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Copula modeling has become ubiquitous in modern statistics. Here, the problem of nonparametrically es-

timating a copula density is addressed. Arguably the most popular nonparametric density estimator, the

kernel estimator is not suitable for the unit-square-supported copula densities, mainly because it is heavily

affected by boundary bias issues. In addition, most common copulas admit unbounded densities, and kernel

methods are not consistent in that case. In this paper, a kernel-type copula density estimator is proposed.

It is based on the idea of transforming the uniform marginals of the copula density into normal distribu-

tions via the probit function, estimating the density in the transformed domain, which can be accomplished

without boundary problems, and obtaining an estimate of the copula density through back-transformation.

Although natural, a raw application of this procedure was, however, seen not to perform very well in the

earlier literature. Here, it is shown that, if combined with local likelihood density estimation methods, the

idea yields very good and easy to implement estimators, fixing boundary issues in a natural way and able to

cope with unbounded copula densities. The asymptotic properties of the suggested estimators are derived,

and a practical way of selecting the crucially important smoothing parameters is devised. Finally, extensive

simulation studies and a real data analysis evidence their excellent performance compared to their main

competitors.

Keywords: boundary bias; copula density; local likelihood density estimation; transformation kernel

density estimator; unbounded density

1. Introduction

For the last two decades copula modeling has emerged as a major research area of statistics.

A bivariate copula function C is the joint cumulative distribution function (c.d.f.) of a bivari-

ate random vector whose marginals are Uniform over [0,1], that is, C : I .= [0,1]2 → [0,1] :
(u, v) → C(u, v) = P(U ≤ u,V ≤ v), where U ∼ U[0,1], V ∼ U[0,1]. Copulas arise naturally as

a mere consequence of two well-known facts. First, the probability-integral transform result: if

X ∼ FX is continuous, then FX(X) ∼ U[0,1]; and second, Sklar’s theorem [49]: for any continu-

ous bivariate c.d.f. FXY , there exists a unique function C such that

FXY (x, y) = C
(

FX(x),FY (y)
)

∀(x, y) ∈ R
2, (1.1)

where FX and FY are the marginals of FXY . From the above, this function C is, indeed, a copula,

called the copula of FXY . It describes how FX and FY ‘interact’ to produce the joint FXY and
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clearly disjoints the marginal behaviors of X and Y from their dependence structure. See Joe [33]

and Nelsen [42] for book length treatment of the foregoing ideas. More compact reviews include

[30] and [16]. Today, copulas are used extensively in statistical modeling in all areas, including

quantitative finance and insurance. Therefore, empirically estimating a copula function from a

bivariate sample {(Xi, Yi)}ni=1 drawn from FXY has become an important problem of modern

statistical modeling.

Of course, estimating C essentially amounts to fitting a bivariate distribution, for what many

parametric families have been suggested and studied: Gaussian, Student-t , Clayton, Frank or

Gumbel copulas among others (see again [33] or [42] for details). These parametric models have

formed the main body of the literature in the field so far. However, they suffer from the usual lack

of flexibility of parametric approaches and the induced risk of misspecification. For instance, it

has been argued that the main reason behind the 2009 global financial crisis was a reckless usage

of the Gaussian copula [45]. There is, therefore, a tremendous need for flexible nonparametric

copula models, making no rigid assumptions on the underlying distributions. An early step in

that direction was the empirical copula devised by Deheuvels [12]. The related empirical copula

process was studied further in [19,47,50] and [6], and turns out to be the cornerstone of a variety

of nonparametric copula-based procedures, see e.g. [25,26,29] or [37], to cite only a few. More-

over, Fermanian and Scaillet [20], Chen and Huang [10] and Omelka, Gijbels and Veraverbeke

[43] studied kernel methods to obtain flexible smooth estimates of the bivariate c.d.f. C.

Usually, though, a distribution is more readily interpretable in terms of its density function

than directly through its c.d.f., and a copula is no different. Assume that the bivariate c.d.f. C is

absolutely continuous. Then, its associated copula density is

c(u, v) = ∂2C

∂u∂v
(u, v)

for (u, v) ∈ I . This paper addresses the problem of nonparametrically estimating c, for what

kernel methods again appear natural. This approach was pioneered in [2] and [28], and arguably

remains very attractive compared to its competitors, such as splines [35,48], wavelets [1,24],

Bernstein polynomials [4,5,32] or others [44], for its simplicity.

Three factors make kernel estimation of c not standard, though. First, a major concern is

that kernel estimators suffer from boundary bias problems. Given the bivariate sample {(Ui =
FX(Xi),Vi = FY (Yi))}ni=1, the standard kernel estimator for c, say ĉ∗, at (u, v) ∈ I would be

[51], Chapter 4

ĉ∗(u, v) = 1

n|HUV |1/2

n
∑

i=1

K

(

H
−1/2
UV

(

u − Ui

v − Vi

))

, (1.2)

where K : R2 →R is a kernel function and HUV is a bandwidth matrix. However, estimator (1.2)

is known not to be consistent along boundaries of I: standard arguments show that E(ĉ∗(u, v)) =
1
4
c(u, v)+O(h) at corners and E(ĉ∗(u, v)) = 1

2
c(u, v)+O(h) on the borders. In fact, ĉ∗ does not

‘feel’ the boundaries and places through K positive mass beyond them. Although some papers

ignored these issues [18,20,46], it is clear that accurate estimation of c calls for some boundary

correction. Such corrections have indeed been proposed, e.g. mirror reflection [28] or the usage

of boundary kernels [10], but with mixed results.
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Secondly, kernel estimators are not consistent for unbounded densities. Yet, many copula den-

sities of interest are unbounded: even in the apparently easy case of a bivariate Normal vector

with moderate correlation, the copula density is unbounded in two of the corners of I . There-

fore, any good estimator of c should be able to cope with such unboundedness. Finally, estimat-

ing c cannot be made from a genuine random sample from its c.d.f. C, as C is the distribution

of (U,V ) = (FX(X),FY (Y )) and FX and FY are typically unknown. Hence, the observations

(Ui,Vi) are unavailable, and estimator (1.2) is, in fact, infeasible. Let F̂Xn(x) = 1
n

∑n
j=1 1{Xj ≤x}

be the empirical c.d.f. of X, and similarly for F̂Yn. Define

Ûi = n

n + 1
F̂Xn(Xi) and V̂i = n

n + 1
F̂Yn(Yi) (1.3)

the ‘pseudo-observations’ (the rescaling by n/(n+1), aiming at keeping Ûi and V̂i in the interior

of [0,1], is customary). Then, it is common practice to treat the pseudo-sample {(Ûi, V̂i)}ni=1 as

a sample from C and to use it instead of the ‘true’ sample {(Ui,Vi)}ni=1, although this may affect

the statistical properties of the ensuing estimators [8,27].

This paper proposes and studies a new, kernel-type estimator of the copula density c. It is

based on the idea recently suggested in [22] for estimating univariate densities supported on

the unit interval. Based on the transformation method, it takes the constrained nature of the

support into account from the outset, that is, without relying on ad hoc boundary corrections

(reflection, boundary kernels, etc.). In short, the initial [0,1]-supported variables U and V are

transformed through the probit function into variables whose supports are unconstrained, the

density in the transformed domain is estimated free from boundary issues via local likelihood

methods and an estimate of the initial density on [0,1]2 is obtained by back-transformation. This

method appears very natural and, in Geenens’s [22] univariate case, lead to estimators superior

to their main competitors in the simulation studies for a wide range of density shapes, including

for unbounded densities. The idea seems, therefore, suitable for estimating copula densities as

well.

This paper does not just study a bivariate extension of Geenens’s [22] idea to the copula setting,

though. The novel contribution is triple. First, it is explained why the probit transformation is the

most appropriate in the copula setting, whereas it was just a convenient choice in the univariate

framework. Second, when deriving the asymptotic properties of the estimators, the effect of re-

sorting to pseudo-observations is carefully analyzed through Segers’s [47] recent developments

on the empirical copula process (of course, the effect of pseudo-observations was not relevant to

Geenens’s [22] estimators). One of the main conclusion of the paper is that using the pseudo-

observations (1.3) instead of genuine observations does not affect the statistical properties of the

kernel copula density estimators. This holds true under general bandwidth conditions, including

the optimal order, unlike previous papers in the field which required sub-optimal bandwidths

(see, e.g., Fermanian’s [18] Assumption (B0)) to annihilate the effect of using (1.3). Third, an

innovative and effective data-driven bandwidth selection procedure is derived for bivariate den-

sity estimation. It does not assume a constrained form (e.g., diagonal) for the bandwidth matrix,

and the idea can be used as-is for any multivariate kernel density estimation (it is not specific to

copula modeling).

Exploring the probit transformation idea in the context of copula density estimation is the

topic of Section 2, and several versions of the estimator will be suggested. Their asymptotic
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properties will be derived in Section 3, and the above mentioned bandwidth matrix selection rule

will be detailed in Section 4. Simulation studies evidencing the very good practical behavior of

the probit-transformation estimators (Section 5), a real data analysis (Section 6) and some final

remarks (Section 7) conclude the paper.

2. Probit transformation kernel copula density estimation

2.1. Probit transformation

Direct kernel estimation of c is made difficult mainly by the constrained nature of its support

I = [0,1]2. Now, define S = �−1(U) and T = �−1(V ), where � is the standard normal c.d.f.

and �−1 is its quantile (probit) function. Given that both U and V are U[0,1], S and T are

both standard normal, which, of course, does not make the vector (S,T ) bivariate normal. That

will only be the case if the copula of FST , that is, C itself (copulas are invariant to increasing

transformations of their margins [42], Theorem 2.4.3), is the Gaussian copula. The idea is that,

if c(u, v) > 0 Lebesgue-a.e. over I , (S,T ) has unconstrained support R2 and estimating its

density, say fST , cannot suffer from boundary issues. In addition, due to its normal margins,

one can expect fST to be very smooth and well-behaved, and its estimation easy. In particular,

under mild assumptions, fST and its partial derivatives up to the second order will be seen to be

uniformly bounded on R2, even in the case of unbounded copula density c (Lemma A.1 in the

Appendix [23]).

As the copula of FST is C, S ∼ N (0,1) and T ∼ N (0,1), one has, for all (s, t) ∈ R
2,

FST (s, t) = P(S ≤ s, T ≤ t) = C(�(s),�(t)) ((1.1) for (S,T )). Differentiating with respect

to s and t , one gets

fST (s, t) = c
(

�(s),�(t)
)

φ(s)φ(t), (2.1)

where φ is the standard normal density. Inverting this expression, one obtains, for any (u, v) ∈
(0,1)2,

c(u, v) = fST (�−1(u),�−1(v))

φ(�−1(u))φ(�−1(v))
. (2.2)

So, any estimator f̂ST of fST on R
2 automatically produces an estimator of the copula density

on int(I):

ĉ(τ )(u, v) = f̂ST (�−1(u),�−1(v))

φ(�−1(u))φ(�−1(v))
, (2.3)

where the superscript (τ ) refers to the idea of transformation. When necessary, ĉ(τ ) can

also be defined at the boundaries of I by continuity. This transformation-based estimator

enjoys many nice properties. Clearly, ĉ(τ ) cannot allocate any probability outside I , since

(�−1(u),�−1(v)) is not defined for (u, v) /∈ I . Also, if f̂ST is a bona fide density function,

in the sense that f̂ST (s, t) ≥ 0 for all (s, t) and
∫∫

R2 f̂ST (s, t) ds dt = 1, then automatically,

through the changes of variable u = �(s) and v = �(t), ĉ(τ )(u, v) ≥ 0 for all (u, v) ∈ I and
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∫∫

I
ĉ(τ )(u, v) dudv = 1. Finally, if f̂ST is a uniformly (weak or strong) consistent estimator for

fST , that is, sup(s,t)∈R2 |f̂ST (s, t) − fST (s, t)| P/a.s.→ 0 as n → ∞, ĉ(τ ) inherits that uniform con-

sistency on any compact proper subset of I . As fST is uniformly continuous on R
2 (Lemma A.1),

the estimators suggested for it in the next subsections are all uniformly consistent on R
2. Hence,

all the estimators for c suggested in this paper are uniformly consistent on any compact proper

subset of I .

2.2. The naive estimator

A first natural idea would be to use, as f̂ST in (2.3), the standard kernel density estimator:

f̂ ∗
ST (s, t) = 1

n|HST |1/2

n
∑

i=1

K

(

H
−1/2
ST

(

s − Si

t − Ti

))

, (2.4)

where K is a kernel function and HST is a bandwidth matrix, and {(Si = �−1(Ui), Ti =
�−1(Vi))}ni=1 is the transformed sample. However, as the (Ui,Vi)’s are unavailable, so are the

(Si, Ti)’s, and one has to use

{(

Ŝi = �−1(Ûi), T̂i = �−1(V̂i)
)}n

i=1
, (2.5)

the pseudo-transformed sample, instead. The feasible version of (2.4) is, therefore,

f̂ST (s, t) = 1

n|HST |1/2

n
∑

i=1

K

(

H
−1/2
ST

(

s − Ŝi

t − T̂i

))

. (2.6)

Through (2.3), this directly leads to the following probit transformation kernel copula density

estimator:

ĉ(τ )(u, v) = 1

n|HST |1/2φ(�−1(u))φ(�−1(v))

n
∑

i=1

K

(

H
−1/2
ST

(

�−1(u) − �−1(Ûi)

�−1(v) − �−1(V̂i)

))

. (2.7)

This is essentially the estimator suggested in [8], also used as-is in [40], although it was not

studied in any details in those two papers. Omelka, Gijbels and Veraverbeke [43] derived the

theoretical properties of an estimator for the copula C (not its density) based on the same trans-

formation.

This idea was, however, called ‘naive’ in [22] in the univariate case, and the same qualifier

could be used for (2.7): although designed to fix boundary issues, it does not provide good results

close to the borders, as will be seen later. Geenens [22] explained the reasons for that failure, and

suggested some remedies. In particular, estimating the density in the transformed domain via

local likelihood offers a promising alternative while keeping the intuitive appeal of the probit-

transformation estimator.



Kernel copula density estimation 1853

2.3. Improved probit-transformation copula density estimators

Loader [39] and Hjort and Jones [31] proposed two similar yet different formulations of the local

likelihood density estimator. Loader [39] locally approximates the logarithm of the density by

a polynomial, whereas Hjort and Jones [31] consider local parametric density modeling. This

paper will only make use of Loader’s [39] idea, mainly because the asymptotic theory is more

transparent. In any case, both formulations share the same advantages and typically yield very

similar estimates.

In this setting of estimating fST from the pseudo-sample {(Ŝi, T̂i)}ni=1, Loader’s [39] local

likelihood estimator is defined as follows. Around (s, t) ∈ R
2, logfST is assumed to be well

approximated by a polynomial of order p = 1 (local log-linear) or p = 2 (local log-quadratic).

Specifically, it is assumed that

logfST (š, ť ) ≃ a1,0(s, t) + a1,1(s, t)(š − s) + a1,2(s, t)(ť − t)
(2.8).= Pa1

(š − s, ť − t)

for (š, ť ) ‘close’ to (s, t) in the first case (p = 1), while in the second case (p = 2)

logfST (š, ť ) ≃ a2,0(s, t) + a2,1(s, t)(š − s) + a2,2(s, t)(ť − t)

+ a2,3(s, t)(š − s)2 + a2,4(s, t)(ť − t)2 + a2,5(s, t)(š − s)(ť − t) (2.9)

.= Pa2
(š − s, ť − t).

The vectors a1(s, t) = (a1,0(s, t), a1,1(s, t), a1,2(s, t)) and a2(s, t)
.= (a2,0(s, t), . . . , a2,5(s, t))

are then estimated by solving a weighted maximum likelihood problem. For either p = 1,2,

ãp(s, t) = arg max
ap

{

n
∑

i=1

K

(

H
−1/2
ST

(

s − Ŝi

t − T̂i

))

Pap (Ŝi − s, T̂i − t)

(2.10)

− n

∫ ∫

R2
K

(

H
−1/2
ST

(

s − š

t − ť

))

exp
(

Pap (š − s, ť − t)
)

dš dť

}

,

where, as previously, K is a kernel function and HST is a bandwidth matrix. The estimate of

fST at (s, t) is then f̃
(p)

ST (s, t) = exp(ãp,0(s, t)), for p = 1,2. ‘Improved’ probit-transformation

kernel copula density estimators for c(u, v) follow from (2.3):

c̃(τ,p)(u, v) =
f̃

(p)

ST (�−1(u),�−1(v))

φ(�−1(u))φ(�−1(v))
(2.11)

for p = 1 and p = 2. The motivation and the advantages of estimating fST by local likelihood

methods instead of raw kernel density estimation are related to the detailed discussion in [22].

Essentially, the boundary behavior of the estimator of c on I is dictated by the tail behavior of the

estimator of fST on R
2. But, raw kernel estimators are known to work poorly in the tails of den-

sities, with frequent occurrences of ‘spurious bumps’. These fluctuations being greatly magnified
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by the back-transformation (2.3), the so-produced estimator of c shows a very erratic behavior

at the boundaries. On the contrary, local likelihood estimators have favorable tail behavior, with

very smooth tail estimates. This translates into accurate and well-behaved estimates for c close

to the boundaries when back into the initial domain I . These observations will be confirmed in

the next section, where the asymptotic properties of the estimators (‘naive’ and ‘improved’) are

derived.

3. Asymptotic properties

For simplicity, it will be assumed that K is a product Gaussian kernel, that is, K(z1, z2) =
φ(z1)φ(z2), and HST = h2I for some h > 0. Note that, in practice, there are reasons to keep

an unconstrained, non-diagonal bandwidth matrix HST . In particular, the copula density is typ-

ically stretched along one of the diagonals of I when X and Y are dependent, which provides

a density fST likewise stretched along one of the 45 degrees lines in R
2. Hence, using a band-

width matrix directing smoothing in that particular direction is sensible [15], as discussed further

in Section 4. That said, theoretical results for that general case would be less tractable than,

while qualitatively equivalent to, the simpler case presented below. Note that for that particu-

lar kernel K,
∫∫

K2(z1, z2) dz1 dz2 = (4π)−1 and
∫∫

z2
kK(z1, z2) dz1 dz2 = 1, k = 1,2. These

quantities frequently arise in the properties of kernel estimators, and direct use of these par-

ticular numerical values will be made in the results below. All proofs are to be found in the

Appendix [23].

3.1. The naive estimator and an amended version

Consider the naive estimator (2.7) which, with the above specifications of K and HST , reduces

to

ĉ(τ )(u, v) = 1

nh2φ(�−1(u))φ(�−1(v))
(3.1)

×
n

∑

i=1

φ

(

�−1(u) − �−1(Ûi)

h

)

φ

(

�−1(v) − �−1(V̂i)

h

)

.

Given (2.3), it is clear that its statistical properties will entirely depend on those of (2.6), here

f̂ST (s, t) = 1

nh2

n
∑

i=1

φ

(

s − Ŝi

h

)

φ

(

t − T̂i

h

)

. (3.2)

If fST admits continuous second-order partial derivatives, expressions for the bias and the vari-

ance of the ideal, infeasible estimator f̂ ∗
ST (2.4), as well as its asymptotic normality, are well

known [51], Chapter 4. Proposition 3.1 below ascertains that using the pseudo-observations (2.5)
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instead of genuine ones does not affect those properties. Note that (3.2) can be written

f̂ST (s, t) = 1

h2

∫ ∫

R2
φ

(

s − �−1(u)

h

)

φ

(

t − �−1(v)

h

)

dĈn(u, v), (3.3)

where Ĉn is the empirical copula

Ĉn(u, v) = 1

n

n
∑

i=1

1{Ûi≤u,V̂i≤v}. (3.4)

Hence, the behavior of f̂ST (s, t) will mostly be driven by the properties of Ĉn on I . Assume the

following.

Assumption 3.1. The sample {(Xi, Yi)}ni=1 is an i.i.d. sample from the joint distribution FXY , a

bivariate distribution with continuous marginals FX and FY .

Assumption 3.2. The copula C of FXY is such that (∂C/∂u)(u, v) and (∂2C/∂u2)(u, v) exist

and are continuous on {(u, v) : u ∈ (0,1), v ∈ [0,1]}, and (∂C/∂v)(u, v) and (∂2C/∂v2)(u, v)

exist and are continuous on {(u, v) : u ∈ [0,1], v ∈ (0,1)}. In addition, there are constants K1

and K2 such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∣

∣

∣

∣

∂2C

∂u2
(u, v)

∣

∣

∣

∣

≤ K1

u(1 − u)
, for (u, v) ∈ (0,1) × [0,1];

∣

∣

∣

∣

∂2C

∂v2
(u, v)

∣

∣

∣

∣

≤ K2

v(1 − v)
, for (u, v) ∈ [0,1] × (0,1).

Assumption 3.3. The density c of C exists, is positive and admits continuous second-order par-

tial derivatives on the interior of the unit square I . In addition, there is a constant K00 such

that

c(u, v) ≤ K00 min

(

1

u(1 − u)
,

1

v(1 − v)

)

∀(u, v) ∈ (0,1)2. (3.5)

Assumption 3.1 guarantees the existence and the uniqueness of the copula C of FXY . As-

sumptions 3.2–3.3 mostly reduce to Conditions 2.1 and 4.1 in [47], who claims that they are

not restrictive. In particular, they were designed for relaxing to a large extent some of the as-

sumptions previously commonplace in the copula literature, but which were violated by most of

the usual copula models used in practice. Specifically, Segers [47] shows that they hold for many

copula families, such as Gaussian and extreme-value copulas (subject to some conditions on their

Pickands dependence function), and Omelka, Gijbels and Veraverbeke [43] explicitly show that

they are satisfied for some common Archimedean copulas such as Clayton and Gumbel, and for

Student copulas as well. Compared to [47], Assumption 3.3 only requires further the existence

and continuity of second-order partial derivatives of c, which is natural in kernel estimation. It is

worth noting that c is allowed to grow unboundedly in some of the corners of I , provided (3.5)

remains valid.
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Proposition 3.1. Assume that K(z1, z2) = φ(z1)φ(z2) and HST = h2I with h ∼ n−a for some

a ∈ [1/6,1/4). Under Assumptions 3.1–3.3, the estimator (3.2) at any (s, t) ∈R
2 is such that

√

nh2
(

f̂ST (s, t) − fST (s, t) − h2bST (s, t)
) L−→ N

(

0, σ 2
ST (s, t)

)

, (3.6)

where bST (s, t) = 1
2
(
∂2fST

∂s2 (s, t) + ∂2fST

∂t2 (s, t)) and σ 2
ST (s, t) = fST (s,t)

4π
.

An important observation is that this result holds true for h ∼ n−a , a ∈ [1/6,1/4), which in-

cludes the optimal bandwidth order h ∼ n−1/6 for bivariate density estimation. Now, as recalled

in Section 1, resorting to pseudo-observations is known to usually affect the properties of most

estimators in copula modeling. In particular, an overriding result in the field is the weak conver-

gence of the empirical copula process

Cn(u, v)
.=

√
n
(

Ĉn(u, v) − C(u, v)
)

�GC(u, v)
(3.7)

.= BC(u, v) − ∂C

∂u
(u, v)BC(u,1) − ∂C

∂v
(u, v)BC(1, v),

where BC(u, v) is the tight centered Gaussian process whose covariance function is

E(BC(u, v)BC(u′, v′)) = C(u∧u′, v∧v′)−C(u, v)C(u′, v′) [19,47]. In fact, BC(u, v) would be

the limiting process if the margins were known, i.e. if true Ui ’s and Vi ’s were used in (3.4). The

extra two terms in the right-hand side of (3.7) are, therefore, often interpreted as ‘the price to pay’

for using pseudo-observations – although this effect may be advantageous [27]. Yet, the proof of

Proposition 3.1 reveals that the effect of those two terms asymptotically vanishes within (3.3).

As a result, the rate of convergence, as well as the asymptotic bias and variance, are the same as

those of the ideal estimator f̂ ∗
ST using true (Ui,Vi)’s. This is because a kernel density estimator

converges slower than an empirical distribution function. Resorting to pseudo-observations may

disturb the
√

n-convergence of the latter, but it goes unnoticed compared to the nonparametric

convergence rate O((nh2)−1/2) of the former.

Now, differentiating (2.1) yields

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂fST

∂s
(s, t) = ∂c

∂u

(

�(s),�(t)
)

φ2(s)φ(t) − sc
(

�(s),�(t)
)

φ(s)φ(t),

∂2fST

∂s2
(s, t) = ∂2c

∂u2

(

�(s),�(t)
)

φ3(s)φ(t) − 3s
∂c

∂u

(

�(s),�(t)
)

φ2(s)φ(t)

+
(

s2 − 1
)

c
(

�(s),�(t)
)

φ(s)φ(t)

(3.8)

(and similar for
∂fST

∂t
,

∂2fST

∂t2 and
∂2fST

∂s ∂t
). Hence, combining (2.1), (2.3), (3.6) and (3.8), one can

state:

Theorem 3.1. Under the assumptions of Proposition 3.1, the ‘naive’ probit transformation ker-

nel copula density estimator (3.1) at any (u, v) ∈ (0,1)2 is such that

√

nh2
(

ĉ(τ )(u, v) − c(u, v) − h2b(u, v)
) L−→ N

(

0, σ 2(u, v)
)

,
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where

b(u, v) = 1

2

{

∂2c

∂u2
(u, v)φ2

(

�−1(u)
)

+ ∂2c

∂v2
(u, v)φ2

(

�−1(v)
)

− 3

(

∂c

∂u
(u, v)�−1(u)φ

(

�−1(u)
)

+ ∂c

∂v
(u, v)�−1(v)φ

(

�−1(v)
)

)

(3.9)

+ c(u, v)
({

�−1(u)
}2 +

{

�−1(v)
}2 − 2

)

}

and σ 2(u, v) = c(u,v)

4πφ(�−1(u))φ(�−1(v))
.

When (u, v) approaches one of the boundaries, both the (asymptotic) bias and variance of

the estimator tend to grow unboundedly. Indeed, σ 2(u, v) ∝ c(u, v)/(φ(�−1(u))φ(�−1(v)))

and b(u, v) includes the term c(u, v)({�−1(u)}2 + {�−1(v)}2 − 2), and the functions �−1(·)
and 1/φ(�−1(·)) are unbounded. Thus, along the boundaries, ĉ(τ ) will work properly only over

areas, if any, where c approaches 0 very smoothly. Otherwise, ĉ(τ ) will typically show a very

erratic behavior (large variance) and will be prone to exploding (large positive bias), especially

in the corners. Figure 1 illustrates these problems, from a typical sample of size n = 1000 drawn

from the Gaussian copula with correlation ρ = 0.3 (left panel). The corresponding naive probit-

transformation kernel estimator is shown in the middle panel. An unconstrained matrix HST

was used in (2.6)–(2.7) and chosen by the multivariate Normal Reference rule [7]. Here, this is

optimal: C being a Gaussian copula, fST is a bivariate normal density. Over the middle of I ,

the estimator works decently, but towards the boundaries the estimate shows coarse folds and,

indeed, hypertrophies the peaks at (0,0) an (1,1). Clearly, this estimator is not acceptable as-is.

It is, therefore, not surprising that it has been reported not to perform well, see, for example,

Bouezmarni, El Ghouch and Taamouti’s [4] simulations.

Figure 1. True Gaussian copula density with ρ = 0.3 (left), its naive probit-transformation kernel estimator

from a typical random sample of size n = 1000 (middle) and its amended naive probit-transformation kernel

estimator from the same sample (right). The (unconstrained) bandwidth matrix HST was chosen by the

Normal Reference rule in the (S,T )-domain.
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The third, unbounded term in (3.9) can, however, be easily adjusted for. Instead of (2.3), take

ĉ(τ am)(u, v) = f̂ST (�−1(u),�−1(v))

φ(�−1(u))φ(�−1(v))
(3.10)

× 1

1 + (h2/2)({�−1(u)}2 + {�−1(v)}2 − 2)
.

For this ‘amended’ version of ĉ(τ ), one can see that the asymptotic bias becomes proportional to

b(am)(u, v) = 1

2

{

∂2c

∂u2
(u, v)φ2

(

�−1(u)
)

+ ∂2c

∂v2
(u, v)φ2

(

�−1(v)
)

− 3

(

∂c

∂u
(u, v)�−1(u)φ

(

�−1(u)
)

+ ∂c

∂v
(u, v)�−1(v)φ

(

�−1(v)
)

)}

.

In fact, the deterministic, multiplicative amendment in (3.10) exactly makes it up for the third

term in (3.9) in the asymptotic development, given that (1 + h2)−1 = 1 − h2 + o(h2) as h → 0.

The improvement is illustrated in Figure 1 (right panel), where ĉ(τ am) for the same data set as in

the middle panel is shown. The peaks at (0,0) and (1,1) are now roughly of the right height. The

wiggly appearance of the estimate along boundaries mostly remains, though, as the (asymptotic)

variance is not affected by the amendment. On a side note, the amendment implies that the

estimator ĉ(τ am)(u, v) does not integrate to 1 over I any more, which calls for a renormalization

such as ĉ(τ am)(u, v) ← ĉ(τ am)(u, v)/
∫∫

I
ĉ(τ am)(u, v) dudv. This is, however, frequent in other

nonparametric density estimation procedures, and is not really a problem.

3.2. Improved probit-transformation kernel copula density estimators

Now the properties of the ‘improved’ probit-transformation kernel copula density estimators are

derived. Again, the results are stated for K a product of two univariate Gaussian kernels and

HST = h2I, for some h > 0, in (2.11). The first version estimates the joint density fST by the

local log-linear estimator f̃
(1)
ST . Consider first the ‘ideal’ version f̃

∗(1)
ST of this estimator, using the

true sample {(Si, Ti)}ni−1. From [39], one gets, for all (s, t) ∈ R
2 at which fST (s, t) is positive

and admits continuous second-order partial derivatives,

√

nh2
(

f̃
∗(1)
ST (s, t) − fST (s, t) − h2b

(1)
ST (s, t)

) L−→N
(

0, σ
(1)
ST

2
(s, t)

)

, (3.11)

where

b
(1)
ST (s, t) = 1

2

{(

∂2fST

∂s2
+ ∂2fST

∂t2

)

(s, t) − 1

fST (s, t)

({

∂fST

∂s

}2

+
{

∂fST

∂t

}2)

(s, t)

}
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and σ
(1)
ST

2
(s, t) = fST (s,t)

4π
. If fST (s, t) = 0 at some (s, t), the singularity of the log-density can-

not be accurately approximated by (2.8), but this is ruled out here by Assumption 3.3 which

requires c to be positive all over the interior of the unit square. By (2.1), this implies that fST is

positive over R2.

Define the ‘ideal’ local log-linear probit-transformation kernel copula density estimator

c̃∗(τ,1)(u, v) = f̃
∗(1)
ST (�−1(u),�−1(v))/(φ(�−1(u))φ(�−1(v))). Using (2.1), (2.3) and (3.8) in

(3.11), one obtains

√

nh2
(

c̃∗(τ,1)(u, v) − c(u, v) − h2b(1)(u, v)
) L−→ N

(

0, σ (1) 2
(u, v)

)

, (3.12)

where

b(1)(u, v) = 1

2

{

∂2c

∂u2
(u, v)φ2

(

�−1(u)
)

+ ∂2c

∂v2
(u, v)φ2

(

�−1(v)
)

− 1

c(u, v)

({

∂c

∂u
(u, v)

}2

φ2
(

�−1(u)
)

+
{

∂c

∂v
(u, v)

}2

φ2
(

�−1(v)
)

)

(3.13)

−
(

∂c

∂u
(u, v)�−1(u)φ

(

�−1(u)
)

+ ∂c

∂v
(u, v)�−1(v)φ

(

�−1(v)
)

)

− 2c(u, v)

}

and σ (1) 2
(u, v) = c(u,v)

4πφ(�−1(u))φ(�−1(v))
.

The next result ascertains that, like for the ‘naive’ estimator, the asymptotic properties of c̃(τ,1)

are not affected by using pseudo-observations, and are consequently identical to those of the ideal

version c̃∗(τ,1).

Theorem 3.2. Under the assumptions of Proposition 3.1, the ‘improved’ local log-linear probit-

transformation kernel copula density estimator c̃(τ,1) at any (u, v) ∈ (0,1)2 is such that

√

nh2
(

c̃(τ,1)(u, v) − c(u, v) − h2b(1)(u, v)
) L−→N

(

0, σ (1) 2
(u, v)

)

,

where b(1)(u, v) and σ (1) 2
(u, v) are given above.

The variance is the same as that of the ‘naive’ estimator, but the bias is significantly different.

It is now automatically free from any unbounded terms. In fact, Hjort and Jones [31] showed

(their expression (7.3)) that the local log-linear estimator f̃
(1)
ST and the standard kernel estimator

f̂ST satisfy, for all (s, t),

f̃
(1)
ST (s, t) = f̂ST (s, t) exp

{

−1

2
h2

[(

∂f̂ST (s, t)/∂s

f̂ST (s, t)

)2

+
(

∂f̂ST (s, t)/∂t

f̂ST (s, t)

)2]}

. (3.14)

This shows that f̃
(1)
ST improves on f̂ST (s, t) by adjusting for the local slopes. From (2.3), (2.11)

and an analogue of (3.8) for hat versions, one obtains a similar result for the copula density
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estimators:

c̃(τ,1)(u, v) = ĉ(u, v)

× exp

{

−1

2
h2

[(

∂ĉ(u, v)/∂u

ĉ(u, v)

)2

φ2
(

�−1(u)
)

+
(

∂ĉ(u, v)/∂v

ĉ(u, v)

)2

φ2
(

�−1(v)
)

− 2

{(

∂ĉ(u, v)/∂u

ĉ(u, v)

)

�−1(u)φ
(

�−1(u)
)

+
(

∂ĉ(u, v)/∂v

ĉ(u, v)

)

�−1(v)φ
(

�−1(v)
)

}

+
{

�−1(u)
}2 +

{

�−1(v)
}2

]}

.

So, not only the local log-linear estimator c̃(τ,1) adjusts for the slopes of c like in (3.14), it

actively acts on the boundary behavior as well. Given that φ2(�−1(·)) and �−1(·)φ(�−1(·))
tend to 0 towards 0 and 1, the first four terms in the bracket will have little influence towards the

boundaries (provided c does not tend to 0 too sharply there). On the other hand, {�−1(u)}2 +
{�−1(v)}2 tends to +∞ very fast along boundaries (and all the more in the corners), hence

ĉ(u, v) is multiplied by something quickly tending to 0 there and this prevents it from exploding.

This is similar to what the amendment in (3.10) attempted, but is now automatic. Figure 2 (middle

panel) shows the estimate c̃(τ,1) for the data set used in Figure 1. It used the cross-validation

criterion discussed in Section 4 to select the matrix HST in (2.11).

The second improved probit-transformation estimator is obtained when taking p = 2 in (2.11).

Again, consider first the ‘ideal’ estimator f̃
∗(2)
ST , computed on the true sample {(Si, Ti)}ni=1. Lo-

cally fitting a polynomial of a higher degree is known to reduce the asymptotic bias of the esti-

mator, here from order O(h2) to order O(h4) [31,39], sufficient smoothness of fST permitting.

Specifically, if fST admits continuous fourth-order partial derivatives and is positive at (s, t),

Figure 2. True Gaussian copula density with ρ = 0.3 (left), its local log-linear (middle) and log-quadratic

(right) improved probit-transformation kernel estimators from the same sample (n = 1000) as in Fig-

ure 1. Both estimates use an unconstrained bandwidth matrix HST chosen by cross-validation in the

(S,T )-domain, see Section 4.
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then
√

nh2
(

f̃
∗(2)
ST (s, t) − fST (s, t) − h4b

(2)
ST (s, t)

) L−→ N
(

0, σ
(2)
ST

2
(s, t)

)

, (3.15)

where σ
(2)
ST

2
(s, t) = 5

2
fST (s,t)

4π
and

b
(2)
ST (s, t) = −1

8
fST (s, t)

{(

∂4g

∂s4
+ ∂4g

∂t4

)

+ 4

(

∂3g

∂s3

∂g

∂s
+ ∂3g

∂t3

∂g

∂t
+ ∂3g

∂s2 ∂t

∂g

∂t
+ ∂3g

∂s ∂t2

∂g

∂s

)

+ 2
∂4g

∂s2 ∂t2

}

(s, t),

with g(s, t) = logfST (s, t). Starting from g(s, t) = log c(�(s),�(t)) + logφ(s) + logφ(t), te-

dious algebraic differentiation provides all partial derivatives of g up to order four in terms of

c and its partial derivatives up to order four. Naturally, c will be assumed to admit continuous

fourth-order partial derivatives.

Assumption 3.4. The copula density c(u, v) = (∂2C/∂u∂v)(u, v) admits continuous fourth-

order partial derivatives on the interior of the unit square I .

As previously, it readily follows from (3.15) that

√

nh2
(

c̃∗(τ,2)(u, v) − c(u, v) − h4b(2)(u, v)
) L−→ N

(

0, σ (2) 2
(u, v)

)

,

where σ (2) 2
(u, v) = 5

2
c(u,v)

4πφ(�−1(u))φ(�−1(v))
and b(2)(u, v) is an expression of the same type as

(3.13), but involving the partial derivatives of c up to the fourth order. Again, resorting to pseudo-

observations will not affect these properties, under a condition on the bandwidth slightly stronger

than previously. However, given that the bias order is reduced to O(h4), the optimal bandwidth

order is now seen to be h ∼ n−1/10, so that the bandwidth requirement does still include that

optimal order.

Theorem 3.3. Under the assumptions of Proposition 3.1 and Assumption 3.4, if h ∼ n−a with

a ∈ [1/10,1/6) as n → ∞, the ‘improved’ local log-quadratic probit-transformation kernel cop-

ula density estimator c̃(τ,2) at any (u, v) ∈ (0,1)2 is such that

√

nh2
(

c̃(τ,2)(u, v) − c(u, v) − h4b(2)(u, v)
) L−→N

(

0, σ (2) 2
(u, v)

)

,

where b(2)(u, v) and σ (2) 2
(u, v) are described above.

The asymptotic variance is the same as that for ĉ(τ )(u, v) and c̃(τ,1)(u, v), except that it is

inflated by a factor 5/2. This inflation factor is a well-known feature when locally fitting a

higher-degree polynomial [17], Section 3.3.1. The expression of b(2)(u, v) is not given explic-

itly here, as it is made up of several dozens of terms. All of them, though, are proportional
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to {�−1(u)}α{�−1(v)}βφγ (�−1(u))φδ(�−1(v)), for some non-negative integers α,β, γ, δ. As

these functions all tend to 0 as u,v → 0/1, b(2)(u, v) may actually tend to 0 towards the bound-

aries, and the bias there be of order o(h4). Again, this will be the case where c does not tend to 0

too sharply when approaching the boundary.

Interestingly, ad-hoc techniques for bias reduction from O(h2) to O(h4), e.g. higher-order

kernels or multiplicative adjustment, have long been an active research topic in kernel estimation

[34]. Yet, few of those methods have actually taken hold, owing to interpretability issues (e.g.

negative density estimates when using higher-order kernels) or computational burden. Besides,

the demonstrated improvement was asymptotic and usually went unnoticed for typical sample

sizes. Here, besides fixing boundary issues, combining transformation and local log-quadratic

density estimation achieves that bias reduction with no real extra computational complications.

These improvements are visible even in moderately large sample size, as the simulation study in

Section 5 will show. A material effect of this is that a larger bandwidth can be used without over-

smoothing. This results in smoother estimates, visually more pleasant. This is clear in Figure 2

(right panel), where c̃(τ,2) is shown for the same data set as previously. Again, the bandwidth

matrix in (2.11) was chosen via the cross-validation method suggested in Section 4.

The above results also justify the choice of the probit transformation in this framework. Ba-

sically, the double probit transformation (S,T ) = (�−1(U),�−1(V )) has for only purpose to

send the boundaries of I away to ±∞, so that the estimation of fST is free from boundary

issues. Therefore, one could also define (S,T ) = (G1(U),G2(V )) for any two other smooth,

monotonic transformations G1,G2 : [0,1] → R, for example, logit or the quantile function of

any R-supported distribution. However, �−1 transforms the uniformly distributed U and V into

normally distributed S and T . These two marginal densities will be estimated with bias of or-

der o(h4) from the local log-quadratic approximation (2.9), as the ‘local parametric model’ is

right, in the words of Hjort and Jones [31]. Of course, without providing any real guarantee,

accurate marginal estimation is an appealing feature that can only be beneficial for estimating

the bivariate fST . In addition, in the particular (but common) case of a Gaussian copula, the

probit-transformed density fST is in fact a bivariate normal density, which can be fully estimated

with o(h4) bias through (2.9). Thus, for Gaussian copula densities (or close thereto), important

amount of smoothing may be applied without large bias. It is in consequence of this that the

nice, smooth estimate of the Gaussian copula in Figure 2 (right panel) was obtained, see also

Figure 3 (right panel) below. Of course, this would not be possible if S and T were not normally

distributed, that is, if another transformation than probit was used.

3.3. Improved copula density estimators with k-NN bandwidth

Theorems 3.2 and 3.3 reveal that the copula density estimators c̃(τ,p), p = 1,2, have advanta-

geous boundary behavior in terms of their bias. However, the fact remains that their variance

behaves like

Var
(

c̃(τ,p)(u, v)
)

= Cp

c(u, v)

4πnh2φ(�−1(u))φ(�−1(v))
+ o

((

nh2
)−1)

, (3.16)
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Figure 3. True Gaussian copula density with ρ = 0.3 (left), its local log-linear (middle) and log-quadratic

(right) improved probit-transformation kernel estimators from the same sample (n = 1000) as in Figure 1.

Both estimates use an unconstrained bandwidth matrix of type k-NN chosen by cross-validation in the

(S,T )-domain, see Section 4.

where C1 = 1 and C2 = 5/2, as n → ∞, growing unboundedly when (u, v) approaches any of

the boundaries (except where c(u, v) → 0 very smoothly). Note that this is also the case for other

copula density estimators attempting boundary bias correction, see, for instance, [3], Chapter 4

and [32] for similar unbounded boundary variance for the Beta kernel and the Bernstein esti-

mators. In the univariate case, Geenens [22] explained why using a k-Nearest-Neighbor (k-NN)

bandwidth in the transformed domain can stabilize the variance of the final estimate towards

the boundaries. This idea also appears totally appropriate in the copula setting, which can be

understood heuristically as follows.

Again, assume that HST in (2.11) is diagonal, but instead of taking HST = h2I for some fixed

value h, take a local smoothing matrix defined as H
(k)
ST (s, t) = D2

k (s, t)I, where Dk(s, t) is the

Euclidean distance between (s, t) and the kth closest observation out of the sample (2.5) in R2.

Now it is k, or equivalently α = k/n, that will play the role of the smoothing parameter in lieu

of h. If K had a compact support, α would be the proportion of observations actively entering the

estimation of fST at any (s, t) – this interpretation roughly holds for Gaussian kernels as well.

Of course, Dk(s, t) is a random quantity. Following Mack and Rosenblatt [41], one can show

that E(1/Dk(s, t)) ≃ πfST (s,t)
α

and, together with Var(f̃
(p)

ST (s, t)|Dk(s, t)) ≃ Cp
fST (s,t)

4πnDk(s,t)
, that

Var(f̃
(p)
ST (s, t)) ≃ Cp

f 2
ST (s,t)

4nα
. Now, through (2.3), one directly gets, for all (u, v) ∈ (0,1)2,

Var
(

c̃(τ,p)(u, v)
)

≃ Cp

c2(u, v)

4nα
.

The factor 1/{φ(�−1(u))φ(�−1(v))} in (3.16) has been replaced by a factor c(u, v). This

is always beneficial to the estimator, given that c(u, v)φ(�−1(u))φ(�−1(v)) = fST (�−1(u),

�−1(v)) goes to 0 as (u, v) approaches a boundary of I , and results in estimates more stable and

much smoother in those areas. In fact, given that the (long) tails of f̃
(p)

ST in the (S,T )-domain

become the (short) boundary regions of c̃(τ,p) in I through the compressing back-transformation
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(u = �(s), v = �(t)), f̃
(p)

ST must have very smooth tails in R
2 to produce suitably smooth bound-

ary behavior for c̃(τ,p). Local likelihood density estimators using k-NN bandwidth are, indeed,

known to produce smoother estimates in the tails than their fixed-bandwidth counterparts, avoid-

ing the occurrence of ‘spurious bumps’. Hence, the appropriateness of the method here.

This is illustrated in Figure 3. The two ‘improved’ probit-transformation kernel copula density

estimates (local log-linear, middle; local log-quadratic, right), computed on the same data set

as previously, this time use a k-NN-type unconstrained bandwidth matrix H
(k)
ST (s, t) (see Sec-

tion 4 for details). Compared to Figure 2, the estimates are much smoother along the boundaries

now, especially c̃(τ,2). The value of α selected for the case p = 1 was 0.1871, that for the case

p = 2 was 0.4976: the bias order reduction implied by local log-quadratic modeling allows a

larger smoothing parameter to be used. As a result, c̃(τ,2) (right panel) has a smooth and visu-

ally pleasant appearance, but without oversmoothing. In fact, it is barely distinguishable from

the true copula density (left panel). An explanation lies in the last lines of Section 3.2, but the

estimator c̃(τ,2) with a k-NN-type bandwidth is strikingly good at recovering the shape of any

underlying copula density while maintaining a visually pleasant amount of smoothness, see also

Section 6.

4. Bandwidth choice

The behavior of kernel estimators crucially depend on their smoothing parameter, whose choice

in practice is a very difficult problem especially in more than one dimension. Here an effective

way for selecting a suitable bandwidth matrix HST in (2.11) is suggested. Importantly, the fol-

lowing methodology does not rely on any copula-specific argument, so can be applied for any

bivariate kernel density estimation. Consider

HST =
(

h2
1 h12

h12 h2
2

)

,

an unconstrained bandwidth matrix. The diagonal elements h2
1 and h2

2 quantify the amount of

smoothing in the directions of the main s- and t -axes, hence their values drive the overall smooth-

ness of the resulting f̃
(p)

ST (and eventually that of c̃(τ,p)). On the other hand, h12 sets the direction

along which that smoothing mostly applies. For instance, if K is the bivariate Gaussian kernel,

the local weights around (s, t) ∈R
2 are set by the elliptical contour lines of the N2((s, t)

t ,HST )-

distribution. If fST stretches along a particular direction of R2 (which is the case if c itself does

on I), it is greatly beneficial that smoothing be applied in that direction [15], and h12 should be

selected accordingly. If this is not the case, in particular if S and T are uncorrelated, then h12

may be set to 0. This motivates to separate the problem of selecting h1 and h2 from that of select-

ing h12. The idea developed here looks for achieving this, in a way close in spirit to pre-sphering

the observations [51], Section 4.6.

Consider the principal components decomposition of the (n×2)-‘data matrix’ 
.= (Ŝi, T̂i)

n
i=1.

The score of the ith observation on the first and second principal components are given by

Q̂i = W11Ŝi + W12T̂i, R̂i = W21Ŝi + W22T̂i, (4.1)
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where W1 = (W11,W12)
t and W2 = (W21,W22)

t are the eigenvectors of T . Given that the

transformation
(

Q

R

)

=
(

W11 W12

W21 W22

)(

S

T

)

.= W

(

S

T

)

(4.2)

is only a linear reparametrization of R
2, an estimate of fST can be readily obtained from an

estimate of the density of (Q,R), say fQR . In addition, by construction the samples {Q̂i} and

{R̂i} are empirically uncorrelated, hence estimating fQR from the sample {(Q̂i, R̂i)}ni=1 can be

based on a diagonal bandwidth matrix HQR = diag(h2
Q, h2

R) with little side effect. An idea is then

to select hQ and hR independently via univariate procedures. Denote f̃
(p)
Q and f̃

(p)
R (p = 1,2),

the local log-polynomial estimators for the densities of Q and R, respectively, based on the

univariate samples {Q̂i} and {R̂i}. Of course, f̃
(p)

Q only requires one bandwidth hQ and f̃
(p)

R

only requires one other hR . Then, hQ can be selected via cross-validation [38], Section 5.3.3, as

hQ = arg min
h>0

{

∫ ∞

−∞

{

f̃
(p)

Q (q)
}2

dq − 2

n

n
∑

i=1

f̃
(p)

Q(−i)(Q̂i)

}

, (4.3)

where f̃
(p)

Q(−i) is the ‘leave-one-out’ version of f̃
(p)

Q computed on all the observations but Q̂i .

Then hR can be found similarly, and hQ and hR can be plugged into HQR for proceeding to

bivariate estimation. However, optimal bandwidths in one dimension are usually smaller than

those for bivariate density estimation of fQR . For the case p = 1, the asymptotic optimal band-

width order is n−1/5 for univariate density estimation and n−1/6 in two dimensions. For the

case p = 2, the asymptotic optimal bandwidth order is n−1/9 for univariate density estimation

and n−1/10 in two dimensions. Hence, a fair choice of bandwidth matrix for estimating fQR is

HQR = K
(p)
n diag(h2

Q, h2
R), with hQ and hR the two bandwidths found above by (univariate)

cross-validation, and K
(1)
n = n1/15 in the local log-linear case and K

(2)
n = n1/45 in the local log-

quadratic case. The estimate of fST can finally be obtained by linear back-transformation of

the estimate of fQR . In fact, due to (4.2), this exactly amounts to directly estimating fST from

{(Ŝi, T̂i)} using the bandwidth matrix HST = K
(p)
n W−1 diag(h2

Q, h2
R)W−1. There is no need to

explicitly estimate fQR .

For a k-NN-type bandwidth matrix, the procedure is very similar. The sample {(Q̂i, R̂i)}ni=1 is

obtained via (4.1). Then, a suitable value of α in the Q-direction is computed as

αQ = arg min
α∈(0,1)

{

∫ ∞

−∞

{

f̃
(p)

Q (q)
}2

dq − 2

n

n
∑

i=1

f̃
(p)

Q(−i)(Q̂i)

}

, (4.4)

i.e. exactly as in (4.3) but this time f̃
(p)

Q is the estimator based on the k-NN bandwidth α, and so is

αR . Let κ = αQ/αR and define the squared norm in the (Q,R)-domain as ‖(q, r)‖2 = q2 +κ2r2.

The factor κ2 naturally adjusts, through the obtained close-to-optimal values of αQ and αR , for

the potential discrepancy in local geometry in the q- and r-directions. The bivariate estimation

of fQR at any (q, r) ∈ R
2 is carried out using the k = K

(p)
n ×αQ ×n nearest neighbors of (q, r),
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these being determined by the distance implied by the above norm. Here, K
(1)
n = n−2/15 and

K
(2)
n = n−4/45, again for accounting for the difference in optimal α-orders in one and two dimen-

sions. Finally, the estimate of fST is obtained by inverse linear transformation or, as set out in the

fixed-bandwidth case, directly from the sample {(Ŝi, T̂i)}ni=1 using an appropriate ‘Mahalanobis-

like’ distance. Here, the employed distance makes use through κ of relevant information in terms

of optimal smoothing, not only in terms of the covariance structure of {(Ŝi, T̂i)} like the usual

Mahalanobis distance. In this setting, the ‘smoothing parameters’ vector is, therefore, (αQ, κ).

Admittedly, this procedure may lack of theoretical support. For instance, it is known that pre-

sphering the observations in the process of selecting the bandwidth matrix is justified only if

(S,T ) is bivariate normal, that is, in this framework, if c is the Gaussian copula. Likewise,

choosing hQ/αQ and hR/αR independently via univariate procedures is suitable in theory only

if Q and R are independent, not only uncorrelated. The correcting factor K
(p)
n may also seem

like nothing less than a heuristic, ad-hoc correction. Having said this, the procedure gives very

reliable results, as illustrated in Figures 2 and 3. This will be even more obvious in the simu-

lation study and the real data analysis detailed in the next sections. In addition, being based on

a twofold univariate cross-validation optimization problem, the algorithm is more stable numer-

ically than one based on optimizing a full, bivariate cross-validation criterion. This technique

seems, therefore, an acceptable choice for selecting the bandwidth matrix in practice.

5. Simulation study

Here, Monte Carlo simulations results are presented to compare the practical behavior of the

probit-transformation estimators with that of their main competitors. All computations have been

carried out using the R software and its freely available packages. Specifically, 12 estimators were

considered:

• the ‘mirror reflection’ estimator ĉ(m) [28]. It remains a common choice for (ostensibly)

correcting boundary bias and will, therefore, be taken as benchmark. A first bandwidth

matrix was obtained from the ‘augmented’ data set (made up of 9n ‘observations’ spread

over an area 9 times bigger than I) via the Normal reference rule, then the final matrix was

obtained by multiplying the former by (1/9)2/3 ≃ 0.23 for adjusting for the effective sample

size and range;

• the ‘naive’ probit-transformation estimator ĉ(τ ) (2.7) and its amended version ĉ(τ am), whose

idea is exposed in Section 3.1 (for a general, non-diagonal matrix HST , the amendment takes

a slightly more complicated form than (3.10)). The bandwidth matrix HST was selected via

a direct plug-in method [14] in the transformed domain (S,T );

• the improved probit-transformation estimators c̃(τ,1) and c̃(τ,2), given by (2.11), based on a

k-NN-type bandwidth matrix selected via cross-validation as described at the end of Sec-

tion 4. As already observed in [22] in the univariate case, when based on a fixed-bandwidth

matrix these estimators performed a little less well, so the results are not shown here. The

optimization problems (2.11) (local log-polynomial estimation of fST ) and (4.4) (k-NN

bandwidth selection) were solved using the relevant functions of the R package locfit.

An R package directly implementing these improved probit-transformation estimators is in

preparation;
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• the Beta kernel estimator ĉ(β) [8], with Chen’s [9] further bias correction. Two smoothing

parameters were considered: h = 0.02 (ĉ
(β)

1 ) and h = 0.05 (ĉ
(β)

2 );

• the Bernstein copula density estimator ĉ(B) [4,5]. Two smoothing parameters were consid-

ered: k = 15 (ĉ
(B)
1 ) and k = 30 (ĉ

(B)
2 );

• the penalized hierarchical B-splines estimator ĉ(p) [35], computed by the function pen-

copula in the eponymous R package. The vector of penalty coefficients was set to

λ = (10,10) (ĉ
(p)

1 ), λ = (100,100) (ĉ
(p)

2 ), and λ = (1000,1000) (ĉ
(p)

3 ). The parameters

d and D were set to 4 and 8, following Kauermann, Schellhase and Ruppert’s [35] results.

M = 1000 independent random samples {(Ui,Vi)}ni=1 of sizes n = 200, n = 500 and n = 1000

were generated from each of the following copulas:

• the independence copula (i.e., Ui ’s and Vi ’s drawn independently);

• the Gaussian copula, with parameters ρ = 0.31, ρ = 0.59 and ρ = 0.81;

• the Student t -copula with 10 degrees of freedom, with parameters ρ = 0.31, ρ = 0.59 and

ρ = 0.81;

• the Student t -copula with 4 degrees of freedom, with parameters ρ = 0.31, ρ = 0.59 and

ρ = 0.81;

• the Frank copula, with parameter θ = 1.86, θ = 4.16 and θ = 7.93;

• the Gumbel copula, with parameter θ = 1.25, θ = 1.67 and θ = 2.5;

• the Clayton copula, with parameter θ = 0.5, θ = 1.67 and θ = 2.5.

For each family of copulas, the considered three values of the parameter roughly correspond

to Kendall’s τ ’s equal to 0.2, 0.4 and 0.6. Of course, all the estimations only made use of the

pseudo-observations, that is, the normalized ranks of the observations in the initially generated

samples {Ui}ni=1 and {Vi}ni=1.

The fit of an estimator ĉ to a given copula density c is assessed by the Mean Integrated

L2-Error E(
∫∫

I
(ĉ(u, v) − c(u, v))2 dudv), estimated by the average over the 1000 Monte Carlo

replications of

ISE(ĉ) ≃ 1

(N + 1)2

N
∑

k1=1

N
∑

k2=1

{

ĉ

(

k1

N + 1
,

k2

N + 1

)

− c

(

k1

N + 1
,

k2

N + 1

)}2

with N = 64. The approximated MISE can be found in Table 1 for n = 1000. The results for

smaller sample sizes show exactly the same pattern, and are available upon request. For ease of

reading and interpretation, all the values are relative to the (approximated) MISE of the bench-

mark mirror estimator ĉ(m). For reference, the effective MISE of ĉ(m) is reported in italics in the

last column of the table (which is, therefore, not on the same scale as the other values).

The estimators c̃(τ,1) and c̃(τ,2) are clearly the best, overall, on this L2-error criterion. They

always dramatically improve on the Beta and Bernstein estimators, and they also do much better

than the mirror reflection and the penalized B-splines estimators when the dependence is not

close to null. When the dependence is very low, ĉ(m) and ĉ(p) do better, which can be easily

understood. It is known that mirror reflection efficiently deals with boundary effects only when

the partial derivatives of c are 0 there (‘shoulder’). It is, therefore, particularly appropriate for the

independence copula (c ≡ 1) and other very flat copula densities such as Gaussian or Frank with
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Table 1. (approximated) MISE relative to the MISE of the mirror-reflection estimator (last column), n =
1000. Bold values show the minimum MISE for the corresponding copula (non-significantly different values

are highlighted as well)

n = 1000 ĉ(τ ) ĉ(τ am) c̃(τ,1) c̃(τ,2) ĉ
(β)
1

ĉ
(β)
2

ĉ
(B)
1

ĉ
(B)
2

ĉ
(p)
1

ĉ
(p)
2

ĉ
(p)
3

ĉ(m)

Indep 3.57 2.80 2.89 1.40 7.96 11.65 1.69 3.43 1.62 0.50 0.14 0.01

Gauss2 2.03 1.52 1.60 0.76 4.63 6.06 1.10 1.82 0.98 0.66 0.89 0.01

Gauss4 0.63 0.49 0.44 0.21 1.72 1.60 0.75 0.58 0.62 0.99 2.93 0.05

Gauss6 0.21 0.20 0.11 0.05 0.74 0.33 0.77 0.37 0.72 1.21 2.83 0.26

Std(10)2 1.36 1.06 1.04 0.55 3.07 3.98 0.96 1.24 0.86 0.87 1.48 0.02

Std(10)4 0.41 0.37 0.28 0.15 1.22 1.00 0.74 0.46 0.68 1.08 2.51 0.08

Std(10)6 0.15 0.18 0.08 0.05 0.71 0.24 0.79 0.41 0.84 1.21 2.36 0.39

Std(4)2 0.61 0.56 0.50 0.40 1.57 1.80 0.78 0.67 0.75 1.01 1.88 0.04

Std(4)4 0.21 0.27 0.17 0.15 0.88 0.51 0.75 0.42 0.75 1.12 2.07 0.16

Std(4)6 0.09 0.17 0.08 0.09 0.70 0.19 0.82 0.47 0.90 1.17 1.90 0.67

Frank2 3.31 2.42 2.57 1.35 7.16 9.63 1.70 2.95 1.31 0.45 0.49 0.01

Frank4 2.35 1.45 1.51 0.99 4.42 4.89 1.49 1.65 0.60 0.72 6.14 0.01

Frank6 0.96 0.52 0.45 0.44 1.51 1.19 1.35 0.76 0.65 1.58 7.25 0.07

Gumbel2 0.65 0.62 0.56 0.43 1.77 1.97 0.82 0.75 0.83 1.03 1.52 0.04

Gumbel4 0.18 0.28 0.16 0.19 0.89 0.41 0.78 0.47 0.81 1.10 1.78 0.21

Gumbel6 0.09 0.21 0.10 0.15 0.78 0.29 0.85 0.58 0.94 1.12 1.63 0.93

Clayton2 0.63 0.60 0.51 0.34 1.78 1.99 0.78 0.70 0.79 1.04 1.79 0.04

Clayton4 0.11 0.26 0.10 0.15 0.79 0.27 0.83 0.56 0.90 1.10 1.50 0.65

Clayton6 0.11 0.28 0.08 0.15 0.82 0.35 0.88 0.67 0.96 1.09 1.36 1.61

low dependence. The penalized B-splines estimator does even better when using a huge penalty

for roughness, for obvious reasons. In all other cases, and particularly when the copula density

becomes unbounded in some corners (but not only), c̃(τ,1) and c̃(τ,2) dramatically outperform

their competitors. In fact, mirror reflection and splines are not appropriate methods for estimating

unbounded copula densities. By construction, the Beta kernel estimator always tends to be zero

along boundaries (see, for instance, Figure 5 below), hence its even worse performance in this

framework. The Bernstein estimator does better than ĉ(β), but cannot really compete with c̃(τ,1)

and c̃(τ,2). Of course, one can argue that the smoothing parameters used for ĉ(β), ĉ(B) and ĉ(p)

have been selected mostly arbitrarily and are not adequate. This may be true, however, there is no

simple, data-driven way of selecting those parameters, hence the choice was made subjectively

exactly as a practitioner should have resolved to act. In addition, the above observations support

that bad smoothing parameter choice is not the only reason for the poor performance of some of

those estimators. Other evidence of that will be given in the next section.

In general, c̃(τ,2) is doing better than c̃(τ,1), which is expected from the theoretical results.

A notable exception, though, is in presence of high tail dependence, i.e. when the copula density

tends very quickly to ∞ at one of the corners of I , such as for Clayton and Gumbel copulas

with high Kendall’s τ . In fact, the extra smoothness guaranteed by local log-quadratic estima-

tion prevents the estimator from growing too quickly in the corners, and this is thus slightly

detrimental in those cases. The same comment holds true when comparing the naive estimator
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Figure 4. Loss-ALAE dataset: suggested parametric copula density (Gumbel with parameter θ̂ = 1.453;

upper-left panel) and probit-transformation estimates with p = 1 (middle column) and p = 2 (right col-

umn). The upper line shows 3-d views and the bottom line shows contour lines, superimposed on the Gum-

bel copula density contour lines. Pseudo-observations are shown in the bottom-left panel.

ĉ(τ ) to its amended version ĉ(τ am). Generally, ĉ(τ am) has lower MISE than ĉ(τ ), except in the

above-mentioned cases of high tail dependence: the amendment prevents the estimate from ex-

ploding, even when the true density does. In any case, these ‘naive’ versions cannot really match

the performance of the ‘improved’ versions c̃(τ,1) and c̃(τ,2) on MISE.

6. Real data analysis

In this section, the well-known ‘Loss-ALAE’ dataset, reporting the indemnity payment (Xi ’s)

and allocated loss adjustment expense (Yi ’s) associated to 1500 losses from an insurance com-

pany, is considered. Analyzed in [21,36] and [13], this dataset is a classic in the copula literature.

In particular, Frees and Valdez [21] mentioned that the Gumbel copula with θ̂ = 1.453 provides

an excellent fit. The data set initially contains 34 censored observations, that were excluded here

as the suggested estimators were not designed to take censorship into account. Using more ad-

vanced model selection ideas, Chen et al. [11] also found that the Gumbel copula (with the same

parameter θ̂ ) fits the dataset (restricted to its complete cases) the best out of most of the usual

parametric copula models. The aim here is to test the probit-transformation estimators c̃(τ,p) (p =
1,2) (and their competitors) against that parametric ‘gold standard’, shown in Figure 4 (up-left).
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Figure 5. Loss-ALAE dataset: suggested Gumbel copula density (θ̂ = 1.456), mirror reflection estimator,

Beta kernel estimators with h = 0.05 and h = 0.02, Bernstein estimators with k = 15 and k = 40 and

penalized B-splines estimators with d = 4,D = 8 and with λ = (25,25) and λ = (2,2).

The two probit-transformation estimators (local log-linear and local log-quadratic) were first

fit to the data set. In both cases, a k-NN bandwidth matrix was used. Using the selection rule

prescribed in Section 4, the parameters (α, κ) = (0.24,1.28) for p = 1 and (α, κ) = (0.51,1.01)

for p = 2 were obtained in an automatic manner. The estimator c̃(τ,2) is, again, very similar

to the parametric fit. In particular, it has that very smooth and pleasant appearance of paramet-

ric estimates, while being based on a fully nonparametric procedure. Reproducing ‘parametric

smoothness’ without sacrificing any flexibility is, of course, a substantial achievement. Naturally,

c̃(τ,1) is less smooth (see discussion in Section 3.2), but is still totally acceptable. Both nonpara-

metric estimates suggest that the true underlying copula density decays towards the (0,1)-corner

quicker than what the Gumbel model shows (this is particularly clear from the contour lines). Ad-

mittedly, there is no way of knowing what is the truth here. However, c̃(τ,1) and c̃(τ,2) are based

only on the data (it is visually obvious that the upper-left corner of I is much less endowed in

data than the bottom-right corner), and not on any prior assumption. On the contrary, the Gumbel

copula density is inherently symmetric in u and v. The peak at (0,0) also appears less high on

the nonparametric estimates than for the Gumbel model.

Figure 5 shows the competitors on the same data set: the mirror reflection estimator, two Beta

kernel estimators, two Bernstein estimators and two penalized B-splines estimators. Of course,

ĉ(m) cannot cope with this unbounded copula density. For the other three methods, producing an

estimate reasonably smooth required a value of the smoothing parameter (h for Beta kernel esti-

mators, k for Bernstein estimators and λ for penalized B-splines) preventing correct estimation

of the peaks at (0,0) and (1,1). To get estimates showing a peak at (1,1) of roughly the right

magnitude, one needed to use smoothing parameters producing unacceptably undersmoothed es-
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timation elsewhere on I , yet not even able to properly catch the peak at (0,0). If the Gumbel

copula density is assumed to be close to the truth for this data set, then there is no question

that c̃(τ,1) and c̃(τ,2) are, by far, the best. This, also, illustrates that the results obtained in the

simulations are not only due to bad smoothing parameter choices.

7. Concluding remarks

Development of efficient kernel-type methods for nonparametric copula modeling have been de-

layed owing mainly to the bounded support of copulas, namely the unit square I . It is, indeed,

well known that kernel estimators heavily suffer from boundary bias issues, which are not trivial

to fix. In this paper, a new kernel-type estimator for the copula density has been proposed. It

is based on the probit-transformation idea suggested in [8] and studied in full in the univariate

case in [22]. This ‘improved probit-transformation estimator’ deals with boundary bias in a very

natural way. In addition, it has been seen to easily cope with potentially unbounded copula den-

sities, which are the common and interesting cases in copula modeling. An easy-to-implement

selection rule for the necessary smoothing parameters has also been proposed. This procedure

has been seen to be very stable and to give very good results in practice. In particular, a version

of the estimator (c̃(τ,2) with k-NN-type bandwidth matrix) is able to reproduce the smooth and

pleasant appearance of parametric models, while keeping the flexibility of fully nonparametric

estimation procedures. A comprehensive simulation study has emphasized the very good prac-

tical performance of that estimator compared to its main competitors. As of now, though, the

theoretical properties of the estimator have been derived under the assumption of i.i.d. sampling,

making use of the strong approximation for the empirical copula process provided by Proposition

4.2 of [47]. To the best of these authors’ knowledge, this result has not been proved in the case of

weakly dependent observations. It would be particularly significant to investigate this in a near

future, given the predominant place recently found by copula modeling in the setting of time se-

ries, notably in finance. Other directions for future research would look for using the new copula

density estimator in a variety of problems, for instance copula goodness-of-fit tests [18,46].

Supplementary Material

Supplement to “Probit transformation for nonparametric kernel estimation of the copula

density” (DOI: 10.3150/15-BEJ798SUPP; .pdf). An appendix consisting of the proofs of the

different theoretical results is available as supplementary material.
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