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Abstract. Astrophysical objects with negligible resistivity are often threaded by large
scale magnetic fields. The generation of these fields is somewhat mysterious, since a
magnetic field in a perfectly conducting fluid cannot change the flux threading a fluid
element, or the field topology. Classical dynamo theory evades this limit by assuming
that magnetic reconnection is fast, even for vanishing resistivity, and that the large scale
field can be generated by the action of kinetic helicity. Both these claims have been
severely criticized, and the latter appears to conflict with strong theoretical arguments
based on magnetic helicity conservation and a series of numerical simulations. Here
we discuss recent efforts to explain fast magnetic reconnection through the topological
effects of a weak stochastic magnetic field component. We also show how mean-field
dynamo theory can be recast in a form which respects magnetic helicity conservation,
and how this changes our understanding of astrophysical dynamos. Finally, we com-
ment briefly on why an asymmetry between small scale magnetic and velocity fields is
necessary for dynamo action, and how it can arise naturally.

1 Introduction

Magnetic fields have played a curious role in astrophysics, being both common-
place and poorly understood. They are ubiquitous in ionized systems, from the
interiors of stars to the hot interstellar medium. The magnetic energy density
is typically roughly comparable to the turbulent kinetic energy density. In stel-
lar interiors, this means that magnetic fields tend to play a small role. In the
interstellar medium, and in stellar coronae, their role is large, and consequently
a matter of intense debate. In accretion disks the typical magnetic field energy
density is probably an order of magnitude below the ambient gas pressure (e.g.
[39,40,73,14,15]) but they play a critical role in the outward transfer of angular
momentum and the dissipation of orbital energy. Moreover, in optically thin en-
vironments the presence of a strong magnetic field can have a dramatic effect on
the luminosity and spectrum of an object. A clear understanding of the genera-
tion and dynamics of magnetic fields is important to astrophysics in many ways.
Unfortunately, their dynamics has not been well understood, at least judging by
the diversity of opinions found in the literature [20,66,50,80,16]. Consequently,
arguments which cite magnetic fields as a dynamically important element in any
particular object have tended to rely on phenomenology, rather than any sort of
fundamental explanation.

Fortunately, over the last ten years, and especially quite recently, there has
been significant progress in this area. First, although direct observations of high

http://arxiv.org/abs/astro-ph/0205557v1


2 Vishniac, Lazarian & Cho

conductivity magnetic field dynamics are still restricted to the solar wind and
the Sun, improvements in resolution have made it possible to watch magnetic
fields evolve in real time [43], and to measure the power spectrum of magnetohy-
drodynamic (MHD) turbulence in the solar wind directly [57]. Second, numerical
simulations have reached the point where it is possible to simulate simple MHD
systems with ∼ 108 cells over many dynamical times. Third, a better under-
standing has been reached in terms of MHD turbulence theory (for a review see
the chapter by Cho, Lazarian & Vishniac in this volume).

These results encourage us to believe that the many remaining problems
are ripe for further progress. These problems range from the nature of dynamo
processes in stars, accretion disks, and galaxies, to the question of how mag-
netic fields reconnect on dynamical time scales, with apparent disregard for the
constraint due to flux-freezing. To be more precise, in the limit of negligible re-
sistivity, the magnetic field in a fluid medium is frozen, the sense that neither
the magnetic flux threading a fluid element, nor the field topology, can change.
Magnetic reconnection, the exchange of partners between adjacent field lines vi-
olates the second condition, while the generation of a large scale field through
dynamo action apparently violates the first.

Conventional mean field dynamo theory (see [62,65,49] for reviews) allows a
large-scale magnetic field to grow exponentially from a seed field (see [69,51]) at
the expense of small-scale turbulent energy through a process of spiral twisting
and reconnection, illustrated in Fig. 1. This process starts with a set of large
scale parallel field lines pointing in some arbitrary direction. If the underlying
turbulence has a tendency to twist the field lines into spirals with a preferred
handedness (i.e. the velocity field has some net helicity), then reconnection on
two dimensional surfaces between adjacent spirals will produce a new field, at
right angles to the old one, provided that there is a systematic gradient in the
strength of the spirals. The new field component is at right angles to both the
gradient and the old field component. In a differentially rotating system, we can
get a dynamo if the original field direction is in the φ̂ direction, and the dynamo
process produces a radial field component. Differential shearing of Br will then
drive the azimuthal field component, closing the cycle. This is the ‘α − Ω dy-
namo’. In the absence of global shear, we need a second round of dynamo action,
which gives an α2 dynamo. This process can be given a systematic mathematical
treatment by a suitable choice of averaging procedures.

There are two ways in which this picture ignores, rather than solves, the dif-
ficulties imposed by flux-freezing. The more obvious point is that adjacent spiral
field lines are assumed to reconnect quickly. Without this assumption the field
will accumulate small scale tangled knots which will quickly suppress dynamo
action, and the large scale magnetic field will saturate far below equipartition
with the surrounding turbulence. Unfortunately, if reconnection happens at the
rate allowed by the generally accepted Sweet-Parker model [64,78], it is far too
slow. However, there are observations which suggest that this represents more
of a challenge for theorists than a real constraint on the evolution of magnetic
fields. If reconnection is slow, turbulence would cause many magnetic reversals
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Fig. 1. The mean-field dynamo in action. Anisotropic turbulence twists the field lines
into spirals. Reconnection restores the original field lines, but a vertical gradient in the
strength of the spirals generates a net flux out of the page.

per parsec within the interstellar medium. Observations, on the contrary, show
that magnetic field is coherent over the scales of hundreds of parsecs. This fact, as
well as direct observations of large and small scale Solar flares [27], suggest that
the rate of reconnection is many orders of magnitude more rapid than allowed by
the Sweet-Parker model. As this example shows, the importance of reconnection
in astrophysics is not limited to understanding the dynamo process. The process
of reconnection is an integral part of the transfer of magnetic energy to fluid and
particle motion in stellar coronae and in the interstellar medium. More generally,
it is impossible to claim that we understand MHD unless we can predict whether
crossing magnetic flux tubes will reconnect or bounce from one another.

A more subtle difficulty arises from the process by which straight field lines
are twisted into spirals. This is intuitively appealing if we consider field lines
as isolated strings of infinitesimal radius. More realistically, the field occupies a
non-zero volume. Twisting a tube into a spiral shape requires that we either allow
the ends to slip, or allow parts of the tube to twist in the opposite sense. There is
a geometrical constraint which is ignored in the standard picture. This objection
can be given a rigorous mathematical form, the conservation of magnetic helicity,
which we will describe in §3.
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How do numerical simulations of dynamo activity compare to mean-field
dynamo theory? Computer simulations of dynamos can be divided into two
classes. There are simulations in which some local instability (convection, the
Balbus-Hawley instability etc.) is allowed to operate, and there are simulations
in which the turbulence is driven externally, usually in such a way as to guarantee
the presence of a net fluid helicity. The former simulations are often successful
at generating large scale magnetic fields whose energy density is at least as great
as the turbulent energy density (e.g.[14,37,32]). The latter are less successful,
in the sense that the energy density of the large scale magnetic field is often
quite modest (e.g. [60,4]). In particular there are simulations ([19,13]) which
produce dynamos in a computational box, with forced heliacal turbulence. These
dynamos show a steep inverse correlation between the dynamo growth rate and
the conductivity. Naively extrapolating to astrophysical regimes suggests that
magnetic dynamos driven by fluid helicity would take enormous amounts of
time to grow. This conclusion is sharply at odds with evidence for rapid and
efficient stellar dynamos.

Here we discuss recent work on the problems of fast reconnection and mag-
netic helicity conservation in astrophysical dynamos. For reconnection we con-
centrate on a generic reconnection scheme that appeals to magnetic field stochas-
ticity as the critical property that accelerates reconnection ([53], see [54] for a
review). Collisionless plasma effects which may also accelerate magnetic recon-
nection are addressed in the chapter by Bhattacharjee in this volume. We will
typically assume that the evolution of the magnetic field is described by the
simplest form of the induction equation

∂tB = ∇× v ×B+ η∇2B, (1)

although we will make reference to work which includes more realistic treatments
of collisionless plasma effects.

2 Rates of Magnetic Reconnection

A simple dimensionless measure of the importance of resistivity, η, in a con-
ducting fluid is the Lundquist number ≡ VAL/η, where VA ≡ B/(4πρ)1/2 is the
Alfvén velocity and L is a typical scale of the system. When fluid velocities are
of order the Alfvén speed, as is usual in astrophysics, this is a crude estimate
of the ratio of the first and second terms in equation (1). Typically this number
is very large under most astrophysical circumstances, and flux freezing should
be a good approximation. More precisely, the coefficient of magnetic field dif-
fusivity in a fully ionized plasma is η = c2/(4πσ) = 1013T−3/2 cm2 s−1, where
σ = 107T 3/2 s−1 is the plasma conductivity and T is electron temperature. The
characteristic time for field diffusion through a plasma slab of size L is L2/η,
which is large for any “astrophysical” L.

What happens when magnetic field lines intersect? Do they deform each
other and bounce back or they do change their topology? This is the central
question of the theory of magnetic reconnection. In fact, the whole dynamics of
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magnetized fluids and the back-reaction of the magnetic field depends on the
answer.

2.1 The Sweet-Parker Scheme and its Modifications

The literature on magnetic reconnection is rich and vast (see, for example, [68]
and references therein). We start by discussing a robust scheme proposed by
Sweet and Parker [64,78]. In this scheme oppositely directed magnetic fields are
brought into contact over a region of length Lx (see Fig. 2). In general there will
be a shared component, of the same order as the reversed component. However,
this has only a minor effect on our discussion. The gradient in the magnetic field
is confined to the current sheet, a region of vertical size ∆, within which the
magnetic field evolves resistively. The velocity of reconnection, Vr, is the speed
with which magnetic field lines enter the current sheet, and is roughly η ≈ Vr∆.
Arbitrarily high values of Vr can be achieved (transiently) by decreasing ∆.
However, for sustained reconnection there is an additional constraint imposed
by mass conservation. The plasma initially entrained on the magnetic field lines
must escape from the reconnection zone. In the Sweet-Parker scheme this means
a bulk outflow, parallel to the field lines, within the current sheet. Since the mass
enters along a zone of width Lx, and is ejected within a zone of width ∆, this
implies

ρVrecLx = ρ′VA∆ , (2)

where we have assumed that the outflow occurs at the Alfvén velocity. This is
actually an upper limit set by energy conservation. If we ignore the effects of
compressibility ρ = ρ′ and the resulting reconnection velocity allowed by Ohmic
diffusivity and the mass constraint is

Vrec,sweet−parker ≈ VAR
−1/2
L , (3)

where RL is the Lundquist number using the current sheet length. Depending
on the specific astrophysical context, this gives a reconnection speed which lies
somewhere between 10−3 (stars) and 10−10 (the galaxy) times VA.

It is well known that using the Sweet-Parker reconnection rate it is impos-
sible to explain solar flares. For the reasons given in the introduction, it is also
well known that it is impossible to reconcile dynamo theory with observations
without some substantially faster reconnection scheme. Consequently, for forty
years discussions of reconnection speeds have tended to focus on mechanisms that
might give reconnection speeds close to VA, i.e. ‘fast’ reconnection. In general, we
can divide schemes for fast reconnection into those which alter the microscopic
resistivity, broadening the current sheet, and those which change the global ge-
ometry, thereby reducing Lx. Ultimately, a successful scheme should satisfy basic
physical constraints without requiring contrived geometries or boundary condi-
tions. In the near term, we can gain some insight into the likely nature of the
solution by considering that reconnection is not always fast. Magnetic field lines
in the solar corona and chromosphere which could reach a lower energy config-
uration through reconnection do not always immediately do so. Furthermore, a
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Fig. 2. Upper plot: Sweet-Parker scheme of reconnection. Middle plot: illustration of
stochastic reconnection that accounts for field line noise. Lower plot: a close-up of the
contact region. Thick arrows depict outflows of plasma. From [54].

solution which relies entirely on collisionless effects, for example, would imply
that field lines do not reconnect in dense environments, which would leave a
major problem in understanding the nature of stellar dynamos.

Attempts to accelerate Sweet-Parker reconnection are numerous. We start
by considering schemes to broaden the current sheet. Anomalous resistivity is
known to broaden current sheets in laboratory plasmas. It is present in the
reconnection layer when the field gradient is so sharp that the electron drift
velocity is of the order of thermal velocity of ions u = (kT/m)1/2[65]. In other
words, when j > jcr = Neu. If the current sheet has a width δ with a change
in the magnetic field ∆B then 4πj = c∆B/δ. The effective resistivity increases
nonlinearly as j becomes greater than jcr, thereby broadening the current sheet.
We can find an upper limit to this effect by assuming that j never gets very much
larger than jcr, that is δ ≈ c∆B

4πNeu . Expressing δ in terms of the ion cyclotron
radius rc = (muc)/(eBtot), where Btot is the total magnetic field (including any
shared component) we find

δ ≈ rc

(

VA

u

)2
∆B

Btot
, (4)

which agrees with [65] up to the factor ∆B/Btot, which equals 1 in that treat-
ment. Combining (2) and (4) one gets [53]

Vrec,anomalous ≈ VA
rc
Lx

(

VA

u

)2
∆B

Btot
. (5)
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Equation (5) shows that the enhanced reconnection velocity is still much less
than the Alfven velocity if Lx is much greater than the ion Larmor (cyclotron)
radius. In general, “anomalous reconnection” is important when the thickness of
the reconnection layer in the Sweet-Parker reconnection scheme is less than δ.
However, for typical interstellar magnetic fields the Larmor radius rc is ∼ 107 cm
and anomalous effects are negligible.

Tearing modes are a robust instability connected to the appearance of nar-
row current sheets [31]. The resulting turbulence will broaden the reconnection
layer and enhance the reconnection speed. Here we give an estimate of this ef-
fect and show that while it represents a significant enhancement of Sweet-Parker
reconnection of laminar fields, it leaves reconnection slow. One difficulty with
many earlier studies of reconnection in the presence the tearing modes stemmed
from the idealized two dimensional geometry assumed for reconnection. In two
dimensions tearing modes evolve via a stagnating non-linear stage related to the
formation of magnetic islands. This leads to a turbulent reconnection zone [59],
but the current sheet remains narrow and its effects on the overall reconnec-
tion speed are unclear. This nonlinear stagnation stage does not emerge when
realistic three dimensional configurations are considered [53]. In any realistic cir-
cumstances field lines are not exactly antiparallel. Consequently, we expect that
instead of islands one finds nonlinear Alfvén waves in three dimensional recon-
nection layers. The tearing instability proceeds with growth rates determined by
the linear growth phase while the resulting magnetic structures propagate out
of the reconnection region at the Alfvén speed.

The dominant mode will be the longest wavelength mode, whose growth rate
will be

γ ≈
η

∆2

(

VAλ‖

η

)2/5

. (6)

The transverse spreading of the plasma in the reconnection layer will start to
stabilize this mode when its growth rate is comparable to the transverse shear
VA/λ‖ [18]. At this point we have Vrec,local ≈ γ∆ and [53]

Vrec,tearing = VA

(

η

VALx

)3/10

, (7)

which is substantially faster than the Sweet-Parker rate, but still very slow in
any astrophysical context. Note that unlike anomalous effects, tearing modes
do not require any special conditions and therefore should constitute a generic
scheme of reconnection.

Finally, we note that there is a longstanding, but controversial suggestion,
that ions tend to scatter about once per cyclotron period, ‘Bohm diffusion’ [12].
Even if this is correct, the effective diffusivity of magnetic field lines would still be
only ηBohm ∼ VArc. While this would be a large increase over Ohmic resistivity,
it produces fast reconnection, of order VA, only if rc ∼ Lx. It therefore fails as an
explanation for fast reconnection for the same reason that anomalous resistivity
does.
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2.2 X-point Reconnection

The failure to find fast reconnection speeds through current sheet broadening
has stimulated interest in fast reconnection through radically different global
geometries. Petschek [67] conjectured that reconnecting magnetic fields would
tend to form structures whose typical size in all directions is determined by the
resistivity (‘X-point’ reconnection). This results in a reconnection speed of order
VA/ lnRL. However, attempts to produce such structures in numerical simu-
lations of reconnection have been disappointing. Typically the X-point region
collapses towards the Sweet-Parker geometry as the Lundquist number becomes
large [7,8,9,85,58].1 One way to understand this collapse is to consider perturba-
tions of the original X-point geometry. In order to maintain this geometry shocks
are required in the original (Petschek) version of this model. These shocks are,
in turn, supported by the flows driven by fast reconnection, and fade if Lx in-
creases. Naturally, the dynamical range for which the existence of such shocks
is possible depends on the Lundquist number and shrinks when fluid conductiv-
ity increases. The apparent conclusion is that, at least in the collisional regime,
reconnection occurs through narrow current sheets.

One may invoke collisionless plasma effects to stabilize the X-point recon-
nection (for collisionless plasma). For instance, a number of authors [71,70,72]
have reported that in a two fluid treatment of magnetic reconnection, a stand-
ing whistler mode can stabilize an X-point with a scale comparable to the ion
plasma skin depth, c/ωpi ∼ (VA/cs)rL. The resulting reconnection speed is a
large fraction of VA, and apparently independent of Lx, which would suggest
that something like Petschek reconnection emerges in the collisionless regime.
This possibility is discussed at length in the chapter by Bhattacharjee (this vol-
ume). However, these studies have not yet demonstrated the possibility of fast
reconnection for generic field geometries, since they assume that there are no
bulk forces acting to produce a large scale current sheet. Similarly, those studies
do not account for fluid turbulence. Magnetic fields embedded in a turbulent fluid
will give fluctuating boundary conditions for the current sheets. On the other
hand, boundary conditions need to be fine tuned for a Petschek reconnection
scheme [68].

Finally, we note that a number of researchers have claimed that turbulence
may accelerate reconnection (for example, [75], where tearing modes are used
as the source of the turbulence). The general idea is that turbulent motions can
provide an effect transport coefficient∼ 〈v2〉τ [65]. However, a closer examination
of this process has convincingly demonstrated that an unrealistic amount of
energy is required to mix field lines unless they are almost exactly anti-parallel
[66]. In the next section we will discuss a mechanism that, when it works, should
produce reconnection under a broad range of field geometries, without regard to
the particle collision rate.

1 Recent plasma reconnection experiments [86] do not support Petschek scheme either.
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2.3 Stochastic Reconnection

Two idealizations were used in the preceding discussion. First, we considered
reconnection in only two dimensions. Second, we assumed that the magnetized
plasma has laminar field lines. The Sweet-Parker scheme can easily be extended
into three dimensions, in the sense that one can take a cross-section of the
reconnection region such that the shared component of the two magnetic fields is
perpendicular to the cross-section. In terms of the mathematics nothing changes,
but the outflow velocity becomes a fraction of the total VA and the shared
component of the magnetic field will have to be ejected together with the plasma.
This result has motivated researchers to do most of their calculations in 2D,
which has obvious advantages for both analytical and numerical investigations.

However, physics in two and three dimensions are very different. This is true,
for example, in hydrodynamic turbulence, partly because lines of vorticity have
different dynamics when they are free to move around one another. Similarly,
the ability of magnetic field lines to move past one another in three dimensions
dramtically alters the topolical constraints on their dynamics. In [53] we consid-
ered three dimensional reconnection in a turbulent magnetized fluid and showed
that reconnection is fast. This result cannot be obtained by considering two di-
mensional turbulent reconnection (cf. [59]). This point has been the source of
significant confusion. Turbulent reconnection has usually been used to refer to
reconnection driven by the turbulent transport of magnetic flux, as discussed in
the previous subsection. In other words, one looks for a net flux transport term,
operating on microscales, that is proportional to magnetic field gradients and
has a coefficient which is independent of the resistivity. This process was recently
examined, and severely criticized, in [45], under the mistaken impression that
it the critical physical process in stochastic reconnection. Instead, stochastic re-
connection is a geometric effect arising from the appearance of stochastic field
line wandering in three dimensions, which gives rise to a broad outflow from
the current sheet, but has little effect on the current sheet structure. Below we
briefly discuss the idea of stochastic reconnection, while the full treatment of the
problem is given in [53].

MHD turbulence guarantees the presence of a stochastic field component,
although its amplitude and structure clearly depends on the amplitude and the
turbulence driving mechanism. Our model of the field line stochasticity also de-
pends on our ability to model generic MHD turbulence. We consider the case
in which there exists a large scale, well-ordered magnetic field, of the kind that
is normally used as a starting point for discussions of reconnection. This field
may, or may not, be ordered on the largest conceivable scales. However, we will
consider scales smaller than the typical radius of curvature of the magnetic field
lines, or alternatively, scales below the peak in the power spectrum of the mag-
netic field, so that the direction of the unperturbed magnetic field is a reasonably
well defined concept. In addition, we expect that the field has some small scale
‘wandering’ of the field lines. On any given scale the typical angle by which field
lines differ from their neighbors is φ ≪ 1, and this angle persists for a distance



10 Vishniac, Lazarian & Cho

along the field lines λ‖ with a correlation distance λ⊥ across field lines (see
Fig. 2).

The modification of the mass conservation constraint in the presence of a
stochastic magnetic field component is self-evident. Instead of being squeezed
from a layer whose width is determined by Ohmic diffusion, the plasma may
diffuse through a much broader layer, Ly ∼ 〈y2〉1/2 determined by the diffusion
of magnetic field lines. (Here ‘y’ is the axis perpendicular to the mean field
direction. See Fig. 2.) This suggests an upper limit on the reconnection speed of
∼ VA(〈y

2〉1/2/Lx). This will be the actual speed of reconnection if the progress of
reconnection in the current sheet itself does not impose a smaller limit. The value
of 〈y2〉1/2 can be determined once a particular model of turbulence is adopted,
but it is obvious from the very beginning that this value is determined by field
wandering rather than Ohmic diffusion, as in the Sweet-Parker model.

What about limits on the speed of reconnection that arise from considering
the structure of the current sheet? In the presence of a stochastic field compo-
nent, magnetic reconnection dissipates field lines not over their entire length
∼ Lx but only over a scale λ‖ ≪ Lx (see Fig. 2), which is the scale over
which magnetic field line deviates from its original direction by the thickness
of the Ohmic diffusion layer λ−1

⊥ ≈ η/Vrec,local. If the angle φ of field devi-
ation did not depend on the scale, the local reconnection velocity would be
∼ VAφ, independent of resistivity. However, for any realistic model of MHD
turbulence, φ (= λ⊥/λ‖, does depend on scale. Consequently, the local recon-
nection speed Vrec,local is given by the usual Sweet-Parker formula but with
λ‖ instead of Lx, i.e. Vrec,local ≈ VA(VAλ‖/η)

−1/2. Also, it is apparent from
Fig. 2 that ∼ Lx/λ‖ magnetic field lines will undergo reconnection simulta-
neously (compared to a one by one line reconnection process for the Sweet-
Parker scheme). Therefore the overall reconnection rate may be as large as
Vrec,global ≈ VA(Lx/λ‖)(VAλ‖/η)

−1/2. Whether or not this limit is important
depends on the value of λ‖.

The relevant values of λ‖ and 〈y2〉1/2 depend on the magnetic field statistics.
This calculation was performed in [53] using the Goldreich-Sridhar model [33] of
MHD turbulence, the Kraichnan model ([41,48]) and for MHD turbulence with
an arbitrary spectrum (limited only some basic physical constraints and which is
in rough agreement with observations [1,52,74]). In all the cases the upper limit
on Vrec,global was greater than VA, so that the diffusive wandering of field lines
imposed the relevant limit on reconnection speeds. Among these, the Goldreich-
Sridhar model provides the best fit to observations (e.g. [1,74]) and simulations
[22,23]. In this case the reconnection speed was

Vrec,up = VA min

[

(

Lx

l

)
1

2

,

(

l

Lx

)
1

2

]

(

vl
VA

)2

, (8)

where l and vl are the energy injection scale and turbulent velocity at this scale
respectively. We stress that the use of MHD turbulence models here is solely
for the purpose of providing a well-defined model of field line stochasticity. The
dynamics of the turbulent cascade are largely irrelevant and any process which
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leads to small scale field line stochasticity (e.g. footpoint motions for solar field
lines) is a possible cause of fast reconnection.

In [53] we also considered other processes that can impede reconnection and
find that they are less restrictive. For instance, the tangle of reconnection field
lines crossing the current sheet will need to reconnect repeatedly before indi-
vidual flux elements can leave the current sheet behind. The rate at which this
occurs can be estimated by assuming that it constitutes the real bottleneck in
reconnection events, and then analyzing each flux element reconnection as part
of a self-similar system of such events. This turns out to limit reconnection to
speeds less than VA, which is obviously true regardless. As the result equation
(8) is not only an upper limit on the reconnection speed, but is the best estimate
of its value.

Naturally, when turbulence is negligible, i.e. vl → 0, the field line wandering
is limited to the Sweet-Parker current sheet and the Sweet-Parker reconnection
scheme takes over. However, in practice this requires an artificially low level of
turbulence that should not be expected in realistic astrophysical environments.
Moreover, the release of energy due to reconnection, at any speed, will con-
tribute to the turbulent cascade of energy and help drive the reconnection speed
upward. This may be relevant to the slow onset, and rapid acceleration, of the
reconnection process in solar flares.

We stress that the enhanced reconnection efficiency in turbulent fluids is only
present if 3D reconnection is considered. In this case ohmic diffusivity fails to
constrain the reconnection process as many field lines simultaneously enter the
reconnection region. The number of lines that can do this increases with the
decrease of resistivity and this increase overcomes the slow rates of reconnection
of individual field lines. It is impossible to achieve a similar enhancement in 2D
(see [87]) since field lines can not cross each other.

There is a limited analogy one can draw between the enhancement of re-
connection speeds in X-point models and increased rate of reconnection due to
field line stochasticity. In both cases one gets a boost from a reduced parallel
length scale. In the case of X-point models this effect is, usually by design, enor-
mous since Lx → ∆. Stochastic reconnection depends on a relatively modest
enhancement, since Lx → λ‖(∆) ≫ ∆. The bulk of the effect comes from the
simultaneous reconnection of many independent flux elements, and the steady
diffusion of the ejected plasma away from the current sheet. The main problem
with X-point reconnection models, their tendency to collapse to narrow current
sheets, is absent in stochastic reconnection, since in the latter case the current
sheets stay narrow, and the diverging field lines are separated by other field lines,
rather than by unmagnetized plasma.

A more subtle difficulty arises from our prescription for the structure of the
stochastic field near the current sheet. We have assumed that we can apply the
statistically homogeneous prescription for field line perturbations in a turbulent
medium near planes where there is a dramatic change in the structure of the
large scale magnetic field. This is not obvious. It may be that the presence
of a strong shear in the field acts as a kind of internal surface, producing an
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altered, and perhaps greatly reduced, level of stochasticity. This kind of internal
‘shadowing’ does not appear in current simulations, but there has been little
attempt to look for it, and the issue can only be resolved when detailed numerical
simulations of stochastic reconnection are performed. Similarly, one may wonder
if the systematic ejection of plasma along the field lines might modify their
topological connections. In this case it seems more plausible to suppose that this
would lead to an increase in the diffusion rate, rather than a decrease, but again
no simulations of this process are available.

2.4 Reconnection in Partially Ionized Gas

A substantial fraction of the ISM in our galaxy is partially ionized, as well
as photospheres of most stars. This motivates studies of the effect of neutrals
on reconnection and MHD turbulence. The role of ion-neutral collisions is not
trivial. On one hand, neutral particles tend to have a substantially longer mean
free path, so that drag between the neutrals and ions may truncate the turbulent
cascade at a relatively large scale. On the other hand, the ability of neutrals to
diffuse perpendicular to magnetic field lines enhances reconnection rates, at least
in the Sweet-Parker model.

Reconnection in partially ionized gases has been studied by various authors
([63,88,84]) in the context of the Sweet-Parker reconnection model. Our com-
ments here are based on [84] where we studied the diffusion of neutrals away
from the reconnection zone. In general, in a partially ionized gas the reconnection
zone consists of two distinct regions. A broad region, which width is determined
by the ambipolar diffusivity, ηambi ≈ V 2

A/tni where tni is the neutral-ion collision
rate, and a narrow region whose width is determined by the Ohmic diffusivity.
Magnetic reconnection takes place in the narrow region, while the broader region
allows a more efficient ejection of matter.

If the recombination time is short, then ions and neutrals are largely inter-
changeable and the reconnection speed is [84]

Vrec ≈ VA

(

VAtin
Lx

)1/2

. (9)

This is faster than the Sweet-Parker rate, but not fast in the sense of allowing
reconnection speeds close to VA. In practice, even this rate is typically unachiev-
able. Under typical interstellar conditions the reconnection speed is limited by
the recombination rate. That is, the rate at which ions recombine and leave the
resistive region determines the speed of the whole process. Consequently, the am-
bipolar reconnection rates obtained in [84] are insufficient either for fast dynamo
models or for the ejection of magnetic flux prior to star formation. In fact, the
increase in the reconnection speed stems entirely from the compression of ions in
the current sheet, with the consequent enhancement of both recombination2 and

2 In the model [84] it is assumed that the ionization is due to cosmic rays. In the case
of photoionization of the heavy species, e.g. carbon, the recombination and therefore
the reconnection rates are lower.
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ohmic dissipation. This effect is small unless the reconnecting magnetic field lines
are almost exactly anti-parallel. As above, we expect that including the effects
of anomalous resistivity and tearing modes may enhance reconnection speeds
appreciably, but not to the extent of producing fast reconnection.

None of this work included the effects of field line stochasticity, which is
critical for producing fast reconnection in ionized plasmas. We expect that in this
case also the presence of turbulence will lead to substantially higher reconnection
speeds. However, whether or not this produces fast reconnection must depend
on the nature of the turbulent cascade in a partially ionized gas. Recent work,
which is discussed in detail in the chapter by Cho, Lazarian & Vishniac in this
volume, show that the magnetic field in a partially ionized gas has a much
more complex structure than it is usually assumed. In fact, in [25] we reported
a new regime of MHD turbulence which is characterized by the existence of
intermittent magnetic structures below the viscous cutoff scale. The root mean
square perturbed magnetic field strength in these structures does not drop at
smaller scales. However, the curvature scale (and therefore the divergence rate)
for these structures does not decrease significantly as their perpendicular scale
decreases. At sufficiently small scales the ions and neutrals will decouple, and
a turbulent cascade, extending down close to resistive scales but involving only
ions will appear.

The existence of strong magnetic field structures on small scales, and the
reappearance of a strong turbulent cascade at very small scales, should lead to
fast reconnection speeds through stochastic reconnection. However, it remains to
be seen whether or not the intermediate scales, characterized by weak divergence
of field lines, will impose a significant bottleneck on the reconnection plasma
outflow. If it does, then the implication is that interstellar clouds with small
ionized fractions may not allow fast reconnection. This conclusion would not
pose any problems with galactic dynamo, but may be extremely important for
other essential processes, e.g. star formation. This issue is examined further in
[56].

3 The Dynamo Process

3.1 Conventional Theory and its Problems

We start this section by briefly reviewing the standard approach to dynamo
theory, and discussing various objections to it. Some of these objections center
around the speed of reconnection, and can be safely ignored if reconnection is
fast in a turbulent environment. In fact, since stochastic reconnection depends on
small scale structure in the magnetic field, the claim that small scale structure
tends to accumulate energy faster than the large scale field [50] can be seen
as self-limiting. A disproportionate growth in power on small scales will only
continue until the reconnection speed is boosted to large fraction of VA. However,
as we have already mentioned, some objections to dynamo theory are more subtle
and require substantial modification to mean-field dynamo theory.
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The usual approach to the dynamo problem is to take equation (1), set η = 0,
and divide the velocity field into small scale turbulence and some large scale
rotational motion. In order to follow the evolution of the large scale magnetic
field, we write

B ≡ 〈B〉+ b. (10)

The brackets here denote averaging over scales somewhat larger than the turbu-
lent eddy size. In other words, they indicate a smoothing process which averages
out all small scale features. The field 〈B〉 is the ‘mean field’. The dynamo pro-
cess can be written in mathematical terms by approximating the evolution of
the small scale field component, b, as

∂tb ≈ ∇× v×〈B〉, (11)

and substituting the result into the evolution equation for the large scale field,

∂t〈B〉 = ∇×〈v × b〉. (12)

In a turbulent, incompressible and homogeneous plasma this implies

∂t〈B〉 = ∇×(α ·B) +∇·(DT · ∇)〈B〉. (13)

Here α, the kinetic helicity, and DT, the turbulent diffusion tensor, are dyads
given by

αil ≡ ǫijk〈vj∂lvk〉τc, (14)

and
DT,ij ≡ 〈vivj〉τc, (15)

where τc is the eddy correlation time. The component of the electromotive force
along the large scale field direction, 〈B̂〉 · 〈v × b〉, is the piece that can drive an
increase in the large scale magnetic field. (The component perpendicular to 〈B〉
gives an effective large scale field velocity, that is, it affects the transport of the
field rather than its generation.) The trace of α divided by τc is what is usually
referred to as the kinetic helicity, and it is often assumed for convenience that
α is a scalar times the identity matrix. In symmetric turbulence α vanishes, but
DT does not. In fact, since a successful dynamo requires non-vanishing diagonal
components for α, we can see from this expression that a successful dynamo
should require symmetry breaking along all three principal axes.

The appearance of DT in equation (13) would seem to vindicate the use of
turbulent diffusion in astrophysical MHD. There are two reasons why this is not
quite right. First, fast reconnection is implicit in this kind of averaging argu-
ment. Rather than appealing to turbulent diffusion as an explanation for fast
reconnection, we are actually using our understanding of fast reconnection to
explain diffusion. The second point is less formal and more important. Equation
(13) is not a realistic description of the evolution of 〈B〉. As noted in §1, twist-
ing magnetic field lines into spirals is not easily accomplished, and numerical
simulations do not support the use of equation (13).
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3.2 Magnetic Helicity Conservation Constraint

The fundamental problem is that there is an important mathematical constraint
that follows from equation (1), which is not respected by equation (13). The
magnetic helicity, defined as H ≡ A ·B evolves according to

∂tH = −∇· [A×(v ×B+∇Φ)]− ηB · ∇ ×B, (16)

where Φ is an arbitrary function of space and time. For the Coulomb gauge,
which turns out to be a convenient choice, we require

∇2Φ = ∇·(v ×B). (17)

In the limit of vanishing resistivity, this not only implies that the volume inte-
grated magnetic helicity vanishes, it also implies that the magnetic helicity of
any individual flux tube is separately conserved [79].

For a non-zero, but very small, η, we can transfer magnetic helicity from one
flux tube to another. However, since H is of order LB2, where L is a charac-
teristic scale of the field, it takes less energy to hold magnetic helicity on large
scales than on eddy scales, and a divergent amount on infinitesimal scales. Con-
sequently, in the limit of vanishing resistivity the resistive term in equation (16)
does not affect the global conservation of helicity, even in the presence of fast
reconnection, as long as reconnection only occurs in an infinitesimal fraction
of the plasma volume. On the other hand, the conservation of magnetic helic-
ity for individual flux tubes is completely lost. The implication is that global
magnetic helicity conservation is a good approximation for laboratory plasmas,
a point that was originally stressed by Taylor [79], and an even better one for
astrophysical systems.

How does this affect dynamo theory? The large scale distribution of magnetic
helicity can be divided into a piece carried by large scale magnetic structures
and a piece carried by small scale structures, or

〈H〉 = 〈A〉 · 〈B〉+ 〈a · b〉. (18)

Henceforth we will use h ≡ 〈a ·b〉. The evolution of the first piece, in a perfectly
conducting fluid, is

∂t(〈A〉 · 〈B〉) = 2〈B〉 · 〈v × b〉 − ∇· [〈A〉×(〈v × b〉+∇〈Φ〉)] . (19)

The second term on the right hand side is the magnetic helicity transport driven
by mean-field terms. The first represents the exchange of magnetic helicity be-
tween large and small scales. This term is proportional to the component of the
electromotive force which drives the dynamo process. In other words, the gen-
eration of a large scale magnetic field is a direct consequence of the transfer of
magnetic helicity between large and small scales.

The point that MHD turbulence transfers magnetic helicity to the largest
available scales, even if that scale is much larger than any eddy scale, is well
known [30,76,77]. We can estimate the rate at which h is transferred to large
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scale magnetic field structures by considering its role in biasing the value of the
electromotive force [83]. The inverse cascade rate is

τ−1

cascade ∼
V 2

A

〈v2〉
τ−1

c . (20)

For a large scale magnetic field in equipartition with the turbulent cascade this
implies that magnetic helicity is transferred to the large scale field in one eddy
turn over time. This suggests that unless the large scale field is very weak it is
reasonable to take

H ≈ 〈A〉 · 〈B〉. (21)

Then combining equations (19) and (21) we see that

2〈B〉·〈v × b〉 = −∇· [〈a×(v ×B+∇φ)〉] ≡ −∇ · JH , (22)

where JH is defined as the magnetic helicity current carried by small scale struc-
tures, or the anomalous magnetic helicity current. That is, the component of the
electromotive force parallel to the large scale magnetic field is given by the di-
vergence of the magnetic helicity current carried by eddy scale structures. If
JH ≈ 0, then it follows from equation (22) that mean-field dynamos are im-
possible. This argument was advanced by Gruzinov and Diamond [34,35] who
pointed out that magnetic helicity conservation combined with the assumption
of stationary statistics for small scale structure implied almost complete sup-
pression of the kinematic dynamo. We note also that the form of the parallel
component of the electromotive force given in equation (22) has been suggested
before [6], although the interpretation that the relevant current is a magnetic
helicity current appeared somewhat later [42,46]. Here we will follow the treat-
ment in [83], where the magnetic helicity current was derived for the first time
for homogeneous turbulence.

Equations (12) and (22) yield

∂t〈B〉 = ∇×

[

−〈B〉

2〈B〉2
∇ · JH + 〈v × b〉⊥

]

, (23)

where the second term on the right hand side is the component of the electro-
motive force perpendicular to the large scale field direction. Evaluating JH is
necessary to understand the dynamo process. By contrast, attempts to estimate
the kinetic helicity only tell us about the dynamo process when the large scale
magnetic field is so weak that the transfer of magnetic helicity between scales
is unaffected by the extremely limited capacity of the turbulent eddies to store
magnetic helicity.

The most direct way to estimate the anomalous magnetic helicity current is
to write a in terms of the action of the turbulent velocity field on the large scale
magnetic field, or

a ≈ (v ×B−∇φ)τc, (24)

where
∇2φ = ∇·(v ×B). (25)
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If we substitute this into the definition of the magnetic helicity current we find,
after some manipulation, that

JH = −τc

∫

d3r

4πr
ǫlmn〈Bk〉〈Bl〉〈∂k∂m〈vi(x)vn(x+ r)〉. (26)

We see that JH is parity-invariant, unlike α. In completely isotropic turbulence
it will also vanish, but the degree of symmetry breaking necessary for a dynamo
effect is smaller than in the conventional picture. There will also be contributions
to JH driven by the effects of background structure, but for strongly rotating
systems these will be smaller than the expression given here.

Equation (26) is not a particularly enlightening expression, but we can gain
somewhat more insight by rewriting it as

JH ≈ −λ2

cτc〈〈B〉·ω(〈B〉·∇)v〉, (27)

where λc is some suitably averaged eddy size and ω ≡ ∇× v is the fluid vorticity.
This corresponds to twisting a field line in both directions, but then systemati-
cally moving right and left handed spiral segments in opposite directions.

In this model, we generate left (or right) handed spirals by separating seg-
ments of the same field line with different helicities, moving them in opposite
directions, and then reconnecting them (along two dimensional) surfaces, into
new field lines. If the flow of magnetic helicity has a non-zero divergence, then
the new field lines will have a preferred sense of twisting, and the first step in the
usual scheme for the dynamo process will have been completed without violating
magnetic helicity conservation. We illustrate this modified version of mean-field
dynamo action in Fig. 3.

In some sense equation (22) gives the minimal change in dynamo theory
which respects conservation of magnetic helicity, since it leaves leaving Emf⊥

unchanged. That is, we assume that the backreaction from small scales affects
only the component of the electromotive force along the direction of the large
scale mean field. While this may seem unduly optimistic, we note that in the
absence of any other large scale vector quantity, symmetry considerations alone
should be sufficient grounds for this assumption. However, we are often concerned
with circumstances where other large scale vectors are present, for example sys-
tems with differential rotation. In this case we are not guaranteed that 〈v × b〉⊥
is unaffected by the inverse cascade. Obviously this is an important direction for
future work.

There is another way in which equation (26) may fail to give the full magnetic
helicity current. Equation (24) takes into account the perturbations in the large
scale magnetic field driven by small scale velocties. However, fluctuations in the
magnetic field also drive the velocity field. In conventional mean-field dynamo
theory these considerations lead to replacing equation (14) with

αil ≡ ǫijk

[

〈vj∂lvk〉 −
〈bj∂lbk
4πρ

〉

]

τc. (28)
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Fig. 3. A new version of the mean-field dynamo. Turbulence twists the field lines into
spirals, with each field line accumulating regions of right and left handed twisting.
The turbulence is biased so that left-handed segments move down and right-handed
segments move up. Reconnection, and a gradient in the strength of the spirals gives
us new field lines with a net left-handed twist. The last step involves averaging over
each field line, which is trivial but not part of the original picture, and reconnection to
produce a new orthogonal field component.

In our case equation (26) can be replaced by a symmetrized version, that is

JH = −τc

∫

d3r

4πr
ǫlmn〈Bk〉〈Bl〈∂k∂m

[

〈vi(x)vn(x+ r)−
bi(x)bn(x+ r)

4πρ
〉

]

.

(29)



Astrophysical Dynamos 19

This form fails to take into account the effects of shear from a large scale velocity
field (like differential rotation). Given perfect symmetry between the dynamics of
the velocity and magnetic fields, this term will be zero, regardless of any spatial
symmetry-breaking effects. MHD turbulence tends to evolve towards this kind
of symmetry. However, on the scale of the largest energy containing eddies, in
realistic systems, we expect that differential shear, background gradients, and
specific dynamical instabilities may all play a role, and all these effects will not
respect the symmetry between magnetic and velocity fields. An example of an
instability which will necessarily produce such an asymmetry is the magneto-
rotational (or Balbus-Hawley) instability in accretion disks [81,21,2], which is
discussed below.

Here we summarize some of the more important conclusions from these ar-
guments.

1. The fluid helicity is largely irrelevant to flux generation, except when the
field amplitude is very small, although it does affect flux transport.

2. This prescription eliminates turbulent dissipation for currents aligned with
the large scale magnetic field, but continues to damp other current compo-
nents. This is not a qualitative change in the role of turbulent damping for
most field configurations, but does imply that force-free large scale fields are
protected against turbulent dissipation.

3. The anomalous magnetic helicity current, jH , depends on 〈([B·∇]v)(B·[∇×
v])〉, which has no particular relationship to the fluid helicity and is parity
invariant. Rather than violating spatial symmetry along all three principal
axes, a successful dynamo can result from a situation where only two out of
three directions have broken symmetries. An example of this is differential
rotation in a vertically uniform cylinder.

4. The ‘α−Ω’ dynamo has an analog in this new theory, which gives a similar
growth rate, but which does not depend on any background vertical struc-
ture. (The analogous effect is provided by vertical gradients in 〈B〉.) In an
accretion disk, the success of the dynamo is tied to the outward transport
of angular momentum [83].

5. The analog of the ‘α2’ dynamo of conventional theory has the difficulty
that the turbulent dissipation term is of the same order as the driving term
resulting from magnetic helicity transport. This does not imply that this
kind of dynamo is impossible, but configurations with force-free, or nearly
force-free, fields are strongly favored.

6. The analog of the ‘α − Ω dynamo has a strong vertical magnetic helicity
current, which has the same sign as −∂rΩ(r), i.e. towards ẑ for an accretion
disk and −ẑ for a star like the Sun. This implies the necessity for magnetic
helicity ejection at the system boundaries. While the energy budget for this
is small compared to the energy budget of the dynamo in an accretion disk,
it represents an unsolved aspect of the dynamo physics.

We note that the ejection of magnetic helicity from rotating systems as a nec-
essary part of the dynamo process has been suggested by other authors [10,11],
although the terms of the discussion were somewhat different. In particular, they
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were concerned with removing the magnetic helicity constraint by removing the
magnetic helicity. Although realistic systems can work this way, there is no fun-
damental reason why the magnetic helicity can’t circulate within a closed system
and produce a dynamo effect by being carried by large scale fields in one part
of the system and eddy scale fields in another.

4 Applying and Testing the Theory

Both reconnection and the dynamo are the subject of intensive experimental re-
search. Magnetic reconnection is being studied on several dedicated experiments
around the world (MRX, TS3/4, SSX, VTF). In each experiment, magnetized
loops are generated and merged. At present, the physical scales of such exper-
iments are 0.1 to 1 m and the Lundquist number is about 1000. Sophisticated
diagnostics are used to get plasma and magnetic field parameters in these exper-
iments. This enables testing theoretical predictions. The direct relation between
those experiments and astrophysics is complicated by the fact that some of the
effects that are important in laboratory, e.g. anomalous resistivity, may not be
important in conditions of astrophysical plasma, e.g. interstellar gas.

Dynamo experiments, e.g. using liquid sodium, are mostly focused on the re-
production of the dynamo effect for the low Lundquist numbers. In this regime,
neither reconnection nor magnetic helicity are expected to provide strong con-
straints on the evolution of the experiments.

On the other hand, numerical simulations are a valuable source of infor-
mation for mean-field dynamo theory. We have already discussed their role in
undermining the conventional approach to this topic. It is also important to note
that there are a large number of simulations which seem to show the operation
of a successful dynamo, in the sense that they demonstrate the growth of a mag-
netic field with a significant component at large spatial scales. These are the
simulations of magnetized, ionized accretion disks (e.g. [36,39,40,73,14,15] see
also [3,38] for a review) which are subject to the magneto-rotational instability.
These simulations include extremely simplified physics and cover a limited set of
spatial scales and geometries. Nevertheless, they agree in a number of important
aspects, namely:

1. Any magnetic seed field undergoes substantial amplification to a final state
which is (apparently) independent of initial conditions. In this state the mag-
netic field pressure is a few percent of the gas pressure and the dimensionless
‘viscosity’, αSS is about half of this ratio. A large fraction of the magnetic
energy is contained in a large scale field with a domain size which is a large
fraction of the simulation box size. This large scale field is not static, but
varies on time scales of tens of shearing times, a feature which seen in all of
the simulations cited above.

2. The growth in field strength is rapid, i.e. a significant fraction of the shear
rate, even when the field is weak. The growth is several times slower for an
initially azimuthal field, where the amplification depends on dynamo action,
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as for an initially vertical field, where the amplification can simply reflect
the linear growth of the instability, which generates azimuthal field, but the
point remains true in either case.

3. The magnetic field pressure in the saturated state is not a constant fraction
of the ambient pressure, but varies from a small fraction at the midplane (for
models with vertical structure) to a value comparable to the gas pressure a
few scale heights away from the midplane. This effect is particularly dramatic
in the recent simulations of Miller and Stone [61]. This distribution does not
seem to be due to magnetic buoyancy [73], that is, the fields are mostly
generated locally. The time averaged magnetic stress (〈BrBθ〉) is somewhat
more uniform.

4. The dynamo persists when vertical gravity is turned off, although the simu-
lations are slightly different in this case [37,39].

A possible interpretation of these results is that the simulations are showing
a chaotic dynamo [5,44], in which turbulent stretching of embedded magnetic
field lines results in a runaway amplification of the magnetic field. One problem
with this is that the accretion disk simulations are unique in generating sub-
stantial magnetic field energy on scales much larger than the typical eddy size.
Simulations of MHD turbulence in a box typically produce magnetic field struc-
ture whose energy spectrum peaks on scales slightly smaller than a typical eddy
scale and with a total energy density which is a (large) fraction of the kinetic en-
ergy density. At longer wavelengths the magnetic energy density falls, although
slowly. Another point is that the vertical distribution of magnetic energy is not
simply a reflection of local conditions, but seems to show some sort of global field
evolution. The obvious conclusion is that some sort of large scale dynamo effect
is being produced in the simulations, as a consequence of the Balbus-Hawley
instability. Since there has been no attempt to look specifically at the flow of
magnetic helicity, it is difficult to know whether to ascribe the dynamo effect to
a locally produced fluid helicity (in which case the dynamo should slow down as
the resolution is increased) or to a turbulently driven magnetic helicity current.
The dynamo growth rate does not appear to slow down in the higher resolution
studies, but this has not been examined critically. Further study of these simu-
lations should allow testing of the notion that the turbulently driven magnetic
helicity current is playing a critical role in these simulations.

There is one indirect test which has already been performed. Equation (27)
can be used to show, via integration by parts, that the sign of the magnetic
helicity current depends on the direction of angular momentum transport. Re-
versing the sign of the magnetic helicity current has the effect of turning off the
dynamo. One simple numerical experiment is to conduct a simulation in which
the angular momentum current flows in the opposite direction. This has been
done [40] by turning off the centrifugal force term, so that the turbulence is
driven only by a kind of magnetized Kelvin-Helmholtz instability. The dynamo
effect was suppressed and the magnetic field decayed away, after an initial burst
of growth. This simulation had a limited dynamic range, so that all the eddies
were dominated by the local shear. Consequently, the elimination of the dynamo
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effect led to a complete suppression of the magnetic field through azimuthal
stretching and radial mixing.

There has been a recent attempt to combine shear with an asymmetrically
driven turbulence [17] to produce a non-heliacal dynamo. The results were dis-
appointing. The expected correlation between the magnetic helicity flux and the
velocity correlation seen in equation (27) was found, but the magnetic helicity
flux was largely divergenceless and there was no clear correlation between the
its small divergence and the electromotive force. This may have been due to the
boundary conditions, which forced a return loop of magnetic flux within the box.
Clearly further numerical experiments would be useful.

Assuming that we can understand the conceptual basis of accretion disk
dynamos, it should be possible to construct a useful mean-field theory that
incorporates transport effects and allows us to predict the dynamics of accretion
disk fields. This model will need to incorporate the effects of fluctuations in
the electromotive force [82]. In the conventional mean-field dynamo theory such
fluctuations have been shown to be capable of driving a mean-field dynamo in
the absence of any average helicity. Their role in the modified version of mean-
field dynamo theory is not yet understood. Such a model would be useful for
building models of disks that incorporate both realistic local physics and MHD
turbulence. A similar effort should be made for stellar dynamos, although there
has been, as yet, no progress in this direction. There has been work on the
galactic dynamo [47] which incorporates the notion of magnetic helicity current,
including the term given in equation (26).

Much less progress has been made in numerical simulations of stochastic re-
connection. This is particularly unfortunate since magnetic reconnection is one
of the most fundamental properties of the magnetic field dynamics in the con-
ducting fluid, and its applications are not limited to its consequences for astro-
physical dynamos. In fact, reconnection is likely to be extremely important for
the dynamics of the advection dominated flows, star formation, propagation (see
[26]) and acceleration (see [28,29]) of cosmic rays, dynamics of charged dust [55].
Direct study of the reconnection layer is difficult as both very small scales (tur-
bulent microscales comparable to the current sheet thickness) and large scales
(the contact region scale) are present in the problem. The requirement that we
evolve structures at all scales over the whole broad reconnection region sup-
press any hope that adaptive mesh codes would be very helpful. Nevertheless,
simple diagnostics may be used to distinguish fast stochastic reconnection from
the Sweet-Parker model. For instance, using MHD simulations we can measure
currents J , magnetic fields B and velocities v. If we divide 〈J2[(B · ∇)B · v]2〉
by 〈J2(∇ × B)2〉 then we have a measure of the rms magnetic field across a
typical current sheet times the speed with which it is expelled. An approximate
measure of reconnection speed can then be obtained by dividing the result by
〈(J×B)2〉/〈J2〉 and taking the square root. Although reconnection rates for low
Lundquist numbers are not so different for the Sweet-Parker and stochastic re-
connection models, the scaling of the reconnection rates with the Alfven velocity
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are very different. This gives some hope that the stochastic reconnection model
can be tested before long.

5 Discussion and Summary

It is not possible to understand the astrophysical dynamo and dynamics of mag-
netized astrophysical plasmas without understanding how magnetic fields evade
the topological constraints imposed by flux-freezing. This obviously includes the
problem of reconnection, but also the more subtle difficulty posed by magnetic
helicity conservation. Here we have compared traditional approaches to the prob-
lem of magnetic reconnection and the mean-field dynamo with new approaches
based on an explicit recognition of the role geometry plays in both these prob-
lems. In fact, one of the more striking aspects of stochastic reconnection model
[53]is that the global reconnection speed is relatively insensitive to the actual
physics of reconnection. Equation (8) only depends on the nature of the turbu-
lent cascade. In the end, reconnection can be fast because if we consider any
particular flux element inside the contact volume, assumed to be of order L3

x,
the fraction of the flux element that actually undergoes microscopic reconnection
vanishes as the resistivity goes to zero. This is turn implies that reconnection is
not tightly coupled to electron heating. More generally, the results presented here
suggest that, in most cases, microphysics is irrelevant to the dynamo process.

Although objections to conventional dynamo theory tend to conflate the
issues of reconnection and magnetic helicity conservation, these are, in fact, two
separate problems, for which we have proposed two separate resolutions. Taken
together, they imply that astrophysical dynamos are capable of operating in a
broad range of circumstances. However, it is important to remember that they
stand separately. Conventional dynamo theory is not rescued by assuming rapid
reconnection, although it requires it. Conversely, the use of equations (22) and
(26) to describe dynamo activity do not require stochastic reconnection, but only
that some model of fast reconnection work.

Our main conclusions are as follows:

• The rate of magnetic reconnection is increased dramatically in the presence
of a stochastic component to the magnetic field. Even when the turbulent
cascade is weak the resulting reconnection speed is independent of the Ohmic
resistivity. However, it is extremely sensitive to the level of noise. This may
explain the variable rates of magnetic reconnection seen in the solar corona.
It also implies that laminar flow patterns that drive a magnetic helicity
current may still require some level of local turbulence in order to drive a
large scale dynamo.

• The argument that the rapid rise of random magnetic field associated with
dynamo action results in the suppression of dynamo [50] is untenable since
the increase of the random component of the magnetic field increases the
reconnection rate. We conclude that dynamo is a self-regulating process.

• Conventional mean-field dynamo theory, which does not account for the con-
servation of magnetic helicity is ill-founded. The suggested modification of
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the mean-field dynamo equations allow us to account for results of numerical
sumulations and make the theory, for the first time ever, self-consistent.
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