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1. INTRODUCTION

Recently [7,8,10] an attempt is made successfully to combine the two
basic techniques namely, Lyapunov-Schmidt method and the method of uppet
and lower solutions, to investigate the existence of periodic solutions of
differential equations. When we wish to extend such results for systems
of differential equations there are two posaibilities to follow. One is
to generalize the method of upper and lower soclutions using a suitable cone,
and the other i to utilize the concept of Lyapunov-like functions and the
theory of differential inequalities. In the paper, we shall discuss the ex-
istence of problems at resonance for first and second order differential
systems by the second approach developing necessary theory of differential

inequalities for problems at resonance.

2, AN ABSTRACT EXISTENCE RESULT

Let E be a real Hilbert Space. Consider the nonlinear operator equation
(2.1) Lu = Nu

where L: D(L) CE~——> E is a linear operator and N: D(N) CE-—> E &
nonlinear operator with D(L) N D(N) # P. Let EO = N(L) be such that

dim EO <o gnd E = Eb é?El. Furthermore, we assume that E1 is also the

range of L. Suppose that P: E ——> Eg is the idempotent projection opera-~

tor and H! El-—*-> E1

known [3] that the problem (2.1) is equivalent to the coupled system of opera-

the compact inverse of L on El' Then it is well

tor equations

(2.2) Uy = H(I-P)N(u0+u1)



(2.3) 0= PN(uo+u1)

Concerning the problem (2.1), we have the following result [4].

Theorem 2.1: Suppose that
(1) fNulb < JO for all u € D(N)

(11) There exists r,., R > 0 such that

o' o

(N(ugtu,)suy) 2 0 (or < 0) whenever hut = Ry

0

ﬂ u L € e .
and uy Ty where U, EO and uy El

Then the problem (2.1) admits at least one solution.

3. COMPARISON PRINCIPLES

Given g € C[[O,Zv‘r] xm,m] and v € C[[O,Zn], IR‘] , we say that

—

the function &(t,u) 1s a modified function relative to v, if

(3.1) B(t,0) = glt,p(t,u)) + RLEaI8
1+u

1f g&€C [[0,2‘"} *x R x R, m] we define

(3.2) g(t,u,u') = glt,p(t,u),u') + 9_:1)_(95_‘1)_
14u

This function will be called the modification of g(t,u,u') relative
to v. Here, in (3.1) and (3.2), p(t,u) = max{v{t),ul.

_Let us consider the periodic boundary value problem (PBVP for short).
(3.3) u' = g(t,u) u(Q) = u(2r).

We have the following comparison results:




Theorem 3.1, Let g€ C[EO,Z#} X ﬁi,n{] and assume that

(43 D m(t) = iim sup QSEiB%:ESEL_g g(t,m(t)) for all t € (0,27}, where
h..;c"’ .

G C{EO,Eﬁj, ﬁ{E and m{U) < m{2n)

{11} There exists B € C{EO,Zv},H{} such that

pTB(t) > g(t,B(t)) for all t € (0,21] and B(0) 2 B(2m)

{111) g 1is strictly decreasing in u for each t € [0,27].

Then m({t) < B{t) on [0,2n].

Proof. Suppose that m{t) < B{t) omn {0,21] 1is not true. Then there exists

a t, € {0,751 and an € > 0 such that

{3.4) m{ky) = Bty + ¢ and m(t) < B(t) + ¢, t € [0,2n].
If tg € {0,2r], we have D_m(tg) 3_D-B(to). Hence,

s 3 LAY - -
g\iggmtto;; > B m(to) > D B(to) > g(tO,B(tO)}

and because of (1ii) we see that B(ty) 3ﬁm(t0) which is a contradiction to
£3.4).
83 tG
3(2u-h} + & - B(0Y ~ ¢ < B(2n-h) - g(2m), which implies b m(2n) 3_D-S(ZW).

« 0, we have for small h > 0, m(2n-h) - m(2m) < m(2n-h) - m(0) <

¢ then follows that £{(7r) > m{2n), and we obtain B(0) > B(2w) > m{2n) > m(0)
ioh agedn is a contradiction. Thus, we have established that m(t) < 8(t)

Theorem 3.7. Let g€ C{EU,Zw} x na,n{] and suppose that (1) of Theorem 3.1

holds. Also assume:




(a) m(0) = m(27w)
(b) The PBVP (3.3) has a maximal golution r(t)

(¢) For every lower solution of (3.3) v, the modified PBVP
(3.5) u' = g{t,u) u(0) = u(2%)

where § 18 defined by (3.1), has a solution u(t). Then m(t) < r(t) on

{0,2n].

Proof. »Let g the modified function relative to m{t) and let u(t) be
a solution of the modified PBVP (3.5) guaranteed by (¢). We shall first show
that m(t) < u(t) on {0,271, If this 1s false, then there exists a smaller .

¢ > 0 such that
m(t) < u(t) + e, t€ fo,2x]

and at least one t, € {0,2n] satisfying

m(to) - u(to) + €,
1f to € (0,2n], we have m(to) > u(to) and D_m(to) Z.“'(t0)° On the other

hand, we have in view of the definition of § and p(t,u)
p(to.u(to))-u(tu)‘:

0 < pm(ty) - u'(ty) < gt ,mtg)) = glty,pltg,ultg))) =
0 0 0o o' oo 1+02(t0)

u(t0)~m(t0)
.Y _ ¢ which i8 a contradiction.

2
1+u (to)

If ty = 0, we obtain D m(2r) > u'(2m), and from (a), we get p(2m,u(2m)) =

max(m(2m) ,u(2n)) = max(m(0}, u(0)) = m(0), and then



0 < D m(2m) - u'(27) < g(2m,m(2m)) - g(2m,p(27m,u(2m)) - R(27,u(2m)) ~u(2n) g“ ~u(Zn)
T4u™(27)

..2&91%%&91<:0 which again is a contradiction.
14u” (0)

Thus we have established that m(t) =< u{t) on {0,2n] and so u(t) is
actually a solution of the PBVP (3.3). It, therefore, follows from the defi-
nition of maximal solutions that m(t) < t(t) on {0,271, and this proves the
theorem.

In the sequel of this paragraph we shall consider the boundary value

problem (BVP for short).
(3.6) ut = g(t,u,u') u'(0) = u'(2n) = 0

where g € C[{G,h] x R *x W, m].

We then have the following comparison result for the BVP (3.6) which is

analogous to the Theorem 3.2.

Theorem 3.3. Assume that

(a) mE€ CZ[EO,ZW},H{l and w'(t) 3_g(t,m(t),m'(t)) for all t € [0,27]
(b) m'(0) 3;0 > m'(2m)

(¢) The BVP (3.6) has a maximal solution r(t)

(d) For every lower solution v, the modified BVP
(3.7 ut = 3(t,u,u") u'(0) = u'(21) = O

where g(t,u,u') is defined by (3.2), has a solution wu(t).

Then m(t) < t(t) on [0,27].

Proof. Let us consider the modified BVP (3.7) relative to m(t) and let u(t)



be a solution which exists by (d). If m(t) < u(t) is not true, there exists

a t, € [0,2r] and € > 0 wsuch that m(t,) = u(t0)+e and m(t) < u(t) + ¢

0
for all t € [0,2n].

If t. € (0,21), we get m'(tO) -u'(tﬂ) and p(to,u(tg)) -m(to) and

0
we have
m(to)—-u(to)
m"(to) - u"(to) - e s 0 which is a contradiction.
14u (to)

1f t. =0, we have m'(0) < u'(0) and from (b) it follows that m'(0) = u'(0) = 0.

0
Hence we obtain as before m'(0) ~ u'(0) > 0 which again is a contradiction. A

similar contradiction holds at tO e 21, Thus, we have established that
m(t) < u(t) on [0,2n] and we then have m(t) < r(t) on {0,2n], and this
proves the theorem, |

Using similar reasonings we shall prove the following comparison result.

Theorem 3.4. let g € CEG,ZM x R xR, R and suppose that (a) and (b) of

Theorem 3.3 hold and there exists B8 € CEO.Z%],IR such that
8"(t) < g(t,B(t),B'(t)) for all tE€ [0,2%], and B'(0) <0 < g (2w).

1f, in addition, we have that g{t,u,u') 1is increasing in u for each

(t,u') € 10,271 x R, m(t) < B(t) on {0,2n].

Proof. Suppose that the assertion m(t) < B(t) on {0,2n] 18 false. Then there

ot ittt

exists a ty € [0,2r] and an ¢ > 0 satisfying {(3.4). 1f t() € (0,2nr), we

have m'(te) - B'(to) and
o> m"(to) - B"(to) > g(toym(to) .m'(to)) - 8(t0,3(t0). B'(to))

and from the fact that g 1s increasing in u, we get B(to) 1m(t0) which



is a contradiction to (3.4).
1f to w0, m'(0) < B'(0) and we must have m'(0) = B'(0) =0 and, as before,
we obtain B(0) > m(0) which again is a contradiction. A similar argument

holds at ty = 27. Thus, we have proved that m(t) < B(t) on {0,2n].

4, EXISTENCE FOR THE MODIFIED PROBLEMS

Consider the periodic boundary value problem
(4.1) g' = F(t,u), u(®) = u(2n)

where f € c[{o,zﬂ x R, m“]‘
Let M >0 and & be such that § € C[n{*,n{*}, and 6(8) = 1,
D < 6(8) <1 and 6(8) =0 accordingly as 0 <8 <M, M<sg <M+ 1, and

8> M+ 1, Then define
(4.2) F(t,u) = 8(iul) * £(t,u) for all (t,u) € [0,2n] X "

We shall say that F(t,u)} 18 a modified function of f(t,u) relative to
§,M. Clearly the function F(t,u) 1is continuous and bounded on  [0,27] x ﬁf&

Let us now consider the modified PBVP
(4.3) u' = F(t,u) u(0) = u{2n)

We let E = (LZ{O,Zn})n, Lu = u', DLy = {u€ E: u 18 absolutely continuous,
W' €EE and u(0) = u(2n)} and N be the nonlinear operator generated by F.
Then the PBVP (4.3) is equivalent to the operator equation (2.1). We note that

Eo = N(L) consists of constant functions and hence El, where E = EO‘B El’
is the class of all functions whose average is zero. The projectlion operator
FZﬂ

P can be defined by Pu = f%‘j u(s)ds. 1t is easily seen that the partial
0

inverge operator H also exiats and it is compact,



Because the function F 18 bounded, the hypothesis (1) of Theorem 2.1 is
satisfied.

On the other haﬁd, there exists a Y > 0 such that y(§x03+§x13) 5*!x0 + xll
& EA. I1f we choose RO = (M+1l) » 7_1, we get for all

1 1

with onﬂ = R, and X € E1

whenever %5 € EO’ X

*p € By
fn N 2% »

(N(x0+x1),x0) - E x j Fi(t,x0+x1(t))dt =

n 127!
- 2 xo f 5(Hx0+xl(t)ﬂ) . fi(t,xo+x1(t))dt.

But, ﬂxo + xl(t)ﬂ > y(ﬁx05+§x1(t)ﬁ) > M+ 1, and hence we have
G(Rxoﬂ+lx1(t)ﬂ) « 0, which implies €N(x0+x1),xo> = 0 whenever x, € Eys

ﬂxoﬁ = R0 and Xy & El' Thus, the hypothesis (i1) of the Theorem 2.1 1s also

satisfied.

We have just proved the following result,

Theorem 4,1, The modified boundary value problem (4.3) has at least one solution.

Now, let us consider the boundary value problem
(4.4) u" = f{t,u,u') u'(0) = u'(2nr) = 0

where f € c[{o,m w | ox mY, m“]

+

let 8 € C[R « R+,B{+] such that 6(t,8) <1 for all (t,n) € IR+ x}R+ and

{1 if t <M and 8 <M

8(t,s) = 1 2
0 if t_?j’M]*t-l or 31M2+1

where Ml and MZ are positive numbevs.

We define the modified function F by



w

(4.5) F(t,u,u') = sClul,futl) » £(t,u,u")
and consider the modified problem
(4.6) ' = F(t,u,u’) u'(0) = u'(27) =0

Clearly F 1is continuous and bounded on [0,27] x nf‘xtm?. We let
E = (LZ{O,ZW])ﬁ, Lu = u", D(LY = {u € E: u,u' are absolutely continuous,
W' € E and u'(0) = u'(2%) = 0} end N be the Nemytskil operator generated

by F. Using similar arguments &8 before one gets

' -1
(N(u0+ul),u0> = 0 whenever U, € EO? ﬁugﬁ - RO " (Mi+1) ¢y

€ .
and uy El
Thus, the assumptions required in Theorem 2.1 are satisfied and we have

established the following existence result.
Theorem 4,2. The modified boundary value problem (4.6) bas at least one solution.

5. EXISTENCE

Now, we shall prove the existence of salutioﬁ of the PBVP (4.,1) and of the

BVP (4.4).

Relative to the PBVP (4.1), let ue list the following assumptions for

convenience.

+
(5.1) There exists V € C[[O;Z'xr} x mn,za*j and g € C{{O,h] b m ,R] such that

v(€+hitlfﬁf(t,ﬂ))“vitlgl < g(t;V(t !u))

e i £
D_Vf(t,u) 1im_ in v

0
and V 1is locally Lipschitzian in u.~

(5.2) The boundary conditions of (4.1) imﬁly vo,u(0)) < v(2m,u(21))



10

(5.3) D_ka(t,u)_i g(t,v(t,u)) for all X such that 0 <A <1
(5.4) V(t,u) » = as lul » = uniformly in t€ {0,2n]

(5.5) The PBVP (3,3) has a maximal solution r(t), and for every lower solution
v, the modified PBVP (3.5), where § 1s defined by (3.1), has a solution

ult).

(5.6) The function g 1s strictly decreasing in u for each t € [0,27], and
there exists B € C[EO,Zﬁ).n{] such that D B(t) > g(t,B(t)) for all
t € (0,2n], and ~B(O) > B(2w). Also, the boundary conditions of (4.1)
imply V(0,u(0)) = V{(2Zmn,u(2m)). |
Ap an application of Theorem 4.1 and the comparison Theorems 3.1 and 3.2,

we shall prove the following result.

Theorem 5.1. Consider the‘PBVP (4.1) and let (5.1)-(5.4) hold. Then any one

of the conditions (5.5), (5.6) implies that there exists a solution u of (4.1).

froof. Let us conaider the modified PBVP (4.3). By Theorem 4.1, it has a solu-

‘tion ult)., BSetting m(t) = V(t,u(t)), for sufficiently small h < 0, we have
m{t+h) - m(t) = V(t+h,u(t)+hf{t,u(e)) + e(h)) - V(t,u(t))

where e(h)/h -0 as h -+ 0. Since V(t,u) is locally Lipschitzian in u, we

get, ﬁsing (5.1) and (5.3}, the inequality
D m(t) < glt,m(t)).
From (5.5), applying Theorem 3.1, we have

m(ty < r(t) on [0,27]



11

Similarly, using Theorem 3.2, from (5.6) we get
m{t) < B(t) on [0,27],

1n any case, we have & K ; 0 such that O < m(t) <« for all t € [0,2r],
Then, by (5.4), there exists a M > 0 which satisfies u(t) <M on {0,2n1.
this M 18 the constant that is used in the definition of & for the modified
function (4.2). So u(t) is actuallé'& solution of the PBVP (4.1). The proof
is thus complete.

In order to prove an existence result for the BVFP (4.4) we need the fol-

lowing result [11].

Theorem 5.2. Let h(s) be positive nondecreasing continuous function such that

1im E%ET = » and let Ml be a positive number. Then there exists a positive
gy
constant M2 depending only on Ml and h such that 1f u € CZ{EO,Zn},ﬁQ{]
L
is such that Hul j_Ml and tu"l < h(lu'l), then fu' (e)d f-MZ on [0,2n].

Let us now list some assumptions:
‘ +
(5.7 VE CZEO,Z'«] X m“,m*j and g € C[{O,Zﬂ x R ¥ m*,m]

(5.8) For 0 <X <1, Vi > glt, vit,u), V' (t,u))

Af
where ng(t,u) = U(t,u,u') + kvu(t,u}f(t,u,u') and U{t,u,u') = Vtt(t’u) +
v u(t’u) oou' + Vuu(t,u) vu * u ., Here we have used the facts that if

+|
v E CZE{O,ZM x m“,m] then V'(t,u) = Vt(t,u) + Vu(t,u) « u' and
Vi (t,u) = U(t,u,u') + Vu(t,u) "u", where Vuu(t,u) e the n x n matrix

du, Ju

1)
(5.92) V(t,u) += as ful + = uﬁifcrmiy in t € [0,2n]

W
{M] j_,j = 1'2’..';11
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(5.10) The boundary conditione of (4.4) imply

N

v
s (0,u{0)) > 0 and ot

(2n,u(21)) <0

(5.11) There exists a pousitive nondecreasing continuous function h such
2
that 1lim -—— = o and

g
I h(s)

Pece,u,u)l < h(lu'ly for all (t,u) € [0,20] X R".

(5.12) The BVP (3.6) has a maximal solution r(t), and for every lower solu-

tion v, the modified 8VP (3.7) has a solution u{t).

(5.13) The function g is increasing 4in u for each (t,u') € [0,2n] x 3ﬁn,
and there exists B € C{EG,Zﬁ},E{] such that @8"(t) > g(t,B(t), B'(t)) on

[0,2n] and B'(0) < 0 < B'(2n).
We are now in a position to prove the following result:

Theorem 5.3. Assume that (5.7)~(5.11) hold. Then any one of the conditions

(5.12), (5.13) implies that there exists a solution for the BYP (4.4).

Proof. Consider the modified problem (4.6) of (4.4) and let u(t) bea gol-
tion guaranteed by Theorem 4.2. Defining m(t) = V(t,u(t)) and using the

assumptions (5.7) and (5.8) we get
m'(t) > glt,m(t),m'(t))
and by (5.10) we have
m'(0) > 0 > m'(2m)

Hence, by comparison Theorems 3.3 and 3.4, it follows that
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m(t) < r{t) on [0,27]

i

(5.14)

m(ty < B(t) on [0,2n]}

N

when the assumptions (5.12), (5.13) are satisfied respectively. EHither of the
inequalities of (5.14) implies m(t) < k for some kt > 0. Now the assumption
(5.9) implies that there is an Ml s 0 such that Hu(t)¥ f-Ml on [0,2n].
Choosing this Ml in Theorem 5.2, we obtain Bu' ()l 5,M2 on [0,27]. These
are the constants Hl and M2 that are used in the definition of &. In view
of the definition (4.5) of F, it follows that u(t) is actually a solution of

the BVP (4.4) and the proof 1s complete.

Remark 5.1. There are other possibilities of proving Theorem 5.3, For examplc.

{(5.8) would be improved to

fo(t,u} > gle,vit,u), vi(t,u}) + ol £¢t,u,u”)t, o > 0
[

with suitable conditions on g, in which case the assumptions of Theorem 5.2

become superfluous. We do not intend to discuss these possibilities and refer

the reader to [1]. See also [2,6].
Remark 5.2. Conasider the PBVP

{(5.15) . u' = f(e,u,u'y  u(0) = u{2r) and @' (0) = u'(27m)

where f € CEO,ZTI] « R® x m“,mﬂ .
-4

We then have the following result concerning the existence of solution of

the PBVP (5.15)., We only give minimal details in the proof.

Theorem 5.4. Suppose that
(1) The conditions (5.7)~(5.9), (5.11) and (5.12} hold.

S (41) V(0,x) > V(2m,x), Vt(G¥X}.i Vt(Zw,x) and Vu(o,x) = VU(Zw,x) for alil
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Then the PBVP (5.15) hdas a solution.
Proof. Consider the modified PBVP
u" = F(t,u,u') u(0) = u(2m) and u'(0) = u'(27)

vhere F is defined by (4.5).

We let E = (LZIO,ZW})n; Lu = u", D(L) = {u € E: u,u' are absolutely
continuoua, u" € B, u(0) = u(27) and u'(0) = u'(27)}, end N be the nonlinear
operatéf generated by F, Then, as in Theorem 4.2, using the comparison Theorem
V5.3 wiﬁh'(ii) instead of (b), we have the existence of one solution u(t), which
is actually a solution of (5.15) because (5.9), (5.11), (5.12) and (i1) hold. '
Thus, the proof is complete. _ '

It is possible to prove the existence of solution of thé PBV? (5.15) with
small mbdifications in the comparison Theorem 3.4 and using a similar assumption

to (11) of Theorem (5.4).
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