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Abstract

Mathematics is fundamental for many professions, especially science, technology, and engineering. Yet,

mathematics is often perceived as difficult and many students leave disciplines in science, technology, engineering,

and mathematics (STEM) as a result, closing doors to scientific, engineering, and technological careers. In this

editorial, we argue that how mathematics is traditionally viewed as “given” or “fixed” for students’ expected

acquisition alienates many students and needs to be problematized. We propose an alternative approach to

changes in mathematics education and show how the alternative also applies to STEM education.
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Introduction
Mathematics is commonly perceived to be difficult (e.g.,

Fritz et al. 2019). Moreover, many believe “it is ok—not

everyone can be good at math” (Rattan et al. 2012). With

such perceptions, many students stop studying mathem-

atics soon after it is no longer required of them. Giving

up learning mathematics may seem acceptable to those

who see mathematics as “optional,” but it is deeply prob-

lematic for society as a whole. Mathematics is a gateway

to many scientific and technological fields. Leaving it

limits students’ opportunities to learn a range of import-

ant subjects, thus limiting their future job opportunities

and depriving society of a potential pool of quantitatively

literate citizens. This situation needs to be changed, es-

pecially as we prepare students for the continuously in-

creasing demand for quantitative and computational

literacy over the twenty-first century (e.g., Committee on

STEM Education 2018).

The goal of this editorial is to re-frame issues of change

in mathematics education, with connections to science,

technology, engineering, and mathematics (STEM) educa-

tion. We are hardly the first to call for such changes; the

history of mathematics and philosophy has seen ongoing

changes in conceptualization of the discipline, and there

have been numerous changes in the past century alone

(Schoenfeld 2001). Yet changes in practice of how math-

ematics is viewed, taught, and learned have fallen far short

of espoused aspirations. While there has been an

increased focus on the processes and practices of math-

ematics (e.g., problem solving) over the past half century,

the vast majority of the emphasis is still on what content

should be presented to students. It is thus not surprising

that significant progress has not been made.

We propose a two-fold reframing. The first shift is to

re-emphasize the nature of mathematics—indeed, all of

STEM—as a sense-making activity. Mathematics is typ-

ically conceptualized and presented as a body of content

to be learned and processes to be engaged in, which can

be seen in both the NCTM Standards volumes and the

Common Core Standards. Alternatively, we believe that

all of the mathematics studied in K-12 can be viewed as

the codification of experiences of both making sense and

sense making through various practices including prob-

lem solving, reasoning, communicating, and mathemat-

ical modeling, and that students can and should

experience it that way. Indeed, much of the inductive

part of mathematics has been lost, and the deductive

part is often presented as rote procedures rather than a

form of sense making. If we arrange for students to have

the right experiences, the formal mathematics can serve

to organize and systematize those experiences.

The second shift is suggested by the first, with specific

attention to classroom instruction. Whether mathematics
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or STEM, the main focus of most instruction has been on

the content and practices of the discipline, and what the

teacher should do in order to make it accessible to stu-

dents. Instead, we urge that the main focus should be on

the student’s experience of the discipline – on the affor-

dances the environment provides the student for disciplin-

ary sense making. We will introduce the Teaching for

Robust Understanding (TRU) Framework, which can be

used to problematize instruction and guide needed re-

framing. The first dimension of TRU (The Discipline) fo-

cuses on the re-framing discussed above: is the content

conceptualized as something rich and connected that can

be experienced and codified in meaningful ways? The

second dimension (Cognitive Demand) examines oppor-

tunities students have to do that kind of sense-making

and codification. The third (Equitable Access to Content)

examines who has such opportunities: is there equitable

access to the core ideas? Dimension 4 (Agency, Owner-

ship, and Identity) asks, do students encounter the discip-

line in ways that enable them to see themselves as sense

makers, building both agency and positive disciplinary

identities? Finally, dimension 5 (Formative Assessment)

asks, does instruction routinely use formative assessment,

allowing student thinking to become public so that in-

struction can be adjusted accordingly?

We begin with a historical background, briefly discuss-

ing different views regarding the nature of mathematics.

We then problematize traditional approaches to math-

ematics teaching and learning. Finally, we discuss pos-

sible changes in the context of STEM education.

Knowing the background: the development of
conceptions about the nature of mathematics
The scholarly understanding of the nature of mathemat-

ics has evolved over its long history (e.g., Devlin 2012;

Dossey 1992). Explicit discussions regarding the nature

of mathematics took place among Greek mathematicians

from 500 BC to 300 AD (see, https://en.wikipedia.org/

wiki/Greek_mathematics). In contrast to the primarily

utilitarian approaches that preceded them, the Greeks

pioneered the study of mathematics for its own sake and

pursued the development and use of generalized math-

ematical theories and proofs, especially in geometry and

measurement (Boyer 1991). Different perspectives about

the nature of mathematics were gradually developed

during that time. Plato perceived the study of mathemat-

ics as pursuing the truth that exists in external world be-

yond people’s mind. Mathematics was treated as a body

of knowledge, in the ideal forms, that exists on its own,

which human’s mind may or may not sense. Aristotle,

Plato’s student, believed that mathematicians constructed

mathematical ideas as a result of the idealization of their

experience with objects (Dossey 1992). In this perspective,

Aristotle emphasized logical reasoning and empirical

realization of mathematical objects that are accessible to

the human senses. The two schools of thought that

evolved from Plato’s and Aristotle’s contrasting concep-

tions of the nature of mathematics have had important

implications for the ensuing development of mathematics

as a discipline, and for mathematics education.

Several more schools of thought were developed as

mathematicians tackled new problems in mathematics

(Dossey 1992). Davis and Hersh (1980) provides an en-

tertaining and informative account of these develop-

ments. Three major schools of thought in the early

1900s dealt with paradoxes in the real number system

and the theory of sets: (1) logicism, as an outgrowth of

the Platonic school, accepts the external existence of

mathematics and emphasizes the form rather than the

interpretation in a specific setting; (2) intuitionism, as

influenced by Aristotle’s ideas, only accepts the mathem-

atics to be developed from the natural numbers forward

via “valid” patterns of mental reasoning (not empirical

realization in Aristotle’s thought); and (3) formalism,

also aligned with Aristotle’s ideas, builds mathematics

upon the formal axiomatic structures to free mathemat-

ics from contradictions. These three schools of thought

are similar in that they view the contents of mathematics

as products, but they differ in whether products are

viewed as pre-existing or created through experience.

The development of these three schools of thought illus-

trates that the view of mathematics as products has its

long history in mathematics.

With the gradual development of school mathematics

since 1900s (Stanic and Kilpatrick 1992), the conception

of the nature of mathematics has increasingly received

attention from mathematics educators. Which notion of

mathematics mathematics education adopts and uses

has a direct and strong impact on the way of school

mathematics being presented and approached in educa-

tion. Although the history of school mathematics is rela-

tively short in comparison with mathematics itself, we

can find ample examples about the influence of different

views of mathematics on curriculum and classroom in-

struction in the USA and other education systems (e.g.,

Dossey et al. 2016; Li and Lappan 2014; Li, Silver, and Li

2014; Stanic and Kilpatrick 1992). For instance, the

“New Math” movement of 1950s and 1960s used the

formalism school of thought as the core of reform

efforts. The content was presented in a structural for-

mat, using the set theoretic language and conceptions.

But the result was not a successful progression toward a

school mathematics that is best for students and

teachers (e.g., Kline 1973). Alternatively, Dossey (1992),

in his review of the nature of mathematics, identified

and selected scholars’ works and ideas applicable to both

professional mathematicians and mathematics educators

(e.g., Davis and Hersh 1980; Hersh 1986; Tymoczko
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1986). Those scholars' ideas rested on what professional

mathematicians do, not what mathematicians think

about what mathematics is. Dossey (1992) specifically

cited Hersh (1986) to emphasize mathematics is about

ideas and should be accepted as a human activity, not

strictly governed by any one school of thought.

Devlin (2000) argued that mathematics is not a single

entity but has four different faces: (1) computation,

formal reasoning, and problem solving; (2) a way of

knowing; (3) a creative medium; and (4) applications.

Further, he contended school mathematics typically

focuses on the first face, makes some reference to the

fourth face, but pays almost no attention to the other

two faces. His conception of mathematics assembles ideas

from the history of mathematics and observes mathemat-

ical activities occurring across different settings.

Our brief review shows that the nature of mathematics

can be understood as having different faces, rather than

being governed by any single school of thought. At the

same time, the ideas of Plato and Aristotle continue to

influence the ways that mathematicians, mathematics

educators, and the general public perceive mathematics.

Despite nearly a half century of process-oriented re-

search (see below), let alone Pólya’s work on problem

solving, mathematics is still perceived of largely as prod-

ucts—a body of knowledge as highlighted in the three

schools (logicist, intuitionist, formalist) of thought, ra-

ther than ideas that call for active thinking and creation.

The evolving conceptions about the nature of mathem-

atics in history suggests there is room for us to decide

how mathematics can be perceived, rather than being

bounded by a pre-occupied notion of mathematics as

“given” or “fixed.” Each and every learner can experience

mathematics through different practices and “own”

mathematics as a human activity.

Problematizing what is important for students to
learn in and through mathematics
The evolving conceptions about the nature of mathem-

atics suggest that choices exist when deciding what and

how to teach and learn mathematics but they do not

specify what and how to make the choice. Decisions

require articulating options for conceptions of what is

important for students to learn in and through mathem-

atics and evaluating the advantages and drawbacks for

the students for each option.

According to Stanic and Kilpatrick (1992), the history

of school mathematics curricula presents two important

and real changes over the years: one is at the turn of the

twentieth century when school mathematics was re-

formed as a unified and applied curriculum to accom-

modate dramatically increased student populations from

diverse backgrounds, and the other is the “New Math”

movement of the 1950s and 1960s, intended to integrate

modern mathematics into school curriculum. The per-

ceived failure of the “New Math” movement led to the

“Back to Basics” movement in the 1970s, followed by

“Problem Solving” in the 1980s, and then the Curricu-

lum Standards movement in the 1990s and after. The

history shows school mathematics curricula have em-

phasized teaching and learning mathematical knowledge

and skills, together with problem solving and some

applications of mathematics, a picture that is consistent

with what Devlin (2000) refers to as the 1st face and

some reference to the 4th face of mathematics.

Therefore, although there have been reforms in math-

ematics curriculum and instruction, there are hardly real

changes in how mathematics is conceptualized and pre-

sented in school education in the USA (Stanic and Kil-

patrick 1992) and other education systems (e.g., Leung

and Li 2010; Li and Lappan 2014). The dominant

conception remains mathematics as products, frequently

referring to a body of static knowledge and skills that

need to be learned and acquired (Fisher 1990). This con-

tinues to be largely the case in practice, despite advances

in conceptualization (see below).

It should be noted that conceptualizing mathematics

as “a body of knowledge and skills” is not wrong, espe-

cially with such a long history of knowledge creation

and accumulation in mathematics, but it is not adequate

for school mathematics nowadays. The set of concepts

and procedures, after years of development, exceeds

what could be covered in any school curricula. More-

over, this body of knowledge and skills keeps growing, as

the product of human intelligence and scholarship in

mathematics. Devlin (2012) pointed out that school

mathematics mainly covers what was developed in the

Greek mathematics, plus just two further advances from

the seventh century: calculus and probability theory. It is

no wonder if someone questions the value of learning

such a small set of knowledge and skills developed more

than a thousand years ago. Meanwhile, this body of

knowledge and skills are often abstract, static, and “for-

eign” to many students and teachers who learned to per-

ceive mathematics as an external entity in existence

(Plato’s notion) rather than Aristotelian emphasis on ex-

perimentation (Cooney 1987). It is thus not surprising

for so many students and teachers to claim that math-

ematics is difficult (e.g., Fritz et al. 2019) and “it is ok—

not everyone can be good at math” (Rattan et al. 2012).

What can be made meaningful should be critically im-

portant to those who want to (or need to) learn and

teach mathematics. In fact, there is significant evidence

that students often try to make sense of mathematics

that is “presented” or “given” to them, although they

made numerous errors that can be decoded to study

their thinking (e.g., Ashlock 2010). Indeed, misconcep-

tions are best thought of not as errors that need to be
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“fixed,” but as plausible abstractions on the basis of what

students have learned—i.e., attempts at sense-making

(Smith et al. 1993). Conceiving mathematics as about

“ideas,” we can help students to play, own, experience,

and think about some key ideas just like what they do in

many other activities, such as game play (Gee 2005).

Definitions of concepts and formal languages and proce-

dures can be postponed until students are ready to con-

sider why and how they are needed. Mathematics should

be taken and accepted as a human activity (Dossey

1992), and developing students’ mathematical thinking

(about ideas) should be emphasized in learning mathem-

atics itself (Devlin 2012) and in STEM (Li et al. 2019a).

Along with the shift from products to ideas in math-

ematics, scholars have already focused on how people

work with ideas in mathematics. Elaborated in detail by

Schoenfeld (in press), the revolution began with George

Pólya (1887–1985) who had a fundamental interest in

having students learn and understand content via prob-

lem solving. For Pólya, mathematics was about inquiry,

sense making, and understanding how and why mathem-

atical ideas (instead of content as products) fit together

the way they do. The call for problem solving in the

1980s in the USA was (at least partially) inspired by

Pólya’s ideas after a decade of “back to basics” in the

1970s. It has been recognized since that the practices of

mathematics (including problem solving) are every bit as

important as the content itself, and the two shouldn’t be

separated. In the follow-up standards movement, the

content and practices have been the “warp and weave”

of the fabric doing mathematics, as articulated in Princi-

ples and Standards for School Standards (NCTM 2000).

There were five content standards and five process stan-

dards (i.e., problem solving, reasoning, connecting, com-

municating, representing). It is widely acknowledged,

also in the Common Core State Standards in the USA

(CCSSI 2010), that both content and processes/practices

are essential and they form the base for next steps.

Problematizing how mathematics is taught and
learned, with connections to STEM education

How the ways that mathematics is often taught cause

concerns

Conceiving mathematics as a body of facts and procedures

to be “mastered” has been long-standing in mathematics

education practice, and it often results in students’ learn-

ing by rote memorization. For example, Schoenfeld (1988)

provided a detailed account of the disasters of a “well-

taught” mathematics course, documenting a 10th-grade

geometry class taught by a confident and experienced

teacher. The teacher taught and managed his class well,

and his students also did well on standardized examina-

tions, which focused on content and procedures. At the

same time, however, Schoenfeld pointed out that the stu-

dents developed counterproductive views of mathematics.

Although the students developed some level of proficiency

in content and procedures, they gained (or were rein-

forced in) the kinds of beliefs about mathematics as being

fragmented and disconnected. Schoenfeld argued that the

course led students to develop a robust and counterpro-

ductive set of beliefs about the nature of geometry.

Seeking possible origins about students’ counterpro-

ductive beliefs about mathematics from mathematics in-

struction motivated Schoenfeld’s study (Schoenfeld

1988). Such an intuitive motivation is also evident in

other studies. Keitel (2006) compared the lessons of two

teachers (T1 and T2) in Germany who taught their

classes very differently. T1 regularly taught the class em-

phasizing routine individual practice and memorization

of specific algebraic rules. T1 emphasized the import-

ance of such practices for test taking, and the students

followed his instruction. Even when T1 one day intro-

duced a non-routine problem that connects algebra and

geometry, the overwhelming emphasis on mastering

routines and algorithms seemed to overshadow in deal-

ing such a non-routine problem. In contrast, T2’s teach-

ing emphasized students’ initiatives and collaboration,

although T2 also used formal routine tasks. At the end,

students in T2’s class reported positively about their ex-

perience, enjoyed working together, and appreciated the

opportunities of thinking mathematically. Studies by

Schoenfeld (1988) and Keitel (2006) indicate how stu-

dents’ experience in mathematics classes influences their

perceptions of mathematics and also imply the import-

ance of learning about teachers’ perceptions of mathem-

atics that likely guide their instructional practice

(Cooney 1987).

Rattan et al. (2012) found that teachers with different

perceptions of mathematics teach differently. Specific-

ally, Rattan et al. looked at these teachers holding an en-

tity (fixed) theory of mathematics intelligence (G1)

versus incremental theory (G2). Through their studies,

Rattan and colleagues found that G1 teachers more

readily judged students to have low ability, comforted

students for low mathematical ability, and used “kind”

strategies (e.g., assigning less homework) unlikely to pro-

mote their engagement with the field than G2 teachers.

Students who received comfort-oriented feedback per-

ceived their teachers’ entity theory and low expectations

and reported lowered motivation and expectations for

their own performance. The results suggest how

teachers’ inadequate perceptions of mathematics and be-

liefs about the nature of students’ mathematical

intelligence contributed to low achievement, diminished

self-esteem and viewed mathematics is only a set of

static facts and procedures. Further, the results suggest

that how mathematics is taught influences more than
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students’ proficiency with mathematics content in a

class. Sun (2018) made a similar argument after synthe-

sizing existing literature and analyzing classroom obser-

vation data.

Based on the 2012 US national survey of science and

mathematics education conducted by Horizon Research,

Banilower et al. (2013) reported that a vast majority of

mathematics teachers, from 81% at the high school level

to 90% at the elementary level, believe that students

should be given definitions of new vocabulary at the be-

ginning of instruction on a mathematical idea. Also,

many teachers believe that they should explain an idea

to students before having them consider evidence for it

and that hands-on activities should be used primarily to

reinforce ideas students have already learned. The report

suggests many teachers emphasized pedagogical practices

of “give” and “present,” perhaps influenced by conceptions

of mathematics that are more Platonic than Aristotelian,

similar to what was reported about teachers’ practices

more than two decades ago (Cooney 1987).

How to change?

Given that the evidence demonstrates a compelling case

for changing how mathematics is taught, we turn our at-

tention to suggesting how to realize this transformation.

Changing how mathematics is taught and learned is not

a new endeavor for both mathematics educators and

mathematicians (e.g., Li, Silver, and Li 2014; Schoenfeld

in press). For example, the “Moore Method,” developed

and used by Robert Lee Moore (a famous topologist) in

the early twentieth century, shifted instruction from

teacher-centered lecturing to student-centered mathem-

atical development (Coppin et al. 2009). In its purest

form, students were presented with mathematical defini-

tions and asked to develop and/or prove theorems from

them after class, without reading mathematics books or

using other resources. When students returned to the

class, they were asked to prove a theorem. As a result,

students developed the mathematics themselves, instead

of the instructor presenting the proofs and doing the

mathematics for students. The method has had its own

success in producing many great mathematicians; how-

ever, the high-pressure environment also drowned many

students who might have been successful otherwise

(Schoenfeld in press).

Although the “Moore Method” was used primarily in

advanced mathematics courses at the post-secondary

level, it illustrates how a different conception of math-

ematics led to a different instructional approach in

which students developed mathematics. However, it

might be the opposite end of a spectrum, in comparison

to approaches that present mathematics to students in

accommodating and easy-to-digest ways that can be as

much easy as possible. Neither extreme is a good option

for K-12 students. Again, it becomes important for us to

consider options that can support the value of learning

mathematics.

Our discussion in the previous section highlights the

importance of taking mathematics as a human activity,

ensuring it is meaningful to students, and developing

students’ mathematical thinking about ideas, rather than

simply absorbing a set of static and disconnected know-

ledge and skills. We call for a shift in teaching

mathematics based on Platonic conceptions to ap-

proaches based on more of Aristotelian conceptions. In

essence, Plato emphasized ideal forms of mathematical

objects, perhaps inaccessible through people’s sense

making efforts. As a result, learners lack ownership of

the ideal forms of mathematical objects, because math-

ematical objects cannot and should not be created by

human reasoning. In contrast, Aristotle emphasized that

mathematical objects are developed through logic rea-

soning and empirical realization. In other words, math-

ematical objects exist only when they can be sensed and

verified by people's efforts. This differs from Plato’s pas-

sive perspective, highlights human ownership of mathem-

atical ideas and encourages people to make mathematics

make sense, termed as making sense by McCallum (2018).

Aristotelian conceptions view mathematics as objects that

learners can actively develop and structure as mathematic-

ally meaningful, which is more in line with what research

mathematicians do. McCallum (2018) argued that both

sense-making and making-sense stances are needed for a

complete view of mathematics and learning, recognizing

that not attending to both stances carries risks. “Just as it

is a risk of the sense-making stance that the mathematics

gets ignored, it is a risk of the making-sense stance that

the sense-maker gets ignored.” (McCallum 2018).

In addition, there is the issue of personal identity: if

students come to avoid mathematics because they are

uncomfortable with it (in fact, mathematics anxiety has

become a widespread problem for all ages across the

globe, see Luttenberger et al. 2018) then mathematics in-

struction has failed them, regardless of test scores.

In the following, we discuss sense-making and making-

sense stances first with specific examples from mathemat-

ics. Then, we discuss connections to STEM education.

Sense making is much more than the acquisition of

knowledge and skills

Sense making has long been emphasized in mathematics

education community. William A. Brownell is a well-

known, early 20th century scholar who advocated the

value of sense making in the learning of mathematics.

For example, Brownell (1945) discussed how arithmetic

can and should be taught and learned not only as proce-

dures, but also as a meaningful system of thinking. He

shared many examples like the following division,
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8Þ576

Brownell suggested to ask questions: what does the 5 of

576 mean? Why must 57 be the first partial dividend? Do

you actually divide 8 into 57, or into 57…’s? etc., instead

of simply letting students memorize how to carry out the

procedure. What Brownell advocated has been commonly

accepted and emphasized in mathematics education now-

adays as sense making (e.g., Schoenfeld 1992).

There can be different ways of sense making of the same

computation. As an example, the sense making process

for the above long division can come out with mental

math as: I am looking to see how close I can get to 570

with multiples of 80; 7 multiples of 80 gives me 560, which

is close. Of course, given base 10 notation, that’s the same

as 8 multiples of 70, which is why the 7 goes over the 57.

And when I subtract 560, there are 16 left over, so that’s

another 2 8 s. Such a sense-making process also works, as

finding the answer (quotient, k) of 576 ÷ 8 is the same

operation as to find k that satisfies 576 = k × 8. In math-

ematics, division and multiplication are alternate but

equivalent ways of doing the same operation.

To help students build numerical reasoning and make

sense of computations, many teachers use number talks in

their classrooms for students to practice and share these

mental math and computation strategies (e.g., Parrish

2011). In fact, new terms are being created and used in

mathematics education about sense making, such as num-

ber sense (e.g., Sowder 1992) and symbol sense (Arcavi,

1994). Some instructional programs, such as Cognitively

Guided Instruction (see, e.g., Carpenter et al., 1997, 1998),

make sense making the core of instructional activities. We

argue that such activities should be more widely adopted.

Making sense makes the other side of mathematical

practice visible, and values idea development and

ownership

The making-sense stance, as termed by McCallum

(2018), is not commonly practiced as it is pertinent to

expert mathematician’s practices. Where sense making

(as discussed previously) emphasizes the process of

making sense of what is being learned, making sense

emphasizes the process of making mathematics make

sense. Making sense highlights the importance for

students to experience mathematics through creating,

designing, developing, and connecting mathematical

ideas. As an example, for the above division computa-

tion, 8Þ576 , students may wonder why the division pro-

cedure is performed from left to right, which is different

from the other operations (addition, subtraction, and

multiplication) that are all performed from right to left.

In fact, students can be encouraged to explore if the

division can also be performed from right to left (i.e.,

starting from the one’s place). They may discover, with

possible support from the teacher, that the division can

be done in this way. However, once the division is

moved to the high-value places, it will require the

process to go back down to the low-value places for

completion. In other words, the division process starting

from the low-value place would require repeated pro-

cesses of returning to the low-value places; as a result, it

is inefficient. As mathematical procedure is designed to

improve efficiency, the division procedure is thus set to

be carried out from the high-value place to low-value

place (i.e., from left to right). Students who work this

out experience mathematics more deeply than the

sense-making described by Brownell (1945).

There are plenty of making-sense opportunities in

classroom instruction. For example, kindergarten children

are often given opportunities to play with manipulatives

like cube trains and snub cubes, to explore and learn

about patterns, numbers, and measurement through vari-

ous connections. The recording of such activities typically

results in numerical expressions or operations of these

connections. In addition, such activities can also serve as a

context to encourage students to design and create a way

of “recording” these connections directly with a drawing

line next to the connected train cubes. Such a design ac-

tivity will help students to develop the concept of a num-

ber line that includes the original/starting point, unit, and

direction (i.e., making mathematics make sense), instead

of introducing the number line to students as a mathem-

atical concept being “given” years later.

Learning how to provide students with opportunities

to develop mathematics may occur with experience.

Huang et al. (2010) found that expert and novice

teachers in China both valued students’ mastering of

mathematical knowledge and skills and their develop-

ment in mathematical thinking methods and abilities.

However, novice teachers were particularly concerned

about the effectiveness of their guidance, in contrast to

expert teachers who emphasized the development of stu-

dents’ mathematical thinking and higher-order thinking

abilities and properly dealing with important and diffi-

cult content points. The results suggest that teachers’

perceptions and pedagogical practices can change and

improve over time. However, it may be worth asking if

support for teacher development would accelerate the

process.

Connecting changes in mathematics and STEM education

Although it is commonly acknowledged that mathemat-

ics is foundational to STEM, mathematics is being re-

lated to STEM education at a distance in practice and

also in scholarship development (English 2016, see add-

itional notes at the end of this editorial). Holding the

conception of mathematics as products does not support

integrating mathematics with other STEM disciplines, as
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mathematics can be perceived simply as a set of tools for

these disciplines. At the same time, mathematics and

science have often proceeded along parallel tracks, with

mathematics focused on “problem solving” while science

has focused on “inquiry.” To better connect mathematics

and other disciplines in STEM, we should focus on ideas

and thinking development in mathematics (Li et al.

2019a), unifying instruction from the student perspective

(the Teaching for Robust Understanding framework, dis-

cussed below).

Emphasizing both sense making and making sense in

mathematics education opens opportunities for connec-

tions with similar practices in other STEM disciplines.

For example, sense making is very much emphasized in

science education (Hogan 2019; Kapon 2017; Odden and

Russ 2019), often combined with reflections in engineer-

ing (Kilgore et al. 2013; Turns et al. 2014), and also in

the context of using technology (e.g., Antonietti and

Cantoia 2000; Dick and Hollebrands 2011). Science is

fundamentally about discovery and understanding of the

natural world. This notion provides a natural link to

mathematical modeling (e.g., Burkhardt 1981). Beyond

that, in science education, sense making places a heavy

focus on the construction and evaluation of explanation

(Kapon 2017), and can even be defined as a process of

constructing an explanation to resolve a perceived gap

or conflict in knowledge (Odden and Russ 2019). Design

and making play vital roles in engineering and technol-

ogy education (Dym et al., 2005), as is student reflection

on these experiences (e.g., Turns et al. 2014). Indeed,

STEM disciplines share the same conceptual process of

sense making as learners, individually or in a group, ac-

tively engage with the natural or man-made world, ex-

plore it, and then develop, test, refine, and use ideas

together with specific explanation. If mathematics was

conceived as an “empirical” discipline, connections with

other STEM disciplines would be strengthened. In philo-

sophical terms, Lakatos (1976) made similar claims1.

Similar to the emphasis on sense making placed in the

Mathematics Curriculum Standards (e.g., NCTM, 1989,

2000), Next Generation Science Standards (NGSS Lead

States 2013) prompted a shift in science education away

from simply knowing science content and procedures to

practicing and using science, together with engineering,

to make sense of the world and create the future. In a

review, Fitzgerald and Palincsar (2019) concluded sense

making is a productive lens for investigating and charac-

terizing great teaching across multiple disciplines.

Mathematics has stronger linkages to creation and de-

sign than traditionally imagined. Therefore, its connec-

tions to engineering and technology could be much

stronger. However, the deep-rooted conception of

mathematics as products has traditionally discouraged

students and teachers from considering and valuing

design and design thinking (Li et al. 2019b). Conceiving

mathematics as making sense should help promote con-

ceptual changes in mathematical practice to value idea

generation and design activity. Connections generated

from such a shift will support teaching and learning not

only in individual STEM disciplines, but also in inte-

grated STEM education.

At the same time, although STEM education as a com-

monly recognized field does not have a long history (Li

2014, 2018a), its rapid development can help introduce

ideas for exploring how mathematics can be taught and

learned. For example, the concept of projects is common

in engineering professional practice, and the project-

based learning (PjBL) as an instructional approach is a

key component in some engineering programs (e.g., Ber-

ger 2016; de los Ríos et al. 2010; Mills and Treagust

2003). de los Ríos et al. (2010) highlighted three main

advantages of PjBL: (1) development in technical, per-

sonal, and contextual competences; (2) students’ engage-

ment with real problems from professional contexts; and

(3) collaborative learning facilitated through the integra-

tion of teaching and research. Such advantages are im-

portant for students’ learning of mathematics and are

aligned well with efforts to develop 21st century skills,

including problem solving, communication, collabor-

ation, and critical thinking.

Design-based learning (DBL) is another instructional

approach commonly used in engineering and technology

fields. Gómez Puente et al. (2013) conducted a sampled

review and concluded that DBL projects consist of open-

ended, hands-on, authentic, and multidisciplinary design

tasks. Teachers using DBL facilitate both the process for

students to gain domain-specific knowledge and think-

ing activities to generate innovative solutions. Such

features could be adapted for mathematics education, es-

pecially integrated STEM education, in concert with de-

sign and design thinking. In addition to a few examples

discussed above about making sense in mathematics,

there is a growing body of publications developed by

and for mathematics teachers with specific examples of

investigations, design projects, and instructional activ-

ities associated with STEM (Li et al. 2019b).

A framework for helping students to gain important
experiences in and through mathematics, as
connected to other disciplines in STEM
For observing and evaluating classroom instruction in

general and mathematics classroom instruction in

1Interestingly, Lakatos was advised by both Popper and Pólya—his
ideas being in some ways a unification of Pólya’s emphasis on
mathematics as an empirical discipline and Popper’s reflections on the
nature of the scientific endeavor.
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specific, there are several widely used frameworks and

rubrics available. However, a trial use of selected frame-

works with sampled mathematics classroom instruction

episodes suggested their disagreements on what counts

as high-quality instruction, especially with aspects on

disciplinary thinking being valued and relevant class-

room practices (Schoenfeld et al. 2018). The results sug-

gest the importance of choice making, when we consider

a framework in discussing and evaluating teaching

practices.

Our discussion above highlights the importance of

shifting away from viewing mathematics simply as a set

of static knowledge and skills, to focusing on ideas and

thinking development in teaching and learning mathem-

atics. Further discussion of several aspects of changes

specifies the needs of developing and using practices as-

sociated with sense making, making sense, and connect-

ing mathematics and STEM education for changes.

To support effective mathematics instruction, we

propose the use of the Teaching for Robust Understand-

ing (TRU) framework to help characterize powerful

learning environments. With the conception of mathem-

atics as “empirical” and a focus on students’ experience,

then the focus of instruction should also be changed.

We argue that shift is from instruction conceived as

“what should the teacher do” to instruction conceived as

“what mathematical experiences should students have in

order for them to develop into powerful thinkers?” It is

the shift in the frame of TRU that makes it so powerful

and pertinent for all these proposed changes. Moreover,

TRU only uses a small number of actionable dimensions

after distilling the literature on teaching for robust or

powerful understanding. That makes TRU a practical

mechanism for problematizing instruction.

Figure 1 presents the TRU Math framework that iden-

tifies five key dimensions along which powerful class-

room environments can be characterized: the

mathematics; cognitive demand; equitable access;

agency, ownership, and identity; and formative assess-

ment. These five dimensions were distilled from an ex-

tensive literature review, thus capturing what the

literature considers to be essential. They were tested

against classroom videotapes and data on student per-

formance, and the results indicated that classrooms that

did well on the TRU dimensions produced students who

did correspondingly well on tests of mathematical know-

ledge, thinking, and problem solving (e.g., Schoenfeld

2014, 2019). In brief, the argument regarding the im-

portance of the five dimensions of TRU Math is as fol-

lows. First, the quality of the mathematics discussed

(dimension 1) is critical. What individual students learn

is unlikely to be richer than what they experience in the

classroom. Whether individual students’ understanding

rises to the level of what is discussed/presented in the

classroom depends on other factors, which are captured

in the remaining four dimensions. For example, you

surely have had the experience, at a lecture, of hearing

beautiful content presented, and then not being able to

do any of the assigned problems! The remaining four di-

mensions capture aspects needed to support the devel-

opment of all students with respect to sense making,

making sense, ownership, and feedback loop. Dimension

2: Cognitive Demand. Are students engaged in sense

making and making sense? Are they engaged in “pro-

ductive struggle”? Dimension 3: Equitable Access. Are

all students fully engaged with the central content and

practices of the domain so that every student can profit

from it? Dimension 4: Agency, Ownership, and Identity.

Do all students have opportunities to develop idea

ownership and mathematical agency? Dimension 5:

Formative Assessment. Are students encouraged and

supported to share their thinking with a meaningful

feedback loop for instructional adjustment and

improvement?

The first key point about TRU is that students learn

more in classrooms that are powerful along the five

TRU dimensions. Second, the shift of attention from the

teacher to the environment is fundamentally important.

The key question is not “Is the teacher doing particular

things to support learning?”; instead, it is, “Are students

experiencing instruction so that it is conducive to their

growth as mathematical thinkers and learners?” Third,

the framework is not prescriptive; it respects teacher au-

tonomy. There are many ways to be an excellent teacher.

The question is, Does the learning environment created

by the teacher provide each student rich opportunities

along the five dimensions of the framework? Specifically,

in describing the dimensions of powerful instruction, the

framework serves to problematize instruction. Asking

“how am I doing along each dimension; how can I im-

prove?” can lead to richer instruction without prescrib-

ing or imposing a particular style or particular norms on

teachers.

Extending to STEM education

Now, we suggest the following. If you teach biology,

chemistry, physics, engineering, or any other STEM

field, replace “mathematics” in Fig. 1 with your discip-

line. The first dimension is about rich content and prac-

tices in your field. And the remaining four dimensions

are about necessary aspects of your students’ classroom

engagement with the discipline. Practices associated with

sense making, making sense, and STEM education are

all be reflected in these five dimensions, with central at-

tention on students’ experience in such classroom envi-

ronments. Although the TRU framework was originally

developed for characterizing effective mathematics class-

room environments, it has been carefully framed in a
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way that is applicable to many different disciplines

(Schoenfeld 2014). Our discussion above already speci-

fied why sense making, making sense, and specific in-

structional approaches like PjBL and DBL are shared

across disciplines in STEM education. Thus, the TRU

framework is applicable to other STEM disciplines. The

natural analogue of the TRU framework for any field is

given in Fig. 2.

Both the San Francisco Unified School District and

the Chicago Public Schools adopted the TRU Math

framework and found results within mathematics suffi-

ciently promising that they expanded their efforts to all

subject areas for professional development and instruc-

tion, using the domain-general TRU framework. Work is

still in its early stages. Current efforts might be best

conceptualized as a laboratory for exploration rather than

a promissory note for improvement across all different

disciplines. It will take time to accumulate data to show

effectiveness. For further information about the domain-

general TRU framework and tools for professional devel-

opment are available at the TRU framework website,

https://truframework.org/

Finally, as a framework, TRU is not a set of specific

tools or guidelines, although it can be used to guide their

development. To help lead our discussion to something

more practical, we can use the framework to check and

identify aspects that are typically under-emphasized and

move them to center stage in order to improve class-

room instruction. Specifically, the following is a list of

sample under-emphasized norms and practices that can

be identified (Schoenfeld in press).

(1) Establishing a climate of inquiry, in which

mathematics is experienced as a discipline of

exploration and sense making.

(2) Developing students’ ownership of ideas through

the process of developing, sharing, refining, and

using ideas; concepts and language can come later.

(3) Focusing on big ideas, and not losing the forest for

the trees.

(4) Making student thinking central to classroom

discourse.

(5) Ensuring that classroom discourse is respectful and

inviting.

Fig. 1 The TRU Mathematics Framework: The five dimensions of powerful mathematics classrooms
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Where to start? Begin by problematizing teaching
and the nature of learning environments
Here we start by stipulating that STEM disciplines as

practiced, are living, breathing fields of inquiry. Know-

ledge is important; ideas are important; practices are im-

portant. The list given above applied to all STEM

disciplines, not just mathematics.

The issue, then, is developing teacher capacity to craft

environments that have the properties described imme-

diately above. Here we share some thoughts, and the

topic itself can well be discussed extensively in another

paper. To make changes in teaching, it should start with

assessing and changing teaching practice itself (Hiebert

and Morris 2012). Opening up teachers’ perceptions of

teaching practices should not be done by telling teachers

what to do!—the same rules of learning apply to teachers

as they apply to students. Learning environments for

teachers should offer teachers the same opportunities

for rich engagement, challenge, equitable access, and

ownership as we hope students will experience (Schoen-

feld 2015). Working together with teachers to study and

reflect on their teaching practices in light of the TRU

framework, we can help teachers to find out what their

students are experiencing and why changes are needed.

The framework can also help guide teachers to learn

what changes would be needed, and to try out changes

to learn how their students’ learning may differ. It is this

iterative and concrete process that can hopefully help

shift participating teachers’ perceptions of mathematics.

Many tools for problematizing teaching are available at

the TRU web site (see https://truframework.org/). If

teachers can work together with a focus on selected les-

sons like what teachers often do in China, the process

would help form a school-based learning community

that can contribute to not only participating teachers’

practice change but also their expertise improvement

(Huang et al. 2011; Li and Huang 2013).

Notes
As reported before (Li 2018b), publications in the

International Journal of STEM Education show a mix of

individual-disciplinary and multidisciplinary education

in STEM over the past several years. Although one jour-

nal’s publications are limited in its scope of providing a

Fig. 2 The domain-general version of the TRU framework
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picture about the scholarship development related to

mathematics and STEM education, it can allow us to get

a sense of related development.

If taking a closer look at the journal’s publications over

the past three years from 2016 to 2018, we found that

the number of articles published with a clear focus on

mathematics is relatively small: three (out of 21) in 2016,

six (out of 34) in 2017, and five (out of 56) in 2018. At

the same time, we should point out that these publica-

tions from 2016 to 2018 seem to reflect a trend, over

these three years, of moving toward issues that can go

beyond mathematics itself, as what was noted before (Li

2018b). Specifically, for these three articles published in

2016, they are all about mathematics education at either

elementary school (Ding 2016; Zhao et al. 2016) or uni-

versity levels (Schoenfeld et al. 2016). Out of the six

published in 2017, three are on mathematics education

(Hagman et al. 2017; Keller et al. 2017; Ulrich and Wil-

kins 2017) and the other three on either teacher profes-

sional development (Borko et al. 2017; Jacobs et al.

2017) or connection with engineering (Jehopio and

Wesonga 2017). For the five published in 2018, two are

on mathematics education (Beumann and Wegner 2018;

Wilkins and Norton 2018) and the other three have

close association with other disciplines in STEM (Blot-

nicky et al. 2018; Hayward and Laursen 2018; Nye et al.

2018). This trend likely reflects a growing interest, with

close connection to mathematics, in both mathematics

education community and a broader STEM education

community of developing and sharing multidisciplinary

and interdisciplinary scholarship.
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