
2ProblemFormulation

This chapter introduces the model-state- and parameter estimation problem from
basic principles starting with Bayes’ theorem. We define the general problem for-
mulation and introduce the concept of Bayes’ theorem solved recursively over a
sequence of assimilation time windows. We also present different assimilation- and
parameter-estimation problems, including model controls and errors, and show how
they fit into a similar and general framework. Furthermore, this chapter introduces
the notation and problem formulation considered in the following chapters.

2.1 Bayesian Formulation

This section introduces the concept of a data assimilation window, followed by the
dynamical model and its uncertain quantities, the definitions of the model state, and
the state vector. Then we discuss the measurements and the measurement equation
before we formulate the general Bayesian data-assimilation problem.

2.1.1 AssimilationWindows

We typically solve the data-assimilation problem sequentially over a sequence of
assimilation time windows. We adopt a rather general definition for an assimilation
window to allow for various data-assimilation formulations and methods. For some
methods, the assimilation windows are fixed-length intervals in time. E.g., in atmo-
spheric data assimilation, it is common to use assimilation windows of six or twelve
hours in length. In contrast, the assimilation window is the time interval between
available measurements for Kalman-filter-type methods. We will later see that some
assimilationmethods update themodel solution over the whole window, while others
compute it at a particular time. Additionally, some assimilation methods treat each
assimilation window independently, while others propagate information from one
window to the next.
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10 2 Problem Formulation

2.1.2 Model with Uncertain Inputs

We assume a forward model that describes a dynamic process with uncertainty over
an assimilation window

x0 = x̂0 + x′
0, (2.1)

θ = θ̂ + θ ′, (2.2)

u = û + u′, (2.3)

q = 0 + q′, (2.4)

xk = m(xk−1, θ , uk,qk). (2.5)

Here, x0 is a vector containing themodel’s uncertain initial conditions x̂0 with uncer-
tainty represented by x′

0. The vector θ denotes a set of uncertain model parameters

with prior values θ̂ and uncertainty θ ′. We assume parameters θ to be constant in
time. Furthermore, we define the uncertain model errors qT = (qT1 , . . . ,qTK ) with
uncertainty q′. The model errors account for missing physics in the model equa-
tions and numerical discretization errors. Note that we distinguish between the time-
independent parameter uncertainty and time-dependent model errors by defining θ

and q separately. The uncertain model controls uT = (uT1 , . . . ,uTK )with uncertainty
u′ represent various forms of time-dependent but uncertain model forcing. We have
defined K as the number of time steps over the assimilation window. For simplic-
ity, we have ignored any boundary conditions and their potential uncertainty, as this
would add additional constraints to the model system.

2.1.3 Model State

We define xT = (xT0 , . . . , xTK ) as a sequence of model-state vectors over an assimila-
tion window. On some occasions, we will, for short, write x = m(x0, θ ,u, q) where
the model operator predicts the model state over the whole assimilation window. We
differentiate between the model state x and the data-assimilation problem’s more
general state vector, discussed next, although they will be the same in some cases.

2.1.4 StateVector

We define the data-assimilation problem’s state vector z, containing all the uncertain
quantities we wish to estimate. The variables included in z depend on the data-
assimilation problem at hand and its formulation. There are, however, two main
formulations to be aware of.

In the first formulation, z includes the model prediction, or model state, x, or a
subset of x (e.g., xK ). In this case, we update themodel state x directly, andwe denote
it as the model-state formulation, where we can have zT = (xT, θT, uT), excluding
the model error q.
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In the second formulation, we treat the model error as an uncertain variable that
we will estimate. We then write zT = (xT0 , θT, uT,qT) and note that as soon as we
give z, we also determine themodel state x. We denote this formulation as the forcing
formulation because the estimated model errors force the model.

It is important to note that we cannot simultaneously estimate both x and q as
the model equations uniquely connect these variables. We will also see below that
different assimilation methods will use either one or the other formulation.

2.1.5 Formulation Over Multiple AssimilationWindows

To understand which approximations we impose when solving the data-assimilation
problem for a single assimilationwindow,we start by formulating the general or com-
plete problem over multiple assimilation windows. The model state over L assimi-
lation windows is the model-state trajectory XT = (xT1 , . . . , xTL). For the remainder
of the book, we will use an index k denoting a particular time step tk , while an
index l refers to an assimilation window. We also define UT = (uT1 , . . . , uTL) and
QT = (qT1 , . . . ,qTL) as the time sequences of controls and model errors.

We gather the model-state trajectory, X, the parameters θ , the model controls
U, and the model errors Q, into the state vector in either the state formulation
ZT = (XT, θT,UT) or the forcing formulation ZT = (XT

0 , θT,UT,QT) where X0
is the initial condition for the first assimilation window. So Z holds all uncertain
quantities over all the assimilation windows.

2.1.6 Measurements with Errors

We also have a vector of measurementsD of the model predicted stateX represented
by a measurement equation

D = H(X) + E. (2.6)

HereH is the so-called measurement operator, a potentially nonlinear function that
maps the model state vector X into measurement space. The matrix E contains the
measurement errors. Note that we will use the terms “measurement errors” and
“observation errors” interchangeably.

We note thatZ includes X in the state formulation, and we can equally write

D = G(Z) + E, (2.7)

where G relates the measurements toZ.
In the forcing formulation we can still use Eq. (2.7) but rewrite it as

D = G(Z) + E = H(M(Z)
) + E, (2.8)

where G measures the model prediction from the input state vector, andM(·) is the
model operator that mapsZ to X.

The term E contains the measurement errors, including instrument errors and
possibly a representation error that accounts for different representations of reality
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by the measurements and the model. Representation errors are typically errors due to
unresolved scales and processes, and Hodyss and Nichols (2015) and Van Leeuwen
(2015) provide a further understanding of their origin and how to treat them in the data
assimilation problem.An example of representation error occurs in satellite-altimetry
data measuring the height of the sea surface. Apart from height differences induced
by large-scale ocean currents and eddies, these measurements also contain height
signals resulting from ocean tides. Large-scale ocean models often do not include
these tides for computational reasons, and hence the observations have processes that
the oceanmodels do not resolve. The representation errorsmay also result from using
an erroneous measurement operator or errors introduced during the measurement
preprocessing (Janjić et al., 2018).

2.1.7 Bayesian Inference

It is convenient to formulate the data-assimilation problem as a Bayesian inference
problem. This formulation is entirely general and applies to both the state and forcing
formulations discussed above. The starting point is an initial or prior probability
density, f (Z), of the quantity of interest, Z. In the following, we use the notation
f (·) to describe the argument’s probability density function (pdf), meaning that, for
instance, f (Z) denotes the pdf ofZ, and f (q) denotes the pdf of q.

Themeasurements enter the data-assimilationproblemvia the likelihood f (D|Z).
The likelihood is one of the less well-understood parts of the data-assimilation prob-
lem. To fully grasp its meaning, we should distinguish between the actual mea-
surement process and how we treat measurements in the data-assimilation process.
During the measurement process, the measurements are random variables. We mea-
sure them from the unknown true state of the system, to which nature adds a random
draw from the measurement-error pdf. Once we have collected the measurements,
they are not random but fixed.Of course, the measurements have errors, but that does
not make them random because we know them exactly. This realization means that
the likelihood is not the pdf of the measurements but rather a function of the state,
and the measurements are fixed in that function. Detailed further discussions can be
found in Van Leeuwen (2015, 2020).

To obtain the likelihood, we need to calculate f (D|Z) for each possible Z,
which is the (unnormalized) probability that this specific vector Z would result
in the fixed set of measurements. Note that to obtain the likelihood f (D|Z) =
f (E) = f

(D−G(Z)
)
, we need to prescribe the probability-density function of the

measurement errors E.
Assuming knowledge of the probability density f (Z) of all the uncertain variables

in the state vectorZ and the likelihood f (D|Z), we can define a general form of the
data-assimilation problem through Bayes’ theorem. We can derive Bayes’ theorem
from the definition of conditional pdfs,

f (Z,D) = f (Z|D) f (D) = f (D|Z) f (Z), (2.9)

where we solve for f (Z|D) to get
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f (Z|D) = f (D|Z) f (Z)

f (D)
. (2.10)

This equation becomes Bayes’ theorem when used with the fixed measurement set
D. Lorenc (1988) and Tarantola (1987) introduced the Bayesian formulation for
time-independent problems, and it was extended and generalized for time-dependent
problems by Van Leeuwen and Evensen (1996). The pdf of the state vectorZ given
the measurementsD, i.e., f (Z|D) is the solution to the data-assimilation problem.
We stress that we know the observations in data assimilation, D is not a random
vector, and Bayes’ theorem is a point-wise equation for each vectorZ.

The denominator on the right-hand side is the marginal pdf of the measurements,
f (D). It acts as a normalization constant that ensures that the posterior pdf integrates
to one. Indeed, we can write

f (D) =
∫

f (D,Z) dZ =
∫

f (D|Z) f (Z) dZ, (2.11)

making the normalization explicit. This normalization constant has also given rise to
misunderstandings. Some have argued that f (D) = 1 since we know the measure-
ments, but this is incorrect. Instead, one should evaluate the pdf of the measurements
at the value of the fixed measurements D. This pdf centers on the unknown true
state’s measurement, so the above equation is the proper way to evaluate f (D).

However, this normalization constant is seldom needed explicitly, and we will
not use it in the rest of this book. Actually, f (D) only shows up when evaluating
different numerical models given a set of measurements via the “model evidence,”
which is the normalization constant assessed for each of these models, e.g., the
ECMWF model versus the Met Office model. The model with the highest f (D) is
considered the bestmodel. In contrast, a proper Bayesianwould set up a prior over the
different numerical models and interpret the normalization factor as the likelihood
in this higher-order data-assimilation problem. Since the number of models tested is
finite, this is a discrete data-assimilation problem where the state vectorZ contains
a complete numerical model.

It is essential to realize that Bayes’ theorem describes a forward problem and not
an inverse problem. We start with the prior probability density function and multiply
it with the likelihood to form the posterior probability density function, which is the
solution to the problem. Of course, many practical data-assimilation methods solve
an inverse problem to find an approximation to the posterior, but many others do not.
As such, we can consider inverse problem theory as a subset of Bayesian inference;
see, for instance, the introduction in Van Leeuwen et al. (2015).

2.2 Recursive Bayesian Formulation

The Bayesian formulation above updates the solution over the whole assimilation
period, including multiple assimilation windows, in one go. This formulation is
not always convenient, as, in many data-assimilation problems, the measurements
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become available sequentially. Thus, we will next introduce two approximations to
simplify the process of solving Eq. (2.10).

2.2.1 MarkovModel

Approximation 1 (Model is 1st-orderMarkov process) Weassume the dynamical
model is a 1st-order Markov process. ��

A first-order Markov process denotes that the future is independent of the past if
the present is known. If the model is a 1st-order Markov process, it follows that we
can compute the model solution in one assimilation window from the solution in the
previous window. We can then express mathematically the condition

f (zl |zl−1, zl−2, . . . , z0) = f (zl |zl−1), (2.12)

where we remind the reader that l is the index of an assimilation window.
From Approx. 1, we can use Eq. (2.12) and write f (Z) as a recursion over the

assimilation windows l ∈ (1, . . . , L),

f (Z) = f (z0) f (z1|z0) f (z2|z1) · · · f (zL |zl−1)

= f (z0)
L∏

l=1

f (zl |zl−1).
(2.13)

We notice that the assumption of the model being a Markov process affects the
model-state evolution in time. However, we use the Markov property to formulate
the model prior as a recursion over the assimilation windows.

2.2.2 Independent Measurements

Next, we introduce the following assumption on the measurements.

Approximation 2 (Independent measurements) We assume that measurements
are independent between different assimilation windows.

Independent measurements mean that their errors are uncorrelated, so we now
assume the measurement-error correlations are zero between measurements in dif-
ferent assimilation windows. If we use Approx. 2, we can write the likelihood for
the measurement vector D as a product of independent likelihoods, one for each
assimilation window, as

f (D|Z) =
L∏

l=1

f (dl |zl). (2.14)
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The assumption of independence of measurements collected in different assimilation
windows is the first grave approximation we make, as such correlations often exist,
and we still neglect them. However, we retain the possibility of having correlated
measurement errors for themeasurements collectedwithin each assimilationwindow.

Note that, by “independent measurements,” we do not mean that the measure-
ments’ information is independent. This terminology typically conveys that themea-
surement errors are uncorrelated. E.g., we can measure a temperature at a location
twice using different sensors, so the measurement errors are uncorrelated. But, since
they measure the same quantity, we do not double the information. As Evensen and
Eikrem (2018) discussed, there is redundancy in themeasurement information. Like-
wise, spatial correlations in the measured quantity will also result in measurements
with correlated information. The measurement errors can still be uncorrelated.

2.2.3 Recursive form of Bayes’

The general form of Bayes’ in Eq. (2.10) now becomes

f (Z|D) ∝
L∏

l=1

f (dl |zl) f (zl |zl−1) f (z0). (2.15)

By rearranging the order of the multiplications, it is possible to write Eq. (2.15) as a
recursion, following Evensen & Van Leeuwen, (2000),

f (z1, z0|d1) = f (d1|z1) f (z1|z0) f (z0)
f (d1)

, (2.16)

f (z2, z1, z0|d1,d2) = f (d2|z2) f (z2|z1) f (z1, z0|d1)
f (d2)

, (2.17)

...

f (Z|D) = f (dL |zL) f (zL |zL−1) f (zL−1, . . . , z0|dL−1, . . . ,d1)
f (dL)

.

(2.18)

Thus, we have defined the data-assimilation problem as a recursion in time. We start
in Eq. (2.16), with f (z0) being the prior density for the initial conditions z0. Then,
f (z1|z0) denotes the integration of the model from the initial condition to predict the
pdf of z1 given z0. The multiplication with the likelihood f (d1|z1) conditions the
model prediction on the measurements d1. The posterior estimate is then the joint
pdf for z0 and z1 conditioned on the measurements d1, denoted by f (z1, z0|d1).

The posterior estimate from Eq. (2.16) now becomes the prior in Eq. (2.17),
where we again integrate the model, f (z2|z1), and condition on the data, f (d2|z2),
to obtain the posterior f (z2, z1, z0|d1, d2), which becomes the prior for the following
recursion.
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2.2.4 Marginal Bayes’ for Filtering

When the aim is to make better predictions, we can simplify the recursion in
Eqs. (2.16)–(2.17) by exploiting theMarkovian property of themodel and the sequen-
tial nature of the data-assimilation problem. Thus, by integrating out the model states
of previous assimilation time windows, we can write the recursion in terms of the
marginals as

f (z1|d1) = f (d1|z1)
∫

f (z1|z0) f (z0) dz0
f (d1)

= f (d1|z1) f (z1)
f (d1)

, (2.19)

f (z2|d1,d2) = f (d2|z2)
∫

f (z2|z1) f (z1|d1) dz1
f (d2)

= f (d2|z2) f (z2|d1)
f (d2)

, (2.20)

...

f (zL |D) = f (dL |zL)
∫

f (zL |zL−1) f (zL−1|dL−1, . . . , d1) dzL−1

f (dL)

= f (dL |zL) f (zL |dL−1)

f (dL)
. (2.21)

Note that by solving for the marginals, we are not solving the complete original
problem defined by Bayes’ theorem in Eq. 2.10. We are applying the following
approximation.

Approximation 3 (Filtering assumption) We approximate the full smoother solu-
tionwith a sequential data-assimilation solution.We only update the solution in the
current assimilation window, andwe do not project themeasurement’s information
backward in time from one assimilation window to the previous ones. ��

We recursively accumulate more and more information from the measurements
from time window to time window. Hence, zl contains the information from all the
previous measurements, including those from the l’th assimilation window, and is
the ideal starting point for predicting zl+1 and onwards.

We note that if the assimilationwindow is a singlemodel time step, thenApprox. 3
reduces to the standard filter approximation in, e.g., Kalman-filter methods, which
update the solution at the current time before continuing the integration.

Another attractive property of these equations is their similarity. We are solving
the same computational problem in each update step. We have a state vector for the
current timewindow containing the information from all the previousmeasurements,
and we combine it with the new measurements. Thus, if we define zl to represent the
model prediction at time window l and dl the measurements for this time window,
we can write the general update equation as

f (zl |dl) = f (dl |zl) f (zl)
f (dl)

, (2.22)
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or more generally as

f (z|d) = f (d|z) f (z)
f (d)

, (2.23)

which is again just the Bayes formula in Eq. (2.10) but now for a subset of the state
vector and the measurements.

2.3 Error Propagation

So far, we have considered formulations for updating the model solution over an
assimilation window and assume that we have a prior pdf for the solution. We will
now discuss how to obtain or estimate this prior distribution and propagate it to the
next assimilation window.

2.3.1 Fokker–Planck Equation

Ideally, we know the full pdf at the end of the previous assimilation window or
equivalently at the beginning of the current assimilation window. We can compute
the evolution of the prior pdf from the start of one assimilation window to the next,
f (zl |zl−1), from the Fokker–Planck equation. We start with a stochastic model with
additive Gaussian model errors forming aMarkov process, initialized with the model
state x from zl . We assume that the prior model parameters do not change over the
assimilationwindow, sowe omit them here for ease of notation. The stochasticmodel
equation reads

dx = m(x) dt + dq, (2.24)

giving the increment in the model state dx resulting from a time increment dt and the
stochastic forcing dq. From this model equation, one can derive the standard form
of the Fokker–Planck equation (also named Kolmogorov’s equation),

∂ f (x)
∂t

+
∑

i

∂
(
mi (x) f (x)

)

∂xi
= 1

2
Cqq

∑

i, j

∂2 f (x)
∂xi ∂x j

, (2.25)

which describes the time evolution of the model state vector’s probability density
f (x). For the case with non-additive model errors, it becomes more elaborate to
derive an equation for the probability density’s time evolution, and we will not
discuss that here. In Eq. (2.25), mi is the component number i of the model operator
m, and Cqq is the model-error covariance matrix. This equation is the fundamental
equation for the evolution of error statistics. The equation describes the probability
change in a local volume resulting from themodel dynamics and diffusion terms. The
model-dynamics term is a divergence of the probability flux into the local volume.
In contrast, the diffusion term tends to smooth f (x) due to the stochastic model
forcing. Unfortunately, we cannot solve this equation in high dimensions. We refer
to Jazwinski (1970) for the actual derivation and further discussion.
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2.3.2 Covariance Evolution Equation

By taking moments of the Fokker–Planck equation, we can derive an evolution
equation for statistical moments of the uncertainty in the model state vector x. Alter-
natively, we can derive an evolution equation for the error covariance matrix by
comparing the evolution of the true model state with that of our estimated model
state as

xtk+1 = m(xtk) + qk ≈ m(xk) + Mk(xtk − xk) + qk, (2.26)

xk+1 = m(xk), (2.27)

where we used a first-order Taylor expansion in the first equation, assuming that
xtk − xk is small. The superscript, t, denotes “true.” Note that the linearized model
Mk can include estimates of the model parameters. By subtracting Eq. (2.27) from
Eq. (2.26), multiplying the resulting equation with its transpose, and taking the
expectation, we obtain the error covariance equation used in Kalman filters,

Cxx,k+1 ≈ MkCxx,kMT
k + Cqq,k . (2.28)

HereMk is the model’s tangent-linear operator evaluated at xk and Cqq is the model
error covariance matrix. The extended Kalman filter (EKF) also uses this linearized
error-evolution equation. In addition to an immense computational load for real-size
geoscience models, Evensen (1992) showed that the approximate linear equation
can not saturate unstable modes of the model, and one can experience unbounded
error-variance growth. See also the example in Chap. 12.

2.3.3 Ensemble Predictions

An alternative to the two previous approaches is to use a Monte-Carlo method for
propagating the error statistics. For example, if we have an ensemble of samples from
a pdf at time tk , we can integrate these samples forward until tk+1 by running the
dynamical model for each sample separately. If the model contains model errors, we
can treat these by using a stochastic model description. Ensemble integration is the
approach used in the ensemblemethods. It involves creating a large and finite number
of model realizations or samples that represent our prior understanding of the system
and its uncertainties. EnsembleKalmanfilters, particle filters, and particle-flowfilters
all use this approach. The only approximation of this approach is the limitation of
the ensemble size to a finite number of model realizations or ensemble members.
Thus, ensemble integration is an attractive method for propagating the uncertainty
information over an assimilation window or from one assimilation window to the
next. In Fig. 2.1, the ensemble integration is illustrated by the blue lines indicating
the prior ensemble integration in an ensemble smoother. The figure also shows how
the ensemble prediction (represented by the green lines) captures the uncertainty
through the updated ensemble members’ spread.
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0 2 4 6 8 10 12 14 16 18 20 22 24

General smoother update

Time (hours)

Fig. 2.1 The figure illustrates using a general ensemble smoother (Sect. 2.4.1). The black dots
denote observations with an error of one standard deviation. We first run a full ensemble integration
over the whole assimilation window, indicated by blue lines in the blue envelope. After that, we
update the ensemble simultaneously in space and time, resulting in the green lines in the green
envelope

2.4 Various Problem Formulations

In the current formulation, the state vector z is rather general. We can define z to
contain themodel state over an assimilation timewindowor at a single instant in time.
It is also possible to include other uncertainties, such as model parameters, model
controls, and model errors. We will see below that the specific solution procedure
will be the same in any of these cases.

2.4.1 General Smoother Formulation

A general smoother formulation solves the original Bayes’ formula (2.22) in an
assimilation window. Let’s define the state vector z = x = m(x0, q) as the model
solution over thewhole assimilationwindowwith distributedmeasurements.We also
allow themodel to have errors q but do not include uncertain parameters and controls
in this example. In this case, we will update the model state x, which connects to the
model-predicted measurements y through the functional

y = g(z) = h(x) = h
(
m(x0,q)

)
. (2.29)

Here the vector function g(z) is just the application of the measurement operator
acting on the model prediction to generate the predicted measurements. We then
compare the predicted measurements to the actual measurements in the likelihood.

We illustrate the formulation in an ensemble setting. The general smoother starts
with a prior ensemble integration over the assimilation window as indicated by the
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blue lines in Fig. 2.1. We obtain the ensemble estimate of the posterior pdf by
combining the prior ensemble in space and time with the likelihood. As such, it
updates the prior ensemble and results in an updated ensemble that is closer to the
measurements and has a reduced uncertainty, as illustrated by the green lines in
Fig. 2.1.

For long windows and nonlinear dynamics the prior pdf becomes significantly
non-Gaussian. In this case, methods that assume a Gaussian prior will struggle, as
we illustratewhen applying the ensemble smoother (ES) for the Lorenz (1963)model
in Chap. 15.

2.4.2 Filter Formulation

Let’s define z = xK as the model solution at the end of the assimilation window,
where we assume we have measurements. We can then compute the so-called filter
solution typically solved by particle filters and Kalman filter methods. In this case,
we have the state xK connected to the model-predicted measurements y through the
measurement-functional h(xK ),

y = g(z) = h(xK ). (2.30)

The vector function g(z) now equals the measurement operator h(xK ), which maps
the model solution at the end of the assimilation window to the predicted measure-
ments y. We can then compute the updated solution at the end of the assimilation
window from Bayes’ formula in Eq. (2.23), as illustrated in Fig. 2.2. After that,
we continue the integration through the next assimilation window. Thus, we have

0 2 4 6 8 10 12 14 16 18 20 22 24

General ensemble-filter update

Time (hours)

Fig. 2.2 The figure illustrates the general ensemble-filter update of an ensemble prediction
(Sect. 2.4.2). The filter updates the ensemble at the measurement time before continuing the ensem-
ble integration
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integrated away the model solution from all previous time steps of the assimilation
window to create the marginal pdf at the end of the assimilation window.

The filter approach can alleviate a potential practical disadvantage of the general
smoother discussed in the previous section. The prior covers a large time window
in the smoother-formulation and might be less accurate for measurements later in
the window. Furthermore, if the model is highly nonlinear, strong non-Gaussian
prior pdfs can develop. An advantage of the filter approach is that we can divide an
assimilationwindowwith observations at different time instances into several shorter
windows, each ending at an observation time. This approach results in a sequential
data-assimilation problem that facilitates, e.g., Kalman filters, ensemble Kalman
filters, and particle filters. The more frequent model updating will keep the model
closer to the observations. Furthermore, the prior at each measurement time remains
relatively narrow and more Gaussian than in the smoother formulation, resulting in a
sequence of more accurate updates. Several of the example chapters consider various
filter applications.

2.4.3 Recursive Smoother Formulation

Evensen and Van Leeuwen (2000) introduced a recursive smoother formulation as
an extension of the filtering problem. The state vector is now zT = (. . . , xTl−1, x

T
l )

containing themodel state at all, or several previous and the current assimilation win-
dows. And we have the measurements located at the end of the current assimilation
window. Thus, we have a problem where

y = g(z) = h(xK ), (2.31)

but we compute the update for the whole z.
Instead of solving for the marginal in Eq. (2.20), we solve the recursion in

Eq. (2.17) while processing the measurements sequentially as in the filter formula-
tion. This approach recursively introduces the information from additional measure-
ments in every new assimilation window and “projects” this information at previous
times. The formulation inherits the advantages from the filter formulation discussed
in Sect. 2.4.2. We will discuss this approach when applying the ensemble Kalman
smoother in Chap. 15, and see also the Algorithm 7 in Chap. 6.

Note that the solution at the final assimilation time is identical to the filter solution.
Therefore, the recursive smoother is not adding any value for prediction problems,
but the formulation is an excellent alternative to the general smoother for hindcast
problems (see Fig. 2.3). We can also use this formulation as a “lagged” smoother
where we only update the state vector for a selected number of previous assimilation
windows.We then exploit that themeasurement’s information decorrelates with time
in nonlinearmodels withmodel errors, so, in practice, we apply a form of localization
as discussed in Chap. 10. Thus, the recursive smoother introduces the measurements
sequentially as in the filter, while the general smoother in Sect. 2.4.1 computes one
global update over the whole assimilation window in one go.
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Fig.2.3 The figure illustrates using a recursive ensemble smoother (Sect. 2.4.3). Like in the filter
update, we update the ensemble at the measurement time before continuing the integration, but we
also update the ensemble at all previous times

2.4.4 A Smoother Formulation for Perfect Models

An often used assimilation formulation assumes that the state vector z = x0 only
contains the model state at the beginning of the time window. Hence, we exclude
uncertain parameters and controls, and we assume nomodel errors.We then estimate
the initial model state for the assimilation window and obtain the solution over the
assimilation window by integrating the model from the updated initial conditions.
The equation for the predicted measurements y is

y = g(z) = h
(
m(x0)

)
. (2.32)

Here we start with the solution at the beginning of the time window and integrate the
model x = m(x0) over the time window to make a prediction. Then we apply the
measurement functional on the model prediction h(x) and compare this prediction
and the actual observation in the likelihood, which also propagates this difference
back to the beginning of the time window to perform an update. This formulation
is the basis for deriving the so-called strong-constraint 4DVar schemes widely used
for weather-prediction applications and the iterative ensemble smoothers used to
history-match reservoir models in petroleum-engineering applications. Fig. 2.4 illus-
trates this alternative smoother formulation used by the ensemble version of 4DVar,
En4DVar, and EnRML methods discussed below. This formulation also allows for
measurements distributed over the assimilation window. In Sect. 2.5, we will see that
this problem, and the ones in the following two sections, requires a modified form
of Bayes’ theorem.
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Fig.2.4 The figure illustrates the recursive smoother formulation assuming a perfect model solved
using an ensemble approach. One defines an assimilation time window and updates the initial
conditions of the ensemble realizations at the beginning of the time window. Both the iterative
ensemble smoothers and strong-constraint 4DVar use this approach. We based this graphic on
an illustration from the ECMWF Forecast User Guide https://confluence.ecmwf.int/display/FUG/
Forecast+User+Guide

2.4.5 Parameter Estimation

An analog problem to the smoother problem with a perfect model is the parameter-
estimation problem for a model without uncertain controls and model errors. In this
case, we define z = θ to contain the uncertain model parameters. This formulation
leads to a situation where z = θ , and we write, as usual,

y = g(z) = h
(
m(θ)

)
, (2.33)

where m(θ) shows that we need the forward model to evaluate how the parame-
ters relate to the measurements. For the practical implementation and solution, this
problem is analogous to the “smoother problem for perfect models” solved for each
assimilationwindow in Sect. 2.4.4. This problem formulation is also the onewe solve
in petroleum applications (Evensen et al., 2019; Evensen, 2021) and Chap. 21. Thus,
Fig. 2.4, used to illustrate state estimation, also represents the parameter-estimation
problem. For the Bayesian formulation of the parameter estimation problem,we refer
to Sect. 2.5.

2.4.6 Estimating Initial Conditions, Parameters, Controls, and Errors

In the final formulation, we present the problem of estimating the initial condition for
the time window, together with model parameters, model controls, and model errors.
Evensen (2019) explained how we could solve the recursive smoother problem for a
time window when we include model errors, while Evensen (2021) considered the

https://confluence.ecmwf.int/display/FUG/Forecast+User+Guide
https://confluence.ecmwf.int/display/FUG/Forecast+User+Guide
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case with additional control parameters. The controls can represent, for example, the
imposed production rates or the aquifer strength in a reservoir model (Glegola et al.,
2012; Peters et al., 2010) or the atmospheric forcing in ocean models (Vossepoel et
al., 2004). Furthermore, Evensen (2021) illustrated how to include the model errors
and controls in the state vector and simultaneously estimate the initial conditions x0,
the model errors q, and the model controls u over an assimilation window (see also
the example in Chap. 21).

We define the state vector as zT = (
xT0 , θT,uT, qT

)
, and given an estimate of z,

we compute the resulting model solution over the assimilation window, and hence
the predicted measurements

y = g(z) = h
(
m

(
x0, θ , u, q

))
. (2.34)

Again the practical implementation and solution of this problem, although more
complicated due to the extended state vector, is analogous to the problems solved in
the two previous Sects. 2.4.4 and 2.4.5, and we again refer to the modified form of
Bayes’ theorem in the following section.

2.5 Including the PredictedMeasurements in Bayes Theorem

In Sects. 2.4.4, 2.4.5, and 2.4.6 we solve a problem involving a relation between the
state vector z and the predicted measurements given by

y = g(z) = h
(
m

(
z)

)
. (2.35)

In this case, it is not entirely clear how to evaluate the likelihood f (d|z) in Bayes’
formula in Eq. (2.23). The reason is that we have measurements of the model state
x = m(z), which does not appear explicitly in Eq. (2.23). To solve this issue, we
first write the likelihood to include the model state x explicitly as follows

f (d|z) =
∫

f (d, x|z) dx =
∫

f (d|x, z) f (x|z) dx, (2.36)

where, if z contains the model initial condition x0, we exclude it from x. For a given
model state, themodel inputs zdonot provide extra informationon themeasurements.
Thus, we can write

f (d|x, z) = f (d|x), (2.37)

leading to Bayes’ theorem in the form

f (z|d) = f
(
z
)

f (d)

∫
f (d|x) f (x|z) dx. (2.38)

This problem is costly to compute as we have to integrate the model state over all
possible model inputs as dictated by f

(
x|z). For example, in the pure parameter

estimation problem of Sect. 2.4.5, we would need to evaluate the integral over all
possible model initial conditions and all possible model trajectories in the assimila-
tion window. And we would have to do that for each parameter vector θ . To avoid
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this often intractable problem, one typically estimates both the model state x and
inputs in z.

It is sometimes helpful to rewrite the likelihood of variables in observation space
instead of in state space. Recall that the likelihood f (d|z) is a function of z since we
know the measurements d in the assimilation process. We can transform the variable
z to observation space via the predicted measurements. Hence, we can augment the
likelihood with the predicted measurements via

f (d|z) =
∫

f (d, y|z) dy =
∫

f (d|y, z) f (y|z) dy, (2.39)

where the second equality follows from the definition of a conditional density.
We first note that once we know the predicted measurements, the state vector z

contains no new information on them, and we can write the likelihood

f (d|y, z) = f (d|y). (2.40)

Furthermore, using the relation between the predicted measurements and the state
vector, y = g(z), we can write

f (y|z) = δ
(
y − g(z)

)
, (2.41)

where δ is the Dirac-delta function. We then have that a given state vector z =(
x0, θ ,u, q

)
uniquely defines a set of predicted measurements y. This equation is

valid for predicted measurements over a whole assimilation window, also when we
include model errors and controls as part of the state vector z. Thus, it was a neat
trick in Sect. 2.4.6 to include the model errors and controls in the state vector as a
set of poorly known parameters (Evensen, 2019).

We now have the likelihood

f (d|z) =
∫

f (d|y)δ(y − g(z)
)
dy = f (d|g(z)), (2.42)

allowing us to write Bayes theorem as

Bayes’ theorem related to the predicted measurements

f (z|d) = f
(
d|g(z)) f (z)

f (d)
. (2.43)

To summarize, z is the state vector we try to estimate in the data-assimilation
problem. In the general-smoother in Sect. 2.4.1, z = x is the model state trajectory
over the assimilation window. In contrast, in the filter formulation in Sect. 2.4.2, the
state vector represents the model state at the end of the assimilation window z = xK .
For the recursive smoother in Sect. 2.4.3, z is the whole model state over the current
and previous assimilation windows. Then in the smoother formulation for the perfect
model in Sect. 2.4.4, where we estimate the initial state, the state vector is just the
model initial conditions for the assimilation window z = x0, which we consider as
an input to themodel. The situation is analogous in the parameter estimation problem
in Sect. 2.4.5, where z = θ , and in the final example in Sect. 2.4.6, where the state
vector consists of all the uncertain model inputs zT = (xT0 , θT, qT,uT).
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TheBayes’ formula in Eq. (2.43) applies to all these cases. For the state estimation
examples in Sects. 2.4.1–2.4.3 we define g(z) as the measurement operator, while
in the three last cases in Sects. 2.4.4–2.4.6, g(z) also includes the model integration.
In the following, we will discuss popular data-assimilation methods that solve the
Bayesian estimation problem in Eq. (2.43) under various approximations.
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