
PROBLEM FEATURES THAT INFLUENCE 
THE DESIGN OF EXPERT SYSTEMS’ 

Paul J. Kline and Steven B. Dolins 

Artificial Intelligence Laboratory 
Computer Science Center 

Texas Instruments Incorporated 
Dallas, TX. 75266 

ABSTRACT 

An analysis was made of a set of design guidelines 
for expert systems. These guidelines relate problem char- 
acteristics to appropriate AI implementation techniques. 
The analysis indicates there are five general problem fea- 
tures that are important for the proper use of a wide va- 
riety of AI implementation techniques. By being aware 
of these problem features, knowledge engineers improve 
their chances of coming up with the right design for ex- 
pert systems. Awareness of these problem features should 
also help knowledge engineers take full advantage of new 
AI techniques as they emerge. 

I Introduction 

ber 
The designer of an expert system has to make 
of choices about implementation techniques: 

a num- 

What knowledge representation technique should be 
used? 

What problem-solving strategy should be employed? 

How should uncertainty be handled? 

Making the right decisions greatly simplifies the devel- 
opment of an expert system and helps ensure its lasting 
usefulness. However, making the right decisions means 
choosing the AI implementation techniques that are most 
appropriate for the problem at hand. This can be difficult, 
as there is no readily available source of guidance about 
the appropriate use of AI techniques. 

In an effort to address this problem, Kline & Dolins 
(1985) present a list of 47 Probing Questions that relate 
problem features to AI implementation techniques. Given 

lThis research was supported by the Air Force Systems Command, 
Rome Air Development Center, Griffiss AFB, New York 13441 un- 
der contract no. F30602-83-C-0123. 

access to an expert in a particular problem area, a knowl- 
edge engineer should be able to use the Probing Questions 
to determine which of nearly 100 AI techniques and im- 
plementation strategies are best suited to the problem. 

The Probing Questions were developed by 1) collect- 
ing claims about the appropriate use of AI techniques 
from the published literature on expert systems, 2) cir- 
culating draft questions among experienced expert sys- 
tems builders for their comments and additions, and 3) 
revising the draft questions in response to the nine sets of 
comments received. In level of detail and completeness, 
the questions go a step beyond what can be found in Stefik 
et al. (1983). 

Knowledge engineers are encouraged to use the result- 
ing Probing Questions to help design their expert systems. 
(Copies of the questions with supporting documentation 
are available from the authors). However, two problems 
can arise in using the current set of Probing Questions to 
design expert systems: 

Since there are 47 Probing Questions, there is a 
danger of “losing sight of the forest amid all of the 
trees.” During the course of discussions between ex- 
pert and knowledge engineer, problem features will 
emerge that should have substantial impact on the 
design of the expert system. Knowledge engineers 
need to recognize the significance of those features 
when they are mentioned and they need to explore 
them thoroughly with the expert to avoid misunder- 
standings. 

The Probing Questions are designed to verify the 
appropriateness of a target set of AI implementa- 
tion techniques. If the problem in question cannot 
be solved using these techniques, then there is no ob- 
vious way to use the Probing Questions to help eval- 
uate proposed solutions relying on techniques that 
are not part of the target set. 

956 I ENGINEERING 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



Analysis of the Probing Questions indicates there are 
five issues that are important for the proper use of a wide 
variety of AI implementation techniques: 

l When does the information needed to solve prob- 
lems become available? Information can be avail- 
able at program-design time, data-input time, or 
problem-solution time. 

l What kind of connection is there between evidence 
and hypotheses ? There are many kinds of evidence, 
and different program designs are required to obtain 
the maximum amount of leverage from each kind. 

l What counts as a solution, and how many are there 
likely to be? An expert system is entitled to stop 
and declare the problem solved under a variety of 
different circumstances. 

l How accommodating is the program’s environment? 
That is, how much assistance in the form of infor- 
mation or guidance can the program rely on without 
compromising its usefulness? 

l How can we help ensure that the program will ex- 
pend its effort wisely. 7 It can be difficult to solve 
problems within the constraints imposed by compu- 
tational resources. 

If knowledge engineers have these problem features in 
mind during their discussions with experts they improve 
their chances of getting the information they need to make 
good implementation decisions. These problem features 
should also be useful in evaluating solution proposals that 
depend on the use of new AI techniques. 

II Analyzing a Problem Domain 

An examination of the Probing Questions shows 23% 
of those questions inquire about the expected arrival time 
of information, 34% inquire about the connection between 
evidence and hypotheses, 19% inquire about the definition 
of solutions, 19% inquire about the degree of accommc+ 
dation provided the program’s environment, and 15% in- 
quire about good use of resources. (The same question 
can be counted in more than one category). While a sub- 
stantial fraction, IS%, of the Probing Questions do not 
raise any of the five issues, we were unable to discern 
significant commonalities among the remaining questions. 
These statistics suggest that if knowledge engineers have 
thoroughly explored the five issues in their problem do- 
mains, then they should be able to answer most of the 
Probing Questions. In the process, they will be able to 

determine the potential applicability of many AI imple- 
mentation techniques. 

The following section discusses the Probing Question 
that best illustrates the importance of the expected arrival 
time of information. This is followed by brief summaries 
of a few of the other Probing Questions that are part of 
the 23% inquiring about that general issue. In all cases, 
Probing Questions are labeled with the numbers they have 
in Kline & Dolins (1985). Subsequent sections use the 
same format to illustrate the other four issues. 

A. When Does Information Become 
Available? 

If the knowledge that makes it possible to solve 
problems is available at program-design time, then it is 
generally possible to build that knowledge directly into 
the design of an expert system. In other cases, important 
information only becomes available at data-input time or 
after some progress has been made toward finding a so- 
lution. In these cases, a design must be found to take 
advantage of the information as it emerges. Knowledge 
engineers should appreciate that whenever they identify 
a crucial item of information that makes it possible to 
solve problems in a domain, they also need to establish 
the expected arrival time of that information. 

This issue comes up in the Probing Question shown in 
Fig. 1, which determines whether constraint propagation 
techniques will be required to find the values of variables. 
If it is known at program-design time that the values of 
certain variables will always be provided as part of the in- 
put data, then forward chaining can be used to determine 
the values of the other variables. On the other hand, if it 
is necessary to wait until data-input time to discover which 
variables have known values, then more general constraint 
propagation techniques will have to be employed. The 
choice between forward chaining and constraint propaga- 
tion hinges on the question of exactly when information 
will be available about the identities of the variables with 
known values. 

Other implementation strategies for expert systems 
are appropriate when certain kinds of information are 
available at program-design time. For example (Probing 
Question 2.3.1), if at design time it is possible to antici- 
pate the major areas of uncertainty and unreliability the 
program will face, then building redundancy into the de- 
sign might help deal with the uncertainty (Buchanan & 
Shortliffe 1984, p. 684f). 

Besides program-design time and data-input time, there 
are cases in which crucial information does not appear un- 
til a partial solution to a problem has been obtained. For 
example (Probing Question 2.6.2), opportunistic search 
strategies wait for “islands” of certainty to emerge and 

KNOWLEDGE ACQUISITION / 957 



Is it necessary to find values for a number of variables that take on numeric or boolean values? 
and 
Are there constraints among the variables that make it possible to use the known values of some 
of the variables to solve for other variables? 
and 
Does the identity of the variables whose values are known at the outset differ from problem to 
problem? 

Yes, differ from problem to problem + Constraint Propagation 

No, same variables known at outset --f Forward-Chaining Rules 

Figure 1: Probing Question 2.2.1 

then use those islands to help interpret neighboring re- 
gions of greater uncertainty (Nii, Feigenbaum, Anton, & 
Rockmore 1982). While the islands of certainty are crucial 
to solving a problem, it is impossible to say where those 
islands will be found until a certain amount of progress 
has been made toward developing a solution. 

B. What Kind of Connection is There 
Between Evidence and Hypotheses? 

A wide variety of implementation strategies have been 
employed in expert systems in order to extract the max- 
imum amount of leverage from evidence. The Probing 
Question in Fig. 2 is looking for several different kinds of 
connections between evidence and hypotheses. 

As this question suggests, a test for detecting that a 
candidate is not a genuine solution can produce a positive 
conclusion by eliminating all but one of a set of candidates, 
i.e., confirmation by exclusion as in (Pople 1982, p. 13Of.). 
The negative connection between evidence and hypotheses 
leads to a different expert system design than is obtained 
when there is total reliance on positive connections. 

In other cases (Probing Question 2.4.9), a particular 
piece of evidence restricts the solution to a range of possi- 
bilities without saying anything about which of those pos- 
sibilities is actually the right on-for example, Pople’s 
“constrictors” (1977, p. 1033). This kind of connection 
between evidence and hypotheses leads naturally to ex- 
pert systems that organize hypotheses into a hierarchy 
and proceed from general hypotheses (e.g., lung disease) 
to more specific hypotheses (e.g., emphysema). 

As a final example, it has been observed (Clancey 
1984, pp. 55% Kahn 1984, p. 25f) that the nature of 
the connection between evidence and hypotheses influ- 
ences the choice of “shallow” versus “deep” reasoning in 
expert systems (Probing Question 2.1.1). In some diag- 

nosis problems, the evidence is linked directly to bottom- 
line conclusions. Shallow reasoning employing heuristic 
associations is appropriate for these problems. In other 
diagnosis problems, evidence can be found that also con- 
firms intermediate steps along a causal path connecting 
ultimate causes to symptoms. Deep reasoning employ- 
ing a model of the operative causal relationships may be 
appropriate for these sorts of problems. 

c. What Counts as a Solution, and How 
Many are There Likely to Be? 

Knowledge engineers and experts need to achieve a 
clear understanding about the circumstances that will en- 
title the program to stop and declare the problem is solved. 
Different stopping criteria will be appropriate in different 
problem domains. For example, the output of the Rl ex- 
pert system (McDermott 1982) is a functionally accept- 
able VAX system configuration. There is no guarantee 
the optimal configuration is found, but Rl is quite useful 
nonetheless. In other problem domains a program would 
need to keep working until an optimal solution is found. 

A closely related question is the number of solutions 
that are expected. For example, some medical expert sys- 
tems can safely assume patients will only have one of the 
diseases the program is capable of diagnosing (e.g., the 
expert system discussed in Reggia, Nau, and Wang, 1984, 
for determining the cause of the wasting of the muscles 
of the lower legs). Other medical expert systems must be 
prepared to deal with patients with multiple diseases. The 
Probing Question in Fig. 3 makes recommendations for 
the case where it is not reasonable to stop the diagnostic 
process as soon pls one solution is found. 

Discussions of the subtractive method recommended 
in Probing Question 2.2.5 and examples of heuristics for 
judging parsimony and detecting competitors can be found 

958 I ENGINEERING 



Is it possible to construct a test that can be applied to each candidate solution, so that passing 
the test proves the candidate is a genuine solution? 
(e.g., A combination is clearly the right one if it opens the safe) 
Or 

Is it possible to construct a test, so that failing the test proves the candidate is not a genuine 
solution? 
(e.g., Blood tests can rule out paternity, but not establish it.) 
Of 

Is there only a large “gray area” of better and worse candidates to choose from? 

Rule candidates in, and there is --f Generate-And-Test 
an efficient generator 

Rule candidates out -+ Generate-And- Test, Pruning, or Confirmation By Exclusion 

Gray area + Scoring Functions, Group and Difierentiate, Opportunistic Search, etc. 

Figure 2: Probing Question 2.7.3 

in Pople (1977 p. 1032), Reggia, Nau, and Wang (1984), 
and Pat& Szolovits & Schwartz (1981). 

There is a continuum of expert system problems that 
ranges from multiple solutions at one extreme, passes 
through a point where there is exactly one legitimate so- 
lution, and finally reaches a point at the other extreme 
where there are no solutions to the problem as originally 
stated. ISIS (Fox, 1983) provides an illustration of the 
“no solutions” end of this continuum. ISIS attempts to 
construct job-shop schedules that satisfy a number of con- 
straints. It often turns out that there are implicit conflicts 
between the constraints making it impossible to find any 
schedule that satisfies them all. ISIS employs a constraint 
relaxation scheme to define new problems that have a bet- 
ter chance of being successfully solved (Probing Question 
2.9.2). 

Sensor interpretation problems will often be examples 
of the “one solution” point on this continuum. If we can 

assume there is some true state of the world that gives rise 
to the sensor data, then, in principle, there is only one le- 
gitimate solution. If the sensor data is sufficiently rich 
to uniquely determine the underlying state of the world 
(Probing Question 2.3.5), then an interpretation expert 
system can be satisfied with finding one solution (Feigen- 
baum 1977, p. 1025). 

D. How Accommodating is the 
Program’s Environment? 

Expert systems provide assistance to their users, 
but in order to do so, the programs themselves generally 
need assistance in the form of information or guidance. 
The amount of assistance that a program can rely on 
without compromising its usefulness is another problem 
feature that influences the design of expert systems. The 
Probing Question in Fig. 4 is concerned with this issue. 

This question suggests that one extreme of accommo- 

Is this 
and 

a diagnosis problem? 

Would it be unwise to assume that there is only a single underlying fault because multiple faults 
are either too common or too serious to run the risk of a mis-diagnosis? 

Yes --+ Solve a sequence of problems that “Subtract Off” previously accounted for manifestations. The system 
will need to use heuristic criteria to determine the most parsimonious explanation and also to distinguish 
between competing and complementary hypotheses. 

Figure 3: Probing Question 2.2.5 

KNOWLEDGE ACQUISITION / 959 



What is the nature of the environment that provides inputs to the program? 

1. Cooperative and knowledgeable users will provide inputs. 

2. Users are cooperative, but not always knowledgeable. That is, certain users are likely to 
give unreliable answers to questions posed by the system. 

3. The environment is hostile and might therefore try to mislead the program with false inputs. 
(e.g., Enemy ships might try to hide by emitting misleading signals or no signals at all.) 

4. Neutral environment 
way or another. 

that is a source of data, but does not try to influence the program one 

Both cooperative -+ Accept the information that is input as accurate and complete. 
and knowledgeable 
Not always knowl- - -j Tailor information gathering to the knowledge level of individual user, or allow the 
edgeable users to indicate how certain they are that their answers are correct, or apply more 

consistency checks when users are less knowledgeable. 

Hostile ---f Expend much effort in Consistency Checking, set up demons’to look for evidence of 
deception, Reason Explicitly About Uncertainty, use Endorsement-Baaed Approaches to 
try to resolve uncertainties, etc. 

Neutral --j Expend moderate effort on Consistency Checking. 

Figure 4: Probing Question 2.2.6 

dation is the misleading information arising from decep- 
tion in military settings and the other extreme of accom- 
modation is the reliable information provided by coopera- 
tive and knowledgeable users. However, if guidance rather 
than information is at issue (Probing Question 2.9.1)) then 
an extreme case of accommodation is a division of labor 
between man and machine where the user makes all the 
critical decisions. The program might display the deci- 
sion options and then trace the consequences of the user’s 
decisions. With this kind of arrangement, the program is 
not capable of solving the entire problem by itself and is 
dependent on guidance from a very accommodating en- 
vironment; i.e., a competent user to whom it can defer 
decisions. 

E. How Can We Ensure that Effort is 
Expended Wisely? 

Many expert systems operate in domains where a com- 
binatorial explosion of possibilities will defeat them if they 
do not expend their efforts intelligently. The Probing 
Question in Fig. 5 illustrates a variety of approaches to 
deciding what to do next so problems get solved within 
the constraints imposed by resource limitations. 

This question contrasts various global strategies for 
directing the problem solving process. However, it is pos- 
sible to make finer distinctions within some of the broad 
categories that Probing Question 2.9.4 treats as equiva- 
lent. For example, the choice of a general purpose search 
strategy also has implications for the program’s ability to 
make good use of its resources. The data-driven reasoning 
provided by forward-chaining search allows the program 
to immediately recognize the implications of evidence that 
strongly suggests a particular hypothesis (Probing Ques- 
tion 2.6.4). This rapid appreciation of the consequences 
of new information is important in some problems. In 
other problems, the goal-driven reasoning provided by 
backward-chaining search leads to a better expenditure 
of resources. This will be the case if it is important to 
be sure that all inferences made could help achieve the 
program’s current goals. 

III Analyzing an AI Technique 

The Probing Questions provide guidance about the 
appropriate use of nearly 100 AI techniques and imple- 
mentation strategies. However, there are other AI tech- 
niques-not included in that set, and new techniques are 

960 / ENGINEERING 



Is there a fixed order of subtasks that solves most problems in this domain? 
Or 

Are the potential lines of reasoning few enough that the program can afford to investigate them 
in the order that is most convenient for the reasoning strategy? 
Or 

Do experts routinely use their knowledge of the domain to make good choices of subproblems to 
work on next? 
OT 

Will the program need to estimate the costs and benefits expected from invoking a line of 
reasoning so as to best allocate computational resources among a wide range of possible lines of 
reasoning? 

Fixed order of tasks 

At the convenience 
of the reasoning 
strategy 

Domain knowledge 
determines next 
task 
Estimate costs and 
benefits 

+ Hard-wire the flow of control, e.g., conventional programming or the Match strategy. 

+ General-purpose search strategies, i.e., forward-chaining, backward-chaining, etc. 

* Use Control-Rules that embody domain knowledge to reorder the Agenda, set focus 
tasks, or invoke rule sets. 

+ Devise an Intelligent Scheduler to order tasks on an Agenda according to their expected 
benefits. Meta-Knowledge is required about the costs and benefits associated with 
potential lines of reasoning. 

Figure 5: Probing Question 2.9.4 

being developed fairly rapidly. Since descriptions of an AI 
technique often do not say what problem features make 
that technique appropriate, it would be helpful to identify 
questions knowledge engineers could ask in order to make 
a decision for themselves. 

The five issues discussed in this paper provide some 
candidate questions. Given a new AI technique, a knowl- 
edge engineer should ask: 1) what assumptions the new 
technique makes about the arrival time of information, 2) 
what kind of connection between evidence and hypotheses 
that technique assumes, 3) what assumptions this tech- 
nique makes about the nature of solutions, 4)how accom- 
modating the program’s environment would have to be for 
the technique to be useful, and 5) whether that technique 
helps the program expend its effort wisely. 

One way to estimate how useful these questions are 
likely to be in characterizing the use of a new AI tech- 
nique is to determine how often they help characterize 
techniques in the current collection. It was found that 
these questions helped characterize the appropriate use of 
approximately two thirds of those techniques. 

As a concrete example, a case was discovered where 
more precision was needed in asking about the expected 
arrival time of information. A Probing Question that de- 
termines if means-ends analysis is an appropriate search 

strategy asks: 

Is it relatively easy to guess that a cer- 
tain crucial step will be required to solve 
the problem? 

Given the previous discussion of the need to distin- 
guish program-design time from data-input time and 
problem-solution time, it is now clear this question should 
have been phrased 

Is it relatively easy to guess at program- 
design time that a certain crucial step will 
be required to solve the problem? 

By paying attention to the issues discussed in this paper, 
it should be possible to avoid this kind of mistake in future 
analyses of AI techniques. 

IV Conclusions 

Analysis of the 47 Probing Questions in Kline & Dolins 
(1985) indicates there are five issues that are important 
for the proper use of a wide variety of AI implementation 

KNOWLEDGE ACQUISITION / 961 



techniques. By being aware of these issues, knowledge 
engineers improve their chances of coming up with the 
right design for expert systems. Awareness of these issues 

should also help knowledge engineers take advantage of 
new AI techniques as they emerge. 

ACKNOWLEDGEMENTS 

We would like to thank Dr. Northrup Fowler III of 
Rome Air Development Center for his valuable sugges- 
tions during the course of this research. We are very 
grateful to the expert systems builders who were kind 
enough to comment on draft versions of the Probing @es- 
tions: Bruce Buchanan, Ruven Brooks, John Kunz, Penny 
Nii, Michael Genesereth, Bruce Porter, Robert Drazovich, 
Robert Neches, Tim Finin, Barbara Hayes-Roth, Casimir 
Kulikowski, and Jim Kornell. 

REFERENCES 

Buchanan, B.G. & Shortliffe, E.H. (Eds.), Rule-Based Ez- 
pert Systems: The MYCIN Experiments of the Stanford 
Heuristic Programming Project, Reading, MA: Addison- 
Wesley, 1984. 

Clancey, W.J. Extensions to rules for explanation and 
tutoring. Artificial Intelligence, 1983, 20, pp. 215-251. 

Fox, M.S. Constraint-directed search: A case study of job- 
shop scheduling. Ph.D. dissertation, Computer Science 
Department, CMU, Pittsburgh, PA, 1983. 

Feigenbaum, E.A. The art of artificial intelligence: I. 
Themes and case studies of knowledge engineering. Pro- 
ceedings of IJCAI-77, pp. 1014-1049. 

Kahn, G. On when diagnostic systems want to do without 
causal knowledge. In ECAI-84: Advances in Artificial 
Intelligence. T. O’Shea (Ed.), Elsevier, 1984, pp. 21-30. 

Kline, P.J. & Dolins, S.B. Choosing Architectures for Ex- 
pert Systems. Final Technical Report RADC-TR-85-192, 
October 1985, Rome Air Development Center, Griffiss 
AFB, NY, 13441. (Available through the National Tech- 
nical Information Service or the authors.) 

McDermott, J. Rl: A Rule-Based Configurer of Com- 
puter Systems. Artificial Intelligence, 1982, 19, pp. 3Q- 
88. 

Nii, H.P., Feigenbaum, E.A., Anton, J.J. & Rockmore, 
A.J. Signal-to-symbol transformation: HASP/SIAP case 
study. The AI Magazine, Volume III, No. 2, Spring 1982. 

Patil, R.S., Szolovits, P., Schwartz, W.B. Causal under- 
standing of patient illness in medical diagnosis. Proceed- 
ings of IJCAI-81, pp. 893-899. 

Pople, H.E.Jr. The formation of composite hypotheses 
in diagnostic problem solving: An exercise in synthetic 

reasoning. Proceedings of IJCAI-77, pp. 1030-1037. 

Pople, H.E.Jr. Heuristic methods for imposing structure 
on ill-structured problems: The structuring of medical 
diagnostics. In Artificial Intelligence in Medicine. P. 
Szolovits (Ed.), Boulder, CO: Westview Press, 1982. 

Reggia, J.A., Nau, D.S., and Wang, P.Y. Diagnostic ex- 
pert systems based on a set covering method. In M.J. 
Coombs, (Ed.) Developments in expert systems, New York: Y 
Academic Press, 1984. 

Stefik, M., Aikins, J., Balzer, R., Benoit, J., Birnbaum, 
L., Hayes-Roth, F. & Sacerdoti, E. The architecture of 
expert systems. In F. Hayes-Roth, D.A. Waterman, & 
D.B. Lenat (Eds.) Building Expert Systems, Reading, 
MA: Addison-Wesley, 1983. 

962 / ENGINEERING 


