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Abstract

How do humans and other animals face novel problems for which predefined solutions are

not available? Human problem solving links to flexible reasoning and inference rather than

to slow trial-and-error learning. It has received considerable attention since the early days of

cognitive science, giving rise to well known cognitive architectures such as SOAR and

ACT-R, but its computational and brain mechanisms remain incompletely known. Further-

more, it is still unclear whether problem solving is a “specialized” domain or module of cogni-

tion, in the sense that it requires computations that are fundamentally different from those

supporting perception and action systems. Here we advance a novel view of human prob-

lem solving as probabilistic inference with subgoaling. In this perspective, key insights from

cognitive architectures are retained such as the importance of using subgoals to split prob-

lems into subproblems. However, here the underlying computations use probabilistic infer-

ence methods analogous to those that are increasingly popular in the study of perception

and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH)

task, and show that our proposed method can reproduce characteristic idiosyncrasies of

human problem solvers: their sensitivity to the “community structure” of the ToH and their

difficulties in executing so-called “counterintuitive”movements. Our analysis reveals that

subgoals have two key roles in probabilistic inference and problem solving. First, prior

beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for

the problem at hand—a metric to which humans are sensitive. Second, subgoals are used

aswaypoints in the probabilistic problem solving inference and permit to find effective solu-

tions that, when unavailable, lead to problem solving deficits. Our study thus suggests that

a probabilistic inference scheme enhanced with subgoals provides a comprehensive frame-

work to study problem solving and its deficits.

Author Summary

How humans solve challenging problems such as the Tower of Hanoi (ToH) or related

puzzles is still largely unknown. Here we advance a computational model that uses the
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same probabilistic inference methods as those that are increasingly popular in the study of

perception and action systems, thus making the point that problem solving does not need

to be a specialized module or domain of cognition, but it can use the same computations

underlying sensorimotor behavior. Crucially, we augment the probabilistic inference

methods with subgoalingmechanisms that essentially permit to split the problem space

into more manageable subparts, which are easier to solve. We show that our computa-

tional model can correctly reproduce important characteristics (and pitfalls) of human

problem solving, including the sensitivity to the “community structure” of the ToH and

the difficulty of executing so-called “counterintuitive”movements that require to (tempo-

rarily) move away from the final goal to successively achieve it.

Introduction

Problem solving consists in finding efficient solutions to novel tasks for which predefined solu-

tions are not available [1]. Humans and other animals can efficiently solve complex problems

[2, 3] but the underlying neuronal and computational principles are incompletely known.

Research on the neuronal underpinnings of problem solving has often proceeded in two differ-

ent ways. First, researchers have focused on how individual brain areas or circuits solve prob-

lems in specific domains; for example, the hippocampus is considered to be implied in solving

navigation problems [4–6] and parieto-frontal regions are considered to be implied in mathe-

matical problem solving [7]. This approach is compatible with the idea that the brain has dedi-

cated neuronal machinery to solve domain-specific problems, with little hope to find common

principles across them.

A second line of research has focused on domain-general problem solving strategies, as

exemplified in the realization of general problem solvers and other influential cognitive archi-

tectures in cognitive science [1, 8–13], planners and problem solvers in AI [14–16], and the

recent view of the brain as a statistical engine [17–19]. A challenge in this second research line

is to identify core computational principles of planning and problem solving that are, on the

one hand, valid across multiple cognitive domains (e.g., sensorimotor tasks, navigation, and

mathematical problem solving) and, on the other hand, can be implemented in neuronal hard-

ware and work well in ecologically valid contexts [20].

In this article we show that problem solving can be characterized within a probabilistic infer-

ence framework. This framework is increasingly used across multiple domains (sensorimotor

[21, 22], decision-making and planning [23–25], human-level reasoning [26–28] and learning

[29]) and levels of description (higher / computational and lower / neuronal [17, 18, 30–33]),

supporting the idea that problem solving does not necessarily require specialized mechanisms

that are distinct from those used by perception and action systems.

Our problem solving approach is framed within the planning-as-inference (PAI) framework,

which casts planning as a probabilistic inference problem [23, 34–38]. In this perspective, goals

are “clamped” (i.e., they are treated as “future observations” that the system strives to achieve)

and probabilistic inference permits to select the sequence of actions that fills the gap between

current and goal states. Despite its usefulness to explain goal-directed behavior [25, 39–41] and

to design robot architectures [42], the standard PAI framework fails to capture some important

aspects of (human) problem solving, such as the ability to exploit the “junctions” of problems

and to subdivide them into more manageable subproblems.

Here, in keeping with a long tradition in human problem solving and cognitive architec-

tures, we augment the PAI approach with a subgoalingmechanism that permits splitting the
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original problem into more manageable, smaller tasks whose achievement corresponds to mile-

stones or subgoals of the original problem [1]. For example, navigation problems can be

decomposed by using subgoals (e.g., landmarks) such as “reach the Colosseum, then reach the

Imperial Forum” (if one lives in Rome) and puzzles like the Tower of Hanoi can be decom-

posed by using subgoals such as “free up third rod”.

The importance of subgoaling has been widely recognized by the most popular architectures

for symbolic problem solving [1, 8, 10, 13] and in other domains such as connectionist net-

works, hierarchical reinforcement learning, AI, planning, and robotics [14–16, 35, 43–48].

However, opinions differ about the mechanisms underlying subgoaling. Most systems, espe-

cially within the human problem solving and AI traditions [1, 13], assume that subgoaling pro-

ceeds backward from the final goal states and serves to resolve “impasses”: if a goal-achieving

action cannot be executed because of a missing precondition, achieving the precondition

becomes the next system subgoal; and so on.

Instead, converging evidence from empirical studies highlights the importance of feedfor-

wardmechanisms for subgoaling and “search” (i.e., mechanisms that proceed from the current

to the goal state) in living organisms. The importance of feedforward mechanisms emerges

from psychological experiments [49, 50] as well as neurophysiological studies on rodents [51–

53], monkeys, [54, 55] and humans [56].

In keeping, we implement subgoaling within a feedforward probabilistic inference (PAI)

scheme, showing that the proposed method reproduces characteristic signatures of human

problem solving. To this aim, we present four simulation experiments in the widely-used

Tower of Hanoi (ToH) task [57]. We show that in our simulations successes and failures of

solving the ToH (e.g., the failure of dealing with counterintuitive movements) correspond to the

successful identification or a misidentification of subgoals during the inference, respectively.

Methods

Formal approach to the Tower of Hanoi (ToH) task

The Tower of Hanoi (ToH) task has been widely used in neuropsychology to study executive

function and deficits in planning [57, 58]. A standard ToH consists of three disks having differ-

ent sizes that can slide into three rods to form goal configurations. The aim of the game is start-

ing from any initial configuration of disks and reach a goal configuration using the smallest

number of actions. Fig 1 shows sample initial (a) and goal (b) configurations of a ToH. The

rules of the game prescribe that only one disk can be moved at a time and no disk may be

placed on top of a smaller disk. The quality of the solutions found by subjects performing a

ToH puzzle is usually described using the number of movements required to achieve the goal

configuration and the reaction time [57].

To model the Tower of Hanoi task, here we use a standard approach in AI [59] that consists

in mapping the original task into a path-planning problem, whose states and transitions are

shown in Fig 1C. The resulting problem has 27 states (squares) and 39 transitions (edges).

To solve ToH problems (e.g., go from S27 to S20), we use a feedforward probabilistic infer-

ence method that iteratively samples candidate subgoals from a prior distribution and uses

them as waypoints until a complete solution is found. Specifically, our methods use and extend

the planning as probabilistic inference (PAI) framework, in which planning is cast as a probabi-

listic inference problem [23, 25, 34, 37, 40, 60]. In this perspective, a planning strategy can be

attained by imposing (“clamping”) goal or rewarding states as (future) observations, so as to

bias the probability of future events towards such desirable states.

In problems like the ToH having moderately large state spaces, exploring all the possible

paths is very demanding (in some cases, computationally intractable). For example, despite the
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limited number of states and transitions of the Tower of Hanoi task shown in Fig 1C, this prob-

lem allows for about*1012 possible policies, i.e., mappings from states to actions [61]. In this

case, a mechanism for splitting the problem into more manageable subproblems—like subgoal-

ing—is helpful.

In keeping, our method differs from the standard PAI approach because we augment the

probabilistic scheme with a subgoalingmechanism that permits to split the original problem

into smaller (and less complex) subproblems. A second difference with the standard PAI

approach is that (akin to Active Inference theory [30]) we do not treat goals as future observa-

tions but as states having high (Bayesian) priors.

The rest of this Section introduces the key components of our approach. It is divided into

four subsections. The first subsection introduces the probabilistic model (Dynamic Bayesian

Network [62]) we used for the inference, which describes the conditional dependencies

Fig 1. The Tower of Hanoi (ToH) setup. Sample initial (a) and goal (b) position of a Tower of Hanoi problem.
(c) Mapping of the Tower of Hanoi problem into an equivalent path-planning problem with 27 states. The
levels of grey correspond to the priors on the SG distribution; note that the way the priors are calculated is
explained in the section on “Subgoal a priori distribution”. In this example, the states have the following
values: 0.026 for S1, S20, S27; 0.0355 for S6, S9, S10, S11, S23, S24; 0.0358 for S7, S8, S13, S14, S17,
S18; 0.0359 for S4, S5, S12, S15, S22, S25; 0.0465 for S2, S3, S16, S19, S21, S26. For the sake of clarity,
the insets (of the states) illustrate the equivalent position in the Tower of Hanoi. The problem consisting in
going from the starting position shown in panel (a) to the goal position shown in panel (b) is equivalent to the
problem of finding a path from state S27 to state S20 in panel (c).

doi:10.1371/journal.pcbi.1004864.g001
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between the relevant stochastic variables (e.g., states, actions, and subgoals). Importantly, at

difference with most planning-as-inference architectures, our model includes (a probability

distribution over) subgoals. The second subsection thus illustrates two methods that we used to

define the “priors” of such subgoal states. The former (“algorithmic”) method, which is based

on calculability theory, constitutes a novelty of our approach. In the experimental section of

this article, we use it to explain human performance in the ToH. The latter (“perceptual”)

method incorporates a simpler, distance-based metric of the ToH problem space. In the experi-

mental section of this article, we use it to explain failures in human problem solving (e.g., prob-

lems in executing counterintuitive movements).

The last two subsections explain in detail the two nested procedures that compose the prob-

abilistic inference: an “inner” procedure that produces candidate plans (see Algorithm 1) and

an “outer” procedure that implements a decision rule to select among them (see Algorithm 2).

Essentially, in the “inner” procedure, several candidate plans are stochastically produced by

our subgoaling-based probabilistic method and scored according to informational measures.

In the “outer” procedure, a Bayesian voting procedure selects the best-posterior-valued candi-

date plan [63, 64].

Probabilistic model

The probabilistic model used in the simulations is a Dynamic Bayesian Network (DBN) of Fig

2. The nodes of the DBN are arranged on two layers corresponding to two consecutive slices of

time indicated with subscripts, e.g. St and St+1. First-order and stationary Markov properties

Fig 2. Graphical model used for the simulations. The graphical model is a Dynamic Bayesian Network [62] and expresses the probabilistic relations
between variables. See the main text for explanation.

doi:10.1371/journal.pcbi.1004864.g002
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hold: every variable depends exclusively on other variables expressed at the same or in the

immediately preceding time step.

The DBN model permits to formulate a problem solving task as aMarkov Decision Process

(MDP), in which states and actions are described by the stochastic variables S and A,

respectively.

We assume that S varies in a discrete set consisting of integer values in the range {0, . . ., n},

with n being the total number of states. The node A corresponds to seven different actions

{act1 − act6, ε}: move a disk from the first rod to the second rod (act1); move a disk from the

first rod to the third rod (act2); move a disk from the second rod to the first rod (act3); move a

disk from the second rod to the third rod (act4); move a disk from the third rod to the first rod

(act5); move a disk from the third rod to the second rod (act6); and an auxiliary “rest” action

(ε), i.e, a transition from a state to the same state. Note that not all actions are defined in every

state (e.g., in some states it is impossible to move a disk from the first rod to the second rod).

The nodeP in Fig 2 represents policies, or deterministic mappings from states to actions

to be taken in these states. As a policy deterministically specifies an action for every state

(a = π(s)), executing the same policy for a number of steps determines a sequence of transitions

amongst states [61]. The total numberm of policies available depends on the number of states

S and actions A in the environment. We include also a rest policy πε that associates the action ε

to every state (i.e., ε = π(s)).

Policy selection is modeled by a transition probability distribution p(P|s, sg), where s is one

arbitrary state and sg represents one arbitrary subgoal. Potentially, every state s could be a sub-

goal and used for planning a strategy in order to achieve the final goal. For this reason, in our

simulations the set of subgoals has the same cardinality as the set of states: {0, . . ., n}. The final

goal state is considered as a particular subgoal having the highest a priori probability.

At each time step, a new state is determined based on the current state and the action given

by the selected policy, according to p(St+1|st, at). The subgoal transition follows instead the dis-

tribution p(SGt+1|ft, sgt). The variable Fmonitors the agent’s progress in the task by reporting

whether or not a goal or subgoal has been achieved, and determines when the inferential pro-

cess terminates or a new subgoal needs to be sampled. F can only assume three discrete values:

0, 1, 2, see [38] for a related method. It has value 2 if the agent has reached the final goal state

(in which case, the inferential process terminates). It has value 1 if the agent has just reached a

subgoal state (in which case, a new subgoal is sampled). Otherwise, F has value 0 (in which

case, the same subgoal is used for the next inferential step).

Subgoal a priori distribution

Subgoals are states that are inferred during the planning-as-inference (PAI) process, and which

enable the selection of optimal sequences of transitions from the initial state to the final goal.

A key feature of our probabilistic model is the use of a subgoal a-priori probability distribu-

tion (SG) that is used to guide the inferential process and in particular to select candidate sub-

goals (see later). For each state, this distribution essentially encodes a (prior) probability that the

state is a potentially useful subgoal, or in other words a good way to carve the search problem.

In the following, we show two ways to calculate the a-priori probability (prior) of subgoal

states. The former method (Algorithmic priors), crucial in our approach, is deduced from

Algorithmic Probability theory, introduced by Solomonoff [65, 66]; as we will discuss, it reveals

structural aspects of the problem space and affords efficient path planning. The latter method

(Perceptual priors), carves the problem space in a different (and suboptimal) way, essentially

encoding the mere perceptual distance to the goal state. We will use this latter method to simu-

late human failures in the execution of counterintuitive movements (see the “Results” section).

Problem Solving as Probabilistic Inference with Subgoaling
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Algorithmic priors. The “algorithmic priors” of a state encode the idea that a state is a

potentially useful subgoal if it affords several and efficient paths to goals—which, using algo-

rithmic probability theory, can be defined in terms of the notion of programs, which we for-

mally introduce next.

If we set a starting state si, an arrival state sk and a policy πj (i.e., a function π(s) = a with s 2 S

and a 2 A), the assumption of a discrete state space let us compute a list of actions that starting

from si bring to sk through a path w = hsi, . . ., ski. In other words, the object individuated by

means of the triple (si, πj, sk) is a program (i.e., a code that with si as input stops in sk). Notice

that this is not a biunique correspondence because, if one fixes a path w, the program generating

w can be determined by different policies (say, for instance, two policies π and π0 such that

π(s) = π0(s) for every s 2 w and 9 �s =2 w : pð�sÞ 6¼ p0ð�sÞ).

To understand the relation between programs and policies, let’s consider that, given a

domain with transitions determined by a function f such that f(s, a) = s0, and once two states si
and sk are fixed, it is possible to generate a sequence of instructions to move from si to sk via π

by means of the following recursive definition:

sð0Þ ¼ si

sð�t Þ ¼ sk

pðsðtÞÞ ¼ aðtÞ

f ðsðtÞ; aðtÞÞ ¼ sðtþ1Þ

The resulting instruction sequence can be represented as an imperative program for a regis-

ter machine with si and sk, as input and output registers, respectively, and the other states s
(t) as

destination/operand registers. As we discuss next, the length of a program can be converted

into a probability and used within our probabilistic inference scheme.

Following principles of Algorithmic Probability theory, each program (si, πj, sk) can be for-

mally transformed into a code (i.e., a binary string psk
(si, πj) of length |psk

(si, πj)|) and processed

by a computing machine. To each code psk
(si, πj), and consequently to each program, it is possi-

ble to assign a probability 2−|psk(si, πj)| depending on its length. In other words, the probability

2−|psk(si, πj)| is the probability of a program code that starts from si and ends up in sk, after execut-

ing the sequence of actions a1, . . ., am that is dictated by the policy πj.

This probability goes to 0 in the limit of |psk
(si, πj)|!1, when a program does not halt in

sk (or it does not halt at all). Furthermore, this probability is equal to 1 when |psk(si, πj)| = 0

(this happens when initial and arrival states coincide). This last condition is satisfied in our

representation if and only if there exists a policy working as an “identity policy” corresponding

to our definition of the policy πε, see the Section on “Probabilistic Model” for details.

The algorithmic probability for a generic state sk can be computed, up to a normalization

factor, by the following Equation:

PðSG ¼ skÞ /
X

i

X

j

2
�jpsk

ðsi ;pjÞj ð1Þ

Eq (1) applied on every state generates an a priori “algorithmic probability” distribution (algo-

rithmic priors) in which the more informative states (i.e., subgoals important for decomposing

any multi-step planning task) have the highest probability values. This method is related to the

approach presented in [43], which considers for each state “the amount of Shannon informa-

tion that the agent needs to maintain about the current goal at a given state to select the appro-

priate action”.

Problem Solving as Probabilistic Inference with Subgoaling
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The computed algorithmic priors for subgoal states are specific for a given environment and

their computation is very costly. In [35] we have empirically verified that sampling on a much

smaller set of policies (100.000 in [35]) is sufficient to have a consistent approximation of the

prior values and to reveal the shape of the distribution (i.e., which states have higher prior val-

ues). Sampling increasingly more policies allows to straightly improve this approximation

thanks to the “cumulative” nature of Eq (1). Either way, we designed an efficient strategy for

their non-approximated evaluation. First, algorithmic priors can be computed in an off-line

(batch) mode, before inference, and reused for every inference in the same environment. Sec-

ond, we use joint probabilities and an adequate state space representation to make the compu-

tation of algorithmic priors more effective. In fact, Eq (1) can be formulated in terms of

algorithmic joint probabilities as

PðSG ¼ skÞ /
X

i

pðsk; siÞ ð2Þ

with

pðsk; siÞ /
X

l

X

j

2
�ðjpsk

ðsl ;pjÞjþjpsi
ðsl ;pjÞjÞ ¼

X

j

2
�jpsk

ðsi ;pjÞj: ð3Þ

where the equality on the right side follows by two properties of the model: 1) two states co-

occur if and only if the programs that have sk (si) as output are prefixes of the programs return-

ing si (sk); and 2) if a program from sk to si exists then, by assuming that transitions are sym-

metric, there is also the opposite one from si to sk.

Additionally, the space of states can be rearranged as a graph with the states si as vertices

and the transitions between states as edges. Encoding the graph as an adjacency list, i.e., a col-

lection of unordered lists related to each state and composed of the neighbors of the related ver-

tex, it is possible, given two states si and sk, to run a standard depth-first search algorithm for

finding all the paths c 2 C(si, sk) between them. Every path c corresponds to a distinct program

code pc, but, as we stressed previously, each program can be attained by a certain set of differ-

ent policies indicated as μ(pc). The number μ(pc) can be computed by considering each combi-

nation of the neighbors of the states not involved in the specific path c.

Consequently, the joint probability p(sk, si) expressed in Eq (3) can be written in the follow-

ing form:

pðsk; siÞ ¼
X

c2Cðsk ;siÞ

mðpcÞ 2
�jpc j

� �

: ð4Þ

In our case the number of states is finite, thus, given any pair of states, it is possible to com-

pute their joint probability using Eq (4). By substituting Eq (4) in Eq (2) we obtain:

PðSG ¼ skÞ /
X

i

X

c2Cðsk ;siÞ

mðpcÞ 2
�jpc j

� �

ð5Þ

This Eq (5) allows computing for each state sk the value p(SG = sk) corresponding to the algo-

rithmic prior assigned to the state sk and expressed in Eq (1). Note that Eq (5) dramatically

reduces the computational complexity of Eq (1) to O(n + e), equal to the depth-first search

complexity.

The same procedure based as an adjacency list is employed in the inferential process

described below (see the Section on “Inferential procedure”) to calculate p(sgt+1 | sgt) and

p(sgoal | sgt+1) through the usual chain rule for probabilities.

Problem Solving as Probabilistic Inference with Subgoaling
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Perceptual priors. In human problem solving, a perceptual strategy is one in which sub-

jects privilege the moves whose effect more closely (perceptually) resembles the goal state: the

larger is the number of disks on the correct rod, the higher is the probability assigned to the

corresponding state. In keeping, and similar to previous modeling work [67], we formalized a

“perceptual metric” that favors disks put on the target rod. To this aim, we encoded states of

the problem as vector v(s) = (rod1, . . ., rodd, . . ., rodD), where rodd denotes the number of the

rod on which the disk is, and d denotes the index of the disk type (e.g., in our tests D = 3 and

S27 and S20 are mapped into (3, 3, 3) and (2, 2, 2), respectively). The perceptual prior of the

state si can thus be given as:

ppercðsijsgoalÞ ¼
exp ð�jjvðsiÞ � vðsgoalÞjj1Þ

P

l exp ð�jjvðslÞ � vðsgoalÞjj1Þ
ð6Þ

where we use the L
1
norm between vectors to calculate the distance between si and sgoal.

Inferential procedure

In the standard planning-as-inference (PAI) approach, the inference tries to find a suitable pol-

icy from a start (s0) to a goal location (sgoal). Rather, in keeping with the recognized importance

of subgoaling in problem solving, our method infers a series of simpler sub-plans that pass

through a sequence of subgoals s0, sg1, . . ., sgk, . . ., sgoal, until the goal state is reached. In other

words, here the inferential process aims at finding a sequence of subgoals (and associated poli-

cies that govern the transitions from one subgoal to the next) that best permits to solve a spe-

cific problem, rather than finding a solution from start to end. The way the sequence of

subgoals and associated policies are selected is described next.

The procedure iteratively samples (i.e., extracts probabilistically), first, candidate subgoals

from the previously described a priori subgoal distribution p(SG), and second, policies (from

π) that can govern the transition to the sampled subgoal. The sampling procedure is cycled

until the final goal sgoal is eventually reached (or for a maximum number of steps Tmax). During

this procedure, both s and p(SG) are iteratively updated to reflect the current planned path

toward the goal and the most useful subgoals given the final goal, respectively.

In the course of this iterative process, the candidate subgoals are retained or discarded by

considering the computational complexity of the sub-problems they generate. More formally, a

candidate subgoal sequence is selected on the basis of the code length of the corresponding pro-

grams, which go from one subgoal (or the start location) to the next. We remind that a program

is defined as the sequence of actions necessary for the transition from an initial state s to a sub-

goal state sg (and is equivalent to a path following a policy π [61] from s to sg). The length of

the program (i.e., the number of actions necessary to reach sg from s) is converted into a proba-

bility using algorithmic probability theory [65, 66, 68, 69] and this probability is used in the iter-

ative procedure to decide whether the solution (including the subgoal plus the program)

should be retained or discarded.

The inference is formalized by the pseudocode of Algorithm 1. Following the model of Fig

2, the inference starts at time t = 0 from the initial state s0 of the node S. The distribution of the

algorithmic priors p(SG) is modified to set the goal state sgoal as the state with highest prior.

Algorithm 1 PLANNING INFERENCE(s0, sgoal, q, p(SG), Tmax)

Require: Starting state s0, goal state sgoal, sampled model instances q, sub-

goal algorithmic priors p(SG), maximum number of forward inferences Tmax.

Ensure: State sequence [s0, . . ., sgoal], subgoal sequence Seq.

1: t = 0

2: set S0 to the starting state s0

Problem Solving as Probabilistic Inference with Subgoaling
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3: sample a subgoal sg0 from the prior distribution p(SG) attained by using Eq

(1) on each state

4: select a policy π0 maximizing Eq (8) sampled through a Monte Carlo method

5: determine the action a0 depending on π0 and s0

6: evaluate the termination condition state F0 according to p(F0|sg0, s0)

7: while (Ft < 2 and t� Tmax) do

8: t = t+1

9: determine the state st by means of p(St|a(t − 1), s(t − 1))

10: select the subgoal sgt maximizing Eq (12) sampled through a Monte Carlo

method

11: select a policy πt maximizing Eq (8) sampled through a Monte Carlo

method

12: determine the action at depending on πt and st

13: evaluate the termination condition variable Ft according to p(Ft|sgt,

st)

14: update subgoal prior distribution by posing p(SGt = st) = 0

15: end while

The distribution p(SG) is initially determined by using Eq (1) to assign an algorithmic prior

value to each state of the environment. Therefore, we sort in descending order the values of p

(SG) and impose that

PðSG ¼ sgoalÞ / max ðpðSGÞÞ þ D ð7Þ

where Δ> 0 is the maximum difference, in absolute value, between two consecutive priors

arranged by the ordering.

Note that the maximization of Eq (7) operates over the values of p(SG) calculated using Eq

(1), which are predefined during the inference. Afterwards, the whole prior distribution is nor-

malized taking into account the modified value for P(SG = sgoal).

At time t = 0, a subgoal sg0 is drawn from the a priori algorithmic probability distribution

(line 3) presented in the Section on “Algorithmic priors” and modified as in Eq (7). Then, the

instruction in line 4 searches for a policy πt such that it is possible to build a program represent-

ing a transition from st to sgt. This is achieved by drawing a policy from the following probabil-

ity distribution:

pðPt ¼ pj j st; sgtÞ / pðsgt; st j Pt ¼ pjÞ pðpjÞ: ð8Þ

Eq (8) expresses the probability of selecting a specific policy πj in function of the length of the

program code that from the current state st, by means of πj, brings to the subgoal sgt, weighted

with the prior of the policy πj
It is possible to rewrite Eq (8) in an algorithmic form as:

pðPt ¼ pjjst; sgtÞ / pðsgt; st j Pt ¼ pjÞ pðpjÞ

/ 2
�jpsgt

ðst ;pjÞj
� �

pðpjÞ
ð9Þ

where the first factor of the right side product derives from the algorithmic joint probability

shown in Eq (3) by considering the policy πj as fixed. Hence, in the resulting Eq (9), the proba-

bility of a specific policy πj is proportional to its capability to generate a program that starts

from the current state st and reaches the currently selected subgoal sgt.

Note that Eq (9) is symmetric in the route as the transitions are symmetric—but the fact

that we assign the final goal a high prior gives inference a directionality.

According to Eq (9), the probability of a policy π conditioned by a state s and a subgoal sg is

the product between the likelihood that π generates a path from s to sg and the a priori
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probability p(π). By assuming that p(π) is uniform, for any given pair of s and sg, there exists a

subset of policies that have the same probability.

In our simulations, drawing from the distribution defined in Eq (9) takes place by means of

a Monte Carlo sampling method [70]. The candidate policies are sampled from the uniform

distribution p(Pt) and then the policy corresponding to π� = arg maxj p(πj|st, sgt) is selected.

This is the best policy (i.e., the one resulting in shortest paths) amongst those that were sam-

pled. Of note, various alternatives to sampling methods (e.g., heuristic techniques or tree search

[71]) can be adopted.

The inference described so far starts from an initial (clamped) state st and returns a subgoal

sgt and a policy πt able to reach it. (This can be viewed as an Option-like plan built on-the-fly

with the minimum number of actions involved into the transition from the initial to the sub-

goal state.) Given the policy πt, and knowing the state st, the action at is determined in a

straightforward manner (line 5).

At this point—line 6—the node Ft checks the reaching of a goal state sgoal. If st = sgoal then

ft = 2 and inference process stops, otherwise it proceeds until at least one among the termina-

tion criteria is fulfilled (line 7): either the node Ft evaluates to 2 or a maximum number Tmax

of inferential cycles has been effected.

During these (from line 7 to line 15) and after that the next state st+1 is determined via

p(st+1|st, at) Table 1 (line 9), the subgoal transition SGt ! SGt+1[38] is established (line 10).

In case that st 6¼ sgt, the node Ft assumes a zero value and the subgoal sgt+1 is forced to be the

same as time t. Contrarily, when ft = 1, the current state st is equal to the current subgoal and

a new one must be found.

In order to guide subgoal determination towards the goal state sgoal, the inference “clamps” the

current subgoal sgt, and assumes that ft+1 = 2, namely it fictively considers the goal state as

observed. Therefore, by the aforementioned considerations, the distribution p(SGt+1 | ft+1 = 2, sgt)

can be stated as:

pðsgtþ1
j ftþ1

¼ 2; sgtÞ / pðftþ1
¼ 2 j sgtþ1

Þ pðsgtþ1
j sgtÞ

� pðsgoal j sgtþ1
Þ pðsgtþ1

j sgtÞ
ð10Þ

The term p(sgt+1 | sgt) estimates the probability that the subgoal sgt+1 is chosen after sgt and the

likelihood p(ft+1 = 2 | sgt+1) corresponds to the conditional probability p(sgoal | sgt+1) of the goal

state sgoal with respect to the subgoal sgt+1.

Table 1. Algorithmic parameters set in the experiment shown in Fig 4.

Experiment Tower of Hanoi Task

States 27

Actions 7

Policies *2.3 � 1012

Particles 100

R 10

Θ 0.8

Tmax 12

Gres 30%

doi:10.1371/journal.pcbi.1004864.t001
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The algorithmic expression of Eq (10) stems from conditioning all the programs returning

the goal to produce sgt+1 as intermediate outcome; thus, it becomes:

pðsgtþ1
j ftþ1

¼ 2; sgtÞ / pðsgoal j sgtþ1
Þ pðsgtþ1

j sgtÞ

/
1

Pðsgtþ1
ÞPðsgtÞ

X

j

2
�jpsgoal

ðsgtþ1 ;pjÞj

 !

X

j

2
�jpsgtþ1

ðsgt ;pjÞj

 !

ð11Þ

Candidate subgoals sgt+1 are sampled by a Monte Carlo process [70] from the subgoal prior

distribution p(SGt). The subgoal at time t + 1 is calculated as sg� = arg maxk p(sgk | f t+1 = 2, sgt).

Summing up, the SGt+1 subgoal state is determined by means of a posterior estimation in

dependence on the values of st and sgt, according to the equation:

pðSGtþ1
jft; sgtÞ ¼

dsgtþ1 ; sgt
if ft ¼ 0

pðSGtþ1
j ftþ1

¼ 2; sgtÞ if ft ¼ 1

dsgtþ1 ; sgoal
if ft ¼ 2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð12Þ

where δa, b is 1 when a = b while is 0 otherwise.

Once the state for SGt+1 has been set, the inference proceeds from line 11 to line 13 by,

according to this sequence and following the methods previously discussed, selecting a policy

πt+1, an action at+1, and assessing ft+1.

Finally, in the instruction at line 14, subgoal prior distribution is updated by ‘switching off’

the prior of the current state, i.e., setting the probability p(SGt = st) to zero and normalizing the

whole distribution. This update has the effect of an ‘on-line memory’ preventing the inference

from selecting at the line 10 previously visited states as subgoals.

In sum, the output of the iterative sampling procedure described in Algorithm 1 is a plan-

ning sequence Seq. Importantly, this procedure is conducted in parallel by multiple particles of

a particle-filtering algorithm (with resampling) [70]. Each particle runs through all the problem

space (for a maximum number of steps Tmax) and returns a sequence of subgoals and associ-

ated programs that solve the problem (for the sake of simplicity, this ensemble of particles con-

tinues inferring paths until a percent Gres of them achieves the goal). Note that although the

subgoaling procedure usually splits the problem into smaller sub-problems, it is also possible

that a given particle finds a solution that does not require subgoals.

In the next subsection we describe how the to-be-executed plan is selected based on a mech-

anism that accumulates the “votes” of all the particles that solve the problem.

Decision making through posterior accumulation scoring

The inferential procedure illustrated in Algorithm 1 permits to probabilistically solve planning

problems. Nevertheless, its nature is essentially stochastic because a sampling technique is used

to draw both policies and subgoals. Consequently, given the same pair of goal and start states,

the model will infer more than one possible path as a response. This creates a problem of plan

selection, because ultimately the agent can only select and execute one single plan.

We model this selection problem in terms of an accumulation-to-bound process, in which

at every iteration each particle reaching the goal brings a “vote” for its candidate plan. Specifi-

cally, we use a variant of the widely adopted drift-diffusion model [72] that casts choice as a

Bayesian sequential analysis over multiple alternatives [63, 64, 73]. In this approach, a set of

different planning hypotheses is sequentially analyzed by gathering evidence for each of them
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during their execution. The sequential analysis is stopped when the results become significant

according to a pre-defined termination criterion. The posteriors for the planning hypotheses

are updated by using Bayes’ rule until reaching a threshold value.

This method is implemented via a particle filtering algorithm with resampling reported in

Algorithm 2 (see [70]). At each resampling step r, for a maximum number of R, a set Qr =

{q(1), . . ., q(K)} of particles representing K distinct planning hypotheses of the internal

model activation is generated (line 7) and tracked forward until a time TR. By applying Algo-

rithm 1 at the line 10, a subset of H� K particles, able to successfully infer a plan directed to

the goal, is carried out and the related subgoal sequences Seqh = [sgt = 0, . . ., sgt = Tr
]h, for

h = 1, . . ., H, are evaluated by means of a score θh.

Algorithm 2 SEQUENTIAL DECISION MAKING(s0, sgoal, K, Tmax, Θ, R, Gres)

Require: Starting state s0, goal state sgoal, particle number K, maximum num-

ber of forward inferences Tmax, decision threshold Θ, number of resam-

plings R, particles-gone-to-goal threshold Gres.

Ensure: Subgoal sequence probability distribution.

1: r = 0

2: initialize the set of subgoal sequences Σ� {Seqh}h = 1, . . ., H � K = ;
3: initialize θh(0)

4: compute p0(SG) by means of Eq (1) and Eq (7)

5: while (θh(r)� Θ, 8h and r < R) do

6: k = 0

7: create the sample set Qr = {q
(1)

, . . ., q
(K)

}

8: while (k� K and G(Qr)<Gres) do

9: k = k+1

10: Seqh = PLANNING INFERENCE(s0, sgoal, q
(k)

, pr(SG), Tmax)

11: Σ = Σ [ Seqh

12: end while

13: r = r + 1

14: update votes θh(r) for the sequences in Σ set by Eq (13)

15: update subgoal prior distribution pr(SG) by Eq (14)

16: end while

Initially, when r = 0, we assume that pr(SG) is computed through Eq (1) and Eq (7) and that,

additionally, θh(0) = p(Seqh) where p(Seqh) is the prior distribution on the potential subgoal

sequences. It is possible to assign a prior distribution for the sequences on the basis of the infor-

mation extracted from the specific state space; on the other hand, this prior can be flattened

when no additional information is present.

This inferential process is executed until at least one of the inference terminating conditions

is reached (from line 8 to line 12): either G(Qr) (the percent of particles in Qr reaching the goal)

is greater than or equal to a given threshold Gres, or the inference reaches a (fixed) maximum

number Tmax of iterations.

Subsequently, the scores of the subgoal sequences Seqh are updated at the line 14 using the

recursive formula:

yhðr þ 1Þ / yhðrÞ � p QrjSeqhð Þ ð13Þ

where

p QrjSeqhð Þ ¼
1

K

X

K

k

p qðkÞjSeqh
� �

is the evidence of the current particle set Qr given the sequence Seqh, computed as the
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proportion of particles qk tracing the specific subgoal sequence Seqh. Therefore, the scores θh
have the meaning of posteriors on Seqh accumulated in r steps.

Each step r concludes by updating, in line 15, the subgoal priors pr(SG) on the basis of the

sampled sequences:

prþ1
SG ¼ sgkð Þ / pðQrjsgkÞ � prðSG ¼ sgkÞ ð14Þ

where p(Qr|sgk) is the rate of the particles numbering sgk among the subgoals exploited.

At the successive step r + 1, a new set of hypotheses Qr+1 is resampled by adopting pr+1(SG)

as subgoal prior distribution, which increases the probability of selecting the more effective

subgoal sequences at the next step. This procedure is iterated until one of the convergence cri-

teria is met (line 5): (a) a subgoal sequence receives a total score greater than or equal to a pre-

defined decision threshold Θ, or (b) the maximum number of iterations R is performed. In both

cases, the sequence with the highest score is selected for execution.

To verify if the proposed computational model can successfully reproduce human problem

solving strategies, we tested it in three representative ToH tasks that are widely used to study

how humans solve (or fail to solve) structured problems.

Results

Humans are sensitive to the community structure of the ToH

A first important finding that we address here is the fact that subjects that solve a ToH have

been found to be very sensitive to the community structure of the problem [74]. As shown in

Fig 1C, a ToH has a community structure composed of three clusters of nodes separated by so-

called “bottlenecks”, viz. states S9 − S11, S6 − S10, and S23 − S24. The bottlenecks are here

defined topologically as narrow segments bridging between densely interconnected clusters of

vertices; in other words, bottlenecks are the only way to pass from one cluster to another. For

example, the bottleneck S9 − S11 is the only way to pass from the top cluster to the bottom-left

cluster or vice versa.

Previous research has identified the importance of community structures in carving prob-

lem spaces [75] and the ToH is no exception. In a series of empirical studies on human prob-

lem solving [74], participants were asked to solve a ToH problem equivalent to navigating

from S11 (starting state) to S13 (goal state), see Fig 1C. It is possible to note that there are two

shortest-path solutions to the problem that require the same (minimal) number of steps: the

former is w1 = hS11, S14, S18, S24, S23, S17, S13i and the latter is w2 = hS11, S9, S8, S7, S6, S10,

S13i. If the number of steps were the only determinant of behavior, participants should select

the two paths with the same probability. However, there is an important difference between the

two paths: the former requires traversing one bottleneck (i.e., one boundary between two com-

munities, S23 − S24) while the latter requires traversing two bottlenecks (S9 − S11 and S6 −

S10). Thus, if participants take the community structure into consideration when they plan

and prefer remaining in the same cluster of nodes (i.e., not traversing bottlenecks) when possi-

ble, they should prefer the former solution (w1) with higher probability. Participants selected

w1 in 72% of the cases, suggesting that they are sensitive to the community structure of the

ToH and prefer remaining in the same community.

The fact that there are two shortest-path solutions but one is consistently preferred indicates

that the probability to select a path does not simply depend on its “physical” length (i.e., the

number of steps). Instead, it might be also sensitive to the informational / community structure

of the environment (e.g., the transition probabilities or the presence of community boundaries).

To put it in another way, in problem solving, a path between two points (start and end of the

problem) is not necessarily represented (or calculated) in a metrical space that only encodes
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their physical distance. Instead, it might be represented in a subtler “problem space” in which—

say—the length of a path or the probability to select it depends on additional factors such as

informational constraints, the cost of the inferential process required to solve the problem (e.g.,

find the path) or the amount of information required to encode or recall it [43–45, 74, 75].

Our proposed model incorporates a new hypothesis on how structural / informational con-

straints are incorporated in the inferential process. In our probabilistic approach, the prior sub-

goal probability shown in Fig 1C permits to identify bottlenecks or boundaries between

communities in terms of paths that have low probability to be traversed. As the subgoal (prior)

probability of the bottleneck nodes is smaller than the other nodes, any path traversing bottle-

neck nodes will have lower probability in our inferential system, discouraging subjects from

crossing boundaries or traversing clusters of nodes. This stems from a key aspect of the algo-

rithm: states having lower prior probability are more rarely sampled as subgoals during the

subgoal selection phase (line 3 of Algorithm 1). Accordingly, the inferential system tends to

select paths that have higher probability (or equivalently, correspond to shorter programs),

which in turn are preferentially composed of high-probability states. Indeed, the probability of

states enters into the evaluation of the policies that generate paths, see Eq 9. Note also that the

prior probability distribution is graded, and the probability of nodes decreases in proximity to

bottlenecks. This implies that not only traversing bottlenecks, but also going towards bottle-

necks is less probable in our inferential system.

To illustrate the effects of this subgoal-induced community structure in quantitative terms,

we compared our model with subjects’ performance as reported in [74]. Let’s consider again

the problem of starting from S11 to reach the goal state S13 (see Fig 1C). Considering the two

possible shortest-path solutions, (w1 = hS11, S14, S18, S24, S23, S17, S13i with only one com-

munity-traverse, and w2 = hS11, S9, S8, S7, S6, S10, S13i with two community-traverses), the

first path is made up of states with higher subgoal prior probability.

Our simulations show that even in the presence of these two shortest-path solutions to

this problem, each involving the same number of steps, the winning (i.e., most voted) strategy

is w1: the one that selects the path traversing less bottlenecks or clusters. Fig 3 shows a

dynamical competition between the two solutions in which particles “vote” for one of them

(see Section on ‘Methods’). At each iteration (resampling) of the voting procedure the proba-

bility for w1 increases; note that it reaches the same proportion (72%) as reported empirically

in [74] after four iteration steps. Of course, the exact fit of the data is not extremely important

here, nor is the specific combination of start and goal states, as our findings generalize to any

other problem in the ToH. What our results show is that the proposed method reproduces

the subjects’ sensitivity to the community structure of the ToH by only appealing to probabi-

listic computations and a principled approach to establish which subgoals are potentially

useful.

Humans are sensitive to the nested structure of the ToH

The three-cluster structure described above is not the only community structure of the ToH.

Rather, the ToH has a 3-level nested community structure with (triangular) sub-clusters, see

Fig 1C. Nested within the aforementioned (level-3) clusters one can find three (level-2) clusters

(e.g., in the top level-3 cluster, these correspond to {S1, S2, S3}, {S5, S8, S9}, and {S4, S6, S7}).

Furthermore, nested within each level-2 cluster one can find three level-1 clusters that corre-

spond to individual nodes (e.g., in the top level-2 cluster, the nodes S1, S2, and S3). Bottlenecks

at different levels of depth correspond to these nested clusters: S2 − S3 is a level-1 bottleneck,

S7 − S8 is a level-2 bottleneck, and S23 − S24 is a level-3 bottleneck.

Problem Solving as Probabilistic Inference with Subgoaling

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004864 April 13, 2016 15 / 30



It has been reported that this nested structure affects human behavior [74]. Specifically, the

costs for traversing a level-3 bottleneck (S23 − S24) are higher than those for traversing a level-

2 bottleneck (S7 − S8), which in turn are higher than those for traversing a level-1 bottleneck

(S2 − S3)—where the costs are implicitly measured as longer reaction times required to make a

decision in the ToH. Once again, this difference only exists in a “problem space” and not in the

standard “metric space” that only measures the number of steps to reach a goal location,

because traversing a bottleneck (independent of its level) only requires one step.

The sensitivity for the nested ToH structure can be explained within our framework if one

considers that the prior probability of traversing S2 − S3 (P(S3|S2) � P(S2) = 0.0464) is higher

than traversing S7 − S8 (P(S8|S7) � P(S7) = 0.0358), which in turn is higher than traversing S23

− S24 (P(S24|S23) � P(S23) = 0.0355), see Fig 1C. These results thus extend those reported in

the former Section and illustrate how the structure of the prior subgoal distribution nicely cap-

tures key characteristics of the “problem space” that humans use to solve problems.

Humans have difficulties to execute counterintuitive movements

Empirical studies of how humans solve the Tower of Hanoi have identified a specific deficit in

the failure of executing counterintuitive movements: moves that are apparently in opposition to

the end goal-state (e.g., remove a disk from the target rod) but that are necessary to achieve the

goal efficiently. In these cases, two strategies have been identified that have opposite results: a

“look-ahead” strategy that considers the long-run effects of the counterintuitive movements

and their benefits for the overall problem solving, versus a “perceptual” strategy that only tries

to decrease myopically the perceived (apparent) distance to the goal state (e.g., only increases

Fig 3. Decisionmaking procedure. Choice between two paths (w1 vs.w2) from S11 to S13 that require the same number of steps but traverse a different
number of bottlenecks (1 forw1 and 2 forw2. Choice is performed using a probabilistic version of the drift diffusion model [72] introduced in the Section on
‘Methods’, in which particles (of the particle filtering algorithm) that reach the goal “vote” for the specific strategy they followed.

doi:10.1371/journal.pcbi.1004864.g003

Problem Solving as Probabilistic Inference with Subgoaling

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004864 April 13, 2016 16 / 30



the number of disks in the target rod) [57, 76]. This latter strategy disregards counterintuitive

moves—which, by definition, require removing a disk from the target rod, thus apparently

increasing the perceived distance from the goal state) and can lead to suboptimal behavior.

Here we characterize both strategies from a common probabilistic inference viewpoint, and

analyze why the former (look-ahead) permits efficient problem solving while the latter (percep-

tual) determines a failure of executing counterintuitive movements.

Let’s consider a sample problem consisting in going from a start (S27) to a goal (S20) config-

uration, see Fig 1. In our implementation, the two aforementioned (“look-ahead” vs. “percep-

tual”) strategies only differ for the choice of prior distributions of subgoals p(SG). The priors

for the “look-ahead” strategy are shown in Fig 4A); they are calculated using the same approach

Fig 4. Simulation of look-ahead vs. perceptual strategies. (a) Probability distribution on SG given the goal S20 using the “look-ahead” strategy. The priors
are calculated by starting from the priors shown in Fig 1C, assigning the goal state (S20) the highest probability (see Eq 7), and then normalizing. (b)
Probability distribution SG given the goal S20 using the “perceptual” strategy. Different from the “look-ahead” strategy, here the priors reflect the “perceptual
similarity” between each state and the goal state S20; for example, it is high for states in which there are disks in the second rod (e.g., S9, S11, S13, S17,
S16, S21). As for the “look-ahead” strategy, it is highest in the goal state S20. The full procedure for calculating the priors is explained in the Section on
Methods. (c) Probability of finding the best policy in function of the number of particles assigned to “perceptual” vs “look-ahead” strategy. The left part of the
figure shows a “pure perceptual” strategy (100% of the particles use the priors of the “perceptual” strategy); the right part of the figure shows a “pure look-
ahead” strategy (100% of the particles use the priors of the “look-ahead” strategy); and the central part of the figure shows intermediate cases (e.g., 50% of
the particles use the priors of the “perceptual” strategy and 50% of the particles use the priors of the “look-ahead” strategy). Results are the mean of 25 runs.
(d) Number of subgoals used by the particles (of the particle filtering algorithm) to solve the ToH problem starting from S27 and ending in S20. As this number
also includes the last (goal) state, the figure shows that the majority of particles solve the problem using 2 or 3 intermediate subgoals. In principle, every state
of the ToH can be a subgoal; however, our further analysis shown in Fig 7 highlights that the most selected path is one that uses S22 and S21 as subgoal
states.

doi:10.1371/journal.pcbi.1004864.g004
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as used in the former two studies. The priors for the “perceptual” strategy are shown in Fig 4B.

Here, in keeping with the problem solving literature, the probability of a movement is com-

puted using a perceptual-based proximity criterion: the more disks the agent sees on the correct

rod (in the example of Fig 1, the central rod) as a consequence of the movement, the more

probability it assigns to the movement (see Methods for details).

Once these priors are set, the two strategies use the same probabilistic inference methods

introduced before—thus, they only differ for their choice or priors, not the inference. Because

they use the same inference methods, the performance of the two strategies, which are based

on considerations of plan optimality (“look-ahead”) or perceptual proximity to the goal (“per-

ceptual”) can be directly compared. Furthermore, it is possible to run experiments that con-

sider various (weighted) combinations of look-ahead and perceptual strategies. Combined

strategies are created by allocating a percentage of the particles to each of the two strategies

during the inference (e.g., 50% of the particles use the priors of the “look-ahead” strategy, and

the remaining 50% use the priors of the “perceptual” strategy) while also preventing any resam-

pling during the inference.

Fig 4C illustrates the simulation results for various strategies, which range from a “pure”

perceptual strategy (left), where 100% of the particles use the priors of the “perceptual” strat-

egy, to a “pure” look-ahead strategy (right), where 100% of the particles use the priors of the

“perceptual” strategy, and all the intermediate cases (e.g., 50% of the particles use the priors of

the “perceptual” strategy, and 50% of the particles use the priors of the “look-ahead” strategy).

Parameters are reported in Table 1. Our simulations show that the percent of particles able to

find the shortest plan from state S27 to state S20 (i.e., a plan that only includes 7 moves) varies

as a function of how many particles of the particle filtering algorithm use the “look-ahead” or

“perceptual” strategies. A pure “look-ahead” strategy is the most successful while the perfor-

mance degrades quickly when increasingly more particles are allocated to the “perceptual”

strategy. These results thus speak to an advantage of the “look-ahead” over the “perceptual”

strategy, where their differences here are explained in terms of different prior distributions, not

of different inferential mechanisms.

The dynamics of the subgoal probability distributions p(SG) of the “look-ahead” strategy

are shown in Fig 5. The first panel shows the prior SG distribution once the start and goal states

are set. The successive panels show how this distribution is updated during the inference,

reflecting the fact that the particles are approaching the goal location. Effectively, already from

the second panel all the high-probability subgoals lie in the best path from the start to the goal.

Furthermore, it is evident that during the inference, the “target” candidate subgoals are increas-

ingly closer to the goal location—and the goal location is the highest probability location (only)

in the last panel. In other words, this algorithm implicitly creates a “moving target” or “gradi-

ent” of intermediate subgoals that permit splitting the problem into more manageable sub-

problems, carving the huge search space (* 1012 possible policies).

This situation can be contrasted with the dynamics of the subgoal probability distributions

p(SG) of the “perceptual” strategy, shown in Fig 6, which lacks an equivalent gradient. Differ-

ent from the “look-ahead” strategy, the “perceptual strategy” appears to be impaired by

strong priors close to the final goal. It is this bias that produces a myopic strategy and pre-

vents subjects from performing counterintuitive moves that would apparently move farther

from the goal state.

These differences between the two strategies have significant effects on their relative perfor-

mance. The most frequent solution found by the particles using the look-ahead strategy

requires 7 inferential steps while the most frequent solution of the perceptual strategy requires

9 inferential steps (to understand how the most frequent or “most voted” solution is computed,

see the Method section). The 7-steps solution found with higher probability by the look-ahead
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Fig 5. Behavior of a representative simulation using the “look-ahead” strategy. Panels (a-h) show how the SG probability distribution varies at each
time step (respectively 1–8), during the most frequent solution of a ToH problem starting from state S27 and reaching the goal state S20, using the “look-
ahead” strategy. Note that the solution requires 7 inferential steps, and all the states having high probability lie along the best path from S27 to S20.

doi:10.1371/journal.pcbi.1004864.g005
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Fig 6. Behavior of a representative simulation using the “perceptual” strategy. Panels (a-j) show how the SG probability distribution varies at each time
step (respectively 1–10) during the most frequent solution of a ToH problem starting from state S27 and reaching the goal state S20, using the “perceptual”
strategy. Note that, at difference with Fig 5, here the solution requires 9 inferential steps. Furthermore, several of the high probability states (e.g., S13, whose
activation remains quite high up to the 6th step) lie far away from the optimal path from S27 to S20. The reason is that these states are perceptually similar to
the goal state.

doi:10.1371/journal.pcbi.1004864.g006
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strategy is a unique, optimal plan passing through the states: S27, S26, S25, S24, S23, S22, S21,

S20 (which, for illustrative purposes, we also show in the usual Tower of Hanoi format in Fig

7). Note that as shown in Fig 4D most of the particles that find the aforementioned 7-step opti-

mal plan use 2 or 3 subgoals, which highlight an advantage of subgoal-based strategies over

strategies that try to solve a problem from start to end without splitting the problem space.

Fig 7. Solution found with higher probability by the look-ahead strategy. (a-h) The S states of themost voted solution at each time step for the Tower of
Hanoi problem starting from state S27 and reaching the goal state S20. (i) How the winning solution shown in (a-h) is selected based on a competition
between different subgoal sequences. At each step of resampling new particles are produced on the specific goal and by the voting mechanism the most
successful subgoal-sequence strategy is selected. Notice that several different sequences get votes: in this plot, for the sake of clarity, we only show those
sequences that surpass a threshold of 0.4.

doi:10.1371/journal.pcbi.1004864.g007
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Empirical support for the analysis of counterintuitive movements

To validate our approach, we used our model to reproduce the results of an empirical study that

investigated how adult patients with lesions of the prefrontal lobe and a control group solve

Tower of Hanoi puzzles of increasing difficulty [77], see also [67]. The study revealed specific

deficits in lesioned patients in resolving a goal-subgoal conflict, in particular in the case of coun-

terintuitive movements requiring to move away (in a perceptual sense) from the goal state.

Here we simulated three ToH problems analogous to those reported in [77], which exem-

plify an easy, an intermediate, and a challenging situation. All the three problems (P1–P3) had

the same goal state S20. In the easiest problem P1, the initial state was S13. This problem has a

simple solution requiring only 3 moves. In the intermediate problem P2, the starting state is

S27. The shortest solution of this problem requires 7 moves (the maximum number in our

Hanoi Tower) and crosses a bottleneck between two community structures. In the hardest

problem P3, the starting state is S9. Like the intermediate problem, the shortest solution to this

problem requires 7 moves and crosses one bottleneck (S6 − S10). However, this path is harder

to find for the presence of more counterintuitive moves, which hinder particularly the percep-

tual strategy. For example, an agent following the perceptual strategy will tend to do a transi-

tion from S9 to S11, not S8, because S11 is perceptually closer to the goal state S20. This

tendency can prevent the agent from finding the optimal path, which passes through S8.

In keeping with our previous arguments, we associated the behavior of lesioned patients vs.

control group to a different choice of strategies, the former more “perceptual” and the latter

more “look-ahead”. Importantly, we do not consider these two strategies to be computationally

different (as commonly assumed in the ToH literature); rather, we model both using our infer-

ential method, but using two different prior distributions for subgoals (perceptual priors vs.

algorithmic priors).

Accordingly, we associate the behavior of lesioned patients vs. control group to two models.

In the former model, corresponding to lesioned patients, 85% of the particles are initialized

according to the perceptual prior and 15% are initialized according to the algorithmic prior. in

the latter model, corresponding to the control group, 85% of the particles are initialized accord-

ing to the algorithmic prior and 15% are initialized according to the perceptual prior.

Fig 8A shows the results of the experiment (25 executions of each model). As in the human

experiment, we measure success rate as the percentage of participants (or executions of the

model) that found the shortest path solution to the ToH problem. (Note that in the human

experiments, participants solve the experiment only once.)

In P1, the success rate is high for both groups, but the variability of the solutions is higher

for lesioned patients. In P2 and P3, the success rate of both groups decreases, but—crucially—

it does so more steeply for the simulated lesioned patients, reflecting their difficulties in facing

challenging problems that include counterintuitive moves.

Our simulations replicate the pattern of results reported in the empirical study [77], and in

particular the steeper decrease in the performance of lesioned patients when the problems

require executing counterintuitive movements. This pattern of results cannot be explained by

an algorithm that simply introduces noise in the best strategy, but results from different quali-

tative strategies, with the perceptual strategy that performs quite well in simple cases but not in

the more complex ones that include counterintuitive movements. The slightly lower (overall)

performance of real participants compared to our simulations might result from minor differ-

ences in the set up. Indeed, the three problems P1–P3 reported here correspond to the three

problems P5, P1 and P8 in [67, 77], after a mapping between the ToH problem space used in

our simulations (with three disks and three pegs) and the slightly more challenging one used in

the empirical report (with five disks and three pegs). It is important to note that despite the
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Fig 8. Comparison of real and simulated data on the ToH. (a) Success rate mean and variance, “lesioned patients” and “control subjects” (as reported in
[67, 77]) and their simulated equivalents. Results are for 25 simulations. (b-c) Matrices of solutions of 25 simulations of lesioned patients (particle percent:
perceptual = 85 and look-ahead = 15) and control group (particle percent: perceptual = 15 and look-ahead = 85), respectively. The greyscale indicates the
number of votes received by the solutions, i.e., the sum of θ values of Eq 13; the lighter the grey, the higher the number of votes, the better the result. The x-
axis shows that the number of solutions found to the problem P3 by the control group (c) is greater than the number of solutions found by the lesioned
patients (b). The possibility to find more solutions suggests a greater flexibility of the look-ahead strategy, which in turn might explain its better performance.
Furthermore, it is possible to appreciate that the most voted solutions of the control group receive more votes than the most voted solutions of the lesioned
patients (compare their greyscale), indicating a faster decision making process.

doi:10.1371/journal.pcbi.1004864.g008
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minor differences in the set up, the structure of the problem is the same (e.g. the number of

bottlenecks and counterintuitive moves) and the overall pattern of results of the simulations

coherent with the real data.

Besides replicating the pattern of results in [77], our simulations can provide a more fine-

grained analysis of the behavior of the two groups. The two matrices of Fig 8B and 8C show the

number of solutions to problem P3 (x-axis) and relative number of “votes” (grey scale) found

by the simulated lesioned patients and control group, respectively. It is possible to appreciate

that the simulated control group is able to find many more solutions than the simulated

lesioned patients. This result confirms that the look-ahead strategy is more flexible and permits

agents to find a broad spectrum of solutions, rather than narrowing the problem space. This

increased flexibility is especially advantageous in challenging problems like P3 and might

explain the large gap in the performance between the two models, see Fig 8A. Furthermore, it

is worth noting that the most voted solutions of the control group receive more votes than the

most voted solutions of the lesioned patients (compare the grayscale of Fig 8B and 8C), which

in turn implies a faster convergence of the algorithm in the former case.

Discussion

We have presented a formal approach to human-level problem solving, here exemplified in the

Tower of Hanoi (ToH) task. We use probabilistic inference methods that are increasingly

adopted to study multiple cognitive domains, such as perception, action and learning [17, 18],

supporting the idea that the computations underlying problem solving might share common

principles with them. Specifically, we leverage on the planning-as-inference framework (PAI)

and extend it to address problem solving by introducing a crucial additional mechanism: sub-

goaling. Our emphasis on subgoaling is in keeping with their recognized importance of sub-

goaling in human problem solving and cognitive architectures [1, 8–13, 57] and with a vast

computational literature showing that subgoals can carve the problem space and reduce the

computational complexity of problems [14–16, 47, 66, 78].

Our results illustrate that a subgoaling-based probabilistic inference approach can explain

key aspects of human problem solving. Our first two studies focused on what structure or prob-

lem space humans use. Convergent findings indicate that the time to execute a ToH puzzle is

proportional to the complexity of the problem, not to the number of steps in a graph. The com-

plexity of the problem can be characterized as a distance in problem space between the start

and goal configurations, which does not only consider the number of (physical) steps required

to solve a problem, but also computational requirements (e.g., the complexity of solutions and

associated computational costs), which in turn are influenced by “community structure” of the

problem [74, 75]. In the proposed computational approach, an important constituent of the

problem space is prior subgoal distribution p(SG)—or an a-priori probabilistic estimate of the

likelihood of traversing a given set of states. The first two studies thus show that the prior sub-

goal distribution measure can explain two typical (but otherwise puzzling) idiosyncrasies of

human problem solving strategies, and their sensitivity to the (community) structure of the

problem at hand.

Our third and fourth studies show that a specific and well-documented deficit in human

problem solving—the failure to execute counterintuitive movements—can be explained in

terms of a mis-identification and mis-use of (good) subgoals within our probabilistic inference

scheme. One interesting aspect of our proposal is that it permits to describe two competing

strategies for solving the ToH, look-ahead vs. perceptual [57], within a homogeneous probabi-

listic inference method, without appealing to two segregated mechanisms. In this perspective,

when the perceptual strategy is used, the subgoal distribution quickly collapses into a
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narrowly-focused problem representation, in which the final goal dominates the inference, pre-

venting subjects to carve the problem in useful ways. In this perspective, the strategy a person

uses during problem solving (and her errors) might be predicted by looking at her subgoal dis-

tribution prior and during the inference. This is a novel empirical prediction that can be poten-

tially tested in the ToH or related puzzles.

It is worth noting that the disadvantages of the perceptual strategy might be partially com-

pensated by the fact that calculating subgoal distributions using a simple “perceptual distance”

between states could be less cognitively demanding than updating them according to the look-

ahead strategy. In this perspective, the choice of a more accurate but also more cognitive

demanding vs. a simpler but inflexible strategy might obey to computational trade-offs [19, 40,

79–81]. If this hypothesis is correct, introducing a cognitive load would shift the balance towards

the latter (perceptual) strategy [82, 83]. This prediction remains to be tested in future research.

To summarize, we have shown that problem solving requires the ability to carve the prob-

lem space in useful ways, which do not only (or not necessarily) reflect a simple physical dis-

tance, but a distance in a subtler “problem space”. In this perspective, we have shown the

advantage of representing possible subgoals in terms of algorithmic priors rather than in terms

of a mere perceptual distance from the goal state.

The way we calculate algorithmic priors P(SG) shares some similarities, but also differences,

with alternative ways that have been proposed in the literature that are based on graph theory

[74, 75, 84] and information theory [43–45, 85, 86]. In our approach, the algorithmic prior of a

state considers, first, the number of policies that generate programs terminating in the state (the

more the policies, the higher the probability) and second, the length of these programs (the

shortest the programs, the higher the probability)—thus reflecting a prior preference for travers-

ing every state by using the best (shorter) program. In the ToHmaze, this second aspect of the

algorithm tends to assign higher probability to states that are close to (but are not) vertexes,

because the programs that start from vertexes are shorter in these states compared to all the

other states, including bottlenecks (mazes with different topologies will have different p(SG) dis-

tributions, of course). This implies that bottlenecks do not have the highest prior probability.

This might seem in contrast with a graph-theoretic perspective, where bottlenecks are usually

identified as salient structural aspects of the problem [74, 75, 84]. However, two points are in

order. First, graph-theoretic algorithms do not assign a probability distribution over all states,

but only identify bottlenecks, thus it is hard to directly compare the two methods. Second, in

our approach p(SG) reflects algorithmic probability measures and the prior propensity to visit

or traverse a state rather than its perceptual salience or connectedness; and we have shown that

this choice of priors permits to model accurately human behavior, especially the preference for

paths that include lesser (or lower-rank) bottlenecks. It is possible that graph-theoretic measures

and our approach based on algorithmic probability reflect distinct (not necessarily divergent)

structural aspects of the problem, the former more revelatory of topological aspects of the maze

and oriented towards (optimal) task decomposition [74], and the latter more related to informa-

tional constraints of the problem to be solved—to which humans seem to be particularly sensi-

tive. Supporting this idea is the fact that our approach is largely convergent with other methods

that identify subgoals using info-theoretic measures such as the information bottleneck method

[85, 86] and relevant goal information (RGI) [43–45]. The RGI method uses the mutual infor-

mation between goal and action to assign states an information value; like our approach, this

method identifies transition points, and assigns bottlenecks low (not high) information value,

and high information value to bottleneck neighbors. While using different information mea-

sures, the RGI method is largely convergent with our approach as it reflects informational con-

straints of the problem (e.g., the amount of information an agent needs to maintain about its
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goal and the points where she needs to change subgoals) that—we argue—are important deter-

minants of human problem solving in challenging tasks such as the ToH.

The methods we use are also related to Hierarchical Reinforcement Learning (HRL) [48]. In

particular, the transition p(π|s, sg) is related to the concept of an “Option” in HRL [48] but it is

expressed probabilistically. In HRL, learned Options influence policy selection and guide the

agent transitions for an extended period of time, usually up to a predefined subgoal (e.g., an

Option might correspond to “move until the next door”). Rather, here there are no predefined

or “cached” subgoal-and-policy pairs. Policies are sampled at each step of the inference, while

subgoals are sampled whenever the previously selected subgoal has been reached. Thus, in a

sense, this system forms an Option-like structure on-the-fly that guides the agent’s transitions

up to the next predefined subgoal. In principle, the (best) Option-like structures (e.g., p(π|s,

sg)) formed during the inference might be “cached” to facilitate future inferences; this is some-

thing we plan to explore in future studies.

Conclusions

We presented a novel computational theory of human problem solving that is based on proba-

bilistic inference augmented with a subgoaling mechanism. Probabilistic inference methods are

increasingly used to explain a variety of cognitive, perceptual and motor tasks, including goal-

directed decisions and planning [17, 23, 30, 34, 37, 38, 87]. Here we show that probabilistic

inference, when enhanced with a subgoaling mechanism, can explain various aspects of human

problem solving, too, including its idiosyncrasies and deficits, such as the human sensitivity to

the structure of the problem space, and patient deficits in handling counterintuitive moves and

goal-subgoal conflicts. We focused on the well-studied Tower of Hanoi (ToH) task, which has

been modeled using several computational frameworks such as the cognitive architecture

ACT-R [88] and various symbolic [81, 89] and subsymbolic systems [90], none of which how-

ever use the principles of probabilistic inference proposed here.

This computational analysis suggests that human problem solving does not necessarily need

to be considered a special(ized) domain or module of cognition, but could use the same proba-

bilistic computations that are widely studied in other fields of cognitive science. Along similar

lines, it is not necessary to assume that suboptimal strategies such as the perceptual strategy are

mechanistically different from the optimal solution or heuristics. Our study shows that they

can be explained within the probabilistic framework introduced here under the assumption of

a different problem (prior) representation.

This computational analysis underlies the importance of subgoaling in problem solving,

too, showing that subgoals—as expressed for example in the prior subgoal distribution p(SG)—

permit to carve the problem space in useful ways. Importantly, subgoals define a metric for the

problem that is sensitive to the probability of transitions between states rather than to the mere

count of the number of states from start to goal. Humans are sensitive to key aspects of this

metric, such as its community structure [74]. Furthermore, subgoals can be used as “way-

points” that permit finding parsimonious solutions: the algorithm splits the problem into

smaller subproblems, each requiring less information to be encoded compared to a solution

from start to end (this adds on to the fact that the inferential method tends to select programs

having higher algorithmic probability and thus having a shorter code-length [65, 66, 68, 69]).

From a cognitive perspective, the overall divide et impera strategy can be less taxing for an

agent, because she only needs to “remember” a part of the solution (e.g., the path to the next

subgoal) at every moment in time. Reaching a subgoal (as signaled by the node F in our model)

marks a transition to a next subgoal, and implies that the agent can “forget” past information

[43–45]. Furthermore, finding waypoints permits to learn and store subroutines (e.g. Options
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in HRL) that—in principle—can be reused in future planning problems, thus saving resources

[91–93]. Finally, the failure to use subgoal information in appropriate ways can explain specific

problem solving deficits such as the inability to execute counterintuitive movements of prefron-

tal patients [57], without appealing to separate cognitive mechanisms for look-ahead vs. per-

ceptual strategies.
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