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We theoretically investigate the Higgs oscillation in a one-dimensional Raman-type spin-orbit-
coupled Fermi superfluid with the time-dependent Bogoliubov-de Gennes equations. By linearly
ramping or abruptly changing the effective Zeeman field in both the Bardeen-Cooper-Schrieffer
state and the topological superfluid state, we find the amplitude of the order parameter exhibits
an oscillating behaviour over time with two different frequencies (i.e., two Higgs oscillations) in
contrast to the single one in a conventional Fermi superfluid. The observed period of oscillations
has a great agreement with the one calculated using the previous prediction [Volkov and Kogan,
J. Exp. Theor. Phys. 38, 1018 (1974)], where the oscillating periods are now determined by the
minimums of two quasi-particle spectrum in this system. We further verify the existence of two
Higgs oscillations using a periodic ramp strategy with theoretically calculated driving frequency.
Our predictions would be useful for further theoretical and experimental studies of these Higgs
oscillations in spin-orbit-coupled systems.

I. INTRODUCTION

Collective excitation is important dynamics of many-
body quantum system, and becomes an interesting re-
search topic in all realm of physics. As a kind of gapped
collective excitation, the Higgs mode is a quantum phe-
nomenon investigated in superconductors [1–4], magnetic
materials [5, 6], and ultracold atoms in continuous or lat-
tice system [7–11]. A review paper about Higgs mode
in condensed matter physics can be found in Ref. [12].
Physically the Higgs mode is described by the amplitude
fluctuation of the order parameter, which is different from
the gapless Goldstone excitation related to the phase fluc-
tuation of order parameter.
While the appearance of Goldstone mode is easy to

observe when continuous symmetries are broken, sta-
ble Higgs modes require additional symmetry to stop
them from rapidly decaying into other low-energy exci-
tations. In high-energy physics, the stability of Higgs
mode is ensured by Lorentz invariance, whose role is re-
placed by particle-hole symmetry in condensed matter
physics. The famous Bardeen-Cooper-Schrieffer (BCS)
Hamiltonian describing a weakly interacting supercon-
ductor is a typical example of hosting a stable Higgs mode
with particle-hole mechanism [1, 2], and related evidence
has also been found in conventional BCS superconduc-
tors [3, 13, 14]. The same BCS theory, which is usually
called Bogoliubov-de Gennes (BdG) mean field theory, is
also widely used to study the ultracold Fermi gases. The
Higgs mode has also been theoretically investigated in the
BCS-Bose Einstein Condensate (BEC) crossover of Fermi
superfluid [7, 15, 16] with a time-dependent Bogoliubov-
de Gennes (BdG) simulation. The order parameter has
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a close connection with the condensate fraction [17–19].
Following this relation, experimentally the Higgs mode
has been observed in a strongly interacting fermionic su-
perfluid with radiofrequency field technique [20].

To excite the Higgs mode in ultracold Fermi gases,
generally one can resort to the modulation of all pa-
rameters which can decide the order parameter, e.g.,
the interaction parameter 1/ (kF a) in the BCS-BEC
crossover [7, 21–23]. In 1974, Volkov and Kogan stud-
ied the response of superconductors in the presence of a
small perturbation with the Green’s functions, and found
that the order parameter |∆| oscillates with the period
π~/∆gap, where the ∆gap is the energy gap in the spec-
trum of fermionic excitations [24]. This also indicates
that the Higgs mode is greatly influenced by the single-
particle excitation. Usually the Higgs mode is mixed
and coupled with the continuum spectrum of the single-
particle excitation in many Fermi superfluids and thus
we will call it a Higgs oscillation instead in the remain-
ing text. Since the development of artificial gauge field in
Fermi superfluid [25, 26], more control knobs, like effec-
tive Zeeman field and spin-orbit coupling strength, can
be brought in to perturb the amplitude of order param-
eter. Higgs oscillation is expected to display richer and
much interesting dynamical behavior in spin-orbit cou-
pled (SOC) degenerate Fermi gases. Previously topolog-
ical phase transition of quench dynamics and dynamical
phases had been studied in SOC Fermi superfluid [27, 28].
But to date there are quite few discussions to introduce
the Higgs oscillation and its physical properties in SOC
Fermi superfluid. In this paper, we will introduce two
kinds of Higgs oscillations with different periods in SOC
Fermi superfluid.

In this work, motivated by previous theoretical studies
and recent experiments, we explore the fascinating Higgs
oscillation in a one-dimensional (1D) SOC Fermi super-
fluid and aim to characterize two distinct Higgs oscilla-
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tions by studying the related dynamic behaviour. With
the help of time-dependent BdG equation, we first inves-
tigate the properties of the order parameter as well as the
excitation spectrum on the tunable effective Zeeman field
in different phase regimes. By introducing three time-
dependent ways to tune the effective Zeeman field, we
then obtain the oscillating behaviours of the amplitude
of the order parameter in both the BCS and topological
phases. Finally, by means of a Fourier analysis, we nu-
merically calculate the oscillating frequency or period to
straightforwardly characterize the Higgs oscillation, and
compare it with the previous theoretical prediction of
Volkov and Kogan in both two phases.
The paper is organized as follows. In the next section,

we will briefly introduce the model and Hamiltonian of
a SOC Fermi superfluid with the mean-field theory. In
Sec. III, we probe and investigate two Higgs oscillations
in both the BCS and topological states, by tuning the
effective Zeeman field in three different ways and inves-
tigating the oscillating behaviors of the amplitude of the
order parameter. Finally, we summarize and draw con-
clusions in Sec. IV.

II. MODEL AND HAMILTONIAN

We consider a 1D superfluid Fermi gas with Raman-
type spin-orbit coupling effect. The system can be de-
scribed by a single-channel model Hamiltonian H =
∫

dx [H0 +Hint], where

H0 =
[

ψ†
↑ (x) , ψ

†
↓ (x)

] (

Hs + λk̂xσy − hσz

)

[

ψ↑ (x)
ψ↓ (x)

]

(1)
is the SOC single-particle part in a uniform system and

Hint = g
1D
ψ†
↑ (x)ψ

†
↓ (x)ψ↓ (x)ψ↑ (x) (2)

is the interaction Hamiltonian with g
1D

= −γ~2n0/m de-
scribing an attractive s-wave contact interaction between
two spin states (σ =↑, ↓). n0 is the bulk density, and γ
denotes a dimensionless interaction parameter. Here ψσ

or ψ†
σ is the field operator that annihilates or creates a

spin σ atom with mass m. Hs = −~
2∂2x/ (2m) − µ de-

scribes the motion of free atoms with chemical potential

µ. The term λk̂xσy − hσz, with the momentum operator

k̂x = −i∂/∂x and Pauli matrices σy and σz , is induced
by the Raman process, describing a synthetic spin-orbit
coupling with a strength λ ≡ ~

2kR/m and an effective
Zeeman field h = ΩR/2. Here kR and ΩR are the re-
coil momentum and the Rabi frequency of Raman laser
beams, respectively. In the following, we will set ~ = 1
for simplicity.
We use the standard mean-field theory to solve the

single-channel model Hamiltonian. Within the mean-
field approximation, we define an order parameter
∆ (x) ≡ −g

1D
〈ψ↓ (x)ψ↑ (x)〉, and the interaction Hamil-

FIG. 1. The chemical potential µ and the bulk value of order
parameter ∆bulk as a function of the effective Zeeman field
h in a 1D SOC Fermi gas with a box potential. The verti-
cal dashed line indicates the position of the phase transition
between the BCS and topological phases at hc ≃ 0.92EF .

tonian is decoupled as

HMF
int ≃ −

(

∆ψ†
↑ψ

†
↓ +∆∗ψ↓ψ↑

)

− |∆|2 /g
1D
. (3)

After the standard Bogoliubov transformation ψσ =
∑

η

[

uσηe
−iEηtcη + v∗σηe

iEηtc†η
]

to all field operators of
mean-field Hamiltonian, we obtain the BdG equations

HBdGφη (x) = Eηφη (x) (4)

in a Nambu spinor representation with BdG Hamiltonian

HBdG ≡







HS − h −λ∂/∂x
λ∂/∂x HS + h

0 −∆(x)
∆ (x) 0

0 ∆∗ (x)
−∆∗ (x) 0

−HS + h λ∂/∂x
−λ∂/∂x −HS − h






,

(5)
the quasi-particle wave function φη = [u↑η, u↓η, υ↑η, υ↓η]

T

and the corresponding quasi-particle eigenenergy Eη.
The BdG equations above should be solved self-
consistently with the order parameter equation

∆(x) = −
g
1D

2

∑

η

[

u↑ηυ
∗
↓ηf(Eη) + u↓ηυ

∗
↑ηf(−Eη)

]

(6)

and the density equation

n(x) =
1

2

∑

ση

[

|uση|
2f(Eη) + |υση|

2f(−Eη)
]

, (7)

where f(E) = 1/[eE/kBT + 1] is the Fermi-Dirac distri-
bution function at a temperature T . It is important to
note that the use of Nambu spinor representation dou-
bles the size of Hilbert space of the system. As a result,
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there is a particle-hole symmetry in the Bogoliubov so-
lutions: for any “particle” solution with the wave func-

tion φ
(p)
η = [u↑η, u↓η, υ↑η, υ↓η]

T
and energy E

(p)
η ≥ 0,

we can always find the other “hole” solution with a

wave function φ
(h)
η =

[

υ∗↑η, υ
∗
↓η, u

∗
↑η, u

∗
↓η

]

T and energy

E
(h)
η = −E

(p)
η ≤ 0. Generally these two states describe

the same physical state. To remove this redundancy, we
have added an extra factor of 1/2 in the expressions for
the order parameter (6) and total density (7). In the
following discussions, we focus at zero temperature with
a typical interaction strength γ = π, the SOC strength
λ = 1.5EF /kF . As shown in Fig. 1, the system under-
goes a phase transition from a BCS superfluid to a topo-
logical superfluid when continuously increasing the effec-
tive Zeeman field h over a critical value hc ≃ 0.92EF [29],
where the chemical potential µ and the bulk order param-
eter ∆bulk present a jump change. We need to emphasize
that the value of hc will be slightly influenced by some
parameters in the numerical calculation such as the size
of box and the energy cutoff.
In a uniform and infinite system, the continuous mo-

mentum k is a good quantum number. Thus, it is pos-
sible to get an analytic expression of four quasi-particle

eigenenergy E
(p)
± (k) = −E

(h)
± (k) ≡ E± (k) in Eq. (4)

with [30]

E± (k) =

√

E2
k + h2 + k2λ2 ± 2

√

ξ2kk
2λ2 + E2

kh
2, (8)

where ξk = k2/ (2m) − µ and Ek =
√

ξ2k +∆2. The
excitation of the Higgs oscillation is closely related to
the minimum of quasi-particle energy [24]. In Fig. 2,
we present the positions and values of the minimum in
two positive quasi-particle energy branches E± (k) as a
function of the Zeeman field h. Typically there are three
regimes separated by hc ≈ 0.92EF and hsp ≈ 1.1EF ,
where the locations of minimum in two energy branches
marked by blue arrows in three upper panels are different.
The locations of minimum are both at k = 0 when h <
hc, then the minimum of E+(k) is shifted to a nonzero
momentum while the one in E−(k) is still at k = 0 when
hc < h < hsp, and finally both of them are shifted to a
nonzero momentum when h > hsp.

III. RESULTS AND DISCUSSION

In this work, a 1D SOC Fermi superfluid is taken into
account where the quasi-1D geometry is usually realized
by applying a strong confinement along both y and z
axes in a three-dimensional (3D) system [31, 32]. In
general, the order parameter is determined by the re-
alistic parameters of the system, such as the interaction
strength γ , the SOC strength λ and the effective Zee-
man field h. The interaction strength can be well con-
trolled by both confinement and Feshbach resonances as
discussed in references [33–38]. However, it is tough to

FIG. 2. The positions and values of minimum in two quasi-
particle energy branches E± (k) as a function of the effective
Zeeman field h.

change the interaction strength rapidly or in a very short
time scale. In addition, the SOC strength λ can not
be tuned over a large range in ultracold atoms experi-
ments. Thus, we choose the effective Zeeman field h as
the ramping parameter in this work. First, the Zeeman
field determines directly the topological structure of the
ground state as shown in Fig. 1 and we can discuss for
different cases. Besides, the effective Zeeman field can
be feasibly tuned in a long or short time scale by the
laser intensity or the detuning in the experiments of the
SOC Fermi gases. These experiment features have been
introduced in Refs. [25, 26, 39–42]. In order to excite and
investigate the Higgs oscillation, we begin with an initial
Zeeman field hi to calculate self-consistently its ground
state, and then vary h over time in a slow linear ramp
way or by abruptly changing to reach a final Zeeman
field hf . Therefore, the dynamics of the order parameter
can be then studied by solving the time-dependent BdG
equation

i
∂

∂t
φη (x, t) = HBdGφη (x, t) . (9)

A. Slow ramp of the effective Zeeman field

We begin with a slow linear ramp of the Zeeman field
h, namely h(t) = hi + (hf − hi) t/t0, in which t0 is the
time consumed to arrive at the final Zeeman field hf .
Generally the order of t0 can not be very small to make
the system evolve in an almost adiabatic process. So t0
should be at least in an order of 1/EF .
We first choose an initial Zeeman field hi = 0.9EF ,

and linearly decrease h to hf = 0.7EF in a time regime
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FIG. 3. The oscillation of the order parameter |∆(t)| during
a slow ramp in the BCS state. The Zeeman field is tuned
adiabatically from hi = 0.9EF to hf = 0.7EF (blue solid
line), and from hi = 0.9EF to hf = 0.6EF (gray dotted line).
The inset is the Fourier analysis of the blue solid line with a
peak at ω ≃ 1.02EF indicating the oscillating frequency.

t0 = 4/EF . Obviously hi, hf < hc, which means that
the system is in the BCS state. As shown by a smooth
blue solid line in Fig. 3, the amplitude of the order pa-
rameter first increases monotonically from 0.89EF (i.e.,
the equilibrium value of |∆eq| at h = hi obtained from
Eq. (4)), and then oscillates around an average value
∆∞ = 1.08EF (i.e., almost the equilibrium value of |∆eq|
at h = hf ). The oscillation period can be determined by
the Fourier analysis of the oscillation of the order pa-
rameter. As shown in the inset, there’s a frequency peak
at ω ≃ 1.02EF in the Fourier analysis, giving rise to an
oscillation period at about T1 = 2π/ω = 6.16/EF . In ad-
dition, Volkov and Kogan predicted that the oscillation
period of the Higgs oscillation should be [24]

TVK = π/∆gap, (10)

where ∆gap is usually the minimum of quasi-particle en-
ergy, and here

∆gap = ∆(−)
gap = min [E− (k)] (11)

is equal to a half of the minimum energy to break a
Cooper pair. Here the chemical potential µ and the Zee-
man field h in Eq. (8) should use their values at the final
state (h = hf ), while the order parameter should take the

value of ∆∞ [7]. And we find T
(−)
VK = 6.09/EF , which is

quite close to the numerical value T1 ≃ 6.16/EF obtained
from the Fourier analysis with a deviation rate about 1%.
For comparison, we also simulate with another set of pa-
rameters (i.e., from hi = 0.9EF to hf = 0.6EF denoted
by gray dotted line), and the difference rate between TVK

and the numerically calculated one is also around 1%. So
the Higgs oscillation here is closely related to the excita-
tion in the lower branch of quasi-particle spectrum, and

FIG. 4. The oscillation of the order parameter |∆(t)| during a
slow ramp in the topological state. The Zeeman field is tuned
from hi = 1.4EF to hf = 1.2EF . The Fourier analysis in the
inset reveals an oscillating frequency at ω ≃ 0.39EF .

we call it the low Higgs oscillation in the following dis-
cussion.

We now turn to consider the topological superfluid
where both values of the initial and final Zeeman field
are larger than the critical one hc. The Zeeman field is
linearly tuned from hi = 1.4EF to hf = 1.2EF . We can
know from Fig. 1 that increasing the Zeeman field in the
topological state will generally decreases the correspond-
ing order parameter in equilibrium. In Fig. 4, we find a
similar oscillation in the amplitude of the order parame-
ter as in the case of the BCS superfluid, around an almost
equilibrium value ∆∞ = 0.21EF . Similarly, we can fig-
ure out the oscillation period T1 ≃ 16.11/EF from the
Fourier analysis, which also agrees well with the theoret-

ical prediction T
(−)
VK = 16.01/EF within a 1% deviation.

Obviously this is also a low Higgs oscillation, originated
from the excitation in the lower quasi-particle spectrum
E−(k). It should also be noted that there are some tiny
sawtooth-like structures in the oscillation curve at rela-
tively large time, which make the curve not so smooth.
In fact these detailed structures are closely associated to
the other Higgs oscillation which will be discussed in the
next subsection.

Overall, we find that the oscillation period of the Higgs
oscillation obtained numerically from its dynamics agrees
well with Volkov and Kogan’s prediction in both the BCS
superfluid and the topological one. Moreover, we also run
simulation and make the Zeeman field h come into the
regime hc < h < hsp , and investigate the Higgs oscil-
lation there. However, we find a complex oscillating be-
haviour in the order parameter, and the numerical result
of the period is quite far away from TVK due to the rapid
variation of µ and ∆bulk (see Fig. 1), or the switch of the
position of minimum in the spectrum E± (k) (see Fig. 2).
Here we argue that these two reasons make Volkov and
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FIG. 5. The oscillation of the order parameter |∆(t)| after
an abrupt ramp in the topological state. The Zeeman field is
changed suddenly from hi = 1.4EF to hf = 1.2EF at time
t = 0. The Fourier analysis in the inset reveals two oscillating
frequencies at ω ≃ 0.35EF and 3.91EF .

Kogan’s prediction can not work well in this regime.

B. Abrupt ramp of the effective Zeeman field

In this subsection, we consider an abrupt way to vary
the Zeeman field, and investigate the following quench
dynamics of the system. Similarly we prepare the system
in the ground state at an initial Zeeman field hi, and then
change immediately the Zeeman field to its destination
value hf at time t = 0.
We first discuss the case in the topological superfluid

by suddenly tuning the Zeeman field from hi = 1.4EF

to hf = 1.2EF and study the quench dynamics of the
system. The result of the oscillating behaviour in the
order parameter and the associated Fourier analysis are
present in Fig. 5. In contrast to the single oscillation
period in the conventional 3D Fermi gas [7], we find that
there exist two distinct periods in the amplitude of the
order parameter oscillating around ∆∞ = 0.21EF . ∆∞

is usually smaller than the equilibrium value of the order
parameter at h = hf in the case of an abrupt ramp. The
bigger period originates from the excitation in the lower
branch of the energy spectrum, as we discussed in the
last subsection and in Fig. 4. However, we find that
the smaller period, i.e., the sawtooth-like structure in
the oscillation, can be well explained by the excitation to
the higher branch E+ (k) in Eq. (8) in the quasi-particle
energy spectrum, giving rise to the other excitation gap
energy

∆(+)
gap = min [E+ (k)] (12)

for calculating the theoretical value using Volkov and
Kogan’s prediction [24]. The existence of two types of

FIG. 6. The oscillation of the order parameter |∆(t)| after an
abrupt ramp in the BCS state. The Zeeman field is changed
suddenly from hi = 0.9EF to hf = 0.7EF at time t = 0. The
Fourier analysis in the inset reveals two oscillating frequencies
at ω ≃ 1.00EF and 3.72EF .

the Higgs oscillation can be also seen clearly from the
Fourier analysis in the inset of Fig. 5 which presents
two frequency peaks at ω ≃ 0.35EF and ω ≃ 3.91EF

marked by two arrows. The low-frequency peak repre-
sents the low Higgs oscillation coming from the lower en-
ergy branch E− (k), while the high-frequency peak sup-
ports the other Higgs oscillation with a smaller period
T2 ≃ 1.60/EF . This Higgs oscillation with a small pe-
riod can be called the high Higgs oscillation, and has an
about 4% deviation from Volkov and Kogan’s prediction

T
(+)
VK = π/∆

(+)
gap = 1.66/EF using the higher branch in

the quasi-particle spectrum. Here, the ratio between two
periods is about T1/T2 ≈ 10, sufficiently large to make
these two Higgs oscillations can be clearly distinguished.

Likewise, we then turn to consider the existence of
high Higgs oscillation in the quench dynamics of the BCS
state, which has not been probed in the case of a slow
ramp as in Fig. 3. We illustrate the results in Fig. 6
by preparing a ground state at hi = 0.9EF and then
suddenly changing the Zeeman field to hf = 0.7EF at
time t = 0. In general, the order parameter |∆| oscil-
lates around ∆∞ = 1.05EF , and displays an almost clear
period for t < 25/EF . However, a complex oscillation be-
haviour turns out at larger time, and makes it very tough
to distinguish the periodic oscillation by naked eyes. Sim-
ilarly, by means of the Fourier analysis of the oscillation
dynamics, we can also find two frequency peaks marked
by two arrows in the inset of Fig. 6. Using the peak
frequency, the calculated periods of these two periodic
oscillations are T1 = 6.31EF and T2 = 1.69EF respec-
tively, which just fit well with Volkov and Kogan’s predic-

tion T
(−)
VK = 6.41/EF and T

(+)
VK = 1.66/EF using two en-

ergy branches in the quasi-particle spectrum. Compared
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FIG. 7. (a) The oscillation of the order parameter |∆(t)| after
a periodic ramp in Eq. (13) at hi = 0.6EF . (b) and (c) are
the corresponding Fourier analysis. Solid and dotted lines are
the high and low Higgs oscillations, respectively.

with the topological case in Fig. 5, the low-frequency
peak of the low Higgs oscillation here is still remarkable,
while the signal of the high Higgs oscillation is relatively
much weaker. In fact similar to other resonance phenom-
ena, these two Higgs oscillations are always coupled with
each other, only a large period (or frequency) contrast
can help to distinguish them. However, the period ratio
T1/T2 ≈ 3.73 here is much smaller than the one in the
topological case, which is consistent with the expecta-
tion from Fig. 2, i.e., the minima of two energy branches
approaching each other. Thus, these factors make two
Higgs oscillations tangled with each other and display a
complex dynamical behaviour in Fig. 6.

C. Further verification of two Higgs oscillations

To further probe and study these two Higgs oscillations
in both the BCS and topological states, we introduce a
new way to tune the Zeeman field following the reso-
nance theory. In the last two sections, we find that the

Volkov and Kogan’s prediction T
(−)
VK and T

(+)
VK agree well

with the corresponding numerical results. Thus, we can
use these frequencies calculated theoretically as a driv-
ing frequency to excite two Higgs oscillations respectively
in only 1.5 oscillation periods (longer driving-resonance
time can do help to strengthen the resonance effect and
is beneficial to the associated Fourier analysis), and stop
driving in the following time, namely

h(t) = hi +A sin
(

2πt/T
(±)
VK

)

, (13)

with A being a small amplitude of the perturbation. In
fact a larger value of A will not only strengthen the am-

FIG. 8. (a) The oscillation of the order parameter |∆(t)| after
a periodic ramp in Eq. (13) at hi = 1.1EF . (b) and (c) are
the corresponding Fourier analysis. Solid and dotted lines are
the high and low Higgs oscillations, respectively.

plitude of oscillation, but also possibly make the system
comes into different regimes as shown in Fig. 2. So we
choose A = 0.1EF in the following discussions. With this
periodic ramp strategy described above, we can then in-
vestigate its evolving dynamics at an initial Zeeman field
hi.
In the BCS state with a Zeeman field hi = 0.6EF , we

find two different oscillations in the amplitude of the or-
der parameter as anticipated. The behaviour is shown
in Fig. 7 (a), where the blue dotted line depicts the
low Higgs oscillation with a big oscillation period, and
the olive solid line is the high Higgs oscillation with a
much smaller period. The big period contrast of these
two Higgs oscillations makes it quite easy to distinguish
each other by naked eyes. In panels (b) and (c) of Fig.
7, the corresponding results from the Fourier analysis are
present and agree well with Volkov and Kogan’s predic-
tion in Eq. (10). The low Higgs oscillation in the blue
solid line on the left panel exhibits a clear low-frequency
peak at ω ≃ 1.31EF (i.e., T1 = 4.80/EF ), not far from
the position of the high-frequency peak for the high Higgs
oscillation marked by an arrow on the right panel. The
lower peaks in (c) are from coupling effect of the Higgs
oscillation to other excitations, and we have checked that
this coupling can be weakened by taking a relatively
larger driving amplitude A.
In addition, we show the results in the topological

phase in Fig. 8 with hi = 1.1EF where two Higgs os-
cillations are manifested in two significant oscillating be-
haviours of the order parameter. Different with the case
in the BCS state, it is now much easier to distinguish
two Higgs oscillations owing to their larger period con-
trast which may weaken the coupling between two Higgs
oscillations following the resonance theory. The Fourier
analysis in panels (b) and (c) of Fig. 8 further verifies
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the existence of two Higgs oscillations and shows an excel-
lent agreement with the Volkov and Kogan’s prediction
in Eq. (10).

In a word from Figs. 7 and 8, we can clearly distinguish
the high Higgs oscillation (solid lines) and the low Higgs
oscillation (dotted lines) by this periodic ramp strategy
in Eq. (13) using their own driving frequency calculated
from Volkov and Kogan’s prediction at fixed 1.5 periods.
The oscillation amplitude of low Higgs oscillation is al-
ways larger than that of the high Higgs oscillation in both
the BCS superfluid and the topological superfluid. We
use this strategy to further verify the existence of two
Higgs oscillations which can be determined by two en-
ergy branches in the quasi-particle spectrum. The large
period contrast in the topological state makes it much
easier to display these two Higgs oscillations than that in
the BCS state.

IV. CONCLUSIONS

In summary, we theoretically probe and study two
Higgs oscillations in a one-dimensional Raman-type spin-
orbit-coupled Fermi superfluid, by solving the time-

dependent BdG equations with three different ways to
tune the effective Zeeman field. In contrast to the single
Higgs oscillation in the conventional Fermi superfluid, we
find two distinct Higgs oscillations in both the BCS and
topological states when investigating numerically the os-
cillation of the order parameter. The Higgs oscillation
can be well explained from the excitation in two quasi-
particle energy spectrum, whose oscillation periods ex-
hibit a great agreement with previous Volkov and Ko-
gan’s theoretical prediction over a large range of the Zee-
man field except for crossing the phase transition point.
Further research could be undertaken to thoroughly ex-
plore the oscillation behaviours related to other physical
observables, such as density and spin polarization.
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