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Abstract. The advent of X-ray Free Electron Lasers (X-FELs) is providing new

opportunities for probing the ultrafast excited state dynamics using structurally

sensitive techniques. Herein we use excited state wavepacket dynamics of a

prototypical Cu(I)-phenanthroline complex, [Cu(dmp)2]
+ (dmp = 2,9-dimethyl-1,10-

phenanthroline) to investigate how femtosecond vibrational and electronic relaxation is

translated into transient X-ray absorption (XAS) and emission (XES). Using realistic

experimental parameters we also derive the anticipated signal strengths for these

transient features. This indicates that although recording a signal capturing the

strongest transient (i.e. excited state - ground state) changes will be possible for

all cases, only with X-ray Absorption Near-Edge Structure (XANES) and Extended

X-ray Absorption Fine Structure (EXAFS) will it be possible to resolve the fine details

associated with the wavepacket dynamics within realistic experimental acquisition

times.

1. Introduction

Probing ultrafast non-equilibrium dynamics became possible with the advent of ultrafast

time-resolved linear and non-linear optical spectroscopies [1, 2]. However, because

optical spectroscopy consists of transitions between delocalised valence states, the link

between the spectroscopic observable and structure is ambiguous for systems of more

than one nuclear degree of freedom, i.e. >2 atoms. To overcome this, the last decades

have witnessed a significant research effort aimed at exploiting short wavelength probe

pulses to achieve direct structural sensitivity in time-resolved pump-probe experiments.

This has led to the development of time-resolved diffraction methods using X-rays

[3, 4, 5] or electrons [6, 7] and core level spectroscopies using either X-rays [8, 9, 10, 11]

or electrons [12, 13]

For the implementation of time-resolved X-ray spectroscopy, the focus of this

present work, third generation light sources are most suited because of their wide

tuneability, stability and high photon flux. However, for normal operational modes,

the X-ray pulses from these light sources have a temporal width of 50-100 ps.

They are therefore unable to probe the initial ultrafast dynamics that can often

be critical in determining the outcome of non-equilibrium dynamics. While this

can, to a certain extent, be overcome using the laser-slicing scheme [14] which has

been used to demonstrate femtosecond X-ray spectroscopy [15, 16, 17, 18], these

experiments are extremely challenging due to low photon counts. With an X-ray

flux per pulse that is typically 10-11 orders of magnitude higher than the laser-slicing

scheme, X-ray Free electron lasers (X-FELs) [19] offer new perspectives for performing

ultrafast X-ray experiments. Indeed, femtosecond X-ray spectroscopy at X-FELs

has been demonstrated for photoexcited [Fe(bpy)3]
2+ [20, 21], [Fe(phen)2(NCS)2][22]

[Fe(C2O4)3]
3− [23] and Fe(CO)5 [24].

These studies have been used to shed light into the evolving electronic structure,

changing spin states and overall structural changes occurring after photoexcitation.

However, none of these studies have probed the nuclear wavepacket dynamics, which
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is commonly elucidated from femtosecond optical spectroscopy [25, 26]. Indeed

directly observing signatures of (coherent) vibrational dynamics, electronic relaxation,

intramolecular energy redistribution and vibrational cooling can shed important insight

into how a particular system dissipates the energy after photoexcitation. Consequently,

the absence of these dynamics in any time-resolved X-ray spectroscopic experiment

reported to date poses a number of questions: i) What is the sensitivity of X-

ray spectroscopic techniques to wavepacket dynamics? ii) What is the measurement

sensitivity and therefore number of photons required to successfully observe these

dynamics? iii) What is the best X-ray spectroscopic technique to observe these

dynamics?

To address these questions, in this paper we use first principles quantum dynamics

simulations [27, 28] of a prototypical Cu(I)-phenanthroline complex, [Cu(dmp)2]
+ (dmp

= 2,9-dimethyl-1,10-phenanthroline), initiated after photoexcitation into the optically

bright metal-to-ligand charge-transfer (MLCT) state to investigate how femtosecond

nuclear wavepacket dynamics are reflected in X-ray spectroscopic signals. This is

achieved by studying the Extended X-ray Absorption Fine Structure (EXAFS), pre-edge

X-ray Absorption Near-Edge Structure (XANES), Kα1,2, Kβ1,3 and Kβ2,5
(sometimes

referred to as valence-to-core) X-ray emission (XES) spectra. Subsequently, using

realistic experimental parameters we derive the anticipated signal strengths for these

transient (i.e. excited state - ground state) features. For the present complex, these

simulations show that while recording a signal capturing the strongest transient changes

is possible for each spectroscopic method, only for XANES and EXAFS will it be

possible to resolve the fine details associated with wavepacket dynamics within realistic

experimental acquisition times.

2. Theory and computational details

2.1. Quantum Dynamics of [Cu(dmp)2]
+

In this work we derive ultrafast X-ray spectroscopic signals from our recent quantum

dynamics of a prototypical Cu(I)-phenanthroline complex, [Cu(dmp)2]
+ [27, 28]. The

ultrafast dynamics of [Cu(dmp)2]
+ have previously been well characterised using optical

absorption and emission spectroscopies [29, 30, 31, 32, 33, 34]. The general picture

that emerges from these studies indicates that following photoexcitation, the complex

relaxes into the lowest singlet excited state in ∼100 fs. This is followed by a structural

distortion (flattening of the dihedral angle between the ligands, see Figure 1a), and

intersystem crossing (ISC) to the lowest triplet state T1 [34]. Of particular relevance to

the present work, Tahara and co-workers [32, 33, 34] have demonstrated the presence of

distinct wavepacket dynamics occurring in the excited state. These coherent vibrational

dynamics are dominated by a vibrational mode with frequency 125 cm−1 (period of ∼300

fs), which was assigned to a breathing mode of the complex that causes a symmetric

stretching of the four Cu-N bonds [33].
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Figure 1. (a) DFT (B3LYP)-optimized geometry of the ground state (left) and lowest

triplet state (right) of [Cu(dmp)2]
+. (b) Relative diabatic state populations of S1

(blue), S2 (green), S3 (red), T1 (black) and all the triplet (T1-T4) states (purple), for

1 ps following photoexcitation. Figure replotted from ref. [28]

The quantum dynamics used herein are presented in detail in refs [27, 28] and

were performed using the Heidelberg Multi Configuration Time Dependent Hartree

(MCTDH) package [35, 36]. The Hamiltonian was described using the vibronic coupling

model [37]. It included 8 nuclear degrees of freedom, the three lowest singlet states and

the four lowest triplet states [27]. The population kinetics during the first picosecond

after photoexcitation are shown in Figure 1b. After photoexcitation, which populates

the S3 state (red trace, Figure 1b), we observe rapid population decay into the S2 and

S1 states. Due to a degeneracy of these states with the lowest lying triplet states, there

is rapid intersystem crossing into the triplet manifold (purple line) and after 1 ps ∼80%

of the wavepacket is in the triplet states. Of this population, just under half is in the

T1 state. Further details of the quantum dynamics simulations used in this study can

be found in refs [27, 28]

As discussed below, much of this study focuses upon the dynamics along modes ν8
and ν21 in the T1 state. ν8 is the totally symmetric breathing mode responsible for the

contraction of the Cu-N distance in the excited state and ν21, is the mode associated

with the pseudo Jahn-Teller (PJT) distortion. Figure 2 shows the position and width of

the wavepacket in the T1 state along these modes. The position of the wavepacket along

ν8 shows an oscillation with a period of ∼300 fs in good agreement with the wavepacket

dynamics reported by Tahara et al. [55], The width only shows small oscillators, and

remains roughly constant throughout the first picosecond. In contrast, ν21 exhibits

no significant displacement from the Franck-Condon geometry. Instead, due to the

vibrational hot system, in these states the dynamics are reflected in the width of the

wavepacket, rather than position. Here, at early times we observe a large increase in the

width of the wavepacket along ν21. The gradual decrease in this width is highlighting
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Figure 2. Expectation value of the position, 〈q〉 (a), and of the width, 〈dq〉 (b), of

the wavepacket in the T1 state. Colors: red, ν8; blue, ν21.

the beginning of vibrational relaxation.

2.2. Simulations of the time-resolved spectra

The X-ray spectrum of the non-stationary wavepacket is calculated as the weighted sum

of the spectra calculated at each grid point used to describe the nuclear wavepacket.

The weighting corresponds to the magnitude of the nuclear wavepacket at that grid

point. For the EXAFS spectra, a sum over each electronic state was also performed,

thus achieving a description of the full nuclear wavepacket. All of the other spectra

(pre-edge XANES and XES) only considered the wavepacket, and thus the dynamics,

on the T1 state.

This is because, in contrast to EXAFS spectra, the valence electronic structure is

expected to influence the spectrum, meaning that for the excited states (i.e. S1, S2,

S3 and T2, T3, T4), one must simulate the core-level spectrum of each excited state.

Due to the two excitation steps, the transition dipole matrix elements between the

valence excited state and the final core-excited state cannot be computed within linear

response theories, such as Linear response-time-dependent density functional theory

(LR-TDDFT). However, since DFT is rigorously valid for the lowest state of a given
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spin, we are able to simulate the T1 state.

At present, the most rigorous approach of simulating the core-level spectra of

electronically excited states is Restricted Active Space Self Consistent Field (RASSCF)

method [38]. However, since these calculations are extremely computationally

intensive they are unrealistic to describe the time-evolution of a nuclear wavepacket.

Consequently, this approach is best applied to probe selected important points of the

dynamics, as recently demonstrated in the study of photoexcited Fe(CO)5 [24]. An

alternative approximate way to address the excited state is using a ∆SCF approach,

such as the maximum overlap method (MOM) [39, 40]. However, this requires that the

excited state is well describe by a single electron excitation, such as a HOMO-LUMO

transition. Unfortunately this is not the case for the present system. In addition, the

character of the excited states changes along the main reaction path making it impossible

to assign a single configuration to represent each of the excited states.

The EXAFS spectra at each grid point were calculated with the FEFF9 package [41]

using the path expansion multiple scattering approach and a self-consistent field (SCF)

potential. All scattering pathways shorter than 6 Å were included. The XAS and XES

spectra were computed within the one-electron approach [42, 43] as implemented in

the ORCA [44] quantum chemistry package. Computations used the BP86 functional

[45, 46] and the def2-TZVP basis set [47, 48]. All of the calculations included spin

orbit coupling (SOC), for which the SOC operator is approximated by the spin-orbit

mean field method (SOMF) [49]. A Lorentzian lifetime broadening with full-width half

maximum (FWHM) of 1.89 eV was applied to the pre-edge XANES, while a Lorentzian

broadening with FWHM of 2.5 eV was used for the XES spectra.

Finally, for both the XAS and XES spectra, the relative energies of the calculated

transition are generally well reproduced compared to experiment. However, it is well

documented that the absolute transition energies are usually in poor agreement [50].

This failure stems from the approximate exchange description within the exchange-

correlation functionals and is associated with the self interaction error (SIE) [51]. This

is usually corrected by applying a constant shift to the spectrum a posteriori [52, 53].

In this case, as the spectra presented herein are not directly compared to experimental

data, these shifts have not been included.

3. Results

In the following sections, we present the simulations of the EXAFS, pre-edge XANES

and XES spectra. Then, using the calculated signal magnitudes, we derive the

anticipated feasibility of these techniques to probe the wavepacket dynamics.

3.1. EXAFS

The ground state EXAFS spectrum of [Cu(dmp)2]
+ [54] compared to the spectrum

simulated using the ground state wavepacket is shown in Figure S1. Although the
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Figure 3. The simulated transient Cu K-edge EXAFS spectrum, ∆χ, of [Cu(dmp)2]
+

for the first 500 fs after photoexcitation. In each case the spectra are calculated using

the nuclear wavepacket dynamics along one degree of freedom; ν8 (a), ν19 (b), ν21 (c),

ν25 (d).

simulated spectrum is slightly more structured than the experimental spectrum, fairly

good agreement between the two is observed with the main features, especially those

at low k, well captured. As previously reported [54], this EXAFS spectrum is largely

dependent on the Cu-N distance, which is 2.09 Å in the ground state.

Figure 3 shows the transient EXAFS spectrum for the first 500 fs of the photoexcited

dynamics projected along 4 (ν8, ν19, ν21, ν25) of the 8 nuclear degrees of freedom included

in the model Hamiltonian. This shows that two modes, ν8 and ν21, would be expected

to dominate the transient features. The other two modes, ν19, ν25 have a weak signal

as they are not strongly displaced from their ground state configuration during the

dynamics [28]. Of the two active modes, ν8 is the totally symmetric breathing mode

responsible for the contraction of the Cu-N distance in the excited state. This shows

an oscillation, caused by a phase shift in the transient EXAFS spectrum, with a period

of ∼300 fs in good agreement with the wavepacket dynamics reported by Tahara et al.

[55]. In contrast ν21, which is the mode associated with the pseudo Jahn-Teller (PJT)

distortion, exhibits a strong transient signal that is out of phase with the features

occurring in the ground state EXAFS spectrum (Figure S1), pointing to a damping of

the EXAFS features in the excited state. It occurs because the excited state potential

along this mode is flatter than the ground state, leading to a nuclear wavepacket that is

more spread in the excited state. This additional width has the same dampening effect

on the EXAFS spectrum as a Debye-Waller term [56].
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Figure 4. The simulated transient Cu K-edge EXAFS spectrum of [Cu(dmp)2]
+ for

the first 500 fs after photoexcitation calculated using the nuclear wavepacket dynamics

occurring in the 2D nuclear coordinate space of ν8 and ν21. (a) The spectrum for the full

nuclear wavepacket (b) The spectrum for the wavepacket dynamics in only the lowest

triplet (T1) state. The right hand side shows snapshots of the nuclear wavepacket in

the T1 state along the two modes at 20, 60 and 100 fs.

Figure 4a shows the simulated transient EXAFS spectrum using the nuclear

wavepacket dynamics projected in the 2D nuclear coordinate space of ν8 and ν21. This

shows a transient that has its main features out of phase with the ground state spectrum,

but which is superimposed with the 300 fs oscillation associated with the wavepacket

motion along ν8. Due to the simplicity of the first coordination sphere, which is the

dominant contribution to the EXAFS spectrum, this general structure is repeated at

larger photoelectron energies (k), meaning that the experimental spectrum only needs

to be recorded to ∼5 Å−1 (∼9080 eV, ∼100 eV above the absorption edge). However,

it is noted that in more complicated systems, with a less symmetric first coordination

shell around the absorbing atom, different dynamics may well be reflect at different

photoelectron energies, especially in the presence of heavier elements that scatter at

larger k [57, 58].

As discussed in section 2.2, simulations of the EXAFS spectrum for the different

excited states requires only the nuclear geometry. But this is not the case for the

pre-edge region of the XAS spectrum and for the XES spectrum. For these cases, we

investigate the ultrafast dynamics on the T1 state only. Consequently to assess the

effect of this approximation, Figure 4b shows the transient EXAFS spectrum using
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nuclear wavepacket in the 2D nuclear coordinate space of ν8 and ν21, for which only the

wavepacket on the T1 has been considered. Importantly, the same wavepacket dynamics

are observed, although the signal is a factor of ∼5 weaker. This is due to the smaller

(<30%) population (see Figure 1) of the T1 state.

3.2. Pre-edge X-ray Absorption

Figure 5a shows the Cu K-edge pre-edge XANES spectrum in the ground and T1 states

(500 fs after photoexcitation) calculated using the 2D nuclear coordinate space of ν8
and ν21. The transient spectra simulated at every time-delay (τ) of 20 fs between

τ=0 to 500 fs are shown in Figure S2. Ideally, one would wish to simulate the entire

XANES spectrum. However, as a result of the difficulties associated with a quantitative

description of these transient features [59], a quantitative agreement between the

experimental spectrum recorded at a time-delay of 50 ps and the corresponding

simulations [54] could not be achieved. Consequently, we focus upon the pre-edge region

of the spectrum.
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Figure 5. The simulated Cu K-edge pre-edge XANES spectrum for the dynamics

in the lowest triplet T1 state. (a) The ground state spectrum (scaled by 0.25)

and transient spectrum of the wavepacket in the lowest triplet state 500 fs after

photoexcitation (b) The transient changes changes in the lowest triplet state calculated

using T1(τ fs)-T1(20 fs) (c) Time traces of (b) at 8745.5 eV and 8753.5 eV.

As reported in ref. [54], the transient spectrum (Figure 5a) shows the 2 main

features, a weak positive feature 8747 eV that corresponds to a 1s→3d transition, and a

strong negative feature that corresponds to a loss of intensity of the 1s-4p transition in

the ground state spectrum. This latter feature is due to the blue shift of the absorption

edge due to the oxidation state change of the metal centre upon population of the

metal-to-ligand charge transfer state.

The spectral changes in the transient pre-edge XANES spectra are dominated
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by the oxidation shift of the absorption edge and the change of the population of

the T1 (see Figure S2). As a consequence they do not exhibit any distinct changes

associated with the wavepacket dynamics. To remove these two effects, Figure 5b

shows the transient changes occurring in the T1 state only, i.e. T1(τ fs)-T1(20 fs).

Time traces at specific energies are shown in Figure 5c. The time-trace at 8753.5 eV,

corresponding to just below the 1s-4p transition in the ground state spectrum, captures

the oscillatory dynamics observed in the EXAFS spectra and exhibits a signal change

∼1%. Importantly, as the main features in the transient spectrum and the vibrational

dynamics are unrelated, the energy region most sensitive to the wavepacket dynamics,

in this case 8753.5 eV, does not necessarily correspond to the largest changes in the

transient spectrum. Given the energy range considered here, we also cannot rule out

these changes also occurring at higher energies in the XANES region of the spectrum,

these will be significantly smaller than the transient changes associated with the 1s-4p

transition and much closer to those of the EXAFS region.

3.3. X-ray emission

Figure 6a shows the Kα1,2 XES spectra in the ground and 500 fs T1 transient calculated

using the 2D nuclear coordinate space. The transient spectra calculated every 20 fs

between τ=0 to 500 fs are shown in Figure S3. The changes are small (∼10%) and

dominated by a shift in the emission energy associated with the change of spin state

compared to the ground state [60]. This dominance of changing spin state is not

surprising, as this core to core (2p→1s) transition is not very sensitive to small changes

in the molecular structure or valence electronic structure. Figures 6b and c again show

the transient changes in the T1 state and time traces at 7825 eV and 7844 eV. In

this case, we do not observe any variations that can be associated with the nuclear

wavepacket dynamics.

Figure 7 shows the corresponding plots for the Kβ1,3 XES spectra. As this concerns

transitions from 3p→1s, it is likely to be more sensitive to the structural and valence

electronic structural changes, especially via the 3p-3d exchange integral [61]. Indeed,

while the transient spectra, shown in Figure 7a is again dominated by an edge shift

(The transient spectra calculated every 20 fs between τ=0 to 500 fs are shown in Figure

S4), Figures 7b and d reveal weak transient changes in the T1 state and the 300 fs

oscillatory period of the Cu-N totally symmetry stretch is observed. The magnitude of

the changes associated with the wavepacket dynamics correspond to a ∼0.7% spectral

change compared to the ground state spectrum, meaning that it has a similar magnitude

change as the transient EXAFS signal.

Finally, Figure 8 shows the Kβ2,5 XES spectra associated with the femtosecond

dynamics in the T1 state. In contrast to the Kα1,2 and Kβ1,3 XES the stronger effect of

the wavepacket dynamics on the transient signal can be clearly observed in Figure 8b and

c. This corresponds to a spectral change of ∼5% compared to the ground state spectrum

and is about an order of magnitude larger than found for EXAFS, Kα1,2 and Kβ1,3
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Figure 6. The simulated Cu Kα1,2 XES spectrum for the dynamics in the lowest

triplet T1 state. (a) The ground state spectrum (scaled by 0.25) and transient spectrum

of the wavepacket in the lowest triplet state 500 fs after photoexcitation (b) The

transient changes changes in the lowest triplet state calculated using T1(τ fs)-T1(20

fs) (c) Time traces of (b) at 7825 eV and 7844 eV.
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Figure 7. The simulated Cu Kβ1,3 XES spectrum for the dynamics in the lowest triplet

T1 state. (a) The ground state spectrum (scaled by 0.25) and transient spectrum of

the wavepacket in the lowest triplet state 500 fs after photoexcitation (b) The transient

changes changes in the lowest triplet state calculated using T1(τ fs)-T1(20 fs) (c) Time

traces of (b) at 8677 eV and 8681 eV.

XES. This highlights the distinct advantage and strong signals associated with directly

probing the occupied valence density of states. However, the obvious disadvantage of

this technique is, as discussed in the next section, the low cross sections, and therefore

photon yields, associated with these transitions.
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Figure 8. The simulated Cu Kβ2,5 XES spectrum for the dynamics in the lowest triplet

T1 state. (a) The ground state spectrum (scaled by 0.25) and transient spectrum of

the wavepacket in the lowest triplet state 500 fs after photoexcitation (b) The transient

changes changes in the lowest triplet state calculated using T1(τ fs)-T1(20 fs) (c) Time

traces of (b) at 8743 eV and 8747 eV.

3.4. Numerical Examples: Feasibility of Probing Wavepacket Dynamics

In the previous sections we have simulated the femtosecond EXAFS, pre-edge XANES

and Kα1,2, Kβ1,3 and Kβ2,5 XES spectra of photoexcited [Cu(dmp)2]
+ using the

nuclear wavepacket dynamics reported in refs [27, 28]. These have demonstrated that

some of the signals (pre-edge XANES, EXAFS, Kβ1,3 and Kβ2,5) bear characteristics

related to the wavepacket dynamics. However, the most crucial aspect of this work,

regarding femtosecond laser-pump X-ray-probe experiments being used to investigate

such dynamics is the X-ray photon flux required to achieve sufficient sensitivity to resolve

these small spectral changes.

Many X-ray spectroscopic measurements are performed in fluorescence yield mode.

For spectroscopies based upon the detection of scattered (fluorescent) photons, the

spectra are formally represented within second order perturbation theory using the

Kramers-Heisenberg equation:

F (Ω, ω) =
∑

f

∑

n

Emission
︷ ︸︸ ︷

〈f |Ĥint|n〉2
Absorption
︷ ︸︸ ︷

〈n|Ĥint|i〉2

(Ei − En + h̄Ω)2 +
Γ2
n

4

× Γf/2π

(Ei − Ef + h̄Ω− h̄ω)2 + Γ2
f/4

. (1)

where h̄Ω and h̄ω are the incident and emitted photons, respectively and Ei, En,

Ef are the energies of the initial, intermediate and final states. Γn and Γf are the

lifetime broadening associated with the intermediate and final states. Here, we assume

a non-coherent process, in which the absorption matrix elements from initial state i to

intermediate state n, mediated by the interaction Hamiltonian Ĥi, are weighted by the
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emission matrix elements [11, 62].

For measurements of the XAS spectra, performed in total fluorescence yield (TFY)

mode, the cross section of the absorption matrix element (〈n|Ĥint|i〉) at a particular X-

ray incident energy is integrated over all of the emission matrix elements (〈f |Ĥint|n〉).
Consequently, as discrimination of the energy of the emitted photons is not required,

one can use a point detector, such as a silicon photodiode [20]. These can be placed

close (∼15 mm) to the sample, and can therefore achieve a larger solid angle. Using the

relation:

θ =
πr2APD

4πR2
(2)

and assuming that the detector’s active radius, rAPD=7mm the solid angle (θ) is ∼5%.

Given the efficiency of the fluorescence process at Cu K-edge is ∼45% [63] and assuming

a detector with a quantum efficiency of∼0.8 [64, 65], we can combine these 3 components

to yield a loss factor (of the photons in vs the photons out) of 2×10−2.

In contrast, detection of the X-ray emission elements is proportional to the cross

section of the absorption matrix element (〈n|Ĥint|i〉) multiplied by the cross section

of the emission line of interest (〈f |Ĥint|n〉), i.e. Kα1,2, Kβ1,3. Consequently, the

photon yield for each spectrum will be significantly lower making it harder to achieve

a large signal to noise ratio (SNR) for these photon hungry techniques. In addition,

for these experiments the X-ray emission spectrometer is further away from the sample

causing additional losses and a smaller solid angle [60, 66]. For each emission line

of interest, the fluorescence efficiency are Cu Kα1,2=0.3, Cu Kβ1,3-edge=0.03 and Cu

Kβ2,5-edge=0.00001 [63, 66]. Consequently given a reduced solid angle arising from the

larger sample detector distance of θ ∼ 0.04% (∼5 millisteradians) [66, 67], the X-ray

attenuation in air due to the larger distance from the detector [68], which is assumed

to be 0.3, the total losses are Cu Kα1,2-edge=3.0×10−5, Cu Kβ1,3-edge= 3.0×10−6 and

Cu Kβ2,5-edge = 9.6×10−9.

Assuming a 100 µm thick jet of 25 mM solution, the absorbed fraction of photons,

according to the Beer-Lambert law is ∼2%. It is stressed that this approximation is only

strictly valid for solvents containing light elements (e.g., water, acetonitrile, hexane) and

may change for heavier solvents, like CCl4 [65]. With these conditions in mind, given

1010 photons per pulse achievable for the monochromatic mode of the LCLS [69], the

number of useful photons per pulse detected (see Table 1), i.e. once the loss factors have

been included, is: 4×106 (TFY), 6×103 (Cu Kα1,2), 6.0×102 (Cu Kβ1,3) and 2.0×100

(Cu Kβ2,5).

In an experiment, provided that most of the electronic noise is suppressed, the

detection sensitivity can be close to the shot-noise limit. This inherent noise is given as√
N , where N is the signal, i.e. the number of photons detected. The signal to noise

ratio is therefore given SNR=N/
√
N . Using these boundary conditions, Table 1 shows

the number of X-ray photons, and consequently of X-ray pulses, required to measure

with a SNR=10 for i) a transient X-ray spectroscopic signal and ii) the wavepacket

dynamics. The number of X-ray photons (INpho) required to measure a given signal
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Photons Out ∆χ INpho ∆χ INpho

Per Pulse (Signal) (Nshots) (WP) (Nshots)

TFY XANES 4.0×106 0.60† 3.0×104 (1) 0.01† 1×108 (25)

TFY EXAFS 4.0×106 0.01 1.0×108 (25) 0.003 1×109 (250)

Kα1,2 6.0×103 0.10 1.0×106 (170) - -

Kβ1,3 6.0×102 0.20 2.5×105 (425) 0.007 2.0×108 (3.5×105)

Kβ2,5 2.0×100 0.40 6.3×104 (3.2×104) 0.050 4×106 (2.0×106)

Table 1. The number of X-ray photons (INpho) and the number (Nshots) of X-ray

pulses (1010 photons per pulse ) required to observe the transient ∆χ associated with

a normal pump-probe signal (signal) and to directly observe the wavepacket dynamics

(WP). The photolysis yield f is assumed to be 10% throughout. †: This is only valid

for the 1s-4p transition in the XANES region. Other changes are smaller and the pre-

edge, being dipole forbidden 1s-3d transitions is significantly smaller and much closer

to the spectral changes observed in the EXAFS region of the spectrum.

scales as [65]:

INpho ∝
[
SNR

f ·∆χ

]2

(3)

where ∆χ is the signal change and f is the photolysis yield assumed to be 10%

throughout. Using I0=1010 as the incoming X-ray intensity (number of photons per

pulse), the loss factor (L) and the fraction of absorbed photons (µA), we can use Equation

3 to estimate the number of X-ray pulses (Nshots) required with:

Nshots =
INpho

I0 · µA · L (4)

Using Equations 3 and 4, Table 1 shows that to record a transient signal pump-

probe using TFY XANES or TFY EXAFS requires ∼ 3.0×104 and ∼1.0×108 photons,

respectively. Given that the number of detected photons/pulse detected is 4×106, this

makes it plausible for each data point of TFY XANES to be recorded with a SNR=10

within a single X-FEL pulse. TFY EXAFS requires ∼25 X-ray pulses, however this still

means that each data point can be collected with <1 s of acquisition time (assuming a

100 Hz repetition rate). In contrast, due to smaller ∆χ associated with resolving the

spectral fluctuations of wavepacket dynamics a larger number of photons is required.

Indeed, to achieve a SNR=10, for TFY XANES and TFY EXAFS each data point would

be expected to require ∼25 and ∼250 X-ray pulses, respectively. Importantly, this is

still achievable within a reasonable data acquisition time (<4 s per data point).

Table 1 also shows the number of photons required to achieve a transient signal,

∆χ for Kα1,2 , Kβ1,3 and Kβ2,5 XES. While these photon hungry techniques are difficult

to implement in a time-resolved manner at 3rd generation synchrotrons [60, 67], the

increased photon flux associated with the X-FELs makes these feasible in the sub-ps

regime. Indeed, for the hardest case, Kβ2,5 XES, it is expected that ∼3.2×104 X-ray

pulses per data point is required. Given the repetition rate of X-FELs (∼100 Hz), this
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would require acquisition times of∼10-20 mins per data point. For these experiments the

potentially high X-ray fluency and repetition rate of the European X-FEL could make

such measurements significantly easier [70]. However, Table 1 shows that although

measuring the transient signal is possible even for Kβ2,5 XES, the number of X-ray

pulses, ∼105−6 required to achieve sufficient SNR to observe the wavepacket dynamics

with these spectroscopies makes them completely unfeasible (∼6 hours per data point

at 100 Hz).

4. Discussions and Conclusions

Ultrafast time-resolved linear and non-linear optical spectroscopies have a strong history

of providing important insight into photoexcited dynamics within the femtosecond

regime. Owing to the development of the X-FELs, these dynamics can now also be

observed in the short-wavelength regime and provide direct snapshots of interatomic

distances and changes in charge distribution of molecules. These techniques hold great

promise of yielding important new insight into fundamental dynamical processes such

as vibrational excitation, bond formation and breaking, relaxation, and time-dependent

solvation processes.

In this paper we have used wavepacket dynamics simulations to predict femtosecond

EXAFS, pre-edge XANES, Kα1,2, Kα1,3 and Kβ2,5 XES spectra. These have

demonstrated that for the present system, femtosecond pre-edge XANES, EXAFS,

Kβ1,3 and Kβ2,5 XES spectra all reveal information about the wavepacket dynamics.

However using realistic experimental parameters, while it will be possible to record a

signal capturing the strongest transient changes for all of the spectroscopies studies

herein, we have demonstrated that the wavepacket dynamics can only be observed

experimentally within realistic acquisition times for XANES and EXAFS, as the small

cross section associated with Kβ1,3 and Kβ2,5 XES makes the number of X-ray pulses

required unfeasible.

In the present study we have not considered L-edge spectroscopy. However recent

work has demonstrated that it is possible to record high quality L-edge spectra of dilute

3d transition metals using a high transmission zone-plate spectrometer implemented

at the Linac Coherent Light Source (LCLS). [71] Although the L-edges have a smaller

fluorescence yield (∼10%), these transitions (2p-3d) could be a interesting alternative

approach that should also be explored.

Importantly, in terms of a general feasibility, the transient signals for the present

case [Cu(dmp)2]
+ are dominated by an oxidation shift associated with the charge

transfer of an electron from the metal to the ligands upon excitation. As this has

no correspondence with the wavepacket dynamics, the changes associated with these

vibrational coherences will be a small change on top of the large underlying transient of

the edge shift. This means that resolving the wavepacket dynamics for the present

system represents a challenging case. Given that it remains possible, this holds

significant promise for future experiments in this area. It should be stressed that as the



Probing Wavepacket Dynamics using Ultrafast X-ray Spectroscopy 16

main features in the transient spectrum and the vibrational dynamics are unrelated, the

energy region most sensitive to the wavepacket dynamics does not necessarily correspond

to the largest changes in the transient spectrum making it important to record the whole

spectrum at each time-delay and not just a time scan at one particular energy. For other

cases, such as [Fe(bpy)3]
2+ [15, 72, 73, 60, 74] determining the wavepacket dynamics

could be expected to be easier. In this case, the transient spectrum is not dominated

by a feature unrelated to the vibrational coherences. Instead, here the wavepacket

dynamics reported by Chergui and co-workers [75] occurs along this Fe-N coordinate,

which is also responsible for the principal transient changes in the Fe K-edge XAS

spectrum. In this case the wavepacket dynamics would therefore be expected to yield

larger changes making observing these dynamics easier. This highlights the strong

emphasis that should be placed upon fully understanding the dominant contributions

to a transient signal at longer times (i.e. using a 3rd generation synchrotrons) before

determining if a particular experiment is possible.
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