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ABSTRACT

Diet has long been known to influence the course of chronic kidney disease (CKD) and may even result in acute kidney
injury (AKI). Diet may influence kidney disease through a direct impact of specific nutrients on the human body through
modulation of the gut microbiota composition or through metabolites generated by the gut microbiota from ingested
nutrients. The potential for interaction between diet, microbiota and CKD has fueled research into interventions aimed
at modifying the microbiota to treat CKD. These interventions may include diet, probiotics, prebiotics, fecal microbiota
transplant and other interventions that modulate the microbiota and its metabolome. A recent report identified
Lactobacillus casei Zhang from traditional Chinese koumiss as a probiotic that may protect mice from AKI and CKD and
slow CKD progression in humans. Potential mechanisms of action include modulation of the gut microbiota and
increased availability of short-chain fatty acids with anti-inflammatory properties and of nicotinamide. However, the
clinical relevance needs validation in large well-designed clinical trials.
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DIET, MICROBIOTA AND CHRONIG KIDNEY
DISEASE

Chronic kidney disease (CKD) is set to become the fifth global
cause of death by 2040 and the second cause of death by the end
of the century in some countries with long life expectancy [1, 2].
Recently, sodium-glucose cotransporter 2 (SGLT2) inhibitors and
the mineralocorticoid receptor blocker finerenone were shown
to slow the progression of CKD, offering further hope for the fu-
ture [3, 4]. However, the residual renal risk remains high, espe-
cially for more advanced stages of CKD [5]. Additional interven-
tions that lower even more the risk of CKD progression and the
associated risk of accelerated aging are needed. Diet has long
been known to influence the course of CKD and may even re-
sult in acute kidney injury (AKI). Dietary components such as
excess sodium, protein, phosphate or oxalate may accelerate
the course of CKD and some (e.g. oxalate) may precipitate AKI

[6-8]. More recently, awareness has emerged that the diet feeds
both the human body and its gut microbiota. Thus diet may
influence kidney disease not only through a direct impact of
specific nutrients on the human body, but also through mod-
ulation of the gut microbiota composition or through metabo-
lites generated by the gut microbiota from ingested nutrients
[9, 10] (Figure 1). Among several examples, dietary choline or L-
carnitine may be transformed into trimethylamine (TMA) by the
gut microbiota, which is absorbed and metabolized to trimethy-
lamine N-oxide (TMAO) in the liver. Gut microbiota-dependent
TMAO may contribute to both CKD progression and mortality
risk in CKD and may account partially for risks associated with
red meat [11]. In contrast, dietary tryptophan is a precursor of
nephroprotective molecules such as nicotinamide adenine din-
ucleotide (NAD*) but can also be metabolized by the gut micro-
biota to indole, a precursor of uremic toxins with nephrotoxic
potential such as indoxyl sulfate [12], while dietary tyrosine is
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FIGURE 1: Interactions between diet, the microbiota and kidney disease. Dietary components are frequently modified by the gut microbiota, which in turn changes in
response to the availability of specific dietary components. Thus any interaction between diet and kidney disease cannot be properly understood without understanding
the impact of the diet on the gut microbiota. Specific components of the diet can directly influence the course of kidney disease. Kidney disease, in turn, may lead to
spontaneous changes of the diet (e.g. spontaneous decrease in protein ingestion as glomerular filtration decreases) or to prescription of kidney disease-adapted diets.
However, the diet may contain or lack prebiotics or probiotics that directly influence the gut microbiota composition, as well as dietary molecules that are processed by
the microbiota to yield both potentially kidney protective (e.g. SCFA) or kidney damaging molecules or precursors (e.g. TMA that is metabolized to TMAO in the liver).
Kidney disease itself may modify the microbiota through increased availability of molecules usually excreted by the kidneys. Finally, the cause of kidney disease may
influence the diet (e.g. dietary recommendations for persons with diabetes or hypertension) and the microbiota (e.g. the impact of lyso-Gb3, a metabolite accumulated

in Fabry disease, on the gut microbiota).

metabolized by the gut microbiota to p-cresol, which human
cells convert to the nephrotoxic compound p-cresyl sulfate (p-
CS) [13]. 1t is also likely that CKD itself, or the cause of CKD, mod-
ifies the gut microbiota [14]. Thus lyso-Gb3, a toxic compound
accumulated in Fabry disease that causes podocyte injury, also
modulates the gut microbiota, resulting in decreased production
of the anti-inflammatory short-chain fatty acid (SCFA) butyrate
[15, 16]. The potential for interaction between diet, microbiota
and CKD has fueled research into interventions aimed at modi-
fying the microbiota to treat CKD [17]. These interventions may
include diet, probiotics, prebiotics, fecal microbiota transplant
and other interventions that modulate the microbiota and its
metabolome.

AN ANCIENT FERMENTED DAIRY PRODUCT
TO THE RESCUE

Koumiss or kumis is a traditional fermented dairy product
home-made from mare’s milk or donkey’s milk by nomadic
people in China and Mongolia. It has a low alcohol content. A
Colombian version of kumis is a different form of fermented
milk from cow’s milk [18]. In 2005, a novel Lactobacillus casei
strain, L. casei Zhang was isolated from traditional koumiss in
the Inner Mongolia Autonomous Region of China by Ya et al.

[19]. L. casei Zhang was considered a strain of interest given its
probiotic properties such as acid- and bile acid-resistance and
gastrointestinal colonization ability, i.e. if administered orally,
it will survive the upper gastrointestinal tract and grow in the
lower gastrointestinal tract. Further research characterized in
vivo antibacterial, immunomodulatory and antioxidative qual-
ities of orally administered L. casei Zhang [19] and the com-
plete genome was sequenced [20]. Thus L. casei Zhang increased
serum interferon-y, secretory immunoglobulin a and IG levels
and decreased serum tumor necrosis factor (TNF) levels in mice
[19]. TNF has several adverse actions in kidney cells, such as pro-
motion of necroptotic tubular cell death and reduction of the
kidney production of the anti-aging protein Klotho [21, 22]. In-
deed, some kidney protective drugs, such as pentoxifylline, de-
crease serum and urine TNF while increasing serum and urine
Klotho [23]. This raises the possibility that L. casei Zhang may be
nephroprotective.

L. casei Zhang and kidney disease

Writing in Cell Metabolism, Zhu et al. [24] identify a connec-
tion between L. casei Zhang and kidney protection in AKI and
CKD mouse models and in an exploratory human clinical trial
(Figure 2).
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FIGURE 2: Kidney protection by L. casei Zhang was observed in experimental AKI
and CKD as well as for human CKD. Kidney protection by L. casei Zhang was
transmissible through fecal microbiota transplantation (FMT).

Administration of L. casei Zhang or the control Lactobacil-
lus acidophilus orally to C57BL/6 mice 4 weeks before or con-
current with ischemia-reperfusion injury (IRI) was protective at
5 (exploring AKI) and 28 and 45 days (exploring CKD). AKI re-
sults were confirmed in cisplatin and lipopolysaccharide (LPS)-
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induced AKI. However, L. casei Zhang was superior to L. aci-
dophilus as shown by better kidney function and milder histo-
logical tubular injury and kidney expression of fibrosis-related
genes. Reduced kidney fibrosis was also observed in the subto-
tal nephrectomy model in which prebiotics were started 2 weeks
after surgery, i.e. after induction of kidney injury. Inflamma-
tory infiltrates were analyzed only in a second cohort of mice
treated with antibiotics before bilateral IRI and probiotic treat-
ment, showing lower expression of macrophage-associated fac-
tors in kidneys of mice treated with L. casei Zhang. This experi-
ment showed that the beneficial effect of L. casei Zhang was in-
dependent from the prior gut microbiota, as this was disrupted
by antibiotics, a frequent occurrence in the clinic, especially in
intensive care units (ICUS).

The molecular mechanisms of kidney protection by L. casei
Zhang appear to be complex and multipronged (Figure 3). Zhu
et al. [24] reproduced prior observations on kidney protection by
administration of SCFA or nicotinamide, but since they did not
interfere with these pathways in mice treated with L. casei Zhang
to demonstrate loss of protection, it is unclear whether kidney
protection afforded by L. casei Zhang actually involved these me-
diators.

L. casei Zhang improved gut microbial dysbiosis induced by
IRI, as assessed by 16s sequencing, expanding SCFA-producing
bacteria, such as Bacteroidetes, and increased kidney and/or
serum levels of the SCFAs acetate, butyrate or propionate at
5 days after IRI. Indeed, kidney protection could be transferred
through stool transplant. Previous studies assessed the benefi-
cial effect of SCFAs in preventing AKI induced by IRI [25] and
folic acid nephropathy [26]. A mixture of three SCFAs (butyrate,
propionate, acetate) administered intraperitoneally 30 min
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FIGURE 3: Molecular mechanisms of kidney protection by L. casei Zhang. L. casei Zhang administration to mice with kidney IRI increased the expression of enzymes
related to NAD™ biosynthesis and the expression of Ppargcla, the gene encoding for the master regulator of mitochondrial biogenesis and nephroprotective molecule
PGCle. L. casei Zhang modified the gut microbiota, increasing serum SCFA (butyrate, propionate, acetate) and consequently increasing kidney propionate. Additionally,
there was a trend toward increased kidney butyrate” and an increase in kidney acetate not explained by higher serum acetate levels. Overall, gut microbiota SCFA may
represent the molecular link between L. casei Zhang and protection from AKI and CKD. *There was a tendency towards an increase in kidney butyrate in the IRI group
with L. casei Zhang compared with the group that did not receive probiotics. However, the difference was not significant.
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before ischemia and at reperfusion improved IRI renal dysfunc-
tion likely through the inhibition of histone deacetylase activity
[25]. The oral administration of the same SCFAs in drinking wa-
ter decreased folic acid-induced tubular injury at day 2 and in-
terstitial fibrosis and chronic inflammation at day 28. Since mice
deficient in G-protein-coupled receptors GPR41 and GPR109A
were not protected, SCFA activation of GPR41 and GPR109A ap-
peared to play a major role in kidney protection [26]. Zhu et al.
[24] administered acetate, butyrate or propionate or a mixture
of them in drinking water from 2 weeks before IRI to the time
of IRI in mice. Any of the SCFAs or the combination was as-
sociated with milder AKI, inflammation and fibrosis at 5 and
24 days, as assessed by plasma urea and histology (including
Masson staining for fibrosis and quantification of neutrophils
and macrophages for inflammation) and gene expression of
fibrosis and inflammation markers. Propionate showed the
largest benefit while the combination did not have an additive
benefit. However, whether SCFA supplementation increased kid-
ney SCFA levels was not addressed, and it remained unclear
whether protection depended on activation of SCFA receptors
or on epigenetic modulation through histone deacetylase inhi-
bition or other mechanisms [27, 28].

In metabolic pathway analysis, IRI AKI resulted in lower
nicotinamide metabolism (including reduced kidney NAD and
nicotinic acid adenine dinucleotide levels) at day 5 and this was
prevented by L. casei Zhang, which in single-cell transcriptomics
analysis also increased the gene expression of enzymes in this
pathway [24]. Next, intraperitoneal 400 mg/kg/day nicotinamide
was administered for 4 days before IRI and 1 day after IRI, result-
ing in milder kidney tubular injury, kidney dysfunction and neu-
trophil infiltration at day 5 but unchanged macrophages. Fibro-
sis was not assessed. While there is a consensus that increasing
kidney NAD* during kidney injury is beneficial, there is a lack of
consensus on the best therapeutic approach to achieve this goal
[12]. Thus Piedrafita et al. [29] recently reported that intraperi-
toneal nicotinamide 400 mg/kg 24 h and 1h prior to kidney IRI
and 4-6h after kidney IRI did not improve AKI and did not in-
crease kidney NAD*. Most prior reports did not assess kidney
NAD* following nicotinamide supplementation and Zhu et al.
did not assess it either.

The clinical translation of the preclinical studies was as-
sessed in 62 young (41-46 years) patients with CKD G3-GS5 [es-
timated glomerular filtration rate (eGFR) 24-27 mL/min/1.73 m?,
urine albumin:creatinine ratio (UACR) 630-760 mg/g] [24]. The
cause of CKD and the prior use of kidney protective med-
ication were not reported. They were randomized to either
L. casei Zhang (1 x 10° CFU/day) or placebo (vehicle) for 3 months.
The primary endpoint was not specified. At 3 months, serum
cystatin C increased by 6% in the placebo group and UACR by
27% and both were significantly different from the interven-
tion group, which did not change, while serum creatinine was
unchanged in both groups. It was then decided to extend the
follow-up for up to 10 months without any further interven-
tion, and here details become fuzzy. Cystatin C and UACR data
for the extended follow-up period were not reported, while the
duration of follow-up is (surprisingly) different for serum cre-
atinine and for eGFR data. In this regard, serum creatinine in-
creased in both groups during the longer follow-up, but signifi-
cantly more in the placebo group, while (again surprisingly) the
significant difference in eGFR change between the groups was
mainly driven by an increase in eGFR in the L. casei Zhang group.
Regarding the mechanisms of benefit, L. casei Zhang coloniza-
tion of feces was demonstrated at 3 months in the intervention
group, as well as differences in serum nicotinamide. However,
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FIGURE 4: Clinical research roadmap for L. casei Zhang kidney protection. Based
on preclinical studies, three settings may be used to probe the clinical translation
of kidney protection by L. casei Zhang. (A) Prevention of AKI in high-risk settings.
Individuals at high risk of AKI may be randomized to L. casei Zhang administra-
tion or control. (B) Prevention of CKD progression. (C) ‘Herd’ kidney protection in
ICUs. ICUs will be randomized to administration of L. casei Zhang or control to all
new admissions and healthcare personal who agree to participate. This would
be expected to result in ‘cross-contamination’ with kidney-protective bacteria
on top of the ongoing cross-contamination with microbes such as C. difficile and
antibiotic-resistant bacteria.

the latter were explained by decreased nicotinamide levels in
the placebo group rather than by increased levels in the L. casei
Zhang group. In summary, human data are clearly exploratory
and should be confirmed in a well-designed and well-reported
clinical trial, which should have pre-defined primary endpoints
to be assessed at predefined time points.

WHAT’S NEXT?

The hallmark of intestinal dysbiosis is a reduction of sac-
charolytic microbes that produce SCFA and, in the case of
CKD, an increase in proteolytic microbes that produce different
molecules possibly related to uremic toxicity. Zhu et al. [24], for
the first time, uncovered the beneficial effect of L. casei Zhang in
murine models and a human clinical study of kidney injury, lay-
ing the groundwork for future research about its potential role
in human kidney disease. Benefit was hypothesized to depend
on the production of beneficial metabolites by gut bacteria, es-
pecially SCFAs and nicotinamide, as the gut microbiota was en-
riched in bacteria able to provide these molecules and adminis-
tration of these molecules was also beneficial. However, NAD"
was not directly measured in murine serum or kidney. Addi-
tionally, the hypothesis was not confirmed by assessing whether
blocking the actions of SCFA or nicotinamide prevented the
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beneficial effect of L. casei Zhang. This highlights the need for
future work to clarify the mechanism behind the observed ben-
efit of L. casei Zhang supplementation.

The human CKD data were both encouraging, and surprising.
They were encouraging because a relatively simple and likely
safe therapeutic intervention resulted in improved kidney func-
tion, and surprising, because the small sample size would have
been expected to preclude any observation of benefit on eGFR
and the serum creatinine and eGFR values did not change con-
cordantly.

Zhu et al’s [24] intriguing findings will drive further research
aimed at addressing the clinical translation of the potential
health-promoting effects of L. casei Zhang in kidney disease
(Figure 4). Given the available preclinical data, the most plau-
sible scenario for clinical validation is L. casei Zhang supple-
mentation before a programmed intervention known to result
in a high incidence of AKI, such as cardiovascular surgery, cis-
platin chemotherapy for cancer or patients at high risk of AKI
at hospital admission [30, 31]. Also, a large-scale randomized
trial is required to evaluate the clinical efficacy of L. casei Zhang
for CKD. This new trial should overcome some of the deficien-
cies of the clinical study reported by Zhu et al. [24]. Additionally,
the fact that kidney protection could be transmitted in mice by
stool transplant and was observed in mice treated with antibi-
otics opens the door to trials of kidney protection in ICUs with
the aim of providing herd protection. In ICUs, the widespread
use of antibiotics, debilitated nature of patients and frequent
use of emergency procedures favors cross-contamination with
pathogens such as Clostridium difficile [32], implying fecal-oral
transmission of microbiota between patients. The hypothesis
that L. casei Zhang may provide herd protection from AKIin ICUs
through cross-transmission between patients may be addressed
by comparing ICUs from different hospitals or different ICUs in
the same hospital, some of which may provide the standard of
care and others the standard of care plus oral L. casei Zhang sup-
plementation to all patients and personnel in the unit that agree
to participate, having primary endpoints of AKI and severe AKI.
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