow a simple linear function of cos(3γ), while the β2 dependence is more complex due
to the offsets in Eq. (24). The correlations are much well behaved for ρsub and Sd,sub as shown in the bottom row of
Fig. 14. In particular, the differences between prolate and oblate deformation for these quantities are independent of
β2, and they are also expected to be nearly independent of centrality as suggested by Figs. 9 and 11. Therefore, one
could determine the γ angle of any nucleus with similar mass number, once the values of ρsub and Ssub are calibrated
from collisions of prolate and oblate nuclei with known β2.

A few additional summarizing points can be made about these flow diagrams. 1) One can replace the x-axis with
⟨(δd⊥/d⊥)

2⟩, the trajectories would be shifted and rescaled but their shapes remain the same. 2) Since the coefficients
b′ and c′ are relatively insensitive to the size of the collision systems, the correlations in the bottom row of Fig. 14 are
expected to be valid for all medium and large nuclei. By the way, the change of ρsub and Sd,sub when nuclear shape
is varied from prolate to oblate, unlike ρ and Sd, are also relatively independent of centrality. This implies that the
curves in the bottom panels only shift vertically and narrow horizontally for events in mid-central collisions, but the
height remains roughly the same. 3) One should be able to construct similar flow diagrams for cumulants of v2 and
[pT] in the final state. This can be estimated from the well-known linear relation v2 ∝ ε2 and δ[pT]/[pT]∝ δd⊥/d⊥, or
more precisely evaluated from the full hydrodynamic model simulations. 4) The generalization of this idea to kurtosis
and higher-order cumulants may not work well due to strong nonlinear mode mixing from lower-order cumulants.

Study of the nuclear deformation, in particular shape evolution in the (β2, γ) diagram along the isobaric chain
by adding neutron and protons, is one of the most important areas of research in nuclear structure community [1].
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FIG. 14. Glauber model prediction of the mapping of a closed trajectory on the (β2, γ) plane from nuclear structure side (top-
left) onto a trajectory on the (ρ, ⟨ε22⟩) plane (panel-a), the (Sd,⟨ε22⟩) plane (panel-b), as well as that for the baseline-subtracted
quantity (ρsub, ⟨ε22⟩) (panel-d) and (Sd,sub, ⟨ε22⟩) (panel-e). The definition of these quantities are given in the top-right corner.
The trajectories are also shown on the (ρ, Sd) plane (panel-c) and on the (ρsub,Sd,sub) plane (panel-f). The results are shown for
collision of nucleus with 238 nucleons and for the 0%–1% most central events selected based on Npart. Note that the correlation
with variance ⟨(δd⊥/d⊥)2⟩ as the x-axis are similar, i.e. only require a shift and rescaling (see text).

High-energy heavy-ion collisions offer a new tool to image the shape of atomic nuclei by smashing them together
and measure the collective flow response in the final state. The skewness ⟨(δd⊥/d⊥)

3⟩ and ⟨ε2
2δd⊥/d⊥⟩, experimentally

accessible via three-particle correlations ⟨(δ[pT]/[pT])3⟩ and ⟨v2
2δ[pT]/[pT]⟩, show remarkably strong sensitivity to

triaxiality over a broad range of centrality, as well as nearly system-size independent signal strength. The existing
data from various species, in particular the recent isobar 96Zr+96Zr and 96Ru+96Ru collision data [51] at high energy,
provide a unique opportunity to test the methodology proposed in this paper [53, 54]. However, most valuable
information will ultimately arise from a collision scan of systems for which one already have precision knowledge from
the nuclear structure community to calibration the hydrodynamic response, followed by application to systems for
which one not have sufficient understanding.
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liano Giacalone, Chunjian Zhang and Somadutta Bhatta for valuable discussions. This work is supported by DOE
DEFG0287ER40331.
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Appendix A: AMPT model

I have shown that the initial state of the heavy ion collisions are very sensitive to quadrupole deformation and
triaxiality of the colliding nuclei, and I have constructed multiple observables to constrain β2 and γ independently.
The next crucial question, however, is how much of these sensitivities in the initial state survive to the particle
correlations in the final state. Previous hydrodynamic model studies and data comparisons have firmly established
the proportionality between ε2 and v2, and to lesser extent also the positive correlation between d⊥ and [pT] [28, 55]
and between ⟨ε2

2, δd⊥⟩ and ⟨v2
2 , δ[pT]⟩ [29, 56].

To understand the conversion from ε2 and d⊥ in the initial overlap to v2 and [pT] in the final state, the popular
event generator “a multi-phase transport model” (AMPT) [57] is used, which is a realistic yet computationally efficient
way to implement hydrodynamic response. The AMPT model has been demonstrated to qualitatively describe the
harmonic flow vn in p+A and A+A collisions [58, 59], so it can be use to predict the β2 dependence of vn. A previous
study has demonstrated a robust simple quadratic dependence ⟨v2

2⟩ = a + bβ
2
2 in the final state as a result of a linear

response to a similar dependence in the initial state ⟨ε2
2⟩ = a

′ + b′β2
2 [13, 14]. However this model is known to have

the wrong hydrodynamic response for the radial flow, i.e. the centrality dependence of average transverse momentum
⟪pT⟫ ≡ ⟨[pT]⟩ and the variance ⟨(δ[pT])2⟩ do not describe the experimental data [14, 49]. A recent modification of

the model [60] fixed the problem with the ⟪pT⟫, but the value of ⟨(δ[pT])2⟩ is still more than a factor of 3 lower

than the STAR data [21, 61] 6. This implies that the response of [pT] to d⊥ in AMPT is a lot weaker than the
experimental finding, and explains why the model fail to describe quantitatively the behavior of ⟨v2

2δ[pT]⟩ in U+U
collisions observed in the STAR data [21]. Nevertheless, since the response of v2 is correct, one can still study the
parametric (β2, γ) dependence of ⟨v2

2δ[pT]⟩ and compare with the trend of ⟨ε2
2δd⊥⟩. However, this unfortunately can

not be said about cumulants of [pT] fluctuations.
Following Refs [63–65], I use the AMPT model v2.26t5 with string-melting mode and partonic cross section of

3.0 mb, which I check reasonably reproduce Au+Au v2 data at RHIC. The Woods-Saxon parameters in the AMPT
are chosen to be R0 = 6.81fm and a = 0.54 similar to [6] but with different fixed values of (β2, γ). The v2 and [pT] are
calculated with all hadrons with 0.2 < pT < 2 GeV and ∣η∣ < 2, and the event centrality is defined using either Npart

or inclusive hadron multiplicity in ∣η∣ < 2, Nhadron. The value of Nhadron, which include both charged and neutral
particles, is about six times of the charged hadron multiplicity density, i.e. Nhadron ≈ 6dNch/dη.

One main drawback of the AMPT model is that it underestimates the hydrodynamic response of radial flow. For
one thing, it undershoots the variance of the pT fluctuations from data, see the left panel of Fig. 15. The right panel
show that the AMPT model predicts a very weak dependence of ⟨(δ[pT]/[pT])2⟩ on β2. Even for a value of β2 = 0.28,

the increase of [pT] variance is only 30%. Similar observation is also made for ⟨(δ[pT]/[pT])3⟩ (not shown). This is
in clear contradiction to the much larger influence from deformation observed in the recent experimental results of
variance and skewness of [pT] in U+U and Au+Au collisions [21]. Hence, AMPT model can not be used to study
reliably the deformation effects on the [pT] fluctuations. Instead, I shall focus on ⟨v2

2δ[pT]⟩, the rationale being that
even though the radial flow response is underestimated, the elliptic flow response is still correctly modeled. I hope to
at least explore the qualitative features of ⟨v2

2δ[pT]⟩ and compare to ⟨ε2
2δd⊥⟩.

The left column of Fig. 16 shows the Npart dependence of ⟨v2
2δ[pT]/[pT]⟩ for several values of β2 and γ, calculated

using the multi-particle correlation framework of Ref. [66]. There are clear sensitivity on both parameters, especially
in the UCC region. The values are integrated over several centrality ranges and plotted as a function of β3

2 and
cos(3γ) in the middle column, calculated from the corresponding data in the left column. Despite the large statistical
uncertainties, linear dependences are observed, confirming the trends seen in the Glauber model:

⟨v2
2(δ[pT]/[pT])⟩ = a + (b + c cos(3γ))β3

2 . (A1)

The values of b and c are shown in the right column as a function of centrality; the centrality-dependent trends are
similar to those obtained from Glauber model (compare to Fig. 10). However, the values of b and c are about a factor
of 100 smaller than b′ and c′, also b is larger than 0 in central collisions, while b′ is less than 0 over the full centrality
range. In hydrodynamic model with linear response assumption of Eq. (4), one has approximately,

⟨v2
2

δ[pT]

[pT]
⟩ ≈ k2

2k0 ⟨ε2
2

δd⊥
d⊥

⟩ (A2)

Using the value of k2 ≈ 0.2 from a hydrodynamic model [67] and k0 ≈ 0.4 from left panel of Fig. 11 in central
collisions, one expects a factor of 60. I also repeat the same analysis using Nhadron to classify events. They give very

6 Hydrodynamic model simulation based on Trento initial condition [62] predicts a much larger [pT] fluctuation, but with very little
sensitivity on β2.
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similar values of b and c as shown in the right column of Fig. 16, implying the results are robust against the volume
fluctuations.

partN0 100 200 300 400

])
T

]/[
p

T
[pδ, 

2 2
co

v(
v

5−

0

5

10

15

6−10×

AMPT
|<2η<2 GeV,|

T
0.1<p

=0
2

βU+U 
=0.15

2
βU+U 

=0.22
2

βU+U 
=0.28

2
βU+U 

=0.34
2

βU+U 
=0.4

2
βU+U 

(a)

3

2
β

0 0.02 0.04 0.06

])
T

]/[
p

T
[pδ, 

2 2
co

v(
v

4−

2−

0

2

4

6−10×

9-11%
5-6%
 

1-2%
0-1%
0-0.2%

(b)

Centrality
0 0.1 0.2 0.3

b

0.05−

0

0.05

3−10×

partN

|<2)η (|hadronN

(c)

partN0 100 200 300 400

])
T

]/[
p

T
[pδ, 

2 2
co

v(
v

0

5

10

15

6−10×

AMPT
|<2η<2 GeV,|

T
0.1<p

undeformed
)=1γ=0.28 cos(3

2
β

)=0.5γ=0.28 cos(3
2

β
)=0γ=0.28 cos(3

2
β

)=-0.5γ=0.28 cos(3
2

β
)=-1γ=0.28 cos(3

2
β

(d)

)γcos(3
1− 0.5− 0 0.5 1

])
T

]/[
p

T
[pδ, 2 2

co
v(

v

0

2

4

6−10×

9-11%
5-6%
 

1-2%
0-1%
0-0.2%

(e)

Centrality
0 0.1 0.2 0.3

c

0.1−

0.05−

0

3−10×

partN

|<2)η (|hadronN

(f)

FIG. 16. The ⟨v22δ[pT]/[pT]⟩ for several β2 values of prolate shape γ = 0 (top row) and several γ values with β2 = 0.28 (bottom
row) in U+U collisions from the AMPT model. The left column show the Npart dependence. The middle column shows the
results as a function of β3

2 (top panel) or cos(3γ) (bottom panel) in several centrality ranges based on Npart. The right column
summarizes the coefficients b (top) and c (bottom) from Eq. (A1) as a function of centrality based on Npart (filled symbols) or
Nhadron (open symbols).

.

From these results, I calculate the normalized quantities, ρ(v2
2 ,
δ[pT]

[pT]
) and ρsub(v

2
2 ,
δ[pT]

[pT]
), defined similar to those



23

in Eqs. (14) and (21). The results are shown in Fig. 17 for β2 dependence on the left part and γ dependence on the
right part. The ρ follows approximately a linear dependence of β2, similar to Glauber model results (top panel in the
second column of Fig. 11). The ρsub in the bottom panels are nearly independent of β2 as expected. For the cos(3γ)
dependence, ρ data exhibit different slopes for different centralities ranges, but ρsub data follow a common slope in
all centrality ranges. What this means is that the difference of ρsub between prolate and oblate is approximately
independent of centrality, similar to the results from Glauber model shown in the bottom right panel of Fig. 11.
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FIG. 17. Left Part: The ρ(v22 , δ[pT]/[pT]) (top row) and ρsub(v
2
2 , δ[pT]/[pT]) (bottom row) as a function of Npart for several

β2 values of prolate shape γ = 0 (left column) and as a function of β2 in several centrality ranges based on Npart (right column).
Right part: The ρ(v22 , δ[pT]/[pT]) (top row) and ρsub(v

2
2 , δ[pT]/[pT]) (bottom row) as a function of Npart for several γ values

with β2 = 0.28 (left column) and as a function of cos(3γ) in several centrality ranges based on Npart (right column).

Appendix B: Transverse size fluctuations in head-on collisions

Although the shape and size of atomic nuclei with static deformation is fixed in the intrinsic frame, the shape and
size for the distribution projected to the transverse plane (x, y) in the laboratory frame depend on the Euler angle
Ω, and therefore fluctuates event to event. The expression for ε2 has been derived in the Appendix A of Ref. [15], I
shall focus on δd⊥/d⊥ in Eq. (11).

First, I express the angular weights of variance and covariance of the coordinates, ⟨x2⟩ = ⟨r2 sin2 θ sin2 φ⟩, ⟨y2⟩ =

⟨r2 sin2 θ cos2 φ⟩ and ⟨xy⟩ = ⟨r2 sin2 θ sinφ cosφ⟩ in terms of spherical harmonics,

sin2 θ cos2 φ =
1

3
+

√
2π

15
(Y 2

2 + Y −2
2 ) −

2

3

√
π

5
Y 0

2 , sin2 θ sin2 φ =
1

3
−

√
2π

15
(Y 2

2 + Y −2
2 ) −

2

3

√
π

5
Y 0

2 ,

sin2 θ sinφ cosφ = −i

√
2π

15
(Y 2

2 − Y −2
2 ). (B1)

In the rotated frame, one needs to apply the substitution Y m2 → ∑m′D
2
m,m′(Ω)Y m

′

2 . Keeping the leading order term

in β2, using the notation α0 = cosγ, α2 = α−2 = sinγ/
√

2 for quadrupole deformation, the variances and covariance
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become

⟨x2, y2⟩ =
∫ ρ(r)r

4dr ∫ (1 + β2∑m αmY
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2 )5[ 1
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⟨xy⟩ ≈ −i
R2

0

5

15β2

4π
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2,m′ −D

2
−2,m′) . (B3)

The transverse area S⊥ in the projected plane has the following expression

S2
⊥

π2
= ⟨x2⟩ ⟨y2⟩ − ⟨xy⟩

2
=
R4

0
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Keeping the leading term β2, the fluctuation relative to the averaging over the Ω is

δd⊥
d⊥

= −
1

4

δS2
⊥

S2
⊥

=

√
5

16π
β2∑

m

αmD
2
0,m =

√
5

16π
β2 (cosγD2
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sinγ
√

2
[D2

0,2 +D
2
0,−2]) , (B5)

where I have used the relation d⊥ =
√
Npart/S⊥ and assumed Npart is a constant in head-on collisions.

Two comments are in order. First, the transverse area can also be defined as S⊥ = π (⟨x2⟩ + ⟨y2⟩). This definition
gives exactly the same expression for δd⊥/d⊥ in the leading order of β2. Second, in general the next-leading order con-
tribution to d⊥ contains terms that scale like β2

2(∑m αmD
2
0,m)2 or β2

2(∑m αmD
2
2,m)(∑m αmD

2
2,m)∗. In the calculation

of variances, they will appear as

⟨(δd⊥/d⊥)
2⟩ =

5

16π
⟨(β2Σ + c1β
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2
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where I denote Σ ≡ ∑m αmD
2
0,m and Π2 ≡ (∑m αmD

2
2,m)(∑m αmD

2
2,m)∗, and the values of c1 and c2 depend on the

definition of d⊥. For the case in Eq. (B4), one can show c2 = 2
3
c1 = 3

2

√
5

16π
= 0.473. The two higher-order terms in

this expansion have the same form as those in Eq. (12), and their contributions are proportional to cos(3γ). They
are responsible for the clear residual dependence on the triaxiality of ⟨(δd⊥/d⊥)

2⟩ in Fig. 5 and ⟨ε2
2⟩ in Ref. [15]. That

is why the prolate deformation with β2 = 0.28 in the left panels of Fig. 5 has a smaller ⟨(δd⊥/d⊥)
2⟩ value by about

8/7(c1 − c2)β2 = 7% in central collisions.
Following Eq. (B6), one can also estimate the higher-order correction to the skewness and kurtosis
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16π
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3

896π2
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4

33
(17c1 + 23c2)β2 cos(3γ)) (B8)

For skewness, the higher-order term leads to a positive shift for Sd. For β2 = 0.28, it is ∆Sd/∣Sd∣ =
9c1+3c2

2
β2 = 2.2,

i.e. the amount of shift is comparable to the variation from prolate and oblate deformation. In reality, one observe
the shift is about 1/3 of the predicted size (see bottom-left panel of Fig. 7). For kurtosis, the contribution is about
∆Kd/∣Kd∣ =

4
33

(17c1 + 33c2)β2 cos 3γ ≈ 0.79 cos 3γ. Assuming Kd = −3/7 from Tab. II, then ∆Kd = 0.33 cos 3γ, which
is about a factor of 3 of what is observed in the Glauber model (top-right panel of Fig. 9).
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Appendix C: Additional plots

This appendix shows comprehensive centrality dependence of various observables for different values of β2 and γ
used in the paper in U+U and Zr+Zr collisions. The full set of observables for the cumulants of d⊥ are shown in
Fig. 18 for U+U and Fig. 19 for Zr+Zr, respectively. Similarly, information for ⟨ε2

2⟩ and correlation between ε2 and
d⊥ are shown in Figs. 20 and 21. Most importantly these plots show the results obtained with the Nquark-based event
averaging. See also Figs. 22 and 23.
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FIG. 18. Npart (left two columns) and Nquark (right two columns) dependences of various d⊥ observables as indicated by the
y-axis title in the left side, in U+U collisions compared between different β2 (1st and 3rd columns) and different γ with β2 = 0.28
(2nd and 4th columns), calculated with nucleons (symbols) and quarks (lines). The vertical lines in each panel correspond to
locations for 0.2%, 1% and 2% centralities.
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FIG. 19. Same as Fig. 18 but for Zr+Zr collisions.



28

 dependence
2

β  dependenceγ  dependence
2

β  dependenceγ

200 300 400

〉
2 2ε〈

2−10

1−10

U+U

undeformed
=0.08

2
β

=0.15
2

β
=0.22

2
β

=0.28
2

β
=0.34

2
β

200 300 400

〉
2 2ε〈

2−10

1−10

=0.28
2

β

undeformed
)=1γcos(3
)=0.5γcos(3
)=0γcos(3
)=-0.5γcos(3
)=-1γcos(3

200 300 400

〉
2 2ε〈

2−10

1−10

undeformed
=0.08

2
β

=0.15
2

β
=0.22

2
β

=0.28
2

β
=0.34

2
β

200 300 400

〉
2 2ε〈

2−10

1−10

=0.28
2

β

undeformed
)=1γcos(3
)=0.5γcos(3
)=0γcos(3
)=-0.5γcos(3
)=-1γcos(3

200 300 400

〉
  

  /
d

dδ
2 2ε〈

1−

0.5−

0

0.5

1

1.5
3−10×

200 300 400

〉
  

  /
d

dδ
2 2ε〈

1−

0.5−

0

0.5

1

1.5
3−10×

200 300 400

〉
  

  /
d

dδ
2 2ε〈

1−

0.5−

0

0.5

1

1.5
3−10×

200 300 400

〉
  

  /
d

dδ
2 2ε〈

1−

0.5−

0

0.5

1

1.5
3−10×

200 300 400

ρ

0.5−

0

0.5

200 300 400

ρ

0.5−

0

0.5

200 300 400

ρ

0.5−

0

0.5

200 300 400

ρ
0.5−

0

0.5

partN
200 300 400

su
b

ρ

2−

1−

0

partN
200 300 400

su
b

ρ

2−

1−

0

/3quarkN
200 300 400

su
b

ρ

2−

1−

0

/3quarkN
200 300 400

su
b

ρ

2−

1−

0
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