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Orally administered probiotics encounter various challenges on their journey through the

mouth, stomach, intestine and colon. The health benefits of probiotics are diminished

mainly due to the substantial reduction of viable probiotic bacteria under the harsh

conditions in the gastrointestinal tract and the colonization resistance caused by

commensal bacteria. In this review, we illustrate the factors affecting probiotic viability

and their mucoadhesive properties through their journey in the gastrointestinal tract,

including a discussion on various mucosadhesion-related proteins on the probiotic cell

surface which facilitate colonization.
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INTRODUCTION

Probiotics are defined by the FAO/WHO as “live microorganisms that, when administered in
adequate amounts, confer a health benefit on the host” (Hill et al., 2014). Probiotics are gaining

increasing acceptance and are now commonly used as consumer food and food supplemental

products. The global market for probiotics is increasing at a compound annual growth rate of

approximately 13%. Between 2010 and 2014, the global market capacity increased from US$ 25.4

billion to US$ 36.9 billion.

The effects of probiotics in disease prevention and treatment have been frequently studied. An

increasing body of evidence suggests that probiotics play an active role in alleviating a variety of
conditions including chronic diseases (Leung et al., 2016), infectious diseases (Shen et al., 2017),

autoimmune diseases (Esmaeili et al., 2017), and pediatric diseases (Guo et al., 2019). Clinically,

therapies to modulate the gut microbiota include oral administration of probiotics and fecal

microbial transplantation (FMT). FMT has been proved to be an effective treatment for patients

with Clostridium difficile infections (CDI), inflammatory bowel disease (IBD), and recurrent hepatic

encephalopathy, but the applications of FMT are relatively limited compared with oral
administration of probiotics (Britton and Young, 2014; Browne and Kelly, 2017; Bajaj et al.,

2018). Moreover, FMT remains controversial due to the risk of the transmission of drug-resistant

microorganisms which could lead to adverse infectious events (DeFilipp et al., 2019).
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Compared to FMT, oral administration of probiotics has a

wider range of applications and is considerably more convenient

and safer. However, the viability of orally administrated

probiotics is greatly challenged by harsh conditions including

gastric acid, bile salts, and degrading enzymes, before they arrive

at their functional site in the gastrointestinal tract (GIT) (Yao
et al., 2020). Furthermore, viable probiotics reaching the colon

must also manage to colonize the intestinal mucosa in

competition with the indigenous bacteria (Zmora et al., 2018).

Interestingly, several reports demonstrated that many of the

effects obtained from viable cells of probiotics can also be

realized from the dead probiotics (Adams, 2010; Li et al., 2016;
Warda et al., 2019; Warda et al., 2020). Since this review mainly

concentrate on the adhesion-associated surface molecules, the

detailed part of dead probiotics and their function will not be

described here. Although the harsh conditions in the upper GIT

have been discussed in previous publications (Charteris et al.,

1998; Saarela et al., 2000; Yao et al., 2020), the purpose of this
review is to comprehensively illustrate the journey of probiotics

from oral administration to the GIT followed by colonization of

the gut, with a particular focus on the adhesion process of

probiotics on the mucosa or intestinal epithelial cells.

TRANSIT OF PROBIOTICS THROUGH THE
GASTROINTESTINAL TRACT

After oral administration, probiotics pass through the GIT, from

the mouth, through the stomach, to the small intestine and

colon. In this section, a range of physicochemical factors (Figure

1), which may impact the viability of probiotics, will
be described.

Mouth
When probiotics are ingested, they will first be exposed to saliva

in the mouth. Saliva is a clear and mildly acidic, mucoserous,
exocrine secretion, consist ing of immunologic and

nonimmunologic components which protect teeth and mucosal

surfaces (Humphrey and Williamson, 2001). The immunologic

contents include secretory Immunoglobulin A (IgA),

Immunoglobulin G (IgG), and Immunoglobulin M (IgM). The

non-immunologic contents include proteins, mucins, peptides,

and enzymes. Saliva has an antibacterial effect, however, it is
selective and can support the growth of non-cariogenic

microflora (Humphrey and Williamson, 2001). In vitro studies

on multiple Lactobacillus, Pediococcus, and Bifidobacteria strains

have shown no significant loss of cell count when exposed to

saliva, compared with the control group (Haukioja et al., 2006;

Garcia-Ruiz et al., 2014). While the transit of probiotics through
the mouth and their exposure to saliva are transient after oral

administration, the influence of saliva on the survival rates of

probiotics seems to be minimal.

Stomach
After passing through the esophagus, the probiotics arrive in the

stomach where they are exposed to the acidic gastric fluid. The

acidic environment is extremely lethal to most bacteria,
especially to bacteria non-resistant to acid, which can cause a

reduction of bacterial cytoplasmic pH. The influx of hydrogen

ions (H+) leads to a decrease in activity of glycolytic enzymes,

which further affects the F1F0-ATPase proton pumps. The

reduction of F1F0-ATPase proton pump activity in low pH is

responsible for the survival of probiotics (Yao et al., 2020). The
transit through the stomach takes between 5 min and 2 h and

prolonged exposure to the acidic environment is a huge

FIGURE 1 | Various factors affect the viability of probiotics during gastrointestinal transit, including gastric acid, digestive enzymes, bile acids in the upper

gastrointestinal tract, and colonization resistance caused by commensal bacteria in the colon.
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challenge for the probiotics (Cook et al., 2012; Yao et al., 2020).

In addition, other adverse conditions present in the stomach

including ionic strength, enzyme activity (pepsin), and

mechanical churning have been shown to have an impact on

the viability of probiotics (Sarao and Arora, 2017; Surono et al.,

2018). For example, the viable cells of Bifidobacterium longum
and Bifidobacterium breve became undetectable in simulated

gastric juice within an hour (Cook et al., 2012).

Small Intestine
After passing through the pylorus, the probiotic bacteria will

reach the small intestine where abundant pancreatic juice and

bile are present. Under the neutralizing effect of intestinal fluid,
the pH in the small intestine is about 6.0–7.0, much milder than

gastric fluid (Cook et al., 2012). However, bile acids and digestive

enzymes (including lipases, proteases, and amylases) can also

impact probiotic viability through cell membrane disruption and

DNA damage (Hamner et al., 2013; Yao et al., 2018; Yao et al.,

2020). In vitro studies have demonstrated that the viability of

Lactobacillus salivarius Li01 and Pediococcus pentosaceus Li05 is
reduced in simulated intestinal fluid (Yao et al., 2017; Yao et al.,

2018). To enhance the tolerance of probiotics to gastric juice and

bile in the GIT, the probiotics can be coated with a protective

shell, a technique known as microencapsulation. In recent years,

great progress has been made in increasing the survival rate and

guaranteeing that sufficient number of viable probiotics reach the
colon via microencapsulation-based methods (Martin et al.,

2015; Yao et al., 2017; Yao et al., 2018).

Colon
The colon has the largest bacterial density (1011 to 1012 CFU/ml)

where probiotics will encounter colonization resistance from

commensal bacteria (O’Hara and Shanahan, 2006; Zmora

et al., 2018). Probiotics must compete with the host microbiota
for nutrients and adhesion sites to be able to colonize the colonic

mucosa and proliferate (Zmora et al., 2018; Yao et al., 2020). Due

to the colonization resistance, most probiotics are excreted out of

the colon with stool after oral administration and shortly after

consumption ceases so that the probiotics cannot be detected

(Sierra et al., 2010; Wang et al., 2015). The mechanisms which
engender the colonization resistance are illustrated in detailed in

the section below.

THE GUT MICROBIOTA AND
COLONIZATION RESISTANCE

The human body contains a huge microbiome consisting of

microorganisms including bacteria, fungi, archaea, viruses, and
protozoa (Shukla et al., 2017). According to previous studies, each

individual contains about 10–100 trillion symbiotic microbial cells,

most of which are bacteria residing in the intestines (Gilbert et al.,

2018). The gut microbiota plays a symbiotic role during the

development of the human body and participates in the process

of maintaining health and resisting diseases (Fan and Pedersen,

2020). In this section, the composition of gut microbiota and the
mechanism of colonization resistance will be discussed.

Composition of the Gut Microbiota
The human gut microbiota consists of more than 1,000 phylotypes

(Gilbert et al., 2018). In healthy individuals, most phylotypes of
bacteria can be roughly classified into Bacteroidetes, Firmicutes,

Actinobacteria, Proteobacteria, and Verrucomicrobia (Lozupone

et al., 2012). Among them, Bacteroidetes and Firmicutes usually

dominate the microbiota whereas Actinobacteria, Proteobacteria,

and Verrucomicrobia are usually minor constituents. The

concentration of microorganisms in the stomach and proximal

small intestine is less than 104 CFU/ml due to the harsh conditions
in the GIT. Majorities of microorganisms inhabit in distal small

intestine and colon, where the bacterial density ranges from 1011 to

1012 CFU/ml (O’Hara and Shanahan, 2006). The distribution of

bacteria in the intestinal mucosa has certain ecological

characteristics. Along the longitudinal axis of the intestine and

colon, the oxygen concentration gradually decreases. More
anaerobes such as Clostridium and Faecalibacterium reside in the

lower GIT while the upper gastrointestinal tract is enriched in

Gram-positive cocci (eg, Gemella, Streptococcus) (Engevik and

Versalovic, 2019). Along the horizontal axis of the intestine and

colon, the antimicrobial molecules and oxygen secreted from the

epithelium cells accumulate at high local concentrations within the

inner mucus layer, where few microbial inhabitants can colonize
(Donaldson et al., 2016). The mucus layer in the colon has two

different structures: a loose outer layer and a tight inner layer. The

former is colonized by Bacteroides acidifaciens, Bacteroides fragilis,

Bifidobacteriaceae, and Akkermansia muciniphila which can

degrade mucin. The latter is penetrated at low density by a more

restricted community including Bacteroides fragilis and
Acinetobacter spp. (Donaldson et al., 2016).

The composition of the gut microbiota is not static. Instead, it

is highly variable and its normal variation in diversity is affected

by factors including age, genetics, environment, and diet

(Lozupone et al., 2012; David et al., 2014; Goodrich et al.,

2014; Rothschild et al., 2018). In the early years of life,
especially during the first three years, the composition and

function of microbes colonized in the intestine are

continuously changed until a relatively stable microbial

community is established. Previous studies have shown that

the microbiota composition of twins and mother-daughter

pairs is more similar than unrelated individuals, suggesting

that genetics may play a role in the microbiota composition
(Dicksved et al., 2008; Turnbaugh et al., 2009). In contrast, a

recent study further showed that the microbiota composition of

people living together without kinship had many significant

similarities, demonstrating that host genetics had a minor role

in determining microbiota composition in this case (Rothschild

et al., 2018). The microbial composition is considerably different
between people in different geographic locations and with

different diets, indicating that the gut microbiome is

significantly associated with diet and environment (Rothschild

et al., 2018; Partula et al., 2019; Scepanovic et al., 2019).

Colonization Resistance
The normal gut microbiota forms a stable bacterial community
that resists the invasion of foreign bacteria and the expansion of
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pathogens. This phenomenon, which was discovered in 1950s, is

known as “colonization resistance” (Bohnhoff et al., 1954; Freter,

1955). The mechanisms of colonization resistance can be divided

into two broad categories: direct and indirect mechanisms. Among

both categories, direct colonization resistance refers to restriction

of exogenous microbial colonization strictly through factors
associated with the gut microbiota, independently of any

interaction with the host, and includes inhibition and

competition for resources (Pickard et al., 2017). Indirect

colonization resistance is dependent on host-derived factors,

including production of antimicrobial peptides, maintenance of

the epithelial barrier, and modulation of bile acid concentrations
through interaction with host (Gibson et al., 2017). For example,

bacteriocins are proteinaceous compounds which are synthesized

in the ribosomes of both Gram-positive or Gram-negative bacteria

and are able to inhibit closely related species or species that utilize

similar nutrients or niches (Klaenhammer, 1993; Gibson et al.,

2017). It has been found that bacteriocin-producing Enterococcus
faecalis can inhibit the colonization of vancomycin-resistant

enterococci (VRE) (Kommineni et al., 2015).

Probiotics are adversely affected by the colonization resistance

exerted by the commensal gut microbiota. Some studies

demonstrate that the probiotics which human beings ingest are

globally shed in stool in the period confined to the time of

administration and shortly thereafter (Sierra et al., 2010; Lahti
et al., 2013; Wang et al., 2015). Related experiments further

demonstrate that probiotics cannot change intestinal microbiota

community structure or diversity (Kristensen et al., 2016; Bazanella

et al., 2017; Laursen et al., 2017). Colonization resistance may be

one of the important reasons for the limitation of the long-term

effects of probiotics. Zmora et al. administered a combination
consisting of 11 probiotic strains to adult, male specific pathogen-

free (SPF) mice and germ-free (GF) mice. Stool samples were

analyzed at indicated time points, followed by a dissection of the GI

tract on day 28 after supplementation. Significantly higher viable

counts of bacteria were observed in GF mice compared to that in

SPF groups. An explanation for the results could be that the

probiotics encounter a higher degree of mucosal colonization
resistance in the SPF mice compared to in the GF mice (Zmora

et al., 2018). Another interesting study indicated that the efficacy of

probiotic colonization varies among different persons. Volunteers

were divided into two groups, “permissive” and “resistant.” People

in the permissive group had a significant increase in probiotic

strains in their intestinal mucus membrane, whereas probiotics
were not detected in the intestine of people in the “resistant”

(Zmora et al., 2018).

PROBIOTIC COLONIZATION OF THE
INTESTINAL MUCOSA

Successful colonization of the gastrointestinal tract is a key factor

for probiotics to be able to exert a sufficient host-interaction to

confer health benefits (Alp and Kuleasan, 2019). Mucosal

adhesion is considered a critical step in probiotic colonization;
however, the mechanisms of adhesion still require exploring. In

this section, we discuss the composition of the intestinal mucus

layer and specific proteins related to probiotic adhesion.

Intestinal Mucosa and Mucus Layer
The intestinal mucosa is composed of epithelial layer, lamina

propria, and muscularis mucosa. Small intestinal villi, which are

formed by the epithelium and lamina propria protruding into the
intestinal cavity, cover the surface of the mucosa and are

responsible for the absorption of nutrients in the intestine. The

epithelial cells are composed of absorptive cells, goblet cells and

endocrine cells. Goblet cells are scattered between absorptive

cells, secreting mucus which covers the entire small intestinal

cavity, composed of carbohydrates, lipids, salts, protein, bacteria,
and cellular debris (Ensign et al., 2012). The thickness of mucus

varies from approximately 30 to 300 mm; the thickness increases

from the intestine to the rectum (Van Tassell and Miller, 2011).

The main proteins are glycoproteins called mucins which

polymerize to form a continuous gel matrix, providing a

structural basis for the mucosal layer, protecting the intestine

from pathogens, enzymes, toxins, dehydration, and abrasion. At
the same time, exogenous nutrients such as vitamins and

minerals are present in the intestinal mucus, which provide a

huge ecologic growth advantage for bacteria colonized in the

intestinal mucus (Sicard et al., 2017). It can be said that the

mucus is an excellent niche for both of probiotics and pathogen.

Adhesion
The process of bacterial adhesion to the mucosa includes

reversible and stable stages (Kos et al., 2003). Initially,

probiotics bind to the mucosa through non-specific physical

contact, including spatial and hydrophobic recognition,

establishing reversible and weak, physical binding (Van Tassell

and Miller, 2011). Subsequently, with the specific interactions

between adhesins (usually proteins anchored on the cell surface)
and complementary receptors, probiotics establish a stable

binding to the mucus or intestinal epithelial cells (IECs),

thereby successfully colonizing the GIT (Van Tassell and

Miller, 2011).

Probiotics can encode numerous cell-surface factors which

are involved in adherence to mucin or IECs. Buck et al.
inactivated and knocked out several specific cell surface factors

in the Lactobacillus acidophilusNCFM, including mucin-binding

protein (Mub), fibronectin-binding protein (FbpA), and surface

layer protein (SlpA). Significant decrease in adhesion to Caco-2

cells was observed in the each separate protein mutant, showing

that the genes which encode FbpA, Mub, and SlpA all contribute

to L. acidophilus NCFM adhesion to IECs in vitro (Buck et al.,
2005). Another similar in vitro study found that mutations in

luxS in L. acidophilusNCFM, which encodes autoinducer (AI)-2,

caused a decrease in the adhesion to IECs (Buck et al., 2009).

Additional work demonstrated the involvement of myosin cross-

reactive antigen (MCRA) of L. acidophilus NCFM in adhesion to

Caco-2 cells (O’Flaherty and Klaenhammer, 2010) and the
deletion of the gene encoding sortase from L. salivarius

resulted a significant reduction in adhesion to human epithelial

cell lines (van Pijkeren et al., 2006). In addition to the proteins,

there are also non-protein molecules present in probiotics,
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including teichoic acids (TA) and exopolysaccharides (EPS)

which can interact with host cells to influence the adhesion. It

can be inferred from current publications that there is no fixed

molecule that can be applied to all strains of probiotics, despite of

the wide range of adhesion-related molecules. Many adhesins

seem to be specie or strain dependent. These adhesion-associated
surface molecules of probiotics and mechanisms related to

adhesion are discussed in detail below (Table 1 and Figure 2).

Mucus-Binding Proteins
Mucus-binding proteins (MUBs) are cell surface proteins with a

typical signal peptide and C-terminal LPxTG motif in the C-

terminus which establish a covalent binding to the bacterial cell
wall (Juge, 2012). MUBs are usually found in lactic acid bacteria,

especially Lactobacillus reuteri, which is one of the most

dominant probiotic bacteria in the human GIT (Roos and

Jonsson, 2002; MacKenzie et al., 2009; Jensen et al., 2014).

MUBs contain multiple Mub repeats (Mub domains, ~200

residues) which share homology to the mucin-binding protein

repeats (MucBP domains, ~50 residues) (Mercier-Bonin and
Chapot-Chartier, 2017). Mub domains can be found in

proteins of numerous Lactobacillus spp., including L.

acidophilus, L. plantarum, L. brevis, and L. fermentum (Van

Tassell and Miller, 2011). The amino acid sequence of Mub is

highly repetitive and contains two types of related repeats, Mub1

and Mub2. Single antibodies against Mub1 and Mub2 had no

inhibition on adhesion experiments, demonstrating that the

repetitive structure of both is important for the progress of

adhesion (Roos and Jonsson, 2002). Experiments have also

suggested that Mub interacts with carbohydrate components

on the mucus, particularly with the glycosylic bond of mucins
(Van Tassell and Miller, 2011). The distribution of MucBP

domains in bacterial proteins is more extensive than that of

Mub (Juge, 2012). Similarly, MucBPs in Lactobacillus have been

demonstrated to be able to bind to mucus (Radziwill-Bienkowska

et al., 2016).

Fibronectin-Binding Proteins
The extracellular matrix is a complex network of large molecules

outside the cells in which the extracellular glycoprotein

fibronectin is ubiquitously present. Fibronectin-binding

proteins, which are anchored on the bacterial surface, belong

to the microbial surface components recognizing adhesive

matrix molecules (MSCRAMM) family of adhesins (Schwarz-

Linek et al., 2006). It has been shown that fibronectin-binding
proteins present on the surface of L. acidophilus can bind to the

exposed fibronectin and anchor the IECs (Schillinger et al.,

2005). Munoz-Provencio et al. showed that purified

fibronectin-binding protein, encoded by fbpA of Lactobacillus

casei BL23, could bind to immobilized fibronectin. They also

TABLE 1 | Adhesion-related molecules in probiotics.

Proteins Adhesion-related function Probiotics References

MUBs Binds to mucus in vitro L. reuteri (Roos and Jonsson, 2002; MacKenzie et al., 2009;

Jensen et al., 2014)

FnBPs Binds to fibronectin L. acidophilus

L. casei

Bacillus subtilis

(Schillinger et al., 2005)

(Munoz-Provencio et al., 2010)

(Rodriguez Ayala et al., 2017)

SLPs Expression levels of SLP are related to the

adhesion capability

L. acidophilus

P. freudenreichii

(Buck et al., 2005)

(do Carmo et al., 2017)

SLPAs Binds to mucins and IECs L. acidophilus

L. helveticus

(Hymes et al., 2016; Klotz et al., 2020)

(Johnson and Klaenhammer, 2016)

ENO Binds to ECM, null mutants display diminished

adhesion

L. plantarum

B. bifidum

(Castaldo et al., 2009)

(Wei et al., 2016)

GAPDH Binds to human colonic mucin L. plantarum

L. acidophilus

(Kinoshita et al., 2008)

(Patel et al., 2016)

EF-TU Binds to Caco-2 cells and mucin L. plantarum

L. johnsonii

L. paracasei a/L. casei

B. longum

(Ramiah et al., 2008)

(Granato et al., 2004)

(Zhang et al., 2016)

(Nishiyama et al., 2020)

GroEL Binds to mucins and IECs L. johnsonii

B. longum

(Bergonzelli et al., 2006)

(Nishiyama et al., 2020)

APF Binds to mucins and epithelial cells L. acidophilus

L. gasseri

(Goh and Klaenhammer, 2010)

(Nishiyama et al., 2015)

Pili Play a role in the adhesion to ECM and IECs L. rhamnosus

L. lactis

B. bifidum, B. breve, B. longum, and B.

adolescentis

(Kankainen et al., 2009; Lebeer et al., 2012; Rintahaka

et al., 2014)

(Meyrand et al., 2013)

(Westermann et al., 2016)

EPS Play a role in the interaction with host cells L. plantarum

L. rhamnosus GG

L. johnsonii

L. reuteri

B. animalis

B. longum

(Lee et al., 2016)

(Lebeer et al., 2009)

(Dertli et al., 2015)

(Sims et al., 2011)

(Castro-Bravo et al., 2017)

(Tahoun et al., 2017)

TA Inhibit adhesion to Caco-2 cells L. johnsonii (Granato et al., 1999)
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observed that mutants with inactivated fbpA showed a lower

adhesion rate to immobilized fibronectin (Munoz-Provencio
et al., 2010).

Surface-Layers Proteins
The outermost strata of the bacterial cell wall consist of the surface

(S-) layers, non-covalently bonded semi-porous crystal arrays

comprised of self-assembling proteinaceous subunits called S-layer

proteins (SLPs) (Sara and Sleytr, 2000). The lattices of the S-layer

exhibit oblique, square, or hexagonal symmetry when observed with
an electronmicroscope. Most S-layers are 5 to 25 nm thick and have

a molecular weight of almost 40–200 kDa. S-layers have been found

in hundreds of species in almost every taxonomic group of walled

bacteria (Sleytr et al., 2014). S-layers have been shown to be involved

in a number of processes including maintaining cell shape,

protecting the murein sacculus from lysozyme attack, acting as
molecular sieves and antifouling coating, serving as binding sites,

and promoting bacterial adhesion (Sleytr et al., 2014). SLPs of

probiotics also have many benefits to the host. Recent studies found

that SLPs purified from Lactobacillus exerted immunomodulatory

effects, which attenuated intestinal barrier dysfunction and

inflammation, and protected intestinal epithelial barrier (Prado

Acosta et al., 2016; Zhang et al., 2017; Wang et al., 2019).
Surface-layer protein A (SlpA) is a S-layer protein specifically

found in L. acidophilus NCFM. Knockout of SlpA engendered

decreased adhesive capability of the bacteria (Buck et al., 2005).

Ashida et al. compared adhesive capabilities of eight L.

acidophilus strains to Caco-2 cells and found that the adhesive

capability of L. acidophilus L-92 was highest and that of L.
acidophilus CP23 was lowest among the compared strains

(Ashida et al., 2011). Further research showed that the

expression levels of SlpA on the surface of L. acidophilus L-92

was about 40-fold higher than that of L. acidophilus CP23

(Ashida et al., 2011). In Propionibacterium freudenreichii
CIRM-BIA 129, another protein called surface-layer protein B

(SlpB), have also been shown to play a key role in adhesion to

human intestinal cells. Significant inhibition of adhesion to HT-

29 cells was observed when blocking SlpB with specific

antibodies or when inactivating slpB in P. freudenreichii CB129

(do Carmo et al., 2017).

Johnson et al. identified proteins covalently, co-localized to the
outermost stratum of the cell surface within the S-layer of L.

acidophilus NCFM, designated as S-layer associated proteins

(SLAPs) (Johnson et al., 2013). SLAPs have subsequently been

characterized in several Lactobacillus spp. (L. helveticus, L. crispatus,

L. amylovorus, and L. gallinarum) (Johnson et al., 2016). Both SLPs

and SLAPs are important mediators of adhesion to host IECs and
mucins (Buck et al., 2005; Hymes et al., 2016; Johnson and

Klaenhammer, 2016; Klotz et al., 2020). Interestingly, one of the

most prevalent SLAPs in L. acidophilusNCFM, PrtX, acts as a serine

protease homolog, and has been shown to be negatively correlated

with adhesion in in vitro experiments (Johnson et al., 2017). In the

study by Johnson et al. the gene prtX, was deleted from the

chromosome of L. acidophilus NCFM and it was discovered that
the PrtX-deficient strain (DprtX) showed an enhanced cell binding

ability to mucin and fibronectin compared to the wild type strain

(Johnson et al., 2017). More effects of SLPs and SLAPs on the

adhesion are still waiting for exploring.

Moonlighting Proteins
Moonlighting proteins are defined as multifunctional proteins
which can exhibit more than one biological function (Jeffery,

1999). Almost 400 moonlighting proteins have been discovered

which can be found at MoonProt Database (http://www.

FIGURE 2 | The composition of the mucus layer and association with probiotic surface proteins. Goblet cells are scattered between absorptive cells, which can

secret mucus that cover the entire small intestinal cavity. The mucus is mainly composed of mucins which are rich in cysteine. The extensive disulfide bonds between

mucins form the characteristic viscoelastic properties of mucus. The specific proteins on the surface of probiotics play an important role in probiotic adhesion to

mucus. Mucus-binding proteins for example, can bind to the mucus layer through interactions with glycosyl modifications of mucin.

Han et al. Adhesion of Probiotics to Intestine

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org March 2021 | Volume 11 | Article 6097226

http://www.moonlightingproteins.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


moonlightingproteins.org). Moonlighting proteins including

enolase (ENO), glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), elongation factor-Tu (EF-Tu), and molecular

chaperones have been demonstrated to be involved in adhesion

of probiotics to human intestinal mucins or IECs (Bergonzelli

et al., 2006; Siciliano and Mazzeo, 2012). A more detailed
description of the involvement of specific moonlighting

proteins in adhesion follows below.

Enolase
Enolase is a multifunctional protein which plays a key role in variety

of pathophysiological processes such as glycolysis, fibrinolysis, and

DNA transcription (Pancholi, 2001). As a moonlighting protein,
enolase was discovered on the L. plantarum LM3 and B. bifidum

S17 cell surface and it was shown that the protein could bind

specifically to the extracellular matrix, thus facilitating the adhesion

of bacterial cells to the host (Castaldo et al., 2009; Wei et al., 2016).

Castaldo et al. also compared the differences between wild type

strains and mutant strain which carried the enolase null mutation
and showed the adhesion ability of mutant strain was less efficient

than that of wild strain (Castaldo et al., 2009).

Glyceraldehyde-3-Phosphate Dehydrogenase
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an
enzyme involved in the glycolysis. GAPDH is considered as a

moonlighting protein because it has diverse functions in different

processes, including in regulation of apoptosis (Hara et al., 2005),

iron homeostasis (Rawat et al., 2012), and transcription activation

(Zheng et al., 2003). GAPDH catalyzes enzymatic reactions mainly

in the cytosol. Moreover, it has also been indicated that GAPDH is
able to bind the cytoskeletal and extracellular matrix proteins on

the cell surface of group B streptococci (Seifert et al., 2003).

GAPDH lacks an extra-cytoplasmic sorting sequence, and it is

interesting how the GAPDH transfers from cytosol to the cell

surface (Siciliano and Mazzeo, 2012). One study showed that L.

plantarum LA 318 adheres to human colonic mucin by GAPDH

which is expressed on the cell surface (Kinoshita et al., 2008).
Similarly, Patel et al. (2016) cloned the gene encoding GADPH

from L. acidophilus, and expressed, purified, and obtained a

recombinant product (r-LaGAPDH). It was discovered that the

recombinant protein was in tetramer form in solution, and it

showed mucin binding and hemagglutination activity. Several

studies have found that in addition to binding to mucin,
GAPDH of L. plantarum also has a highly specific adhesive

capacity to plasminogen and fibronectin (Sanchez et al., 2009;

Glenting et al., 2013).

The stress response of probiotics when exposed to gastric juice

and bile will have an effect on the adhesive capacity to mucins and

IECs. Agustina et al. reported that the adhesion of L. paracasei

strains to mucin and IECs increased after gastrointestinal acid and
bile stress. It is demonstrated that the increased adhesive capacity

was attributed to the positive modification of GAPDH biosynthesis

(Agustina Bengoa et al., 2018). However, bile or acid stress does not

always result in increased adhesion capacity. For example, L.

delbrueckii subsp. lactis 200 and L. delbrueckii subsp. lactis 200+

grown in medium containing bile showed a decrease in adhesion to
IECs (Burns et al., 2010).

Elongation Factor Tu
Elongation factor Tu (EF-Tu) is an intracellular protein which

serves several functions in protein synthesis and protein folding,
including facilitating protein synthesis and increasing translation

accuracy (Beck et al., 1978). EF-Tu is comprised of three domains

known as domains I, II, and III, forming different sites for binding

of guanosine triphosphate (GTP) and aminoacyl-tRNA (Harvey

et al., 2019). This structure enables EF-Tu to transport aminoacyl-

tRNAs to the ribosome during protein synthesis. Interestingly, EF-
Tu is a highly conserved protein which can be found on both cell

surfaces of pathogens and probiotics (Kunert et al., 2007; Espino

et al., 2015; Thofte et al., 2018). The role of EF-Tu on the cell

surface involves the processes of bacterial adhesion to host cells,

invasion, and immune evasion (Ramiah et al., 2008; Lopez-Ochoa

et al., 2017). Zhang et al. used 5 M LiCl to remove the surface
proteins (EF-TU and surface antigen) of L. paracasei and L. casei.

After treatment, their adhesion force to HT-29 cells significantly

reduced (Zhang et al., 2016). Nishiyama et al. found that B.

longum can release particles into the extracellular environment

and relevant proteomics analysis identified several mucin-binding

proteins, including EF-Tu (Nishiyama et al., 2020).

Molecular Chaperones
Molecular chaperones are a large class of proteins which facilitate

binding and stabilization of unstable conformations of other

proteins, and promote correct folding of intracellular proteins

(Ellis, 1987). GroEL is a molecular chaperone which assists the
folding of nascent or stress-denatured polypeptides through

binding and encapsulation (Clare et al., 2012), and has

additionally showed moonlighting functionality, including

binding activity to mucins and IECs (Bergonzelli et al., 2006).

It has also been indicated in in vitro studies that GroEL plays a

critical role in the binding process of L. johnsonii La1 to mucus

and intestinal cells in the host environment. Interestingly, the
binding process of GroEL to mucins or intestinal cell lines was

pH-dependent and the binding capacity varied with the pH; the

binding capacity was higher at pH 5.0 compared to that at pH 7.2

(Bergonzelli et al., 2006). Small heat shock proteins as ATP-

independent chaperones (sHsps) act by binding unfolding

proteins, thereby delaying the formation of harmful protein
aggregates (Janowska et al., 2019). sHSPs contribute to cellular

defense against harsh conditions under physiological conditions

and the GIT stress responses of most bacteria involving the

upregulation of sHSPs (Guzzo, 2012; Haslbeck and Vierling,

2015; Khaskheli et al., 2015). Nishiyama et al. compared the

adhesion ability of 31 L. pentosus strains to mucin and discovered
a highly adhesive L. pentosus strain, which over-produced four

moonlighting proteins including sHSPs (Pérez Montoro et al.,

2018). A recent study investigated the impact of knockout of the

sHSP genes (including HSP1, HSP2, and HSP3) on adhesion of

L. plantarum WCFS1 to human enterocyte-like cells,

demonstrating that sHSP genes deletion lowered GIT stress

resistance and adhesion capacity (Longo et al., 2020).

Aggregation-Promoting Factors
Aggregation-promoting factors (Apf) are secreted proteins which

induces self-aggregation and facilitates the maintaining of cell shape.
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These proteins have mainly been found among Lactobacillus spp.

(Nishiyama et al., 2015). It has been found that Apf-deficient

mutants of L. acidophilus NCFM showed a significant reduction

of adherence to Caco-2 cells and mucins compared with the wild

type strain, suggesting Apf acts as an adhesion factor which

participates in the interaction with the host mucus layer and IECs
(Goh and Klaenhammer, 2010). Similar results have been shown in

L. gasseri SBT2055 (Nishiyama et al., 2015).

Pili
Pili are short, straight, and filamentous structures stretching

from the cell surface of bacteria. Pili are mostly characterized

among Gram-negative bacteria. However, pili-like structures are
also found in probiotics like Bifidobacterium spp. and

Lactobacillus spp. (Alp and Kuleasan, 2019). Unlike those in

Gram-negative bacteria, these pili have a narrow diameter (~1–

10 nm) and every pilus consists of multiple pilin subunits which

are coupled to each other covalently (Kankainen et al., 2009).

Lankainen et al. discovered three LPXTG-like pilins (SpaCBA) in

L. rhamnosus GG (LGG) (Kankainen et al., 2009). Each of the
three pilins has its own location and function in the pilus:

backbone SpaA for length, basal SpaB for anchoring, and tip

SpaC for adhesion (Kant et al., 2020). Study showed the adhesion

to human intestinal mucus was destroyed by SpaC antibody and

blocked in a mutant of LGG which carried the inactivated SpaC

gene, demonstrating the SpaC is essential in the interaction with
mucus (Kankainen et al., 2009; Lebeer et al., 2012). Subsequently,

another type of LGG pilus called SpaFED was phenotypically

characterized. Similar to SpaCBA, SpaFED pilus can also mediate

the adhesion to mucin (Rintahaka et al., 2014). Meyrand et al.

detected one adhesion-associated pilin on the surface of L. lactis

which was plasmid-encoded, suggesting the possibility of spread

of adhesion effect among L. lactis through horizontal gene
transfer (Meyrand et al., 2013). Type Via pili, type IVb tight

adherence (Tad) pili, and sortase-dependent pili have been found

in the genomes of almost Bifidobacterium spp., including B.

bifidum, B. breve, B. longum, and B. adolescentis, and have been

demonstrated to play important roles in the adhesion to IECs or

the extracellular matrix (Westermann et al., 2016). A recent
study showed that acid stress could enhance the adhesion ability

of GG to intestine epithelium through the induction of pili-

related genes including spaC and spaF (Bang et al., 2018).

Exopolysaccharides
Exopolysaccharides (EPS) are surface carbohydrate polymers

existing in most bacteria and fungi. They have various

bioactivities functions, including lowering cholesterol,
immunomodulating, anti-oxidation, anti-virus, counteract

colonization of enteropathogens, and anti-coagulant (Fanning

et al., 2012; Zivkovic et al., 2015; Zhou et al., 2019). As a

protective surface layer, EPS play a positive role in helping

probiotics enhance the tolerance to harsh condition of

GIT by forming biofilms and communicating with other
microorganisms or with host cells (Arena et al., 2017).

However, there has been no conclusive conclusions so far

about whether EPS can promote adhesion. According to

existing references, EPS can not only participate in the

adhesion process, but also reduce the adhesion efficiency of

probiotics. Since the EPS on the probiotic surface, especially

those with high molar mass and large volume, may shield other

adhesion proteins. One previous report estimated the adhesive

properties of several lactic acid bacteria (LAB) strains to Caco-2

cells, and found EPS may facilitate probiotic adhesion (Garcia-
Ruiz et al., 2014). The effect of EPS on bacterial adhesion seems

to be dependent on probiotic specie and strain. A previous study

investigated three EPS depletion mutant strains of L. plantarum.

Lp90 mutant strain showed improved adhesion to Caco-2 cells

compared to the Lp90 wild-type strain. Interestingly, the

depletion of EPS genes for WCFS1 and SF2A35B strains did
not influence their mucoadhesion (Lee et al., 2016). For B.

animalis, higher proportion of high molecular weight of EPS

showed lower mucoadhesion, indicating that different EPS on

bacterial surface might confer variable adhesion characteristics

(Castro-Bravo et al., 2017). Although the contribution of EPS to

the probiotic colonization process is controversial, it can be
confirmed that the presence of EPS plays a significant role in

the interaction of probiotics with the host.

Teichoic Acids
Teichoic acids (TAs) are important components of the Gram-

positive bacterial cell wall, which are composed of alditol

phosphate repeating units, contributing to the hydrophobic

character and electrostatic charge of the bacterial cell surface
(Arena et al., 2017; Wu et al., 2020). TA can be divided into

lipotheicoic acid (LTA) and wall teichoic acid (WTA). In early

1980s, the role of both TA on binding to host cells was raised

(Beachey, 1975; Aly et al., 1980). One study found that LTA

could inhibit the adhesion of L. johnsonii La1 to Caco-2 cells in a

concentration-dependent way (Granato et al., 1999).

CONCLUSIONS

We discussed various unfavorable conditions which influence the
viability and mucoadhesion of probiotics during GI transit.

Colonization of probiotics on the mucus layer could be achieved

when adhesive proteins from each side bind together, on the

premise of overcoming the colonization resistance. Thus, the

characteristics and functions of different proteins of were

specifically reviewed. However, most of current research on
mucoadhesion-related molecules of probiotics are limited to lactic

acid bacteria. Adhesive proteins and mucoadhesion mechanisms of

probiotics such as Bifidobacterium, Enterococcus, Pediococcus are

still waiting for exploring. Besides, how probiotics communicate

with commensal bacteria and some are successfully introduced to

gut microbiota is also of great interest. Understanding these factors

will facilitate the employment of effective delivery strategies
designed for probiotics to overcome colonization resistance and

achieve health benefits.
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